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Abstract
Automatic defect detection is a challenging task owing to the complex textured background with non-uniform intensity

distribution, weak differences between defects and background, diversity of defect types, and high cost of annotated

samples. In order to solve these challenges, this paper proposes a novel end-to-end defect classification and segmentation

framework based on weakly supervised learning of a convolutional neural network (CNN) with attention architecture.

Firstly, a novel end-to-end CNN architecture integrating the robust classifier and spatial attention module is proposed to

enhance defect feature representation ability, which significantly improves the classification accuracy. Secondly, a new

spatial attention class activation map (SA-CAM) is proposed to improve segmentation adaptability by generating more

accurate heatmap. Moreover, for different surface texture, SA-CAM can significantly suppress the background’s inference

and highlight defect area. Finally, the proposed weakly supervised learning framework is trained using only global image

labels and devoted to two main visual recognition tasks: defect samples classification and area segmentation. At the same

time, it is robust to complex backgrounds. Results of the experiments verify the generalization of the proposed method on

three distinct datasets with different kinds of textures and backgrounds. In the classification tasks, the proposed method

improves accuracy by 0.66–25.50%. In the segmentation tasks, the proposed method improves accuracy by 5.49–7.07%.

Keywords Machine vision � Spatial attention � Deep learning � Defect detection � Convolutional neural network

1 Introduction

Surface defect inspection is important to production quality

control in the intelligent manufacturing industry. Most

surface defect inspection tasks in the manufacturing

industry are still performed manually. Unfortunately, the

disadvantages of manually defects inspection are obvious:

subjective unstable and time-consuming. To overcome the

disadvantages, automated surface inspection (ASI) tech-

nology is utilized to help or replace humans work. Among

kinds of ASI methods, machine vision-based defect

inspection methods have been wildly employed for surface

quality controlling in manufacturing industry to help real-

time identify and reject defective products, which can

improve the production’s quality and lifetime. Figure 1

shows three different typical defects on various kinds of

surface texture. Moreover, different kinds of surface

defects contain various features with random shapes and

sizes in different directions and locations, which bring a

huge challenge for visual defects inspection.

In fact, surface defects are local anomalies in various

backgrounds. The existing surface defect algorithms

mainly focus on the following four types of surfaces [1]:

(1) non-textured surface; (2) repeated pattern surface; (3)

homogeneously textured surface; and (4) non-homoge-

neously textured surface. Traditionally, automatic surface

inspection methods are designed based on manually fea-

tures. For non-texture surface, Luo et al. [2] used GC-LBP
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to inspect steel surface defection. But this method might be

not effective for complex backgrounds with random tex-

tures. In order to solve this problem, Su et al. [3] proposed

a novel BCPICS-LBP descriptor. This new LBP-based

method improved the crack defects recognition effect of

different shapes and sizes compared with the traditional

LBP features. The accuracy achieved 88.66%. However,

the LBP feature is difficult to describe the surface defect

characteristics of the repeat pattern surface because it does

not consider the structural information of the repetitive

texture. For repeated pattern surface images like fabric

[3, 4], statistical representation like redundant contourlet

transform (RCT) is used. The method’s accuracy achieved

94.6%. As to homogeneously textured surface images such

as wood surface, Wang et al. [5] used Gabor filters to learn

the features of the wood surface and achieved a classifi-

cation accuracy of 91.2%.

However, the manual feature’s shortcomings for defect

inspection were obvious: (1) sensitive to changes of the

texture background and (2) highly dependent on human’s

knowledge. Moreover, it is difficult to construct feature

represent for multiple surface defect and texture generally.

These restrictions limited robustness and generalization of

manual feature-extracting methods. So, automatically

extracting feature methods are given more and more

attention.

In recent years, deep learning (DL)-based methods are

significantly researched. They are able to extract feature

automatically and have been achieving good performance

on image-related tasks [6–9] like classification and seg-

mentation. For classification task, Jung [10] proposed a

defect classification method for wood with randomly tex-

tured surfaces by employing different structures of CNNs.

The method achieved accuracy for 92.30%. Chen et al. [11]

proposed a multi-spectral CNN structure for classifying

surface defects of solar cells. By separating the different

channels of original image and separately convolution, the

paper obtained 88.24% classification accuracy results, 2%

higher than the traditional CNN. Zhou et al. [12] designed a

CNN to learn multiple feature representations. The network

classification accuracy achieved 97.3%. However, most of

the above-mentioned CNN-based methods are designed to

solve the problems for a specific texture surface. They are

sensitive to minor changes in complex backgrounds.

Moreover, the robustness of fully connected layer of

original network may be weak for datasets with complex

backgrounds. These CNN-based automatic feature-ex-

tracting methods achieve higher classification accuracy

than traditional manual features.

To deal with the inner class separation and interclass

compactness problem of softmax classifiers from original

CNN, some papers redeveloped the structure with more

robust classifiers. Tang et al. [13] replaced the fully con-

nect (FC) layer with support vector machine (SVM). Based

on three different common datasets, compared to tradi-

tional CNN structure, CNNs with SVM classifiers achieved

3% performance improvement, which verified the gener-

ality of this method. Further, Merentitis et al. [14] designed

a combination of random forest and CNN on high-resolu-

tion remote sensing images. In the forest remote sensing

dataset, this method’s accuracy was 6% higher than the

traditional CNN, whose increment was more significant

than replacement of the full connectivity layer with SVM.

For ASI, after classifying the defect samples, it is nec-

essary to segment the defect area to further find out the

cause of the defect and troubleshoot the malfunction.

Zhang et al. [15] designed a fabric defect detection

framework based on YOLOv2. It could predict both the

location and classification information of defect regions.

The method achieved 69.45% intersection over union

(IOU). Singh et al. [16] detected road damage and crack

using mask-RCNN. Due to the complexity and randomness

of the street and cement background, they only achieved

50% IOU for the road damage detection task. These

supervised methods are trained with annotations.

Although the defect segmentation methods are effective,

they require precise pixel-level annotation during training.

However, because of the low occurrence of the defective

sample and random changes from light intensity or com-

plex backgrounds, it is extremely expensive to collect the

accurately pixel annotated defect images. Therefore, the

need for large amount of annotated data are still mainly

weak points of CNN-based methods as Alan Yuille sug-

gested [17].

To solve leakage problem of annotation defective sam-

ples in CNN-based methods, weakly supervised defect

inspection has been extensively studied. Class activation

map (CAM) [18] is one of commonly used inspection

Fig. 1 Various types of texture defects. a, b Defects on a fabric

surface. c, d Defects on a wood surface. e, f Defects on Polycrys-

talline silicon solar cell
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methods in CNN-based weakly supervised learning defect

detection framework. Ren et al. [19] proposed a generic

approach for automatic surface inspection in several image

datasets with different kinds of texture background. Lin

et al. [20] proposed a LED defect detection framework

based on CAM for visual prediction of blocks. Li et al. [21]

generated CAM for manipulation images to predict loca-

tion of weak structure parts where collapse begins. In the

above papers, the pixel or bounding box level inspection of

defect is achieved by global image label, which avoids

costly manual annotation.

Though weakly supervised methods reduce the

requirement of label, the biggest problems of these meth-

ods are leakage of robustness. They are sensitive to back-

ground and texture’s inference. In order to suppress

interference from complex backgrounds, spatial attention

mechanism is imported. According to [22], spatial attention

mechanism improved the representation of interest area.

Paper 6 [23] imported a saliency attention mechanism into

CNN to detect the object, which improved the performance

significantly compared with the standard FCN structure.

Inspired by the above paper, we integrated CAM with

attention mechanism and proposed spatial attention class

activation map (SA-CAM). The proposed SA-CAM is able

to focus on important features and suppress backgrounds’

texture.

Comparing all the above-mentioned papers, a generic

defect inspection framework based on CNN with attention

architecture and random forest classifier is proposed in this

paper. The contribution can be expressed as follows:

1. A novel deep CNN model is proposed for the defect

classification problem in distinct surface textures by

fusing CNN with random forest classier and spatial

attention module. The random forest (RF) classifier is

robust to changes in complex backgrounds. The spatial

attention module can guide the CNN to gain more

discriminating features. Thus, the novel CNN model

significantly improves the classification effect and

robustness of the proposed CNN model.

2. A robust spatial attention class activation map (SA-

CAM) network structure is designed by integrating the

above attention mechanism and CAM. The SA-CAM

suppressed complex background with different textures

and simultaneously highlight defective area, which is

helpful to generate more accurate saliency map.

3. By depending the saliency map from SA-CAM, the

proposed weakly supervised learning segmentation

method uses global image label to achieve pixel-level

defect segmentation, which simplifies the task of heavy

pixel-level annotation for complex surface defects and

unfolds good versatility for different texture surfaces.

The rest of the paper is organized as follows. In Sect. 2,

the proposed framework containing random forest and

spatial attention mechanisms is described. Section 3 pre-

sents the experimental results including classification,

segmentation, and examples heatmap of some segmenta-

tion images. In Sect. 4, the results are further discussed and

conclusion is given.

2 Proposed method

The proposed robust weakly supervised learning of deep

Conv-Nets for surface defect inspections (RWSLDC)

structure is shown in Fig. 2. The proposed framework

includes feature extraction network, classification module,

SA-CAM module, and segmentation module.

2.1 Feature extraction network

CNN is a type of feed-forward neural network. Generally,

CNNs includes three major parts: (1) convolutional layer;

(2) pooling layer; and (3) fully connected layer. The con-

volutional layer applies a group of convolutional filters on

the local regions of the input, thus obtaining the feature

maps of the input image. Suppose the number of filters is k,

Wi denotes the weight of filter i, bi is the bias of filter i, xs
stands for a small patch, r is the activation function, and

the size of input image is a 9 b. The convolution of xs
given filter i is shown in

f i; sð Þ ¼ r Wixs þ bið Þ ð1Þ

The pooling layer downsamples inputting spatial

dimensions. For example, max pooling of image patch xs is

simply:

pooling ¼ max xsð Þ ð2Þ

The pooling layer is normally applied after the convo-

lutional layer to reduce the feature dimension and to avoid

overfitting problem. For instance, the pooling with input

size a 9 b and patch size c 9 d produces output with size

a� 1ð Þ=c �� ½ b� 1ð Þ=d½ �, which is named of vision field.

Generally, the pooling methods include average pooling,

max pooling, and the Gaussian pooling. The fully con-

nected layers normally constitute the last few layers of a

CNN, whose works are computing the class scores and give

out the classification results. A deep CNN normally con-

sists of alternating convolutional and pooling layers, fol-

lowed by fully connected layers. The CNN structure is

widely used in computer vision-related tasks, such as

object detection, scene classification, and video analysis.

Among the various CNNs, the CNN model in Ref [11] is

one of the effective models for surface defect inspection

which contains five convolutional, three pooling, and three
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FC layers. The model structure of solar cell CNN refer-

ences [11] and Table 1. It selects max pooling as down-

sampling method. In this paper, the convolution layers will

be used to extract features.

2.2 Classification module

In order to further improve the classification accuracy and

adaptability of the proposed CNN, the classifier of the

traditional convolutional neural network is redeveloped.

Traditionally, the FC layers of CNN perform as the

classifier. In this paper, a more robust random forest clas-

sifier is introduced into the CNN to replace the original

fully connected layer.

The random forest algorithm [24] is a combined algo-

rithm based on classification and regression decision trees

proposed by Breiman et al. It is a classifier that uses

multiple decision trees to train and predict samples classes.

The construction of random forest model is generated by

the following three steps:

1. Obtain the training dataset with N samples, randomly

extract K samples by using the returning sampling, and

then obtain K training subsets D1;D2; . . .;DKf g.
2. The obtained training subset is used (1 B i B K) to

construct the sub-decision tree. There are M sample

features and selecting F samples from M to form a

random feature subspace as the split attribute set of the

current node of the decision tree.

3. Every tree will grow equally without pruning. Finally,

each tree will give out a result, and then vote of the

decision trees are counted. The most votes are the

output of the random forest.

Random forest classifier has following advantages:

strong robustness, good generalization ability, and fast

calculation speed. Based on the above advantages, it is

selected as a classifier in the multiple distinct classification

tasks, replacing the fully connected layer in the traditional

convolutional neural network.

Image
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(solar cell CNN)

W×H×3

Conv1
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Conv2

(W
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Conv3
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(W
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Feature tensor
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result
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Fig. 2 RWLSDC framework structure

Table 1 Structure of solar cells CNN

Name Kernel Solar cells CNN

Structures Output

Layer1 16 9 7 9 7 Conv1 256 9 256 9 16

2 9 2 Pool1 128 9 128 9 16

Layer2 32 9 5 9 5 Conv2 128 9 128 9 32

32 9 5 9 5 Conv3 128 9 128 9 32

2 9 2 Pool2 64 9 64 9 32

Layer3 64 9 3 9 3 Conv4 64 9 64 9 64

64 9 3 9 3 Conv5 64 9 64 9 64

2 9 2 Pool3 32 9 32 9 64

FC1 512 FC1

FC2 512 FC2

Softmax 2 Softmax
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2.3 Spatial attention class activation map (SA-
CAM)

Due to the randomness of surface defect locations, this

paper merges the spatial attention into convolutional neural

networks. Different from considering each image area

equally, the spatial attention mechanism pays more atten-

tion to semantically related areas.

In the sample image of the defect detection dataset, the

defect only accounts for a small portion of the entire image.

In order to detect the defect area more accurately without

reducing the picture resolution, it is necessary to separate

the whole defect sample into smaller patches, which is

called sliding window processing. In this case, pixel level

is not directly available, and only patch-level results are

accessed in the dataset. To extract the defect area, global

average pooling (GAP) [25] can be used to extract the

Class Activation Map (CAM) [18]. The highlighted part of

the class activation map represents high possibility of

defection.

CAM’s calculating process is as follow: For a given

image, let fk x; yð Þ represent the activation of sample k in the

last convolutional layer at spatial location x; yð Þ. Then, for
the k, the result of performing global average pooling Fk isP

x;y fk x; yð Þ. Thus, for a given class c, the input to the

softmax, Sc, is
P

k w
k
cFk where wk

c is the weight of class c

for unit k. Importantly,wk
c refers to the importance of Fk for

class c. Finally, the output of the softmax for the specific

class is given by:

Pc ¼ exp Scð Þ
P

c exp Scð Þ : ð3Þ

By applying Fk ¼
P

x;y fk x; yð Þ the class score, we obtain
Sc = Sc ¼

P
k

P
x;y w

k
cfk x; yð Þ. Mc is defined as the class

activation map for class c, where each spatial element is

given by

Mc x; yð Þ ¼
X

k

wk
cfk x; yð Þ ð4Þ

In this paper, instead of using GAP, a trainable spatial

attention method named spatial attention class activation

map (SA-CAM) is proposed. It consists of two successive

fully connected 1� 1 convoluting layer which takes an

instance feature. For the Mc x; yð Þ in (3), the proposed

spatial attention structure calculation formula is given by

Mc x; yð Þ ¼
X

k

w x;yð Þw
k
cfk x; yð Þ: ð5Þ

Here wx;y represents the attention weight. It takes a high-

level feature vector Mc x; yð Þ as the input and outputs an

attention weight wx;y which is given by:

w w;yð Þ ¼ softmax w2 relu w1fk x; yð Þ þ bð Þð Þ ð6Þ

where w2 [ RL and w1 [ RL�c are trainable weight

parameter matrices of two layers of the attention network,

b [ RL is the bias parameter matrix, the structure is showed

in Fig. 3.

2.4 Segmentation module

After passing through the GAP layer and generating the

CAM, the generated saliency map is a heat value map. In

order to obtain an accurate defect area, the resulting heat

value map needs to be processed into a binary image.

Commonly used image binarization methods are grayscale

averages, fixed thresholds, the Otsu [26] method, and so on.

Among these methods, the Otsu method (maximum inter-

class variance) can minimize the probability of pixel mis-

classification during grayscale binarization, so it is used as

the thresholding method. It divides the image into back-

ground and target according to the grayscale characteristics

of the image. The larger the variance between the back-

ground and the target, the greater the difference between

the two parts that make up the image. When the partial

target is divided into the background or the partial back-

ground is divided into the target, the difference between the

two parts will be reduced. Therefore, the segmentation that

maximizes the variance between classes means that the

probability of misclassification is minimal.

Since all the original images’ sizes are too large to

detect the small defection, sliding windows detection is

used to crop the image into small patches. Each patch is

then individually fed into the trained convolutional neural

network for identification and the corresponding heatmap

results are output. If an image patch is identified as a

defect-free picture, the heatmap value of the entire patch is

forced to zero. Finally, all small patches are stitched

together to form a complete heatmap.

average 
pooling

Attention 
map

1×1×256 
conv6

Class activation map

Heatmap

classifier

Output 
feature

Fig. 3 SA-CAM structure
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3 Experiments results analysis
and discussion

This section has six parts: dataset’s introduction, parame-

ters selection, classsification results, segmentation results,

time comparision and analysis. In the experiment, three

typical databases with different backgrounds are used. The

proposed framework is constructed on an Intel Xeon E5

desktop computer workstation with 8 cores and 64 GB

memory. A TITAN-XP graphic card is used to speed up

training processing.

3.1 Introduction of image datasets
with different backgrounds

In order to evaluate the effectiveness of the proposed

method in the context of polymorphic surfaces, three typ-

ical data sets with different backgrounds are selected,

which are the image dataset with repeated pattern and

uniform texture surface, image dataset with homoge-

neously textured surface, and image dataset with non-ho-

mogeneously random texture surface. The three typical

databases cover all surface texture types except for the first

category [1]. The backgrounds and textures of these data-

sets are distinct from each other in grayscale, shape, and

location, which will help to verify the generalization of the

proposed method by following experiments. Next, the

characteristics of the data set are described in detail.

3.1.1 DAGM2007 dataset

The first dataset is from DAGM2007 (https://resources.

mpiinf.mpg.de/conferences/dagm/2007/prizes.html). It

includes six kinds of defects on different texture. Each kind

of defect has 1000 non-defect images and 150 defect

images. The image size is 512*512 pixels. Labels of all the

images are given in the database, but the ground truth for

defect areas is given by bounding boxes. Each defect has

strong background interference, and the several typical

defects are shown in Fig. 4.

The defect types are: linear, planar and irregular. They

are different in shape and size under strong background

interference. Moreover, the contrasts between the defects

and the background are weak. Due to the strong interfer-

ence of the background and the different shapes of the

defect, it brings difficulties to the traditional manual feature

extraction and defect segmentation tasks.

3.1.2 Wood knot surface dataset

The second database is the wood defect database [27]. The

images also belong to homogeneously textured surface.

There are two subsets inside the database. One is used for

classification labeled images of defects, which includes

different types of wood knots. A total of 438 images from

seven types of knot defects are provided in this subset. The

other subset of this database is wood board images where

the ground truth is provided by bounding boxes. A total of

839 board images are provided including all kinds of defect

in first dataset. Some examples are shown in Fig. 5. The

images in these two subsets are in different forms and size.

At the same time, there are interferences in the edge

regions.

3.1.3 Solar cell surface defect

The third data set is a poly-silicon solar cell surface defect

dataset from [11]. It belongs to non-homogeneously tex-

tured surface. At the same time, the solar cell grid line

introduces repeat pattern characteristic to the surface. This

cases from a real-world solar cell detecting workshop. The

structure is shown in Fig. 6. The surface defects of solar

cells in the visible light spectrum range include chipping,

broken gates, leaky paste, dirty sheets, scratches, thick

lines, and chromatic aberrations. It shows a big difference

Fig. 4 Examples of DAGM surface defect dataset

Fig. 5 Examples of wood defect dataset. The first six images show the

sub-dataset for classification; the last 3 images are from segmentation

sub-dataset
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between the shape, size, and spectrum characteristics of

each defect. The original size of the images is

1828 9 1828 pixels. Broken gate refers to the breakage

and loss of the printed finger lines on the surface of the cell.

Paste spot is the dripping of the paste when the cell sheets

are printed the grid. Dirty cell refers to large dust or dirt on

the solar cell. The thick line indicates that the printed

weight of the cell sheet is too heavy and the thickness of

the gate line is uneven. Scratches are caused by a sharp

object passing over the cell. The complex background and

random variation of lattice texture and defect character of

polycrystalline silicon solar cells bring great challenges for

deep learning classification and detection. The dataset

obtains 15,330 undefective images and 5915 defective

images. The types of defects include broken gates, paste

spot, dirty cell, thick lines, scratches, and color differences.

3.2 Parameter selection of convolutional neural
network

The model proposed in this paper involves three types of

parameters. The first type is image-related parameters, the

second type is related parameters in CNN. The third type is

related to random forest classifier. The parameters of first

type are mainly the following: patch size m and stride size

s. According to Ren et al. [19] and Chen et al. [11], the

selection of m depends on the domain knowledge for the

size of defect. If it is too small, the final heatmap may be

inaccurate. On the contrary, the heatmap may be unable to

include enough information of the defection. In order to

ensure the m and s, three different sets of parameters are

prepared and tested separately in DAGM2007. Figure 7

shows the results of three different strides based on fivefold

cross-validation.

According to Table 2, s is chosen as the (1/4) m in all

experiments. The second type of parameters are follows:

learning rate k, training epoch, and dropout ratio. These

parameters can significantly affect the features and training

results extracted by the CNN. According to [11], the

learning rate of the CNN model is selected as k = 0.0001,

and the epoch of training is 100. The Dropout neuron ratio

is 50%. The experiments are showed in Fig. 8.

About the third kind of parameter is related to random

forest classifier, the number of decision trees is set to 150,

and the maximum depth is set to 200. If the depth and

number of trees are further increased, it may affect the

algorithm’s final detection time. The experiments are

shown in Fig. 9.

Broken gate Thick line Color difference

Broken gate Leakage spot Dirty cell

Fig. 6 Examples of solar cell surface defect dataset. The type and

location of the defect have been marked in the corresponding position

in the figure

0.7

0.8

0.9

1

S= (1/6) m S= (1/4) m S= (1/2) m

accuracy

Fig. 7 Results of different strides of and patch

Table 2 Classification result on DAGM2007

Method Accuracy

Wavelet representations 95.91

Weibull 97.13

SIFT and ANN 98.24

Tree2vector 96.92

Solar cell CNN 99.26

Solar cell CNN ? SVM 97.74

RWSLDC 99.85

0.905

0.91

0.915

0.92

50 100 200

accuracy

Fig. 8 Results of different epoch
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3.3 Classification results and analysis

Based on the above databases, classification and segmen-

tation performance of the presented methods in this paper

are evaluated. Each part will be divided into three sections

and show the results of experiments and comparative

experiments according to dataset. The accuracy reported in

this section are all based on fivefold cross-validation unless

otherwise stated.

3.3.1 Classification results on DAGM 2007

In this dataset, the comparing experiments includes

12-class CNN, statistical features, SIFT with ANN, and

Weibull. The accuracy is shown in Table 2. In this

experiment, the comparison results from wavelet repre-

sentations to SIFT method are from [28], and the tree to

vector method is from 6 [29].

From Table 2, it can be seen that: firstly, CNN-based

method has a performance increment of at least 1.02% for

defect detection problems compared to traditional manu-

ally feature-extracting methods because CNN can extract

more comprehensive defect features than comparing

methods. Secondly, among CNN-based methods, our

RWSLDC method increases 0.6% accuracy compared with

the original solar cell CNN. That is to say, for different

CNN-based methods, even if the features extracted by

CNN are identical, random forest classifier shows strong

robustness and adaptability. As to SVM classifier, the

robustness for multi-class problem is weaker than original

method because it is designed for binary classification.

3.3.2 Classification results on wood surface

The method is compared against [19] and the cross-vali-

dation methods also are described in the paper. The image

feature in [19] is Gabor filters and classifiers include both

self-organizing neural network and a feed-forward neural

network (FFPNN). The types of defect reported in these

methods include encased, leaf, edge, and sound knots. The

accuracy is shown in Table 3.

From Table 3, comparing to DAGM dataset, due to

various defects types and different characteristics, the

performance of manually feature-extracting methods on

wood dataset is significantly lower. At the same time,

CNN-based methods’ accuracy is at least 3.12% higher

than both general texture features (MLBP and GLCM) and

handcrafted classification methods (Gabor filters and

FFPNN). At the same time, the proposed RWSLDC

method’s accuracy reach 98.14%, which is 4% higher than

original Decaf and 1% higher than CNN with SVM. That

is, though CNN has a strong ability of feature extracting,

different classifiers may also lead to difference in

performance.

3.3.3 Classification results on solar cell surface defect

This part compares with the work of Chen et al. [11]. They

proposed a multi-spectral CNN for the special surface

characteristics of solar cells (the solar cell has a blue sur-

face) and used it for defect detection tasks. At the same

time, the Gabor and LBP with HOG methods are used as

the comparison. In which of these experiments, from LBP

to MS-solar cell CNN’s results are from [11]. The accuracy

is shown in Table 4.

The results show that comparing with the wood dataset,

the accuracy increment of the CNN is more obvious than

manual extraction feature method, reaching 13%. In this

case, CNNs can extract features more effectively. At the

same time, among CNN-based methods, the random forest

classifier achieved 6% performance improvement than the

original CNN. As to the tree2vector method, because dif-

ferent level features are used in the experiments to build

the tree-structure and feature vectors, the selected features

are still manual features, but the different defects are

0.88
0.9

0.92
0.94
0.96

50 100 150

accuracy

Fig. 9 Results of different strides of and patch

Table 3 Classification accuracy on wood

Method Accuracy

GLCM ? GBC 57.75

GLCM ? SVM 60.21

MLBP ? MLR 68.64

MLBP ? SVM 73.42

MLBP ? GBC 75.00

GLCM ? MLR 76.32

Gabor ? SONN 85.56

Gabor ? FuzzySONN 88.34

Gabor ? FFPNN 91.17

Tree2vector 90.53

Decaf ? MLR 94.29

Solar cell CNN ? SVM 97.74

RWSLDC 98.14
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difficult to express with unified features, so the experi-

mental results are not as good as CNN. This shows that the

classifier with feature redundancy is more significant for

surface defect recognition performance improvement with

complex background.

3.3.4 Classification robustness analysis

To explain the classification performance and robustness

more intuitively, it is necessary to evaluate the data dis-

tribution of the entire dataset. Due to features exacted from

CNN are all high-dimensional, the nonlinear dimension

reduction method, t distributed stochastic neighbor

embedding (t SNE), is adopted to analyze and visualize the

learned features and highlight the useful hidden informa-

tion in the original module images. Figure 10 illustrates the

exacted image features for three different dataset condi-

tions using t SNE that can be clearly distinguished. These

three experiments evaluate the performance of the pro-

posed solution for different dataset scales. The number of

samples for testing the t-SNE effect of the second classi-

fication t SNE in the DAGM dataset is 1500, and the

number of samples for the four types of defect t SNE

effects of the test surface dataset is 440, and the number of

samples for testing the surface defect t-SNE of the solar

cell is 1600.

From the t-SNE map, it can be found that as the defect

kinds and background texture complexity increase, the

classification hyperplane obtained by t-SNE-dimensional

reduction becomes more and more complicated. In

DAGM2007 dataset, the defect and non-defect images

boundary are extremely obvious. However, the extracted

features from wood and solar cell surface spread the space

and most of them overlap from each other, some of which

can be hardly distinguished. Under this environment, the

proposed method is still able to get high performance,

which verified the classification robustness.

3.4 Segmentation results

The classification results show that the proposed method

performs well over multiple datasets. However, there are a

few points to note before evaluating the results and pre-

senting the segmentation results. First, since the dataset

does not have pixel-level labels, when doing defect seg-

mentation evaluation, we randomly select a certain number

of images from the dataset’s test set to make a pixel-level

ground truth. The used tool is LabelMe, and the link is:

https://labelme.csail.mit.edu. Secondly, the performance

indicators commonly used in image segmentation are as

follows: pixel accuracy (PA), Intersection over Union

(IOU), precision (P), and recall(R).

Let there be a total of k þ 1 classes, (from L0 to Lk,

which contains an empty class refers to the background),

and the Pij darts belong to class i but is predicted to be the

number of pixels of class j. Then Pii represents the number

of pixels that are actually predicted, and Pij and Pji blame it

as the sum of false positives and false negatives.

Then, the pixel accuracy represents the ratio of the

correct pixel to the total pixel, and the result is expressed

by

Table 4 Classification accuracy on solar cell surface defect

Method Accuracy

LBP ? HOG—SVM 79.26

Gabor ? SVM 74.55

Tree2vector 76.90

Solar cell CNN 87.30

MS-solar cell CNN 88.41

Solar cell CNN ? SVM 87.26

RWSLDC 93.23

Fig. 10 t-SNE of learned features using the proposed training model for the three different datasets. a The result for DAGM 2007 dataset, b the

result for wood dataset, c the result for solar cell surface dataset
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PA ¼
Pk

i¼0 Pii
Pk

i¼0

Pk
j¼0 Pij

: ð7Þ

The mean intersection over union represents the ratio of

the intersection and the union of the two sets. In the

problem of defect segmentation, the two sets are real val-

ues and predicted values. This ratio is also the sum of

intersection and intersection, false positive, and negatives.

The formula is as follows:

mIOU ¼ 1

k þ 1

Xk

i¼0

Pk
i¼0 Pii

Pk
j¼0 Pij þ

Pk
j¼0 Pji � Pii

: ð8Þ

Precision measures the exactness or fidelity of detection

and segmentation and is calculated in Eq. (9). Recall

describes the completeness of detection and segmentation

and is defined in Eq. (10). F-measure combines precision

and recall and is computed in Eq. (11). Table 4 shows the

precision, recall, and F-measure for the solar cell CNN. (TP

represents a true positive, that is, pixels labeled as defective

are correctly detected; FP indicates false positives, that is,

pixels labeled as good are erroneously detected as defec-

tive; FN means false negative, that is, pixels labeled as

defective are erroneously detected as non-defective; TN

represents a true negative, that is, pixels labeled as non-

defect are correctly detected as non-defect)

Precision ¼ TP

TPþ FP
ð9Þ

recall ¼ TP

TPþ FN
ð10Þ

F-score ¼ 2� precision� recall

precisionþ recall
ð11Þ

In order to accurately detect defects, the defect detection

task requires high IOU and PA. At the same time, maxi-

mize the precision while ensuring the recall. Using these

four indicators, the results of the segmentation experiment

on the three databases are given below.

3.4.1 Segmentation results on DAGM 2007

This dataset has ground truth given by bound boxes.

According to these ground truths, the label masks are made

by LabelMe. The average index is shown in Table 5.

Table 5 shows that the proposed method achieves a

performance improvement of about 5% on the PA and IOU

indicators compared to the CAM method in the defect

segmentation task. At the same time, Ren’s method is also

6% lower than the CAM-based approaches. Some of the

result images and comparative experimental results in this

dataset are shown in Fig. 11.

From Fig. 8, it can be seen that the proposed method

performs well on the database. On the contrast, original

CAM interferences segmentation tasks on different levels

from the first to fourth types of surface in this dataset. In

the second type of defect, the CAM method fails to detect

the region where the defect is located. Among the third and

fourth types of defects. The CAM method marks a large

Table 5 Segmentation accuracy

on DAGM2007
1 2 3 4 5 6 average

Decaf

PA 79.23 46.98 84.16 63.51 68.62 59.73 67.04

IOU 66.48 59.72 70.26 58.64 57.03 48.42 60.09

Precision 70.81 50.29 89.53 62.12 63.75 53.21 64.95

Recall 65.82 43.23 82.15 56.73 56.62 50.9 59.24

F-score 0.6822 0.4649 0.8568 0.5930 0.5997 0.5203 0.6195

Solar cell CNN ? CAM

PA 89.27 65.37 89.6 73.79 89.93 66.8 79.13

IOU 72.94 50.71 74.85 62.02 78.65 50.24 64.90

Precision 72.86 55.83 91.76 66.67 79.87 65.26 72.04

Recall 68.75 46.69 85.21 59.08 76.05 58.82 65.77

F-score 0.7075 0.5082 0.8836 0.7523 0.7791 0.6187 0.6876

SA-CAM

PA 94.61 66.49 92.89 75.23 92.12 72.81 82.36

IOU 80.33 53.74 83.67 64.26 85.51 55.87 70.56

Precision 90.64 60.19 95.66 67.23 82.14 70.27 77.69

Recall 87.29 53.17 90.12 60.31 78.06 60.34 71.55

F-score 0.8893 0.5646 0.9280 0.6358 0.8004 0.6492 0.7446
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background area as a defect, but at the same time, the

proposed method can suppress the background, making the

detection area more accurate finally leading to a better

segmentation effect. At the same time, though Ren’s

method can detect the approximate location of each type of

defect, it is difficult to accurately segment the defects.

3.4.2 Segmentation results on wood surface knot

This experiment compares to [30] and comparison exper-

iments in the paper [31, 32], including two manual feature

extraction methods and three CNN-based deep-learning

method. Like the DAGM2007 dataset, this datasets ground

truth is also given by bounding box. The pixel-level ground

truth is still annotated manually by LabelMe. Because of

the overmuch kinds of defects in the dataset for segmen-

tation, the experimental results will be given as the average

value, and the segmentation results of some images of

defect will be given. The average PA and IOU of each

methods are shown in Table 6.

From Table 6, it can be seen that deep learning methods

achieve extraordinary increament (nearly 30%) comparing

to the manual features. On the other hand, there are also

great differences on IOU, precision, and recall between

various deep learning segmentation methods. Some images

also are shown in Fig. 12. For these outputs, the white area

shows the area of defection.

It is shown that manual feature extracting method is

hard to segment defect area on wood surface precisely. For

the image (a)–(d), five baseline methods appearance missed

or detect of some defect regions incorrectly. Among CNN-

based method, in (a) and (d), the proposed method is able

to detect the defection area accurately. In (c), the method

can extract the area which DCGAN method unable to

inspect. Comparing to the original CAM, the proposed

method suppresses the high responsive background part of

the CAM method while improving the response of the

defective portion.

(1) (2) (3) (4) (6)(5)

Original 
image

Pixel-level 
mask

Proposed 
method

CAM

Decaf+MLR

Fig. 11 Result images for proposed and comparative experimental result on DAGM2007
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3.4.3 Segmentation results on solar cell surface defect

There is little study on a variety of solar surface defects

segmentation, so the benchmark method for this experi-

ment are only CAM and decaf. The experimental results

are given in Table 7, including several typical types of

defects. Some images also are shown in Fig. 13.

From Table 7 and Fig. 13, it can be seen that solar cell

texture surface has a very strong impact on the final seg-

mentation result, resulting in poor results in the compara-

tive experiments. The CAM-based method makes 15%

increment comparing to [19] at the three defects except the

dirty cell. The proposed methods’ effect is still about 4%

higher than original CAM’s IOU and PA. For dirty cell

defection, since the contrast of the defect is too weak

Table 6 Segmentation result on wood surface dataset

Method PA IOU Precision Recall F-score

Covariance matrices 41.51 25.02 26.12 15.31 0.1930

Boolean map 47.80 33.89 23.04 17.96 0.2019

Decaf 70.2 57.16 67.27 60.04 0.6345

CAM 73.85 58.63 68.27 52.23 0.5918

DCGAN 79.85 63.92 73.23 63.21 0.6785

SA-CAM 79.54 64.27 75.97 61.21 0.6780

(a) (b) (c) (d)

Original 
image

Ground truth

Proposed  
method

CAM

DCGAN

Decaf

covariance 
matrices

Boolean map 
approach

Fig. 12 Result images for

proposed and comparative

experimental result on wood

knot dataset
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compared with the background, the segmentation effect of

such defects is the worst among the four types of defects.

At the same time, compared with the previous two datasets,

the increment of proposed method is the most significant

comparing to the comparative experiment. This also

verifies that the proposed methods robustness and adapt-

ability to complex surfaces.

Table 7 Result images for

proposed and comparative

experimental results on solar

cell surface defect dataset

Index Paste spot Dirty cell Thick lines Color difference Average

Decaf ? MLR

PA 52.42 29.45 56.51 43.49 45.48

IOU 40.07 14.25 41.50 31.45 31.82

Precision 60.13 34.03 63.97 42.05 50.05

Recall 49.02 16.76 56.53 35.07 39.34

F-score 0.5401 0.2246 0.6002 0.3824 0.4368

CAM

PA 75.05 31.86 77.34 59.63 60.97

IOU 61.79 18.04 62.76 49.89 48.12

Precision 76.24 29.12 65.73 52.71 55.95

Recall 64.13 13.24 57.06 40.95 43.85

F-score 0.6966 0.1820 0.6109 0.4609 0.4876

SA-CAM

PA 82.68 36.13 83.39 65.02 66.805

IOU 65.52 23.07 70.24 55.63 53.62

Precision 80.23 30.61 70.48 55.91 59.30

Recall 68.06 14.75 60.22 47.86 47.72

F-score 0.7362 0.1991 0.6495 0.5157 0.5252

Fig. 13 Result images for proposed and comparative experiments on solar cell surface
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3.5 Stability discussion

To verify the stability of proposed method, the ratio of the

training and test sets is 8:2, 6:4, and 4:6 respectively. The

results are shown in Fig. 14. This experiment is conducted

to demonstrate that multi-spectral solar cell convolutional

neural networks are still effective when the dataset is still a

small percentage of overall production data. Figure 14

shows the results of three experiments.

From Fig. 14, it can be obtained that as the ratio of the

training and test sets increases, the accuracy of proposed

method increases slightly. When the ratio of training set is

0.4, the classification accuracy will reduce by about five

percentage. The experimental results illustrate the stability

of unknown defect samples in some extent.

3.6 Time comparison

The time for each method of training and testing is given in

Table 8. It can be seen that the SVM classifier requires

more training time than the random forest in the multi-

classification task, and the detection speed is slower than

the random forest classifier. It should be mentioned that the

deep learning model can use batch normalize to input batch

of images same time, while the traditional machine vision

method needs to read and extract features cyclically, so the

total classifying time per hundred images is quite different.

3.7 Concluding discussion

From the experimental results, the feature extracted from

attention-based CNN outperforms handcrafted features for

all kinds of texture. At the same time, the random forest

classifier and attention module further enhance the effect of

classification. In addition, the SA-CAM also performs well

in weakly supervised defect segmentation.

3.7.1 Classification

The experimental results show that CNN can be used as a

general feature extractor for different surfaces and defects

compared to the traditional manually selecting features’

method. In addition, by replacing the fully connected layer

and replacing it with different classifiers and introducing

attention mechanisms, it can achieve better classification

results than traditional CNN and has better generalization

performance than traditional methods.

3.7.2 Segmentation

Through the segmentation experiment and performance

evaluation of several typical image datasets, it can be found

that SA-CAM has the following advantages: (1) The

model’s robustness is strong. In the DAGM dataset, the

model accurately inspects defect locations and segmented

defect regions in six kinds of distinct repeated pattern

texture surfaces and defects. Defect inspection and seg-

mentation can also be achieved for dozens of different

defects randomly distributed on the homogeneously tex-

tured wood surface and non-homogeneous textured like

solar cell surface with grid lines and crystal lattice. (2)

Defect segmentation of weak-supervised learning and

reduction in the dependence on the pixel-labeled samples

are achieved. The proposed method only requires global

image-level annotation to achieve accurate multi-class

surface defect recognition.

4 Conclusion

This paper proposes a robust weakly supervised learning of

deep CNN framework (RWSLDC) for automatic surface

inspection. This framework is able to solve the problems of

automatic surface inspection by using global image-level

labels during training. For the classification task, the pro-

posed framework achieves a better classification effect than

0.86

0.88

0.9

0.92

0.94

0.96

0.8 0.6 0.4

accuracy

Fig. 14 Results for three different training ratios

Table 8 Classifying time of

some methods
Training time (s) Detecting time (100 images)

RWSLDC 4987 4.05

CNN with SVM 5103 4.23

CNN 4869 3.66

LBP ? HOG-SVM 9785 42.20

Gabor-SVM 9670 35.70
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the traditional manual extraction feature and the basic CNN

[11] through the attention mechanism and random forest

classifier. The accuracy increased by 0.6–25.5%. In seg-

mentation task, the SA-CAM under framework increases

defect segmentation’s pixel accuracy and intersection ratio

by 5.49–7.07%. At the same time, the proposed method

does not require precise pixel-level marking, thus reducing

the cost of expensive dataset marking, which reduce the

costly manual annotation.

In the future, we will focus on two directions of

research. One direction involves the speeding up the

heatmap generation process to enable real-time defect

localization. The second direction is looking for more

efficiency attention module. In addition, considering the

difference between defect and background, the defect

sample can be regarded as a tree-structured data, so the

method of the tree2vector class is worth further research.
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