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Abstract
A new stable adaptive neural network (ANN) control scheme for the Furuta pendulum, as a two-degree-of-freedom

underactuated nonlinear system, is proposed in this paper. This approach aims to address the control problem of the Furuta

pendulum in the steady state and also in the presence of external disturbances. The adaptive classical control laws such as

e-modification present some limitations in particular when oscillations are presented in the input. To avoid this problem,

two ANNs are implemented using filtered tracking error in the control loop. The first one is a single hidden layer network,

used to approximate the equivalent control online, and the second is the feed-forward network, used to minimize the

oscillations. The goal of the control is to bring the pendulum close to the upright position in the presence of the various

uncertainties and being able to compensate oscillations and external disturbances. The main purpose of the second ANN is

to minimize the chattering phenomenon and response time by finding the optimal control input signal, which also leads to

the reduction of energy consumption. The learning algorithms of the two ANNs are obtained using the direct Lyapunov

stability method. The simulation results are given to highlight the performances of the proposed control scheme.

Keywords Adaptive neural network � Oscillation compensation � Rotary inverted pendulum � Furuta

1 Introduction

Stabilization of a Furuta pendulum has been considered as

an active research area to control the engineers’ system.

The rotary inverted pendulum is a popular test bed for the

class of underactuated mechanical systems. Early resear-

ches on rotary inverted pendulum were motivated by the

need to design controllers to balance the rockets during a

vertical take-off [1]. Nevertheless, the control algorithm

developed for a rotating pendulum system can be easily

extended for any other two-degree-of-freedom unsta-

ble underactuated system (e.g., Acrobot, pendubot, inertia

wheel pendulum, cart-pole) [2].

The Furuta pendulum is a two-degree-of-freedom sys-

tem with only one actuator. This is an inverted pendulum,

classified as a nonlinear, nonminimum phase and under-

actuated system. The structure is composed of an arm,

attached to a motor, rotating in the horizontal plane. At the

end of the arm, a pendulum is attached with a free rota-

tional movement in the vertical plane. The motion control

of such systems becomes difficult because the control of

the overall system should be achieved from the actuated

joints to the nonactuated joints [3]. Moreover, the presence

of extraneous disturbance in the system has made the

control design more complicated.

The rotary inverted pendulum (Fig. 1), which was first

introduced by Furuta et al. [4], contains well-known

underactuated dynamics, and many reports about its sta-

bilization can be found. Most of the controls of the rotary

inverted pendulum fall into one of the several categories.

For example, some have considered the problem of
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stabilizing the pendulum around the unstable vertical

position [5–9]. Some swung the pendulum from its hanging

position to its upright vertical position [10–13]. Some tried

to create oscillations around its unstable vertical position

[14, 15], and some tried to track the trajectory of the arm,

while the pendulum is in the upright vertical position

[3, 16]. Therefore, three classical control objectives have

been discussed in the literature as follows: (1) swing-up;

(2) stabilization; and (3) trajectory tracking.

This study aims to consider the control problem of

swinging up the pendulum to its upright vertical position

and to stabilize the pendulum around that point. The

adaptive neural network has been applied to achieve these

control goals due to their approximation property, and the

sliding surface brings us robustness property. Eliminating

the chattering phenomenon in steady-state mode and opti-

mization of the control input signal are the main purpose of

this novel control scheme.

Regarding the stabilization problem, neural networks

have been used in various pendulum-type systems [17, 18].

The robustness property of neural networks has been

demonstrated using either real-time experiments or

numerical simulations. In [19], adaptive neural network

control for unknown nonlinear systems was proposed. The

approach was applied to a car pendulum that provided

tracking of the pendulum without considering the cart’s

position. In [20], a dynamic Takagi–Sugeno–Kang-type,

radial basis function-based neural–fuzzy system was pro-

posed for online estimation of an ideal controller. Although

the controller can solve a tracking problem, it was applied

to the stabilization of the car-pole system; however, similar

to [19], the boundedness of the cart position was not

shown. In [21], a method based on neural networks with

output feedback control was applied to address the tracking

problem for a spherical inverted pendulum.

Several robust controllers were proposed for dealing with

uncertainties and disturbances in the Furuta system. Yu et al.

[22] proposed a robust controller to stabilize the Furuta pen-

dulum under bounded perturbation. Khanesar et al. [23] used

a fuzzy sliding controller to drive a rotary inverted pendulum

to the vertical position subject to bound uncertainties and

disturbances. Park et al. [17] presented a swing-up and sta-

bilization control with coupled sliding mode control. In [24],

an adaptive RBF network-based NN controller has been

proposed, which combines with the SMC robust compensator

to control problems for two-link robot manipulator; in [5], an

adaptive controller has been proposed to balance a rotary

inverted pendulum with time-varying uncertainties; and

finally in [3], the tracking control of pendulum-type systems

has been discussed using neural networks.

In these approaches, oscillations in outputs or control

input signals have not been eliminated completely, and

strong fluctuations exist in control input signals when

putting the system in an unstable situation in addition to the

high energy consumption. Some have steady-state errors or

more fluctuations when the external disturbance has been

disappeared.

In these approaches, oscillations in outputs or control

input signals have not been eliminated completely, and

strong fluctuations exist in control input signals when

putting the system in an unstable situation in addition to the

high energy consumption. Some have steady-state errors or

more fluctuations when the external disturbance has been

disappeared.

In this paper, the control input has been smoothed in a

steady-state mode using a new approach, and the oscilla-

tion of the system has been eliminated by using filtered

tracking error and a new scheme of adaptive neural net-

work algorithm. Removing discontinuity terms in control

law and using a dual neural network make a fast adaptation

while reasonable control input is needed. Robustness of the

system has been demonstrated by applying external dis-

turbance to drive out the system from the equilibrium

position. The results show that the novel adaptive neural

network controller performs well, while the dynamic model

of the system is not needed to design the controller. Finally,

the results have been compared with previous works to

highlight the controller improvement with the new pre-

sented scheme. Finally, all of these results are verified by

ADAMS model (software in the loop) and the last section

gives the conclusions.

The main contributions are as follows:

• Introducing a new filtered tracking error to stabilize the

inverted pendulum in the vertical position and keep the

arm stable with the zero velocity.

• Introducing a new control scheme for an underactuated

system using dual adaptive neural network.

• Proposing a new weight adaptation laws based on

e-modification technique for the corrective neural

network and introducing a pseudo-sigmoid activation

function in the second neural network for oscillation

compensation.

Fig. 1 Furuta pendulum system
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2 System dynamics

The dynamic model of the Furuta pendulum in Euler–La-

grange form [25, 26] can be written as:

MðqÞ€qþ Cðq; _qÞ _qþ GmðqÞ ¼ U ð1Þ

where q ¼ ½q0 q1�T 2 IR2 is a vector of joint positions,

MðqÞ 2 IR2�2 is the symmetric positive definite inertia

matrix, cðq; _qÞ _q 2 IR2 is the vector of centripetal and

Coriolis torques, GmðqÞ 2 IR2 is the vector of gravitational

torques, and U ¼ ½u 0�T 2 IR2 is the vector of input tor-

ques, with u 2 IR being the torque applied to the arm. In

particular, the model of the Furuta pendulum has the fol-

lowing components:

q ¼
q0

q1

� �
; MðqÞ ¼ I0 þ m1ðL20 þ l21 sin

2 q1Þ m1l1L0 cos q1

m1l1L0 cos q1 J1 þ m1l
2
1

" #

Cðq; _qÞ ¼

1

2
m1l

2
1 sinð2q1Þ _q1 �m1l1L0 sin q1 _q1 þ

1

2
m1l

2
1 sinð2q1Þ _q0

� 1

2
m1l

2
1 sinð2q1Þ _q0 0

2
64

3
75

GmðqÞ ¼
0

�m1gl1 sin q1

� �
; U ¼

u

0

� �

The coordinate system and notations are described in

Fig. 1. We will assume that friction is negligible.

I0 Inertia of the arm

L0 Total length of the arm

m1 Mass of the pendulum

l1 Distance to the center of gravity of the pendulum

J1 Inertia of the pendulum around its center of gravity

q0 Rotational angle of the arm

q1 Rotational angle of the pendulum

u Input torque applied on the arm

g The gravity

2.1 Problem formulation

The controller is required to serve a twofold control

objective. The first objective is to stabilize the pendulum in

its upright position at the origin from an initial condition in

the upper half plane (i.e., q1 2 ð� p
2
; p
2
Þ). The second

objective of the controller is to ensure the proper orienta-

tion control of the arm (q0). In addition, the controller must

possess adequate disturbance rejection ability to offer sat-

isfactory control performance in an uncertain environment.

The rotary inverted pendulum has dynamics from (1).

Define the tracking error e(t) by

e0 ¼ q0d � q0

e1 ¼ q1d � q1
ð2Þ

where the desired arm position qdðtÞ is twice differentiable
and bounded for all time t C 0 in the sense

qdðtÞk k; _qdðtÞk k; €qdðtÞk k� f ð3Þ

where f is a positive constant.

The Furuta pendulum model in (1) can be written in the

following form [3]:

d

dt
q0 ¼ _q0

d

dt
_q0 ¼ f0 þ g0u

d

dt
q1 ¼ _q1

d

dt
_q1 ¼ f1 þ g1u

ð4Þ

where

f0 ¼
1

det MðqÞ ½M22Z1 �M12Z2�

f1 ¼
1

det MðqÞ ½�M21Z1 þM11Z2�

Z1 ¼ �C11 _q0 � C12 _q1

Z2 ¼ �C21 _q0 � C22 _q1 þ m1gl1 sin h1

g0 ¼
M22

det MðqÞ

g1 ¼
M21

det MðqÞ

ð5Þ

with Mij and Cij, which are the elements of the inertia

matrix MðqÞ and the Coriolis matrix Cðq; _qÞ, respectively.
The system given by (4) can be written in terms of the

tracking error (2) as follows:

_e0 ¼ _q0d � _q0 ð6Þ

€e0 ¼ €q0d � f0 � g0u ð7Þ

_e1 ¼ _q1d � _q1 ð8Þ

€e1 ¼ €q1d � f1 � g1u ð9Þ

which describe the open-loop system with

_q1d ¼ 0 ; €q1d ¼ 0. Here, it is important to introduce a

proper function of the error to gain the control goal. Then,

we propose an output function rðtÞ 2 IR as a filtered

tracking error given by

r ¼ _e0 þ _e1 þ ke1 ð10Þ

where k[ 0 is a positive definite design parameter. By

computing its time derivative, one can obtain

_r ¼ €e0 þ €e1 þ k _e1 ð11Þ
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substituting (7) and (9) into (11) and simplifying

_r ¼ €q0d � f0 � g0u� f1 � g1u� k _q1

¼ F � Gu
ð12Þ

where

F ¼ €qd0 � k _q1 � f0 � f1

G ¼ ðg0 þ g1Þ
ð13Þ

Equation (12) can also be rewritten as:

_r

G
¼ F

G
� u ð14Þ

where the function Gðq1Þ is strictly positive for all

q1jj \ cos�1ðJ1þm1l
2
1

m1l1L0
Þ and is bounded and continuous such

that

1

2

_G

G2

����
���� � l ð15Þ

where l is a positive constant value [3].

A two-layer neural network can estimate any nonlinear,

continuous and unknown function [27]. Now, according to

the universal approximation property of NN, there is a two-

layer NN such that:

F

G
¼ f xð Þ ¼ WTr VTx

� �
þ � ð16Þ

which V ; W are the NN weights, r is a sigmoid activation

function, x is the input vector of the neural network and the

approximation error � bounded on a compact set by

�k k\�N

Now, let an NN estimate of f(x) be given by

f̂ xð Þ ¼ ŴTr V̂Tx
� �

ð17Þ

where V̂; Ŵ are the matrix of input and output NN

weights, respectively, which should be specified given the

tuning algorithm. Note that V̂ ; Ŵ are estimates of the ideal

weight values.

The problem is to define a control law, which can esti-

mate the system dynamics and is robust enough to com-

pensate disturbances while reaching the control goal.

Oscillation compensation is another goal for the control

system.

3 Controller structure

In this section, SHL networks will perform the approxi-

mation of the corresponding command. According to the

universal approximation theory, the neural network of the

SHL type can estimate any nonlinear, continuous, unknown

function [27]. Due to the iterative nature of the neural

network’s training mechanism and due to the high order of

complexity of the dynamic model, the neural network may

take a relatively long time to converge, which may lead to

unstable dynamics or unsatisfactory performance. Hence-

forth, a robustifying term Fr is introduced that is corre-

sponding to a PD controller and injects damping into the

system.

Fr ¼ Kvr ð18Þ

with Kv being a positive constant gain. Therefore, a novel

adaptive neural-network-based controller is proposed by

the following expression:

U ¼ U� þ Ucor ð19Þ

U� ¼ ŴTr V̂Tx
� �

þ Kvr ð20Þ

where U� is the equivalent controller, which contains SHL

neural network and Fr. The Ucor is the ideal corrective

control that will be presented in the next section.

The optimal weight matrices V̂ ; Ŵ are unknown, and it

is necessary to estimate them by an adaptation mechanism

so that the output feedback control law can be realized. The

matrices Ŵ and V̂ are the estimation of W and V, respec-

tively. Assumption: On any compact subset of <n, the ideal

NN weights are bounded so that WF �Wm:VF �Vm: with :
Wm and Vm are unknown positive constants, :k kF is the

Frobenius norm, and the weight deviations or weight esti-

mation errors are defined as

V̂ ¼ V � V̂ Ŵ ¼ W � Ŵ

Define the hidden layer output error for a given x as

~r ¼ r� r̂ � rðVTxÞ � rðV̂TxÞ ð21Þ

The Taylor series expansion of r xð Þ for a given x may

be written as

rðVTxÞ ¼ rðV̂TxÞ þ r0ðV̂TxÞ ~VTxþ Oð ~VTxÞ2 ð22Þ

with

r0ðẑÞ � drðzÞ
dz

����
z¼ẑ

ð23Þ

the Jacobian matrix. The O zð Þ2 denotes terms of order two.

Denoting r̂0 ¼ r0ðV̂TxÞ, we have [28]

~r ¼ r0ðV̂TxÞ ~VTxþ Oð ~VTxÞ2 ¼ r̂0 ~VTxþ Oð ~VTxÞ2 ð24Þ

E-modification technique usually used in robust adap-

tive control, which is applied for improving the robustness

of the controller in the presence of the NN approximation

error [29]. Hence, the weight adaptation laws based on e-

modification technique has been provided by [28]:
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_̂W ¼ Fwðr̂rT � k rk kŴÞ
_̂V ¼ FvðxrTŴT r̂0 � k rk kV̂Þ

ð25Þ

with Fw [ 0; Fv [ 0 are the adaptive gains, and k is a

positive constant. Then, the tracking error r(t) approaches

to zero with t, and the weight estimates V̂ ; Ŵ are bounded.

3.1 Corrective control

According to the use of the filtered tracking error, some

oscillations may appear in steady-state mode. Although in

other works, a sign function has been used to correct the

controller, the discontinuity makes some perturbations

specifically when an external disturbance has been applied.

The corrective control is designed to eliminate the chat-

tering phenomenon, which is provided by the discontinu-

ous terms; for that reason, we proposed a continuous

function Z(�) given by:

Z xð Þ ¼ 1� e�2x

1þ e�2x
ð26Þ

Therefore, the ideal expression of the corrective term

will be:

U�
cor ¼ BZ /T xe

� �
ð27Þ

where the gain B and a ¼ ½k1 k2�T present the ideal output

layer and hidden layer weights, respectively, xe ¼ ½e1 _e1�T
is the input vector, and Z(�) is the activation function

defined in Eq. (26). A second neural network, which is

shown in Fig. 2, is added to the control scheme. The pur-

pose here is estimating the ideal corrective term.

The output of this network is represented by:

U�
cor ¼ B̂Z /̂Txe

� �
þ ec ð28Þ

where B̂ and /̂ are the estimation of B and /, respectively,

and ec is the reconstruction error. The weights B and / are

unknown, so it is judicious to find a way of adapting them.

Therefore, the real estimate of the corrective term by the

ANN presented in Fig. 2 has the following structure:

Ucor ¼ B̂Z /̂Txe
� �

ð29Þ

The Taylor series expansion of the corrective term

estimation error is given by:

~Ucor ¼ BZ � B̂Ẑ ¼ ~BẐ þ B ~Z ¼ ~BẐ þ B̂Ẑ 0~aTxe þ wg

ð30Þ

where ~B ¼ B� B̂; ~a ¼ a� â are the error parameters. The

term wg presents the approximation error given by:

wg ¼ ec þ ~BẐ 0~aTxe þ ~BOð~aTxeÞ2 ð31Þ

Assumption: wg

�� ��� �wg; �wg is an unknown positive

constant and Bj j �Bm; ak kF � am with am and Bm are

unknown positive constants. The proposed adaptation laws

for adjusting weights are given by the following equations

that will be proofed by the Lyapunov function in (49).

_̂B ¼ FBẐðaTxeÞre
_̂a ¼ FaðxereB̂Ẑ 0 þ ka rej jð�a� âÞÞ

ð32Þ

where re ¼ _e1 þ de1; FB ¼ FT
B [ 0; Fa ¼ FT

a [ 0; ka
[ 0: The vector �a is selected as follows:

�a ¼
p

e1j j þ e
1

� �T
; p; e[ 0 ð33Þ

where �/� /n, /n is a positive constant. The structure of

the controller is shown in Fig. 3.

3.2 Error system dynamics

The control input from (19), (20), and (29) is defined as

U ¼ ŴTr V̂Tx
� �

þ Kvr þ B̂Z /̂Txe
� �

ð34Þ

Using the control law (34), the closed-loop filtered error

dynamics becomes

_r

G
¼ �Kvr þWTr VTx

� �
� ŴTr V̂Tx

� �
� B̂Z /̂Txe

� �
þ e

ð35Þ

Adding and subtracting WTr̂;BẐ yields

_r

G
¼ �Kvr þ ~WTr̂þWTr̂þ B̂Ẑ � BẐ þ e ð36Þ

Moreover, now adding and subtracting ŴT ~r;BZ yields

_r

G
¼ �Kvr þ ~WTr̂þ ŴT ~rþ ~WT ~rþ ~BẐ þ B ~Z � BZ þ e

ð37Þ

The key step here is the use of the Taylor series

approximation for ~r; ~Z, according to which the closed-loop

error system is

Fig. 2 Second network to estimate the correction term
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_r

G
¼ �Kvr þ ~WTr̂þ ŴTr̂

0 ~VTxþ ~BẐ þ B̂Ẑ
0
~/xe þ w1

ð38Þ

where the disturbance terms are

w1 ¼ ~WTr̂
0 ~VTx� BZ þ wg þ ŴTO ~VTx

� �2þe ð39Þ

As seen, the convergence of ‘‘r’’ to zero implies con-

vergence of the tracking error and its derivative to zero. So,

the objective of control is summarized in the synthesis of a

control law that allows the convergence of the filtered error

to zero [28]. Let the desired trajectory qd tð Þ be bounded by

qb. Assume the disturbance term w1 in (38) equals zero.

The stability of closed-loop system has been proved by

defining the Lyapunov function candidate L as below. The

proof is illustrated in ‘‘Appendix.’’

L ¼ 1

2

r2

G
þ 1

2
tr ~WTF�1

w
~W

� 	

þ 1

2
tr ~VTF�1

v
~V

� 	
þ 1

2
tr ~BTF�1

B
~B

� 	

þ 1

2
tr ~/TF�1

/ ~/
� 	

ð40Þ

4 Simulation studies and performance
comparison

The simulation results are introduced in order to make it

possible to see the operation of the proposed adaptive

neuro-controller and control input signals. The results of

the swing-up and disturbance rejection tests are introduced.

A simulation comparison wherein three controllers are

compared to the new controller is performed. The model

parameters are briefly described, and the controllers used in

the comparison are introduced.

4.1 Controllers used in the comparison

A simulation study has been performed to assess the per-

formance of the new controller (34). Specifically, a linear

controller and the adaptive neural network schemes in

[16, 30] were implemented in real time.

The schemes in [3, 16, 30] have an adaptive neural

network component and a linear PD or PID component. In

addition, in [3] there is a nonlinear term that eliminates the

adaptation error introduced by the neural network, but that

discontinued term introduces some fluctuations, specifi-

cally when the disturbance happens. In the proposed con-

troller, the second adaptive neural network has been used

to eliminate the oscillation and the adaptation error. Also in

disturbance investigation, the external disturbance should

be applied on the pendulum to observe the ability of the

controller to keep it stable, while in some of the previous

works, it has been applied as a torque summation in the

control input of the first link. In [3], the initial angle of the

pendulum has been defined zero, while here, we propose a

nonzero initial angle to highlight the ability of the proposed

scheme to swing up and also to confirm the robustness

against external disturbances. It is important to observe that

the proposed adaptation laws (25) and (32) of the new

scheme (34) are derived such that the time derivative of the

Lyapunov function L in (49) is negative, and some of the

other schemes use the back-propagation adaptation without

any motivation given by the closed-loop system analysis.

The adaptive neural network controller proposed by

Moreno [3] is given by

s ¼ �ŴTrðV̂TxÞ � kpy� d signðyÞ ð41Þ

Fig. 3 Control system structure
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where the constants kp and d are positive, V̂ is the matrix of

estimated input weights, and Ŵ is a vector of the estimated

output weights. Output function y(t) is given by

y ¼ _e1 þ D1e1 þ _e2 þ D2e2 ð42Þ

where D1 ¼ 3; D2 ¼ 8 are positive constants and

kp ¼ 1:05; d ¼ 0:035. The number of neurons in the hid-

den layer was L = 10. The adaptation laws were imple-

mented with a = 1, N = 1.05, and R = 8.53. The weights of

the neural network were initialized zero. It is worth men-

tioning that the presented approach by Moreno has been

compared to the PID algorithm and the results show the

superiority of Moreno’s approach to PID algorithm.

Therefore, the PID has not been discussed in this paper.

In the tests, we also consider the adaptive neural net-

work controller proposed by Chaoui and Sicard [16].

s ¼ sNN þ kDs ð43Þ

where sNN is the output of a two-layer neural network, six

neurons in the hidden layer and one neuron in the output

layer; that its, input and output weights are obtained by the

back-propagation algorithm, which minimizes the signal s

given by

s ¼ ½1� k�½ _e1 þ w1e1� þ k½ _e2 þ w2e2� ð44Þ

with 0\k\1; w1;w2 [ 0, and kD [ 0. Specifically, (43)

was implemented with k ¼ 0:5; w1 ¼ 20; w2 ¼ 30, and

kD ¼ 1:757:

See the original works [3, 16] for further details on the

controllers (41) and (43), respectively.

4.2 Simulation

The simulation of the Furuta pendulum has been conducted

on a MATLAB�/Simulink with the following initial con-

ditions: (q0 ¼ 0; q1 ¼ 30�). The actual values of the system
parameters are presented in Table 1. For the proposed

controller, the number of neurons in the hidden layer is 7,

and initial values for W and V have been defined zero.

Determining the number of hidden layer neurons required

for the best approximation is an open problem for general

fully connected two-layer NN [28]. Therefore, the number

of neurons in the hidden layer is defined by the trial-and-

error approach, and it can be selected from 3 to 11 for a

good performance. Changing this parameter (Figs. 10, 11)

in this area causes little changes in the results and can be

easily modified. The initial adaptive coefficients in (25) are

assumed to be Fw ¼ 100, Fv ¼ 50, k = 1 and in (32) is

assumed to be FB ¼ 5; Fa ¼ 2; ka ¼ 1. We suppose that

k ¼ 10; Kv ¼ 1; d ¼ 2 and initial values for B; k1; k2 are

zero.

To stabilize the system, the arm speed should also be

controlled, and by applying the zero as the desired state for

it, a stable system has been achieved. Therefore, the state

variables are considered as follows:

X ¼ e1 � _e1 � e1 delay � _e0 � €e0

 �

e0 ¼ q0 desired � q0

e1 ¼ q1 desired � q1

ð45Þ

The reason for introducing e1 delay is that since the neural

network controller itself is a nonmemory device, some

delayed signals must be introduced in order to control the

output to depend not only on the current input (error in our

case) but also on past inputs. Under some circumstances,

by properly introducing time delays into the control

channel, the control performance of some practical systems

can be improved [31]. As discussed in [32], using mixed

current and delayed states can significantly reduce both

internal oscillations of the offshore platform and required

control force. In this paper, we consider only one simple

delayed signal. However, in principle, multiple delayed

signals can be introduced.

According to Eq. (25), its parameters are calculated as

follows.

rðxÞ ¼ 1

1þ e�x
ð46Þ

Then, r0ðxÞ is calculated as follows [28, 33, 34]:

r0ðxÞ ¼ rðxÞrð�xÞ ð47Þ

4.3 Results

The following shows the obtained results. For simplicity,

the proposed controller in (34) is labeled as ‘‘new,’’ the

neural network controller proposed by [3] in (41) is labeled

as ‘‘Moreno,’’ and the neural network controller introduced

by [16] in (43) is labeled as ‘‘Sicard.’’ The results of the

three implemented controllers to reach the inverted pen-

dulum from 30 degrees to vertical position (zero degree)

without external disturbances are shown in Figs. 4 and 5.

The maximum absolute value of the pendulum position

error and the root mean square (RMS) value of the error are

compared in Table 2. The settling time has been defined

when the signal crosses into and remains in the 2%-toler-

ance region around the state level. In maximum error

quantification, the first-time interval is considered after 5 s

Table 1 System parameters

m0 ¼ 990 gr l0 ¼ 55 cm q0 ¼ 0

m1 ¼ 225 gr l1 ¼ 25 cm q1 ¼ 30�
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when the pendulum is in a stable position, and the maxi-

mum of the error has been highlighted. The second time

interval (2\ t\ 10) shows the ability of the proposed

approach to reach a stable position in a shorter time.

Figure 4 shows that, in 0.2 s, the controller can adapt to

parameters with a completely unknown model for the

controller, and control the underactuated system well. Also,

the control input is within the acceptable range (Fig. 5a).

The velocity of the arm tends to be zero while the oscil-

lation has not been produced (Fig. 5b). The first second of

the diagrams has been magnified to highlight the perfor-

mance of the proposed controller in comparison with oth-

ers. The fast adaptation and less fluctuation in pendulum

position and arm velocity are the advantages of the new

controller. Table 2 presents a quantification of the results

obtained during the tests, therein showing a comparison of

the maximum absolute value of the error e1 tð Þ, the RMS

value of the error e1 tð Þ, for each algorithm. A better per-

formance is obtained with the new controller because the

index RMS{e(t)}, the settling time, and the maximum

absolute of the error are the lowest.

To check the robustness of the controller, an external

disturbance as a torque is applied to the pendulum for 0.1 s

with Fd ¼ 0:5 NM and the controller performance are

evaluated. The other variables with time are displayed in

Figs. 6 and 7. Quantification of the error with disturbance

has been evaluated in Table 3.

As seen in Figs. 6 and 7, the disturbance applied within

0.1 s changed the pendulum angle significantly from the

steady state. However, the proposed controller is robust

enough to keep the states in the neighborhoods of the
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Fig. 4 Angle of Pendulum position in comparison with other implemented controllers and the magnified part of it

Fig. 5 Comparison of three implemented controllers a the control input and b the angular velocity of the arm

Table 2 Quantification of error

Sicard Moreno New

Max e1 tð Þj jf g (�),
5\ t\ 10

3.9842 3.1010e - 5 7.5377e - 9

Max e1 tð Þj jf g (�),
2\ t\ 10

10.7567 0.0186 0.0013

RMS e1 tð Þf g (�) 6.1463 5.0352 1.9126

Settling time q1 tð Þ (2%) (s) 11.019 1.214 0.485

Bold values show the best results in each row of the table
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equilibrium points and to return them to the desired values

immediately when the disturbance disappears. The applied

torque is a step function with positive value, which makes a

positive deviation in pendulum’s angle if there is no con-

troller. But here, because of fast adaptation of the controller

parameters, the movement of the arm prevented the devi-

ation of the pendulum in that direction, and after a very

small movement in positive direction, the controller makes

an input torque and pendulum deviates in minus direction

and then tends to be in the vertical stable position. The

results show that the controller tries to do does not produce

a big error like other approaches and the settling time after

disturbance highlights the controller adaptability. The RMS

values of the errors in Table 3 show the ability of the

proposed controller in disturbance rejection in comparison

with other approaches. The absence of extreme fluctuations

in the results shows good performance of the controller in

an underactuated system.

4.4 Corrective control analysis

In the following section, adding Ucor, which is the second

part of the controller in (19), has been investigated. One of

the advantages of the presented approach is using a dual

neural network to eliminate oscillations that are emerged

by a discontinuity of the sign function used in other

Fig. 9 Control input. ANN controller and proposed ANN controller

in which oscillation is compensated

Fig. 10 Angle of pendulum position in a number of hidden neuron

analysis

Fig. 6 Pendulum position with external disturbance

Fig. 7 The arm velocity with the external disturbance

Table 3 Quantification of error with external disturbance

Sicard Moreno New

RMS error (deg.) 10.3346 8.5528 3.8937

Bold value shows the best result

Fig. 8 The angle of pendulum position. ANN controller in compar-

ison with proposed ANN controller in which oscillation is

compensated
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approaches like [3, 35]. To show the effect of the Ucor in

oscillation compensation, the results with Ucor and without

that are shown in Figs. 8 and 9. Actually, the controller U2

that is compared to (19) is defined by:

U2 ¼ ŴTr V̂Tx
� �

þ Kvr þ sign rð Þ ð48Þ

Figures 8 and 9 show the performance of the proposed

algorithm in comparison with the ANN controller without

Ucor. The proposed control scheme has compensated the

oscillation caused by uncertainties and discontinuity.

Although by multiplying a coefficient to the sign function,

the pendulum position oscillation can decrease (not elim-

inated at all), but the control input value increases so that it

becomes unreasonable. Therefore, the figures suggest that

the performance of the proposed algorithm is clearly better

than the performance of the ANN controller formulated in

(44).

4.5 Number of hidden neuron analysis

The number of hidden neurons in the neural network was

studied in the following. As it has been referred to before,

the number of neurons in the hidden layer is defined by the

trial-and-error approach. In Figs. 10 and 11, the results

have been analyzed when the number of hidden neurons in

the hidden layer is changing from 3 to 11. The three sets of

neurons have been introduced to show the efficiency of

each case in pendulum position and control input values.

As seen in Figs. 10 and 11, three variants (3 neurons, 7

neurons, and 11 neurons) of choosing a number of hidden

neurons have been analyzed. It is clearly shown that the 7

neurons in the hidden layer make better performance in

position error and also in control input values.

The controller is able to drive the Furuta pendulum

system toward its desired equilibrium points (i.e., X = 0) in

an efficient manner. Simulation results clearly show the

Fig. 11 Control input in a number of hidden neuron analysis

Fig. 12 ANN control of the system in ADAMS and Simulink (software in the loop)

Fig. 13 Comparison of results for ADAMS and numerical model
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stabilizing ability of the controller. Thus, the algorithm can

be used for either two-degree-of-freedom systems with a

slight design modification.

5 ADAMS simulation

In order to verify numerical results, dynamic model of the

Furuta is simulated in the commercial software, ADAMS/

View package of MSC software. Robot Furuta with all of

the details, as like as real working condition of the robot, is

modeled in ADAMS, which is shown in Fig. 12. Coulomb

friction effect, Stiction and Sliding, are considered in all of

the joints. Coefficients of static and dynamic friction are set

to 0.5 and 0.3, respectively. All the robot dimensions and

inertia parameters are assumed the same as in Table 1. The

absolute velocity threshold for the transition from dynamic

friction to static friction is assumed to be 0.1 mm/sec. The

effect of viscous friction using a damper on the joints is

considered. Damping coefficient is chosen 0.2, so that the

software model performs the same as the experimental

setup.

By using ‘‘Controls’’ plugin in ADAMS/View, dynamic

model of the system is exported to MATLAB/Simulink

environment (Fig. 12) and the proposed controller is

implemented on the robot to evaluate the results. The

controller parameters are the same as Sect. 4.2. The results

of the implemented controller on ADAMS model without

external disturbance have been evaluated. To compare the

ADAMS model with the numerical model, the results are

shown in Fig. 13.

As seen in Fig. 13, both numerical and ADAMS models

are almost the same and some small differences exist

because of the friction, which is modeled perfectly in

ADAMS model. The quantification of error for 10 s sim-

ulation has been presented in Table 4.

An external disturbance as a torque is applied to the

pendulum for 0.1 s with Fd ¼ 0:5 NM (Fig. 14) as like as

numerical model in Fig. 6.

As it is shown in Fig. 13, because of the friction exis-

tence in the ADAMS model, deviation of the angular

position of the pendulum is not too much in comparison

with numerical model. The results show that the proposed

approach is working on numerical and simulated physical

models as well and the performance is comparable with

previous works.

6 Conclusion

This paper showed the development and application of an

adaptive neural network control scheme to drive the Furuta

pendulum system from an initial condition toward its

upright vertical position and to stabilize the system at that

point. The Ucor has been introduced to compensate the

oscillation of the pendulum when it reaches the steady-state

point. The controller was derived from the universal

approximation property of neural networks, and weight

adaptation laws were designed. The simulation results

clearly indicate the effectiveness of the proposed control

law in an uncertain nonlinear underactuated system. The

results have been compared with previous works to high-

Table 4 Quantification of error for numerical and ADAMS model

ADAMS Numerical

Max e1 tð Þj jf g (�), 5\ t\ 10 0.037 7.5377e - 9

Max e1 tð Þj jf g (�), 2\ t\ 10 0.2191 0.0013

RMS e1 tð Þf g (�) 2.6178 1.9126

Settling time q1 tð Þ (2%) (s) 0.38 0.485

Bold values show the best results in each row of the table

Fig. 14 Pendulum position with external disturbance for ADAMS and numerical model
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light the performance of the proposed approach. The con-

troller simultaneously stabilizes the arm’s orientation angle

and angular position of the pendulum. The controller is

able to provide robust, nonfluctuation performance in the

presence of parametric uncertainty and extraneous distur-

bances. In addition, the proposed algorithm can be easily

extended for any other two-degree-of-freedom underactu-

ated system. Numerical results are verified with software in

the loop simulation of the robot in ADAMS software.

Authors are planning to apply other activation functions

and different ordering of the adaptive neural network to

improve the performance and to apply the controller in

other complex mechanisms for future works.
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Appendix

Proof of the closed-loop system

Define the Lyapunov function candidate

L ¼ 1

2

r2

G
þ 1

2
tr ~WTF�1

w
~W

� 	
þ 1

2
tr ~VTF�1

v
~V

� 	
þ 1

2
tr ~BTF�1

B
~B

� 	

þ 1

2
tr ~/TF�1

/ ~/
� 	

ð49Þ

where L is the proposed Lyapunov function. Differentiating

yields

_L ¼ r
_r

G
� 1

2

_G

G2
r2 þ tr ~WTF�1

w
_~W

n o
þ tr ~VTF�1

v
_~V

n o

þ tr ~BTF�1
B

_~B
n o

þ tr ~/TF�1
/

_~/
� 	

ð50Þ

Whence substitution from (38) (with w1 ¼ 0Þ yields

_L ¼ �Kvr
2 � 1

2

_G

G2
r2 þ tr ~WT F�1

w
_~W þ r̂rT

� 
n o

þ tr ~VT F�1
v

_~V þ xrTŴT r̂
0

� 
n o
þ tr ~BT F�1

B
_~B� rTẐ

� 
n o

þ tr ~/T F�1
/

_~/þ xerTB̂Ẑ
0

� 
n o

ð51Þ

Since Ŵ ¼ W � Ŵ , the W is constant, so

d Ŵ
dt
¼ �dŴ=dt, as for V, B and �, the tuning rules from

(32) and (25) yield.

_L ¼ �Kvr
2 � 1

2

_G

G2
r2 þ tr ~WT kr ~W

� �� 	
þ tr ~VT krV̂

� �� 	

þ tr ~BTẐ r � reð Þ
� 	

þ tr ~/T xeB̂Ẑ
0
r � reð Þ � ka rej j �a� âð Þ

� 
n o

ð52Þ

_L ¼ �Kvr
2 � 1

2

_G

G2
r2 þ krtr ~WT W � ~W

� �� 	
þ krtr ~VT V � ~V

� �� 	

þ tr ~BTẐ r � reð Þ
� 	

þ tr ~/T xeB̂Ẑ
0
r � reð Þ � ka rej j �a� âð Þ

� 
n o

ð53Þ

Define the matrix of all the NN weights as

T � W 0

0 V

� �
ð54Þ

Assumption: On any compact subset of <n, the ideal NN

weights are bounded so that

Tk kF � TB

with TB known, and �k kF is the Frobenius norm. Then

_L ¼ �Kvr
2 � 1

2

_G

G2
r2 þ krtr ~TT T � ~T

� �� 	

þ r � reð Þtr ~BTẐ þ ~/TxeB̂Ẑ
0

n o
� ka rej jtr �a� âð Þf g

ð55Þ

Since tr ~TTðT � ~TÞ
� 	

� ~T
�� ��

F
Tk kF� ~T

�� ��2
F
, the results

are as follows[28]:

_L� � rKvr �
1

2

_G

G2
r2 þ kr � ~TF TB � ~TF

� �

þ r � reð Þtr ~BTẐ þ ~/TxeB̂Ẑ
0

n o
� ka rej jtr �a� âð Þf g

_L� � rKvr �
1

2

_G

G2
r2 � kr � ~TF � D

� �2þkrD2

þ r � reð Þtr ~BTẐ þ ~/TxeB̂Ẑ
0

n o
� ka rej jtr �a� âð Þf g

_L� � 1

2

_G

G2
r2 � kr � ~ZF � D

� �2�rðKvr � kD2Þ

� �wg þ k/
/2

m

4
þ k/ ~/ �/

� �
rej j

_L� � 1

2

_G

G2
r2 � kr � ~ZF � D

� �2�rðKvr � kD2Þ

� �wg þ k/
/2

m

4

� �
rej j � k/ rej j /2

n

ð56Þ

where D ¼ TB
2
. Suppose that k[ 0, using the inequality in

(15), the first term is negative; then, we prove that the

Lyapunov first-time derivative becomes negative if:

r[
kD2

Kv
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Then, we prove that the Lyapunov first-time derivative

will be:

_L� 0

which guarantees the stability of closed-loop system

[3, 27, 28].
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