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Abstract
The tensile strength (TS) of the rock is one the most key parameters in designing process of foundations and tunnels

structures. However, direct techniques for TS determination (laboratory investigations) are not efficient with respect to cost

and time. This investigation attempts to develop an innovative hybrid intelligent model, i.e. fuzzy-group method of data

handling (GMDH) optimized by the gravitational search algorithm (GSA), fuzzy-GMDH-GSA, for prediction of the rock

TS. To establish a database, the rock samples collected from a tunnel site were evaluated in the laboratory and a database

(with the Schmidt hammer test, dry density test, and point load test as inputs and Brazilian tensile strength, BTS, as output)

was prepared for modelling. Then, a fuzzy-GMDH-GSA model was developed to predict BTS of the rock considering the

most influential of this predictive model. In addition, a fuzzy model as well as a GMDH model were constructed to predict

BTS for comparison purposes. The performances of the proposed predictive models were evaluated by comparing the

values of several statistical metrics such as correlation coefficient (R). R values of 0.90, 0.86, and 0.86 were obtained for

testing datasets of fuzzy-GMDH-GSA, GMDH, and fuzzy models, respectively, which show that the fuzzy-GMDH-GSA

predictive model is able to deliver greater prediction performance compared to other constructed models. The results

confirmed the effective role of the GSA, as a powerful optimization algorithm in efficiency of hybrid fuzzy-GMDH-GSA

model. Moreover, results of sensitivity analysis showed that the point load index is the most effective input on output of

this study.

Keywords Tensile strength � Gravitational search algorithm � Optimization algorithm � Group method of data handling �
Fuzzy system

1 Introduction

In designing geotechnical constructions like tunnels, the

rock tensile strength (TS) is a must to be determined

accurately [1]. The literature consists of both direct and

indirect approaches for this end. In case of the direct

approach, researchers normally utilize the previously

empirical equations suggested by others or gather some

sample rock specimens to test them in laboratory, which is

both costly and time-consuming [2–4]. On the other hand,

the use of indirect approach has made it easier, faster, and

cheaper through predicting the TS value by means of

several rock index tests like the Schmidt hammer, density,

point load, and p-wave velocity tests. The Brazilian tensile

strength (BTS) which is the direct determination of TS in

laboratory, was standardized by the international society

for rock mechanics (ISRM) [5]. To predict the TS value, a
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large number of empirical relations can be found in the

literature [6–8].

Kahraman et al. [9] attempted to find out the rock

properties with the most significant effects on the percus-

sive drills penetration rate. They made use of statistical

analyses, e.g. regression analysis, to achieve their desired

results for different rock types such as limestone, sandstone

marl, metasandstone and dolomite. Their findings con-

firmed the significance of the following rock properties on

the percussive drills penetration rate: the Schmidt hammer

rebound number (Rn), p-wave velocity, density, the uni-

axial compressive strength (UCS), point load strength, and

BTS. They introduced various simple regressions for pre-

diction of drilling penetration rate using BTS, density, p-

wave velocity, UCS, elastic modulus, point load index, and

Rn parameters. In another study, Mishra and Basu [10]

conducted UCS, BTS, point load, and block punch tests on

the three rock types (sandstone, granite and, schist) sam-

ples and then evaluated their results. For each rock type,

they introduced empirical correlations between results of

point load strength index (Is50) and BTS and UCS and

separately between results of block punch test values and

BTS and UCS. They evaluated performance prediction of

their empirical equation with the use of coefficient of

determination (R2) results.

Sheorey [11] confirmed a frequently-acknowledged

statement claiming a correlation between BTS and UCS in

rocks, and also maintained that the rock compressive

strength is about ten times greater than the BTS values. He

emphasized that the behaviours of the rocks are site-spe-

cific. Kahraman et al. [6], in another project, introduced

several linear empirical relationships between UCS and

indentation hardness index as independent variables and

BTS as dependent variable in three rock groups of meta-

morphic, igneous, and sedimentary. The R2 ranges of

0.5–0.9 were proposed in their study which are accept-

able for estimation of the BTS values. Heidari et al. [2]

made a review of all methods previously proposed for point

load tests and compared them in terms of their applicability

to practical applications. They made use of three methods,

i.e. diametric, axial, and irregular in the process of Is50
prediction. A comprehensive comparison was made on the

obtained results and a number of equations were developed

in a way to practically and economically estimate the BTS

values. In terms of R2, they concluded that the irregular

method was the best one in preliminary prediction of the

BTS values. On the other hand, Perras and Diederichs [12]

considered the rocks TS aiming at finding a relationship

between BTS and direct TS. They reviewed the methods

that had been already proposed for the measurement (BTS,

direct TS, and alternative methods) and estimation of the

rock TS. Their findings rejected the laboratory testing due

to its difficulty in delivering an accurate prediction of the

rock TS. In another research, Armaghani et al. [13] carried

out a number of laboratory tests on a total of 87 granite

rock samples in order to estimate the BTS value. However,

as they stated in their paper, due to high expense and time

required for such kind of tests, they finally made use of

only simple and multiple regressions to achieve their

above-noted objective. Their final results showed the

superiority of the multiple regression models over the

simple regression ones in terms of estimating the BTS

value with a high precision. In another empirical work,

Nazir et al. [8] conducted BTS and UCS tests on 20

limestone samples and made a correlation between them.

They showed that UCS values are successfully able to

predict BTS values through the implement of a power

equation with a high accuracy level. Although empirical

equations have been extensively proposed to estimate BTS

of the rock, the accuracy level of these equations are in the

range of low to moderate. Therefore, in order to provide a

higher level of accuracy, there is a need to develop new

techniques with the use of multiple inputs parameters such

as intelligent predictive models.

Aside from empirical equations, the literature also

consists of intelligent systems widely applied by different

researchers to address the problems that may appear in the

context of engineering (particularly the geotechnical

engineering) and science fields [14–53]. Furthermore,

specific to the topic of the present paper, a number of

significant studies have been carried out. For instance,

using both artificial neural networks (ANNs) and statistical

methods, Singh et al. [54] attempted to predict BTS of the

schistose rock groups. They used various parameters as

model inputs such as type of specific rock, grain size, and

percentage of different minerals (such as quartz, feldspar

and mica). According to their findings, ANNs are more

successful in the prediction of BTS compared to traditional

methods in terms of the accuracy level. In addition, they

concluded that an ANN model is able to produce such

results where statistical techniques fail to draw them.

Baykasoğlu et al. [1] investigated the capability of several

artificial intelligent (AI) methods, i.e. genetic programming

(GP), gene expression programming and linear GP in

predicting BTS values of soft limestone rock samples. In

the modelling process, they used a database comprising of

118 sample sets where water absorption, dry density, sat-

urated density, Bulk density and ultrasonic pulse velocity

were selected to be used as model inputs. They finally

introduced the high applicability of GP in predicting BTS

of the rock compared to other implemented techniques.

The hybrid ANN-based models, i.e. the imperialism com-

petitive algorithm-ANN, the particle swarm optimization

(PSO)-ANN, the invasive weed optimization (IWO)-ANN,

and genetic algorithm (GA)-ANN were developed by

Mahdiyar et al. [3] and Huang et al. [55] to forecast BTS of
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the granitic rock samples. These models were developed

with the help of a database comprising of 80 sample sets

where results of density, Is50 and Schmidt hammer tests

were utilized as independent variables. They concluded

that all of these models are able to approximate BTS of the

rock samples with high accuracy level.

The aim of this study is to create a new hybrid neural

network by combining fuzzy logic concepts with group

method of data handling (GMDH) framework in each

partial description (PD’s) optimized by the gravitational

search algorithm (GSA) metaheuristic optimization which

leads to developing fuzzy-GMDH-GSA model for esti-

mating BTS of the rock materials. In addition to the cre-

ation of fuzzy-GMDH-GSA, other predictive models such

as conventional GMDH model and complex fuzzy C-mean-

based fuzzy inference system (CFCM-FIS) models are also

constructed and proposed for BTS prediction. Then, the

performance of these models is evaluated to select the best

predictive model among all for BTS estimation. For the

purpose of the research presented herein, a suit-

able database from a water transfer tunnel (operated in

Malaysia) was considered and used. Different rock index

tests, i.e. the Rn, the dry density (DD), Is50, as well as BTS

were conducted in order to perform modelling and required

analyses. In the following sections, principles of the

intelligence techniques used in this study are described.

Then, after description of data source and laboratory tests,

model developments will be explained in details. Eventu-

ally, the best predictive intelligence technique in predicting

BTS of the rock material will be selected and introduced.

2 Principles of the artificial intelligence (AI)
models

This section first describes the complex fuzzy C-means-

fuzzy inference system (CFCM-FIS) model; then, intro-

duces the GMDH structure. As noted earlier, the present

paper establishes an innovative hybrid fuzzy-GMDH

optimized by GSA, which is called the fuzzy-GMDH-GSA

algorithm, in order to compare with the other mentioned

models.

2.1 Framework of CFCM-FIS algorithm

The modelling systems based on fuzzy rule have been

recently applied to different fields like the construction of

geophysical, engineering, and biological systems. The

fuzzy expert system is indeed constructed by combining

the rules and membership function (MF), which is pro-

duced by CFCM clustering or some other clustering tech-

niques. In the present research, the technique of

collaborative fuzzy clustering is applied to the generation

of several rules and computation of the MF. Benzek et al.

[56] introduced CFCM clustering which has been modified

for several times and utilized in a variety of applications in

various real-life problems. Recently, a large number of

modifications and a number of popular clustering methods

have been introduced to the literature applicable to FIS

systems [57–59], and time series prediction models

[60, 61]. Fuzzy clustering is mainly used to reassure to

works on data and, at the same time, attempts to take

advantages of different knowledge sources coming from a

variety of patterns of accessible data when addressing a

certain problem [62].

2.1.1 Complex fuzzy C-means (CFCM)

In 1981, Bezdek et al. [63] pioneered the complex fuzzy C-

means (CFCM). This is a technique of data clustering

through which each data point is allowed to belong to one

or multiple clusters determined using a MF. FCM conducts

the clustering operation on the basis of minimizing the

objective function offered by Eq. (1):

Jm ¼
XN

i¼1

XC

j¼1

umij xi � cj
�� ��2 ð1Þ

where m signifies any real number that is greater than 1, uij
stands for the membership degree of xi within cluster j, xi
represents the ith of d-dimension data, cj denotes the d-

dimension of the cluster and �k k represents any norm that

expresses similarity between the centre and any measured

data. The fuzzy partitioning is performed through itera-

tively optimizing the objective function presented in

Eq. (1) with updating of membership uij and the cluster

centre cj, which are given by Eqs. (2) and (3), respectively,

uij ¼
1

PC
k¼1

xi�cjk k
xi�ckk k

� � 2
m�1

ð2Þ

c ¼
PN

i¼1 u
m
ij xiPN

i¼1 u
m
ij

: ð3Þ

This iteration that consists of Eqs. (2) and (3) stops

once:

max
ij

u
ðkþ1Þ
ij � u

ðkÞ
ij

���
���

n o
\e ð4Þ

where e stands for a stopping criterion between 0 and 1, and
k denotes the iteration steps. Such process is converged to a

local minimum or a saddle point of Jm. Table 1 demon-

strates the FCM procedure.
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2.1.2 Fuzzy inference system (FIS)-Mamdani type

The fuzzy inference system (FIS) makes use of the fuzzy

set theory for the purpose of mapping the inputs (features)

to outputs (classes). FIS has been offered under two titles:

Mamdani [64] and the Sugeno [65], among which the

former is discussed in the previous researches (see Fig. 1).

To calculate the output of this FIS given the inputs, the

following six steps are needed to be followed (see Table 2).

2.2 Framework of GMDH type neural network

Ivahnenko [67] firstly developed the self-organizing

GMDH algorithm. Its structure is generally based on self-

organized systems. This AI-based model is capable of

generating quadratic polynomials in any neuron known as

partial descriptions (PD’s), in order to select neurons with

the best fit values for filtering PD’s (or neurons), as well as

generating error criteria in order to terminate training phase

and form a tree-like structure used to solve highly complex

problems [68–70]. According to previous studies carried

out in this field, the GMDH is a flexible AI approach that

can be integrated effectively into other evolutionary algo-

rithms such as PSO [71, 72], GP [73, 74], GA [75, 76], and

back propagations [77, 78]. For the exploration of a precise

solution to system identification problems, a function of f̂

can be used as a replacement for the actual function f in a

way to predict the final output of a complex system, ŷ, for a

given model input X ¼ x1; x2; x3; . . .; xnð Þ in such a way

that it can be as close as possible to its output y. As a result,

in case of a certain n observations of multi-variable, an

output variable is shown as:

yi ¼ f xi1; xi2; xi3; . . .; xinð Þ; i ¼ 1; 2; 3; . . .;Mð Þ ð5Þ

In current status, the model of GMDH can be well-

constructed to predict the final values of output, ŷi, in case

of each given input vector X ¼ xi1; xi2; xi3; . . .; xinð Þ.
Indeed, the function presented below is considered for

defining a relationship that can connect the final output to

the inputs as [79]:

ŷi ¼ f̂ xi1; xi2; xi3; . . .; xinð Þ ði ¼ 1; 2; 3; . . .;MÞ ð6Þ

The following equation expresses the error values

offered by the measured (observed) values and the pre-

dicted model outputs:

XM

i¼1

f̂ xi1; xi2; xi3; . . .; xinð Þ � yi
� �2 ) min ð7Þ

The GMDH model proposes a relationship between

dependent and independent parameters by the following

equation:

Table 1 CFCM procedures

1. Initialization of U ¼ ½uij�Matrix andUð0Þ calculation
2. For k-step: calculation of centres vector

cðkÞ ¼ ½cj� with UðkÞ; c ¼
PN

i¼1
umij xiPN

i¼1
umij

3. Updating matrix of

UðkÞ and Uðk þ 1Þ : uij ¼ 1

PC

k¼1

xi�cjk k
xi�ckk k

� 	 2
m�1

4. If Uðk þ 1Þ � UðkÞk k\e then stop; otherwise return to step 2

Fig. 1 The fuzzy inference

system description [66]
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y ¼ w0 þ
Xn

i¼1

wi xi

þ
Xn

i¼1

Xn

j¼1

wij xi xj þ
Xn

i¼1

Xn

j¼1

Xn

k¼1

wijk xi xj xk þ � � � ;

ð8Þ

Moreover, Eq. (8) is proposed as the Kolmogorov–

Gabor polynomial [80–82]. The literature over the last

decades indicated that the use of quadratic polynomial are

able to provide a relatively lower rate of error compared to

other types of polynomials [68, 69].

Quadratic:

ŷ ¼ Gðxi; xjÞ
¼ w0 þ w1 xi þ w2 xj þ w3 xi xj þ w4 x

2
i þ w5 x

2
j

ð9Þ

Weighting coefficients in relation to Eq. (9) are calcu-

lated using least square technique. Therefore, the error

value between actual value,y, and the predicted model

output, ŷ, for each pair of xi and xj, as input variables,

should be minimized. In addition, this error function is able

to compute the performance of quadratic polynomial, Gi,

using least-square method to optimally remove a number of

neurons (nodes) in every layer, is expressed as follows:

E ¼
PM

i¼1 yi � GiðÞð Þ2

M
! min: ð10Þ

In GMDH, all possibilities of two independent variables

(or inputs) out of total n input variables are taken into

account in building the regression quadratic polynomial in

the form of Eq. (9). In this equation, the weighting coef-

ficients have been derived from a least square method.

Essentially, in each (or current) layer, the nodes number

can be calculated as follows: C2
n ¼ nðn� 1Þ=2 where n

stands for the inputs numbers of the former layer. How-

ever, the partial descriptions will be produced in the initial

layer from observations ðyi; xip; xiqÞ; ði ¼ 1; 2; . . .;MÞ

 �

for different pairs of p; q 2 1; 2; . . .; nf g. In other words, M

triples ðyi; xip; xiqÞ; ði ¼ 1; 2; . . .;MÞ

 �

could be formed as

inputs–output systems, from n observations using

p; q 2 1; 2; . . .; nf g, expressed as follows [83]:

x1p x1q y1
x2p x2q y2
:

xmp

:
xmq

:
ym

2
664

3
775 ð11Þ

The application of quadratic polynomial, for a row of M

(Eq. 10), may result in the formation of a mathematical

matrix equation as follows:

AW ¼ Y ð12Þ

where W is the vector, which includes six coefficients of

weighting of the quadratic polynomial as:

W ¼ w0;w1;w2;w3;w4;w5f gTr ð13Þ

The superscript T signifies of matrix transpose. In

addition, the vector of output is attained as follows:

Y ¼ y1; y2; y3; . . .; yMf gTr ð14Þ

In Eq. (12), A matrix denotes a combined form of 2

inputs being created. As a result, A can be derived as

follows:

1 x1p x1q x1p � x1q x21p x21q
1 x2p x2q x2p � x2q x22p x22q
�
1

�
xmp

�
xmq

�
xmp � xmq

�
x2mp

�
x2mq

2
664

3
775 ð15Þ

As expressed in Eq. (16), the coefficients vector is

presented using the least-squares approach as follows:

W ¼ ATrA
� �1

ATrY ð16Þ

This is believable that method of GMDH is iterated for

each node of the subsequent layers. For more description

regarding the conventional GMDH model, other studies in

the literature can be found [68, 75]. The conventional

GMDH structure is shown in Fig. 2 briefly.

2.3 Framework of fuzzy-GMDH-GSA algorithm

2.3.1 Hybrid fuzzy-GMDH structure development

The GMDH-based network indeed acts a tool of machine

learning in regard to problems pertaining to classification

and decision-making processes. This is a type of ANN that

uses a polynomial activation function. The model is con-

verged into a termination criterion subsequent to an ade-

quate quantity of epochs by means of series of embedded

operations [84]. This network has been extended to new

versions by different researchers (e.g. [85]). Among all, a

popular one is fuzzy-GMDH (FGMDH) automatically

formed by a self-organized algorithm. The FGMDH algo-

rithm is highly flexible; thus, the evolutionary algorithms

Table 2 Steps involved in FIS development

1. The determination of a set of fuzzy rules through the use of

FCM

2. The fuzzification of the inputs by means of input MFs

3. The combination of the fuzzified inputs on the basis of the

fuzzy rules for the purpose of establishing rule strength

4. The exploration of the rule consequence through combining the

output MF and the rule strength

5. The combination of consequences aiming at obtaining

description of an output

6. The defuzzification of the output distribution (the sixth step is

done only in case a crisp output (class) is required)
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can be effortlessly adapted with that. Moreover, the GMDH

network can be enhanced using a basic fuzzy reasoning

rule like ‘‘If x1 equals Fk1 and x2 equals Fk2, output y

equals wk’’ [86]. The Gaussian MF is used in respect to FkJ

accompanied with the kth fuzzy rules in the extent of the

jth input values xj (Eq. 17):

FkjðxjÞ ¼ exp �ðxj � akjÞ2

bkj

 !
ð17Þ

where akj and bkj stand for the constant values for each

fuzzy rule. In addition, the parameter of y is determined as

an output, as presented in Eqs. (18) and (19):

y ¼
XK

k¼1

uk wk ð18Þ

uk ¼
Y

j

FkjðxjÞ ð19Þ

where wk signifies the real value for the kth rules

[85, 87, 88].

It is noted that each neuron in the FGMDH model

possesses two input variables and one output variable. Each

neuron’s output will be a layer that is linked directly to the

next layer’s input entry. To attain the final output, there is a

need to compute the average of the outputs of the last layer.

From the mth model and pth layer, the input variables are

the output ones of ðm� 1Þth and mth model in the ðp�
1Þth layer. Equations (20) and (21) represent the mathe-

matical functions for the calculation of ypm as follow:

ypm ¼ f yp�1;m�1; yp�1;m
� 

¼
XK

k¼1

lpmk � wpm
k ð20Þ

lpmk ¼ exp �
yp�1:m�1 � apmk;1

� 	2

bpmk;1
�

yp�1;m � apmk;2

� 	2

bpmk;2

8
><

>:

9
>=

>;

ð21Þ

where lpmk signifies the kth Gaussian function and wpm
k

stands for its corresponding weight parameter, which have

relation with mth model at the pth layer. Additionally, apmk
and bpmk act the role of Gaussian factors applied to the ith

model input from mth model and pth layer. Furthermore,

Eq. (22) represents the output variable as follows:

y ¼ 1

M

XM

m¼1

ypm ð22Þ

Training feed-forward FGMDH is an iterative process

performed in order to solve the systems having high

complexity. In each iteration step, Eq. (23) is used to

compute the error parameter as follows:

E ¼ 1

2
y� � yð Þ2 ð23Þ

where y� stands for the predicted value. Figure 3 shows the

FGMDH structure.

2.3.2 Improvement in fuzzy-GMDH topology by GSA

Among various swarm intelligence algorithms introduced

in the literature, a metaheuristic optimization algorithm,

i.e. GSA, is designed in such a way that it can explore

within a multi-dimensional search space to find the extre-

mum values of the target function. Optimization process in

this algorithm is done based on the gravity rule and the

movements within a simulated system with discrete time

Fig. 2 The construction of

GMDH type neural network
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coordinates [89, 90]. In GSA, a group of masses are given

the role of search agents, in such a way that each mass can

identify the situation of the other masses. As a result, the

gravitational force is applied to transferring information

between various masses. When dealing with a minimiza-

tion problem with GSA, each agent’s mass will be calcu-

lated following the computation of the current population

fitness [91, 92] by (Eqs. 24, 25):

qiðtÞ ¼
fitiðtÞ � worstðtÞ
bestðtÞ � worstðtÞ ð24Þ

MiðtÞ ¼
qiðtÞPs
j¼1 qjðtÞ

ð25Þ

where fitiðtÞ and MiðtÞ signify the fitness and mass values,

respectively, of agent i at time t; and S stands for the

population size. In addition, when addressing a minimiza-

tion problem, worstðtÞ and bestðtÞ are expressed using

Eqs. (26) and (27):

bestðtÞ ¼ min
j2f1;...;sg

fitjðtÞ ð26Þ

worstðtÞ ¼ max
j2f1;...;sg

fitjðtÞ ð27Þ

For calculation acceleration of agents, there is a need to

have total forces (from a set of agents) with highest masses

according to gravity laws (Eq. 28)

Fd
i ðtÞ ¼

X

j2kbest;j 6¼i

randjGðtÞ
MjðtÞMiðtÞ
RijðtÞ þ e

xdj ðtÞ � xdi ðtÞ
� 	

:

ð28Þ

To measure an agent’s acceleration, all forces from

heavier masses implemented to it, need to be calculated

through taking into account the law of gravity and the

second law of Newton on motion (Eq. 29), at the same time

[89]. Then, an agent’s updated velocity is attained as a

fraction of its current velocity added to its own acceleration

(Eq. 30). Afterwards, Eq. (31) can be used to determine its

situation as follows:

adi ðtÞ ¼
Fd
i ðtÞ

MiðtÞ
¼

X

j2kbest;j 6¼i

randjGðtÞ
MjðtÞ

RijðtÞ þ e
xdj ðtÞ � xdi ðtÞ
� 	

ð29Þ

vdi ðt þ 1Þ ¼ randi � vdi ðtÞ þ adi ðtÞ ð30Þ

xdi ðt þ 1Þ ¼ xdi ðtÞ þ vdi ðt þ 1Þ ð31Þ

where xdi , v
d
i and adi are the position, velocity, and accel-

eration of agent i in dimension d, respectively, randi and

randj represent two uniform random at the range of ½0; 1�, e
signifies a small value, d shows the dimension of the search

space, and RijðtÞ denotes the Euclidean distance that exists

between two agents i and j that are defined as

RijðtÞ ¼ xiðtÞ � xjðtÞ
�� ��

2
. Remember that Xi ¼

x1i ; x
2
i ; . . .; x

d
i

� 
shows the ith agent position within the

search space. The kbest represents the set of first K agents

having the optimum fitness values and the largest masses,

which can be initialized as K0 in the starting time. In this

study, K0 is set for total number of agents ðNÞ and it is

reduced linearly to value of 1. Also gravitational constant,

G, parameter is a time descending function; initially, it is

set as G0, then it reduces exponentially with passing time

as expressed in Eq. (32):

GðtÞ ¼ GðG0; tÞ ¼ GðtÞ ¼ G0e
�a t

T ð32Þ

During optimization process, based on previous inves-

tigations in terms of trial–error and convergence rate, the

values of a and G0 are suggested as 20 and 100, respec-

tively, while the maximum number of iteration is set as 100

and the number of agents are fixed at 50 in order to achieve

best performance on developed hybrid model [89, 91, 93].

in order to optimize and tuning fuzzy MFs parameters

parallel to achieving optimal weighting coefficients

Fig. 3 The hybrid structure of

FGMDH algorithm
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associated to Partial Descriptions (PDs) in GMDH type

neural network over complex topology of fuzzy-GMDH

model. The flowchart of this hybrid process is displayed in

Fig. 4.

3 Case study and testing procedure

The Pahang Selangor raw water tunnel (PSRWT) is

responsible for transferring raw water from Pahang to

Selangor states, Malaysia. More specifically, from the

Semantan River, it transfers 1890 million L/day of water

for domestic and industrial purposes. This huge project

involved excavation by means of three tunnel boring

machines (TBMs) as well as four traditional machines of

drilling and blasting. The TBMs of the size of 5.23 m in

diameter were utilized to work under a variety of ground

conditions. Figure 5 displays the tunnel location in

Malaysia. This research involved the collection of 100

granitic block samples from the location of the tunnel and

transferring them to laboratory to be exposed to different

rock index tests. The tests conducted on the samples were

Rn, DD, Is50, and BTS. All tests were carried out in

accordance with the ISRM standards [94]. In order to have

a better understanding about conducted tests and their

procedures, Fig. 6a–d shows procedure of coring rock

samples, conducting Schmidt hammer test, conducting

Brazilian tensile test, and point load test, respectively.

Fig. 4 Workflow flowchart of hybrid fuzzy-GMDH algorithm improved by GSA optimization method

Fig. 5 Location of the PSRWT project
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In this section, through the use of simple regression

analysis, the relationships between input (Rn, DD, Is50) and

output (BTS) parameters have been identified. Different

simple equations types were evaluated in order to investi-

gate the most accurate one among all for each input

parameter. These evaluations were based on R2 results

(where the best R2 for the perfect model is equal to 1). The

best equations selected for the prediction of BTS, as well as

their scatter graphs and R2 results, are displayed in Fig. 7.

R2 values of 0.6976, 0.6735, and 0.6761 were obtained for

Rn, Is50, and DD parameters, respectively. The obtained

results were found significant; however, in order to have

higher performance for BTS estimation, a new hybrid

intelligence system is introduced in this study. It should be

noted that in order to have a better understanding regarding

modelling and analysis, all 80 datasets (input and output

parameters) are shown in Table 3.

4 Predictive model development

4.1 Developing CFCM-FIS model for BTS
prediction

As illustrated in Fig. 8, the proposed CFCM-FIS model

falls into two main parts; the first part contains the CFCM

procedure and the second one comprises the Mamdani-

based FIS. The model proposed here provides a vigorous

and dependable modelling system through making an

efficient combination of the CFCM capability in repre-

senting knowledge and the reasoning capacities of the

Mamdani-based FIS. First, the available input data is

divided into two or more equal sub-datasets; after that,

FCM is applied to each sub-dataset in order to compute the

prototypes and partition matrix for each dataset. In the next

step, all partition matrix and prototype are updated by

CFCM through having a collaboration with each of them,

then CFCM extracts their common features and makes

Fig. 6 Conducted tests and their

procedures; a procedure of

coring rock samples,

b conducting Schmidt hammer

test, c conducting Brazilian

tensile test, d point load test
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available the extracted features to the knowledge-base sub-

system of FIS. Knowledge base refers to the rule base and

the database conjointly. A rule base is consisted of several

fuzzy IF–THEN rules, whereas a database outlines the

fuzzy sets MFs used in the fuzzy system. The fuzzy

knowledge base transfers its own information into the

inference engine wherein the fuzzy input is converted into

fuzzy output by means of the fuzzy IF–THEN rules. By

means of the MFs that exist within the fuzzy knowledge

base, the crisp input is converted into a linguistic variable

by the fuzzifier. In the inference engine, the fuzzy input is

converted into the fuzzy output by means of the IF–THEN

type fuzzy rules. On the other hand, it is the task of the

defuzzier part to convert the fuzzy output extracted from

fuzzy inference engine to crisp output. A FIS is produced

by Genfis (generate fuzzy inference system) through

applying FCM clustering to inputs–output datasets. This is

done by deriving a set of rules modelling the data beha-

viours. The first step of the rule extraction method is the

use of the FCM function aiming at the determination of the

number of rules and MFs for consequents and antecedent’s

parts. Figure 9 shows the surfaces derived during the FIS

process for all input parameters together with system

output. It is worth mentioning that, a MATLAB function

called Genfis was applied in order to construct and predict

BTS of the rock samples.

4.2 Development of GMDH model for BTS
prediction

GMDH indeed belongs to the inductive algorithm’s cate-

gory, which can be implemented in a variety of problems

pertaining to pattern recognition and data mining. GMDH

has a self-organizing and inductive nature; accordingly, it

can automatically find the optimum structure of its net-

work. GMDH operates on the basis of gradually sorting out

the complex models and choosing optimal solutions

through the use of an external criterion. This is on the basis

of a multilayer network of the second-order polynomials.

In such polynomials, the single output of each quadratic

neuron with two inputs ðXi; XjÞ is computed as follows:

zij ¼ C1 þ C2Xi þ C3Xj þ C4X
2
i þ C5X

2
j þ C6XiXj ð33Þ

Tuning the quadratic neurons weights is done in the

course of process of learning. If X is n� m matrix of input

data, which is consisted of n number of training sets offered

Fig. 7 The selected scatter graphs together with their equations in predicting BTS: a Rn, b Is50, c DD
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by m features, then the GMDH model will create all

probable mixtures of inputs from m variables within the

first hidden layer. After that, each one of the quadratic

neurons is trained using the least-squares method. The

criterion for selecting neurons is used in each layer on the

basis of the natural selection process in order to preserve a

feasible network complexity. For that reason, the precision

of classification in case of each quadratic neuron is cal-

culated through making a comparison between the poly-

nomial model output and the target. The neurons whose

Table 3 The datasets used in this study

Dataset no. Input parameter Output parameter

Rn DD (g/cm3) Is50 (MPa) BTS (MPa)

1 40 2.5 2.31 4.69

2 39 2.48 2.87 5.9

3 37 2.38 3.89 5.5

4 38 2.48 1.82 4.1

5 48 2.61 3.12 7.22

6 45 2.67 2.4 5.12

7 33 2.57 3.01 4.23

8 50 2.64 3.22 7.55

9 35 2.5 3.79 5.33

10 42 2.61 3.34 5.75

11 55 2.75 4.55 9.54

12 36 2.59 2.45 5.67

13 42 2.6 2.02 6.8

14 32 2.47 3.12 4.89

15 31 2.44 2.51 4.72

16 37 2.41 1.56 3.7

17 34 2.53 3.49 5.55

18 34 2.47 1.23 5.02

19 45 2.6 3.21 6.12

20 43 2.64 2.12 6.55

21 37 2.5 1.92 4.2

22 40 2.48 2.99 4.99

23 37 2.52 2.15 5.4

24 33 2.42 3.29 5.85

25 32 2.59 2.38 5.6

26 34 2.49 2.88 5.7

27 40 2.54 2.33 5.88

28 52 2.7 2.91 8.5

29 54 2.7 6.39 9.2

30 46 2.71 3.21 7.59

31 52 2.75 5.3 10.55

32 56 2.7 4.9 9.22

33 57 2.71 5.02 9.1

34 56 2.74 2.89 8.22

35 52 2.78 5.33 7.5

36 47 2.63 2.78 7.4

37 45 2.6 2.43 5.66

38 55 2.71 3.23 7.21

39 56 2.55 3.23 7.43

40 45 2.54 3.02 5.43

41 48 2.6 3.89 6.3

42 57 2.68 3.67 7.1

43 57 2.76 4.89 8.73

44 49 2.69 3.12 7.02

45 39 2.59 2.56 5.66

46 53 2.68 3.01 6.55

47 45 2.51 2.1 6.3

Table 3 (continued)

Dataset no. Input parameter Output parameter

Rn DD (g/cm3) Is50 (MPa) BTS (MPa)

48 38 2.5 2.22 4.69

49 46 2.57 1.73 5.96

50 40 2.56 3.34 6.95

51 54 2.6 1.93 6.5

52 57 2.75 6.14 11

53 50 2.71 3.98 7.9

54 45 2.51 3.5 6.1

55 55 2.75 6.59 12.61

56 54 2.76 6.45 12.45

57 48 2.57 3.12 7.66

58 55 2.79 6.51 8.99

59 56 2.73 4.9 10.55

60 58 2.73 5.61 10.3

61 57 2.76 6.41 10

62 53 2.73 4.89 9.55

63 56 2.68 5.56 10.1

64 58 2.78 6.8 9.22

65 54 2.66 2.75 7.99

66 51 2.69 5.12 9.8

67 45 2.67 4.92 6.2

68 55 2.7 5.65 7.55

69 37 2.54 2.54 5.1

70 30 2.4 1.86 4.8

71 30 2.45 0.89 3.6

72 30 2.46 1.78 4.96

73 39 2.54 1.6 5.22

74 38 2.6 2.99 6.3

75 33 2.64 2.15 5

76 34 2.6 1.29 5.4

77 44 2.65 3.38 5.9

78 33 2.68 3.21 6.01

79 37 2.65 4.78 7.33

80 43 2.7 2.25 7.51
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polynomial model fitness function is less than a preset level

of error will be kept and the others are removed. The

definition of selection error criterion ecð Þ is as follows:
ec ¼ aemin þ ð1� aÞemax ð34Þ

where emax and emin stand for the maximum and minimum

errors attained within each one of the existing layers,

respectively, and a ð0\a\1Þ denotes the selection pres-

sure. Figure 10 illustrates the structure of a GMDH model

with four inputs. This is clearly observable that the neurons

that exist within each layer whose polynomial model error

exceeds ec are removed and the remaining ones are applied

to the construction of the next hidden layer. It is noted that

a selection pressure of 0.6 was set for the purpose of the

current study. In each of the layers, a limitation can be set

for maximum node and layer numbers in order to adjust the

network complication level. As a result, within each layer,

the maximum node numbers and layers were fixed at 50

and 30, respectively, in a way to gain a full control on the

evolutionary structure of the network.

4.3 Development of FGMDH-GSA for BTS
prediction

In this section, the topology of fuzzy-GMDH structure was

combined and improved in a parallel process through

applying GSA optimization method. In developing fuzzy-

GMDH-GSA model, network structure was established

using three layers and were constructed based on number

of inputs and to avoid model structure complexity. Table 4

presents the control parameters values associated to GSA

algorithm including maximum number of iterations, the

number of mass agents,a, and G0. GSA indeed made an

optimization on the Gaussian MF and weighting coeffi-

cients in each partial description of the fuzzy-GMDH

model as indicated in Fig. 11.

5 Results and discussion

This section provides a quantitative evaluation of different

developed models performance during training and testing

in terms of error indicator of correlation coefficient (R),

mean square error (MSE), root mean square error (RMSE),

error mean and error StD in order to specify the best-fitted

predictive model for approximating BTS of the rock

material; some statistical performance criterions were

defined and calculated for each developed model (Eqs. 35–

39)

R ¼
PM

i¼1 yiðActualÞ � �yðActualÞ

� 	
yiðModelÞ � �yðModelÞ

� 	

PM
i¼1 yiðActualÞ � �yðActualÞ

� 	2
�
PM

i¼1 yiðModelÞ � �yðModelÞ

� 	2

0
B@

1
CA

ð35Þ

MSE ¼ 1

M

XM

i¼1

yiðModelÞ � yiðActualÞ
� 2 ð36Þ

RMSE ¼
PM

i¼1 yiðModelÞ � yiðActualÞ
� 2

M

 !
ð37Þ

Errormean ¼
PM

i¼1 ðyiðActualÞ � yiðModelÞ
M

ð38Þ

Error StD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i¼1 EiðModelÞ � �EModel

� 

M � 1

s

ð39Þ

where yiðModelÞ denotes predicted value,yiðActualÞ is measured

value, M is the number of dataset and E indicate the error

value between observed measured value and predicted

value.

Results from regression analysis have shown that pre-

dictive models must be developed to predict rock BTS,

accurately. Thus, three intelligence models were proposed

for estimating BTS of the rock samples. Three neurons, i.e.

Fig. 8 Flowchart diagram of

FCM-FIS model [95]
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Rn, DD and Is50, were taken into account in input layer for

the development of all models, while BTS values were

considered in output layer. Many models were constructed

based on several parametric simulations to select the best

hybrid CFCM-FIS, GMDH and fuzzy-GMDH-GSA mod-

els, separately for each developed model. Consequently,

based on calculated error performance criteria (MSE,

RMSE, Error) as well as according to R values, the best-

fitted model among three proposed models was selected

(see Figs. 14, 17, 20). Moreover, these selected models

were verified more on the basis of other performance

indices (PIs) comparison, i.e. R,MSE, RMSE and Error StD

values. Table 5 and Figs. 15, 16, 19 simultaneously

demonstrate the overall PIs values for all developed

models for both training and testing phases.

Furthermore, Figs. 12, 15, and 18 show plotted curves

between the measured rock BTS (target) and those pre-

dicted values (outputs) obtained from CFCM-FIS, GMDH

and fuzzy-GMDH-GSA models, respectively, for train and

test datasets, separately. Figures 13, 14, 15, 16, 18 and 19

along with the PI list expressed in Table 5 plan to show

precision and verification of proposed fuzzy-GMDH-GSA

model as more efficient predictive model in comparison

with two other models (CFCM-FIS and GMDH) for all PIs

values. In other words, the developed fuzzy-GMDH-GSA

has shown relatively higher level of accuracy compared to

others (highest value of R and lowest values of RMSE,MSE

and Errors indices) for training and testing datasets among

the three predictive models. The fuzzy-GMDH-GSA model

having R of 0.90, MSE of 0.0099, RMSE of 0.099 and an

Error Mean, StD of - 5.84e-17, 0.1007 can estimate

relatively accurate the BTS values more efficiently than the

GMDH model with a R of 0.86, a MSE of 0.012, and a

RMSE of 0.110 for training datasets. In addition, the fuzzy-

GMDH-GSA is also shown much better performance than

the CFCM-FIS model with R of 0.87, MSE of 0.014, RMSE

of 0.118 and Error Mean of - 0.021, respectively, for train

stage. According to Table 5 and presented figures, the

statistical performance criteria show the superiority of the

fuzzy-GMDH-GSA model over the other models in esti-

mating the tensile strength of the rock material for testing

stage. The relative error values diagrams with error dis-

tribution histograms were shown for CFCM-FIS, GMDH

and fuzzy-GMDH-GSA models through Figs. 13, 16

and 19, respectively, for training and testing stages. It is

noted that relative error values define as the difference

values between measured BTS values (target values) and

predicted BTS values (model output) for each observation

within the desired datasets (train and test dataset).

According to computed error indices, it was concluded that

fuzzy-GMDH-GSA model has capability to predict BTS

with acceptable level of accuracy and reliability in terms of

statistical performance criterion as well as having relatively

lowest error indicators compared to other developed

models for both training and testing datasets. Conse-

quently, although the BTS could be predicted in accept-

able precision rate across all of the aforementioned

predictive models, however, the fuzzy-GMDH-GSA model

is known as the best-fitted repressor model in this study.

Fig. 9 The surfaces derived during the FIS process to predict BTS of

the rock samples
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The rock BTS prediction through applying fuzzy-GMDH-

GSA predictive model should obviously be introduced in

geotechnical practical work as a novel predictive model

(Figs. 17, 18, 19, 20, 21).

It should be noted that several hybrid ANN-models were

developed to forecast BTS of the rock. However, they are a

hybrid ANN-based technique which are optimized by some

optimization algorithms like PSO, ICA, GA and IWO. In

fact, they can be used for optimizing weights and biases of

ANN to avoid over-fitting of ANN during training stage.

Here, in this study, approaching the implement of a com-

plicated hybrid AI model namely, fuzzy-GMDH-GSA has

Fig. 10 GMDH model structure

with four inputs

Table 4 Setting GSA control parameters used for fuzzy-GMDH-GSA

model

Parameter Value/range

Alpha 20

G0 100

Number of variables 3

Maximum iteration 100

Error 0.00001

Number of agents 50

Fig. 11 Implementation of GSA into PD’s (each neuron block) over fuzzy-GMDH topology

14060 Neural Computing and Applications (2020) 32:14047–14067

123



Table 5 Descriptive statistical error performance analysis of the proposed AI models

Proposed AI models Training section Testing section

R MSE RMSE Error mean Error StD R MSE RMSE Error mean Error StD

FCM-FIS 0.87 0.014 0.118 - 0.021 0.117 0.86 0.007 0.085 - 0.024 0.083

GMDH 0.86 0.012 0.110 - 0.003 0.111 0.86 0.011 0.105 0.035 0.101

Fuzzy-GMDH-GSA 0.90 0.099 0.0997 - 5.84e-17 0.1007 0.90 0.008 0.087 - 0.017 0.087

Fig. 12 Plot of measured versus predicted BTS values for CFCM-FIS model in train and test stage
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Fig. 13 Error distribution histogram and statistical error indices for CFCM-FIS model in train and test stages

Fig. 14 Regression plot of measured versus predicted BTS output for CFCM-FIS model in train and test stage
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been introduced for solving problem of BTS of rock

material. Innovation of the present study compared to

previous works performed in the field of application of AI

algorithms (e.g. PSO-ANN, GA-ANN, ANFIS–PSO/ICA,

and GMDH) in predicting BTS of rocks is that the

integrated hybrid structure of fuzzy-GMDH model utilizes

the inherent properties of FIS concepts and GMDH algo-

rithm at the same time. In fact, the benefits of the hybrid

fuzzy-GMDH-GSA network can be attributed to the low

volume of computation per neuron, self-organizing hybrid

Fig. 15 Plot of measured versus predicted BTS values for GMDH model in train and test stage

Fig. 16 Error distribution histogram and statistical error indices for GMDH model in train and test stages

Fig. 17 Regression plot of

measured versus predicted BTS

output for GMDH model in

train and test stage

Fig. 18 Plot of measured versus predicted BTS values for fuzzy-GMDH-GSA model in train and test stage
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model compared to other AI methods such as ANFIS. The

advantage of the hybrid fuzzy-GMDH-GSA model is the

simplicity of performability, time-consuming and cost-

effective rather than experimental rock BTS tests. Also

compared to ANN’s, ANFIS and GMDH algorithms, the

developed fuzzy-GMDH-GSA structure has overall lower

computational volume and time-performance. Our pro-

posed methods do not act as black-box against old ANNs

and the users are able to control over hybrid fuzzy-GMDH-

GSA.

As explained before, the block rock samples were col-

lected from the face of a water transfer tunnel constructed

in Malaysia which is a tropical country. Then, these block

samples were transferred to the laboratory in order to

conduct rock index tests. We tested DD, Is50, Rn, and BTS

on all samples in the laboratory and established a database

to develop predictive intelligence models. As a fact in field

of rock mechanics, the established database is only for the

specific rock mass properties in the transfer tunnel with

specific input and output parameters, ranges and rock type.

Therefore, finding a series of data with these properties

(rock type, inputs and their ranges, tropical area) is very

difficult in the literature. Due to this reason, it is not pos-

sible to compare our results with those presented already in

the literature. However, it should be noted that testing

Fig. 19 Error histogram and statistical error indices for fuzzy-GMDH-GSA model in train and test stages

Fig. 20 Regression plot of measured versus predicted BTS output for fuzzy-GMDH-GSA model in train and test stage

Fig. 21 Results of both SRC and SRRC techniques for each input

parameter
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section of datasets was applied in order to evaluate models

development. By using these data which are not involved

in training section, we are able to see how model devel-

opment is successful during modelling development

process.

6 Sensitivity analysis

Sensitivity analysis (SA) examines the relationship

between a model’s assumptions, which may be applied in a

computer-based system, and its model inputs. Finding a

relation between model output and input needs more than a

point output derivative together with their inputs. Consid-

ering the multivariate nature of the model inputs and their

uncertainty ranges, they have a deep impact on the systems

specially hybrid systems. Such an approach is applicable to

a variety of methods, including model quality assurance

and the literature describes some SA strategies, and some

inter-comparative studies are also available. This research

highlights the effectiveness of the standardized regression

coefficients (SRC) and the non-parametric regression-

based techniques such as the standardized rank regression

coefficient (SRRC). When working with this model, it is

common to utilize SA estimators that provide a global

sensitivity calculation, where the effects of a model input

on a model output are averaged on both the parameter

distribution itself and the distribution of all the remaining

parameters (global SA techniques). Nonetheless, every

model has unknown input parameters; likewise, the extent

of uncertainty would probably vary from parameter to

parameter and a comprehensive analysis of the model

response over the entire range of inputs.

Both SRC and SRRC have been applied on the model

inputs to investigate their effects on the system output.

Figure 21 shows results of both SRC and SRRC techniques

for each input parameter on BTS of the rock. As can be

seen in this figure, considering the results of both tech-

niques, Is50 receives the deepest impact on BTS of the

rock, whereas, Rn is the input parameter with the lowest

effect on the BTS of the rock.

7 Conclusions

The main goal of this study was to propose a new AI hybrid

model for prediction of BTS of the rock samples. To do

that, the fuzzy-GMDH structure was combined and

improved in a parallel process through applying GSA

optimization method in order to receive higher prediction

performance compared to CFCM-FIS and GMDH predic-

tive models. The modelling of this study was done using 3

model inputs (Rn, DD and Is50) and one output (BTS). The

outcomes of all predictive models were compared accord-

ing to several evaluation criteria including R, MSE, RMSE,

error mean and error StD and the best predictive technique

was selected based on them. After computation of the

results, the developed fuzzy-GMDH-GSA model achieved

a higher level of modelling efficiency in predicting BTS of

the rock compared to other applied predictive models. R,

MSE, RMSE, error mean and error StD values of (0.90,

0.008, 0.087, - 0.017, and 0.087), (0.86, 0.011, 0.105,

0.035, and 0.101) and (0.86, 0.007, 0.085, - 0.024 and

0.083) were obtained for testing datasets of fuzzy-GMDH-

GSA, GMDH, and CFCM-FIS models, respectively. The

results indicated that fuzzy-GMDH-GSA model can predict

BTS more accurately than the other implemented models.

In fact, the benefits of the hybrid fuzzy-GMDH-GSA net-

work can be attributed to the low volume of computation

per neuron, self-organizing hybrid model compared to

other AI methods such as ANFIS and GMDH. The

advantage of the hybrid fuzzy-GMDH-GSA model is the

simplicity of implementation, time-consuming and cost-

effective rather than experimental rock BTS tests. Addi-

tionally, by performing sensitivity analysis through the use

of SRC and SRRC techniques, Is50 was the most effective

input parameter on BTS of the rock. The finding of the

current study provides a new hybrid AI method for pre-

dicting aims that other researchers, students and designers

are able to utilize it with caution in preliminary stage of

their studies or projects.
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