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Abstract
Speaker recognition systems achieve good performance under controlled conditions. However, in real-world conditions,

the performance degrades drastically. The principal cause being when limited data are presented. The presence of back-

ground noise is another main factor of performance distortion. In spite of the major advances in speaker recognition field,

the effect of noise and the limitation of the amount of available speech data are still open problems, and no optimal solution

has been found yet to cope with them. In this paper, we propose a new system using new enhanced and reduced gammatone

coefficients in order to improve robustness with limited speech data duration. We demonstrate the usefulness of these

coefficients compared to the well-known features with speakers taken from different databases recorded under different

conditions.
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1 Introduction

Speaker recognition is the ability to recognize an individual

only from his voice. This domain has received much

attention from the scientific community since many years

up to the present day [1–3]. In fact, this technique makes

possible the use of the speaker’s voice to verify the identity

of the user and control the access to many services such as

voice dialing, telephone shopping, banking by telephone,

database access services, voice mail, information services,

security control in confidential information areas, and

remote access to the computers. In this manner, speaker

recognition technology is expected to create new services

that will make our daily lives more appropriate.

Speaker recognition is a big area that can be divided into

two fundamental applications which are speaker identifi-

cation and speaker verification. For the identification task,

an unknown speaker is compared against a dataset of

known speakers, and the best matching speaker is consid-

ered as the identification result. For the task of verification,

the system purpose is to make a decision whether a voice

sample was produced by the claimed person. Both speaker

identification and speaker verification applications can be

divided into text-dependent and text-independent methods.

In text-dependent systems, speaker recognition depends on

a specific text being spoken. This method is simpler to the

system. For text-independent systems, there are no limita-

tions for the text used in the test or in the train phase and

the speaker must be recognized independent of what is

saying. This kind of application, of course, is more com-

plex to handle for the system.

During the last years, the interest in speech and speaker

recognition applications over fixed telephone, mobile

phone, and handheld devices has been augmented. These

devices are almost used in adverse environments such as

city streets, airports, offices, and cars. The use of these

different means is constantly increasing among the private

users and business customers. In addition to the environ-

mental noise in which the speech was produced, telephone
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communication channels introduce additional distortions to

the speech. These different noise sources alter the speech

production so that most of speaker recognition systems are

vulnerable to failure in noise corrupted environments.

In recent years, consistent research has been made to

cope with the degradations introduced by the presence of

background noise on speaker recognition systems. How-

ever, no satisfying solution has been found yet [4–6].

The development of a speaker recognition system can-

not be complete without taking into account of both the

effects of the real-life environment and the requirement of

realistic applications. For the real-life environment, the

speaker recognition systems must deal with techniques able

to combat the degradations introduced by noisy conditions.

Concerning the requirement of realistic applications, the

system should take into consideration the problems related

to the memory and computational resource limitation. For

that, the system should be performed with the simplified as

possible of algorithm and the minimum as possible of

speech utterance durations. In this context, the short

utterance speaker identification is so required to develop a

performing realistic application. In fact, to ensure proper

access to confidential information, personal transactions,

and security-related applications, in a realistic application,

there are many circumstances and constraints related to the

limitation of computing resources, the conditions in which

the speech was collected, that impose the reduction in the

amount of speech data. Conventionally, the performance of

the state-of-the-art speaker recognition systems is very

good when sufficient speech data are available for training

and testing. It refers to the case in which the system used

few minutes ([ 1 min) of speech data segments [7, 8]

which permit to provide enough feature vectors to fulfill

the feature space and then to form well-trained models [9].

By the same token, sufficient data warrants reliable deci-

sion for testing. Even so, the performances of the speaker

recognition applications have been usually substantially

degraded when only limited data are available. This refers

to the employment of few seconds (\ 15 s) of speech data

for the training and testing tasks [7–9]. In this case, there

are less feature vectors for training and testing, and hence

we have poor modeling and unreliable decision for testing.

For that, different methods started to develop in order to

address the research problems of short utterance speaker

recognition (SUSR), which is now becoming a major

consideration of modern speaker recognition research

[9–13].

A deep look into speaker recognition domain, and a

special concern on short utterance speaker recognition, lets

us to deduce that the most commonly used state-of-the-art

speaker recognition algorithms address the problem of

speaker verification when speech duration is short [13–18].

Since the lack of a particular focus on the problem related

to speaker identification based on short utterances, we want

with this study to pay a specific attention to speaker

identification when a little amount of speech is available. In

fact, we will focus on a speaker identification system tak-

ing into account that there is no restriction regarding the

text content of the input speech utterance, only a little

amount of speech is available for training and testing and

we will consider also the presence of the background noise.

In this context, we examine the effect of speech utterance

duration on the system performance, and we try to solve

the problem of noisy short utterances through different

processes. Indeed, we propose a novel speaker identifica-

tion system based on new reduced features detected from

the speech signal which are the RMNGFCC (Reduced

Mean Normalized Gammatone Frequency Cepstral Coef-

ficients) and RMVNGFCC features (Reduced Mean and

Variance Normalized Gammatone Frequency Cepstral

Coefficients). These features take advantage of feature

normalization process like Cepstral Mean Normalization

(CMN) and Cepstral Mean and Variance Normalization

(CMVN) which help to reinforce the speaker characteri-

zation and improve robustness when the used utterances

have a noisy limited duration. We show that the use of the

proposed features facilitates more the detection of the

identity of a person even when there are noisy conditions.

The fusion of both RMNGFCC and RMVNGFCC features

further improve the robustness of the proposed speaker

identification system. A comparison with state-of-the-art

systems using state-of-the-art features and standard mod-

eling techniques is presented to highlight the contribution

of the proposed approach.

The rest of this paper is organized as follows. Previous

works on short utterance and noisy speaker recognition

are given in Sect. 2. The proposed speaker identification

system is presented in Sect. 3. Experimental results are

discussed in Sect. 4, and we draw our conclusions in

Sect. 5.

2 State-of-the-art speaker recognition
techniques

During the last few years, the speaker recognition field has

gained great popularity in a wide range of applications such

as speech communications, access control, forensic evi-

dence provision, domestic services, and smart terminals.

Current speaker recognition systems have achieved satis-

factory performance, given that the enrolment and testing

utterances are sufficiently long and the signal is recorded

under acceptable conditions [19].

Most state-of-the-art speaker recognition engines refer-

red to generative models like Gaussian mixture models

(GMM) to achieve the recognition capability [2]. Indeed,

13864 Neural Computing and Applications (2020) 32:13863–13883

123



when speaker models are trained with sufficient amount of

data, phonemes are well captured from the speaker, which

can lead to better representation of the speaker’s acoustic

space and help to improve its discriminating ability. This

was especially true since the GMM were introduced in

order to model the acoustic space for speaker recognition

[20]. Hence, the GMM were considered as the most pop-

ular tool for state-of-the-art speaker recognition applica-

tions [2, 20]. The high success gained by the GMM

encourages researchers to look for more improved tools.

Thus, the occurrence of effective approaches like the

clustering technique is considered recently as an essential

equivalently to the GMM approach [21–23].

However, in realistic applications, it is very common

that enough data may not be available for speaker training

and the test utterances are very short during the recognition

task. For such conditions, the GMM is failing to recognize

a short utterance speaker with a high accuracy. Indeed, the

attempt of using smaller amount of data leads to great

performance degradation when dealing with a speaker

recognition system. That’s why the subsequent research

endeavors focused on developing GMM with new tech-

niques such as the i-vector [24–28]-based speaker recog-

nition systems. In spite of that, these applications are still

tending to performance degradation when short-duration

utterances are used for speaker recognition [25].

The effect of short utterance duration is considered as

one of the recent challenges in speaker recognition that was

organized by the National Institute of Standards and

Technology (NIST) [29], which led the research commu-

nity to further concentrate on this problem. To overcome

this difficulty, a considerable amount of study is going on

in order to develop suitable methods when either the given

speech is too small or with the aim of using fewer amount

of speech to cut computation costs.

Among the earlier works, we notice the use of new

classifiers like the SVM for short utterance speaker

recognition [9, 10, 30–34]. We found also that the problem

was addressed to the use of the deep learning technique

[11]. In fact, convolutional neural network (CNN) [11],

recurrent neural networks (RNN) [35], and deep neural

networks (DNN) [36–38] have been used for speaker

recognition systems when using small speech utterances.

However, most these works have targeted text-dependent

speaker verification [11, 36–38]. More recent works

demonstrate that the use of deep network provides better

performance for short-duration text-independent speaker

verification systems [35, 39–41]. Even so, to the best of our

knowledge, deep learning technique been applied to related

problems such as speaker verification, and there is a lack of

effective recognition method for the short utterance text-

independent speaker identification task.

Speaker recognition needs a large amount of speech

data, leading to the use of huge files and complicated

processing. This has encumbered the speaker recognition

technology to be used widely. Researchers have thus led to

incorporate new techniques to improve baseline approa-

ches like the Probabilistic Linear Discriminant Analysis

(PLDA) approach which is used to improve the i-vector

model with short utterance speaker recognition [42, 43].

This combined approach has become dominant and

demonstrates to be lately efficient and successful

[9, 13, 44].

As one common case of robust speech processing,

recognizing speakers from short utterances contaminated

by noise is a rather challenging task that has been of

interest in several recent studies [45–48]. Hence, resear-

ches try to adopt some enhanced approaches or features

[49, 50]. Using denoising techniques proved to be

essential in handling noise [51]. Feature level enhance-

ment using uncertainty-of-observation techniques [48, 52],

vector Taylor series [53] or Higher-Lag Autocorrelation

Coefficients [54] helps in robust speaker modeling and

recognition. Then, the use of Gammatone filters has

gained popularity in several branches of signal processing,

including robust speech recognition [55] and speaker

recognition [47, 56–58].

Together with the advancement of modern technolo-

gies, various methods started to develop for Automatic

Speaker Recognition. In spite of the realization of high

outperforming algorithms in this domain, these systems

are prone to have performance degradation when short

utterances are met in the enrolment and test phases. What

is more appreciating is that the achieved results still

depend on the duration of the speech used for both

training and testing task, the questioned task (speaker

verification and speaker identification), the dependency to

the context (text-dependent, text-independent), the num-

ber of the speakers used, the features used, their dimen-

sion and the different parameters of the employed

approach, etc. The presence of background noise which

presents alone another main deteriorating factor for

speaker recognition applications may further aggravate

the situation in this case. Hence, the challenging area of

short Utterance speaker recognition remains an open

problem and robust handling of real-world data is still a

defiant topic. Since there is a lack of efficient methods for

the problem of robust short utterance text-independent

speaker recognition, our interests in this study concern the

improvement of a text-independent speaker recognition

application that has a particular focus on short utterance

speaker identification task dealing with the presence of

background noise. Hence, we choose to benefit from the

most latest successful i-vector based on the use of the

PLDA technique for the proposed system. To improve
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robustness, an appreciated enhancement is assigned to the

feature level which takes advantage from the most recent

robust Gammatone filters. This kind of application meets

the need for realistic applications which are prone to the

effects of the real-life environment, the constraints and

the requirements of realistic applications.

3 Proposed approach for robust short
utterance speaker identification

3.1 Motivation

Speaker recognition is the method used to recognize per-

sons from their voice. This technique attempts to cover the

different aspects for speaking. In fact, each speaker has his

own manner of speaking, including his particular accent,

rhythm, intonation, style, pronunciation, etc. Thus, the

system needs to deal with sufficient utterance duration in

order to capture the speaker-specific characteristics and to

achieve good performance. However, in a real circum-

stance, it might be difficult to collect a large amount of

speech data as required by conventional speaker recogni-

tion approaches. For example, there might be some con-

ditions which oblige a person to speak only a little amount

of speech like his state of health, his character, etc. In real

life, there are many circumstances that permit only to

obtain small amount of clear speech. In fact, speech

obtained could be broken or unclear, or recorded in noisy

situations or contains some breaks and a little amount of

real speech. Moreover, realistic applications can impose

several constraints related to the system itself. For exam-

ple, the problem related to the memory and computational

resource limitation or even the utterance duration fixed by

the system [9]. These entire conditions make short utter-

ance speaker recognition arises as an important area of

research in such cases. Along with the advancement of

speaker recognition technology, the case of using short data

duration remains a major problem. In fact, the use of short

segments of speech for recognition purpose leads to great

system performance degradation. The use speech segments

recorded under uncontrolled environment presents another

major problem for speaker recognition performance dete-

rioration that received also the attention of the research

community.

In this work, we deal with speaker identification purpose

for which the main objective is to identify an unknown

speaker from a set of registered speakers. An exhaustive

survey on the process of speaker recognition, as well as the

different methods used for this objective and human voice,

let us deduce various relevant factors for the speaker

identification process. Among these factors, we notice that

the features extracted from the speech signal present a

fundamental element for capturing the speaker-specific

characteristics which led to differentiate between the dif-

ferent speakers and make a good discrimination.

Many features have been investigated in the literature

for speaker recognition purpose [2]. We can cite the

Linear Prediction Coefficients (LPCs) [59] which are

directly derived from the speaker’s speech production

model. Perceptual Linear Prediction (PLP) coefficients

[60] are also used in this purpose since they are based on

human perceptual and auditory processing. Over the last

two decades, spectral features have become popular.

Researches have shown that these features are successful

for different applications based on speech processing such

as speech recognition, speech emotion recognition,

speaker recognition tasks [61, 62]. The well-known spec-

tral features are called the Mel Frequency Cepstral Coef-

ficients (MFCCs). These features allow obtaining high

level of performance due to the use of the perceptually

based Mel spaced filter bank processing of the Fourier

Transform and the particular robustness to the environ-

ment and flexibility that can be achieved using cepstral

analysis [2, 34, 63–65]. Recently, the use of Gammatone

Frequency Cepstral Coefficients (GFCCs) has gained

popularity for robust speaker recognition applications

[47, 56–58]. In fact, these features show better perfor-

mance for the task of speaker recognition with noisy

conditions than other features.

In this work, our endeavors are addressed to look for a

suitable application for noisy short utterance speaker

identification. Hence, we intend to develop a new approach

depending on new enhanced features that investigate the

robustness of the GFCC features to give more supple-

mentary information that helps to further facilitate the

distinction between the speakers when short utterances are

used under noisy conditions. This can fundamentally

improve the system performance while avoiding the use of

additional, lengthy and complicated algorithms requiring

more time and memory space which is beneficial especially

for real-world applications.

It follows that speaker recognition applications depend

on high dimensional feature vectors. However, realistic

applications suffer from many constraints related to the

memory and computational resource limitation. Thus, we

try to examine if the proposed system can perform well

with new low dimensional feature vectors able to reduce

the memory and time complexity of the system while

maintaining good performance on a speaker identification

system when short utterances are used under uncontrolled

conditions. The results obtained are compared with state-

of-the-art applications and evaluations are compared

against another existing works.
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3.2 Proposed approach

The development of the proposed robust Short Utterance

Speaker Identification system was motivated by a desire of

obtaining a set of practical features for speaker recognition

that are more robust and with the respect to the acoustical

variability in their native form, without loss of the system

performance when the speech signal have a limited dura-

tion, recorded in realistic environment, and with a degree

of computational complexity comparable to that of stan-

dards MFCC and GFCC coefficients. For that, we choose to

develop an approach that provides pragmatic gains in

robustness at small computational costs to be more faithful

with realistic applications.

To describe the architecture of the proposed speaker

identification system, we began by giving the different

main blocks that we used for the different baseline and

proposed systems in this work. As shown in Fig. 1, the

speaker identification system is composed of a succession

of different modules to accomplish the learning and the

testing phases. During both phases, the feature extraction

process is essential to capture the speaker voice charac-

teristics which allow calculating the appropriate i-vectors

of the speakers. The use of the PLDA technique is then

carried to build an adequate model for each speaker and to

recognize the unknown speaker of the test speech utterance

after comparing the model of the test speech signal with

those of the different speakers constructed in the training

phase of the system.

3.2.1 Feature extraction

3.2.1.1 Standard features The most fundamental process

commonly applied in all forms of speaker recognition

systems is that concerning the extraction of the features

vectors from the acoustic speech wave. This process is

applied for each frame which can capture the specific

characteristics of speakers.

Many features have been investigated for speaker

recognition applications where spectral based features have

become the most successful and most popular [2]. The

well-known are Mel Frequency Cepstral Coefficients

(MFCCs) [2, 63]. In this work, MFCC features were

extracted with the Hidden Markov Model ToolKit (HTK)

[66]. We perform our experiments with cepstral features

extracted using a 25-ms Hamming window having 10-ms

overlap. The feature vectors are 12 MFCC calculated every

10 ms together with log-energy and augmented with delta

and double-delta coefficients giving 39-dimensional feature

vectors. Indeed, this feature vector is widely employed in

the state-of-the-art applications [2, 8, 67].

To improve robustness, Gammatone Frequency Cepstral

Coefficients (GFCCs) are equally extracted from the

speech signal. In fact, the GFCC-based speaker identifi-

cation is found to achieve a very robust performance, as

presented in [68, 69]. According to the observation of [69],

most information remains in the lower 23-order GFCC

coefficients. Since the zeroth cepstral coefficient was more

susceptible to contamination of noise, 22-dimensional

GFCC features were used in speaker recognition evalua-

tions [68–70]. IN [71], after using the lower 23-order

Fig. 1 Automatic Short Utterance Speaker Identification using the proposed system
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GFCC as a feature vector in a previous study, the authors

find that using 30-dimensional GFCCs as a feature vector is

more suitable to retain the information.

In this work, in order to largely retain the information,

the first set of experiments with baseline system is dealt

with 39-dimensional GFCC feature vectors to represent

each frame of the speech signal. The subsequent sets of

experiments are dealt with more reduced dimension of

GFCC feature vectors in order to find the efficient

representation.

3.2.1.2 Proposed features The speaker recognition task

supposed to recognize persons from their voice. However,

the variability of the speech signal caused by different

factors like speaker identity, gender, transmission channel,

utterance length, session or speaking style makes this task

difficult. It has been proved in the literature that these

variations have a direct negative impact in the system

performance [20]. That is why compensation techniques at

different levels such as feature or score level are needed to

cope with speech variability. In this work, in order to

diminish the effect of the variability of the extracted fea-

tures from a session to another, we recur to the Cepstral

Mean Normalization (CMN) [2]. In order to more refine the

performance and the robustness of the system, we refer to a

further normalization which is Cepstral Mean and Variance

Normalization (CMVN) [2].

Indeed, in this study, the performance of the proposed

method is evaluated with new proposed features and the

achieved results were compared to those obtained from two

traditional baseline feature-based methods, MFCC and

GFCC [68]. We propose new feature vectors in which we

use a novel description of features. We use then:

• MNMFCC: Mean Normalized MFCC, which is a short-

time cepstral representation of a speech in which we

normalize the feature vector coefficients using the CMN

technique. In fact, if we note by X ¼ x n½ �f g where

0\n�N the MFCC cepstral vector, then the normal-

ized features presenting the MNMFCC coefficients,

presented by Y ¼ y n½ �f g, are calculated as follows:

y n½ � ¼ x n½ � � 1

N

XN

n¼1

x n½ � ð1Þ

where N represents the number of MFCC coefficients in

a feature vector and n is the order of the MFCC coef-

ficient in this vector.

• MVNMFCC: Mean and Variance Normalized MFCC,

which is a short-time cepstral representation of a speech

in which we normalize the feature vector coefficients

using the CMVN technique. Indeed, for example, for a

given feature vector X ¼ x 1½ �; x 2½ �; . . .; x N½ �f g of MFCC

coefficients, the vector presenting the MVNMFCC

coefficients presented is calculated as follows:

x̂ n½ � ¼ x n½ � � �x

rx
ð2Þ

�x ¼ 1

N

XN

n¼1

x n½ � ð3Þ

r2x ¼
1

N

XN

n¼1

x n½ � � �xð Þ2 ð4Þ

• MNGFCC: Mean Normalized GFCC, which is a short-

time cepstral representation of a speech in which we

normalize the feature vector coefficients using the CMN

technique. In fact, for Z ¼ z n½ �f g where 0\n�N the

GFCC cepstral vector, the normalized features present-

ing the MNGFCC coefficients, presented by T ¼ t n½ �f g,
are calculated as follows:

t n½ � ¼ z n½ � � 1

N

XN

n¼1

z n½ � ð5Þ

where N represents the number of GFCC coefficients in

a feature vector and n is the order of the GFCC coef-

ficient in this vector.

• MVNGFCC: Mean and Variance Normalized GFCC,

which is a short-time cepstral representation of a speech

in which we normalize the feature vector coefficients

using the CMVN technique for that, for a given feature

vector Z ¼ z 1½ �; z 2½ �; . . .; z N½ �f g of GFCC coefficients,

the vector presenting the MVNGFCC coefficients

presented is calculated as follows:

ẑ n½ � ¼ z n½ � � �z

rz
ð6Þ

�z ¼ 1

N

XN

n¼1

z n½ � ð7Þ

r2z ¼
1

N

XN

n¼1

z n½ � � �zð Þ2 ð8Þ

The challenge of the speaker recognition task supposed

to recognize the identity of the speaker using realistic

applications that suffers from computational resource
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limitation. That is why, our endeavors are addressed for

researching features needing less memory space and then

reducing more the memory and time complexity of the

system. Several experiments are then done in order to find

the efficient representation and let us deduce that the use of

the proposed MNGFCC and MVNGFCC features is more

efficient with more reduced dimensional feature vectors.

For that, the following set of features is equally used in this

work:

• RGFCC: Reduced Gammatone Frequency Cepstral

Coefficients, which is a short-time cepstral representa-

tion of a speech in which we use less coefficients than

those used in the standard GFCC feature vector. We

note with Zr ¼ zr m½ �f g where 0\m�M andM�N the

RGFCC cepstral vector. M represents the number of

RGFCC coefficients in a feature vector and m is the

order of the RGFCC coefficient in this vector. N

represents the dimension of the standard GFCC feature

vector. The chosen dimension of the RGFCC feature

vector is explicated in the following Sect. 4.

• RMNGFCC: Reduced MNGFCC, which is a short-time

cepstral representation of a speech in which we use

lower feature vector dimension than used in the

MNGFCC feature vector. We note with Tr ¼ tr m½ �f g
where 0\m�M and M�N the RMNGFCC cepstral

vector. M represents the number of RMNGFCC coef-

ficients in a feature vector and m is the order of the

RMNGFCC coefficient in this vector. N represents the

dimension of the MNGFCC feature vector. We refer to

Eq. 5 to calculate the feature vector coefficients. The

dimension of the RMNGFCC feature vector is expli-

cated in Sect. 4.

• RMVNGFCC: Reduced MVNGFCC, which is a short-

time cepstral representation of a speech in which we use

lower feature vector dimension than used in the

MVNGFCC feature vector. We note with ẑr ¼ ẑr m½ �f g
the RMNGFCC cepstral vector where 0\m�M and

M�N. M is the dimension of the RMVNGFCC feature

vector and m is the order of the RMVNGFCC

coefficient in this vector. N represents the dimension

of the MVNGFCC feature vector. We refer to Eq. 6 to

calculate the feature vector coefficients. The chosen

dimension of the RMVNGFCC feature vector is

explicated in the following Sect. 4.

• FRMVGFCC: Fused Reduce Mean and Variance Nor-

malized GFCC, which is a short-time cepstral repre-

sentation of a speech in which we combine both

RMNGFCC and RMVNGFCC feature vector coeffi-

cients. In fact, the features presenting the FRMVGFCC

coefficients, presented by F ¼ F m½ �f g, are calculated as

follows:

F m½ � ¼ tr m½ �; ẑr m½ �½ � ð9Þ

where 0\m�M and M�N. M is the dimension of the

RMVNGFCC and RMNGFCC feature vectors and m is

the order of the corresponding coefficient in the

appropriate vector. The choice of M is given in Sect. 4.

N represents the dimension of the MNGFCC and

MVNGFCC feature vectors.

A diagram comparing between the different process of

feature extraction for baseline and proposed systems is

presented with Fig. 2.

The speaker recognition process comprised two phases

which are the learning phase and the testing phase.

3.2.2 Speaker learning

The combination of i-vector [24] and PLDA [72] has

become recently a dominant approach for text-independent

speaker recognition applications. In fact, the PLDA on the

i-vectors has been successfully used and demonstrates to be

effective compared to state-of-the-art speaker recognition

approaches [9, 13, 67].

In this work, we will model the speaker identification

problem with the i-vector-PLDA approach. We have

shown that different features are proposed for the speaker

recognition purposes. Each proposed feature is evaluated

with the i-vector-PLDA approach. As demonstrated in the

following section, the experiments performed prove the

superiority of both RMNGFCC and RMVNGFCC features

with the i-vector-PLDA approach. Below we summarize

the algorithm of the proposed robust short utterance

speaker identification system training using the i-vector-

PLDA technique with the proposed features:
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Algorithm 1: speaker learning (SLE) 

Input: speech signal belonging to the speaker l 

Output: speaker model mod l 

1. Extract RGFCC features 

2. Normalize RGFCC features, 

Extract  RMNGFCC features

3. Normalize RGFCC features,  

Extract RMVNGFCC features

4. Combining the resulting feature vectors, 

Extract FRMVGFCC features 

5. Set as a stop-learning condition (reach the minimum of error or reach max of iteration).

6. Calculate the output of the learning which is the speaker model mod l.

7. If the number of iterations or the minimum of error is reached, learning converge, the learning stops; otherwise we return to 5. 

Fig. 2 Comparison of the feature extraction process between MFCC-based baseline system, GFCC-based baseline system and the proposed

system using FRMVGFCC features
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3.2.3 Speaker recognition

In order to recognize the speaker in the test phase, a test

speech utterance is input to the system and the appropriate

features are extracted from the speech signal. The adequate

model of the test utterance is compared to the models of the

different speakers learned with the system with the aim of

identifying the most suitable speaker. Hence, the extracted

parameters are very essential and represent the requested

information needed to facilitate the research of the appro-

priate speaker. Then, improves the system performance and

makes the short utterance sufficient for training and

detecting the identity of the speaker. The following algo-

rithm summarizes the speaker identification process.

Algorithm 2: Speaker Identification (SID) 

Input: -speech signal belonging to the speaker S

Output: Identity(S)  

1. Extract RGFCC features 

2. Normalize RGFCC features, 

Extract RMNGFCC features

3. Normalize RGFCC features,  

Extract RMVNGFCC features

4. Combining the resulting feature vectors, 

Extract FRMVGFCC features 

5.  For j = 1,…, NS

Identity (S)          selecting  the  most  

suitable speaker identity  among  NS

speakers

End 

Where the abbreviations cited in the above algorithm are

the following:

• S present the unknown speaker.

• NS present the number of classes of the different

speakers.

• Identity(S) is defined as the most convenient speaker

among NS speakers with the appropriate classifier

4 Experiments and discussion

4.1 Corpora

We conducted our experiments with three different data-

bases. The first set of experiments is carried out with the

TIMIT Database. This corpus has been primarily designed

to provide speech data for the acquisition of acoustic–

phonetic knowledge and for the development and evalua-

tion of automatic speech recognition systems [73]. Then, it

is widely used in speaker recognition studies [74]. TIMIT

database contains 10 different sentences from each of 630

speakers including 438 males and 192 females [75] from

eight major dialect regions of the USA. The dataset con-

tains about 5.25 h of audio file in wav format having

16 kHz of sampling frequency with a resolution of 16-bits.

The recordings are single channel, and the mean duration

of each utterance is 3.28 s.

The second set of experiments is subsequently dealt with

the NTIMIT Database [76]. The NTIMIT corpus has been

made to enable researchers to perform experiments that

compare speech and speaker recognition performance

obtained with high-quality speech transmitted over long-

distance telephone lines. The NTIMIT database was cre-

ated by transmitting sentences in the TIMIT database over

a physical telephone network. The NTIMIT utterances

accurately reflect the general nature of telephone-based

speech. The USA is divided into Local Access and

Transport Areas (LATAs) which represent the geographi-

cal regions corresponding to the subdivision of the tele-

phone network. Within each LATA, various central offices

are made to handle calls. Different telephone channels are

used to collect the NTIMIT corpus by changing the central

office in order to transmit the TIMIT utterances for dif-

ferent geographical locations. In total 253 central offices,

and then 253 different telephone channels, are used for the

compilation of the NTIMIT database.

Another attempt to study the effectiveness of the pro-

posed system has been carried out using the most recent

NIST Speaker Recognition Evaluation data, NIST SRE

2010 corpora [77]. The data had multiple channels,

including telephone, microphone, and interview data, as

determined from the keys released by NIST [77].

4.2 Experimental protocol

In order to make a comparison with the latest works,

experiments were conducted following the protocol sug-

gested in [9] which follows in turn the protocol suggested

in [2]. For that, with TIMIT database, the evaluations were

performed with 64 speakers from all the 8 regions of the
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database. The speakers were selected as 4 male and 4

female speakers from each dialect region.

The second set of experiments is evaluated with the

same speakers keeping then the same conditions from the

NTIMIT corpora and the third set of experiments is eval-

uated with the same number of speakers having the same

gender conditions from different regions of the USA with

the NIST SRE 2010 corpora.

Based on the superior performance of the i-vector based

on PLDA (i-vector-PLDA) system for speaker recognition

purposes [9, 67], we choose to handle the speaker identi-

fication experiments with a baseline system using the

i-vector-PLDA technique.

We evaluate the performance of the proposed system

against the baseline system for speaker identification task

for different training and testing durations by carrying out

experimental evaluations as follows.

4.2.1 Speaker identification with an important training
duration

To evaluate the systems’ performance, the experiments are

done with different training and testing duration. At the

beginning, we choose to evaluate the system performance

with a considerable amount of training data duration

([ 15 s) [7–9]. For that, we use approximately 24 s of

speech data duration

for the training task and 6 s of speech data duration for

the test task. We start by evaluating the performance of the

i-vector-PLDA baseline systems with standard MFCC

feature vectors for speaker identification purpose. Since we

intend to improve more the system performance in such

cases, our research endeavors are concentrated on more

challenging information extracted from the speech signal.

We evaluate then the speaker identification system with the

standard GFCC features and the proposed MNMFCC,

MVNMFCC, MNGFCC, and MVNGFCC features with

39-dimensional feature vectors. We varied the number of

mixture components for the different systems from 1 to 256

mixtures and the correct Identification Rates (IR) obtained

from the different experiments using the different feature

vectors with speakers taken from TIMIT, NTIMIT, and

NIST SRE 2010 databases are, respectively, presented in

Fig. 3.

Generally, the proposed systems using the proposed

features demonstrated superiority over the i-vector-PLDA

baseline systems using standard MFCC and standard

GFCC features. In fact, with TIMIT database, the best-

achieved performance is 100% from 16 mixtures with both

standard MFCC and GFCC features. The use of the pro-

posed features maintains the same performance for the

different features.

The experiments made on NTIMIT database prove the

usefulness of the proposed features. In fact, the use of the

baseline system with standard MFCC features achieved the

best performance of 97.66% of IR. The same performance

is attained with standard GFCC features. This performance

is enhanced with the use of MNMFCC features and attains

99.22% of IR and the best performance of 100% is

achieved with the use of MVNMFCC features. The use of

MNGFCC and MVNGFCC features is also beneficial since

we can achieve, respectively, 100% and 99.22% of IR.

For the speakers taken from NIST SRE 2010 database,

experimental results show that the performances of the

different systems evaluated with the proposed feature

vectors give the best performance of 96.88% of IR. The use

of GFCC does not give an improvement comparing to

MFCC coefficients. The use of the proposed features is not

efficient at this stage since there is no amelioration in

speaker recognition performance with NIST SRE 2010

database. For that, several experiments were realized in

order to detect the effectiveness of the proposed features at

different dimensions. We deduce then the efficiency of the

proposed features at a lower order, and we demonstrate that

the use of only 13-dimensional MNGFCC and MVNGFCC

feature vectors is very significant. Seen that we want to

develop a realistic application in which we should taking

into account of the memory and time complexity, the

representation of the speech utterances with more reduced

feature vectors reduce more the memory and time com-

plexity of the system.

We examine then if we can also keep good perfor-

mances. We decide to eliminate the delta and double delta

coefficients of MFCC feature vectors and reduce the GFCC

feature vectors so that 13-dimensional feature vectors are

used for these features.

The results achieved with the different Reduced MFCC,

GFCC feature vectors and the proposed MNMFCC,

MVNMFCC, MNGFCC, and MVNGFCC features with

13-dimensional feature vectors that we call RMFCC,

RGFCC, RMNMFCC, RMVNMFCC, RMNGFCC, and

RMVNGFCC with 24 s for training and 6 s for testing with

NIST SRE 2010 database are given with Fig. 4.

From these results, we can deduce that the use of

Reduced MFCC (RMFCC) features is not efficient since it

decreases the system performance and attain only 93.75%

of correct IR. It is clear that the use of reduced MNMFCC

and MVNMFCC slightly increases the performance which

attains, respectively, 95.31% and 96.88% of IR, but it is not

efficient in ameliorating the system performance.

The use of 13-dimensional GFCC, MNGFCC

MVNGFCC features increases the system performance. In

fact, the use of RGFCC and RMNGFCC features allow

attaining 98.44% of correct IR. The use of RMVNGFCC is

very efficient and succeeds to increase the system
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performance which reaches 100% of correct IR. In order to

more highlight the efficiency of the proposed features, we

give the achieved realized by the reduced proposed features

as illustrated in Table 1.

These results clarify the potential superiority of the

proposed RMVNGFCC features with i-vector-PLDA sys-

tem. In fact, we realize a relatively important gain of about

1.5% with the proposed RGFCC and RMNGFCC features

and 3% with the proposed RMVNGFCC features. The
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Fig. 3 Speaker IR with 24 s for

training and 6 s for testing using

the standard and the proposed

features for the different

databases a Speaker IR for

TIMIT database, b speaker IR

for NTIMIT database, c speaker
IR for NIST SRE 2010 database
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Fig. 4 Speaker IR with 24 s for training and 6 s for testing with the

different reduced dimensional feature vectors with NIST SRE 2010

database

Table 1 The gain achieved with the different reduced dimensional

feature vectors in term of correct Speaker IR for 24 s for training and

6 s for testing with NIST SRE 2010 database

Features IR (%) Gain (%)

MFCC 96.88

GFCC 96.88

RGFCC 98.44 1.56

RMNGFCC 98.44 1.56

RMVNGFCC 100 3.12
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effectiveness of the proposed system using the new

RMNGFCC and RMVNGFCC feature vectors with the

i-vector-PLDA classifier is further examined with more

shortened training and testing data duration in the next

section.

4.2.2 Speaker identification with short durations

In order to prove the efficiency of the proposed features, we

evaluate the next set of experiments with more reduced

training data. Hence, the following set of experiments is

dealt with training speech utterances having duration of

approximately 10 s and testing segments of 6 s for each

speaker.

We begin by the evaluation of the performances of two

baseline systems using, respectively, the standard 39

MFCC feature vectors and the standard GFCC feature

vectors measured against the number of mixture compo-

nents to highlight the effect of reducing the amount of

training data on the systems’ performance. Since the use of

the reduced proposed feature vectors RGFCC, RMNGFCC,

and RMVNGFCC allow achieving previously the best

results, we evaluate then the performances of the proposed

systems, using, respectively, the RGFCC, RMNGFCC, and

RMVNGFCC feature vectors against the baseline systems

with limited data duration. The results achieved from the

different set of experiments for the different databases are

given with Fig. 5.

The different results presented with the following Fig. 5

clearly indicate the effectiveness of the proposed systems

compared to the baseline ones. With TIMIT database, we

notice that the best MFCC-based baseline system perfor-

mance is 95.31% with 16 mixtures. This result clearly

explains the effect of reducing the amount of training data
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Fig. 5 Speaker IR with 10 s for

training and 6 s for testing with

baseline and proposed systems

for the different databases.

a Speaker IR with TIMIT

database, b speaker IR with

NTIMIT database, c speaker IR

with NIST SRE 2010 database
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on the system performance which achieved previously

100% with 24 s of training data. The use of the standard

GFCC features maintains the same performance as with

standard MFCC features in this case. The evaluation of the

proposed speaker identification system with the RGFCC

features brings further improvements to the system which

could attain 96.09% of correct speaker IR. The system

takes advantage from the use of RMNGFCC features and

the best-achieved result is 97.66% with 16 mixtures. The

superiority of the RMVNGFCC features is clearly observed

since the system reached 99.22% with 32 mixtures.

For the speakers taken from the NTIMIT database, we

can also observe from the experiments evaluated with

baseline system using the standard MFCC feature vectors

the effect of using reduced amount of training data on the

system performance. In fact, the system attains only

90.63% of correct IR against 97.66% achieved previously

with 24 s of training data. The use of the GFCC coeffi-

cients does not give an improvement in the system per-

formance with the baseline system. The use of the RGFCC,

RMNGFCC and RMVNGFCC feature vectors increased

the system performance which achieved, respectively,

92.97%, 94.53%, and 96.88% of correct speaker IR.

For the experiments dealt with 2010 NIST SRE data-

base, the speaker identification rates obtained with baseline

system using MFCC feature vectors achieve 90.63%

against 96.88% achieved previously with 24 s of training

data which clarify the effect of reducing the amount of

training data on the system performance. The use of the

standard GFCC features provides no amelioration to the

system performance.

The use of Reduced GFCC features increases the system

performance which achieves an identification rate of

93.75% of speaker IR. The use of the new features with the

proposed Speaker Recognition system succeed to increase

the system performance which achieves 95.31% with

RMNGFCC features and reached 96.88% with

RMVNGFCC features in this case. We calculate the

achieved gain imported by the proposed RMNGFCC fea-

tures and the RMVNGFCC features against baseline GFCC

features for the different databases, and we report them

with Table 2.

From the results obtained above, we can conclude the

superiority of both proposed RMNGFCC and

RMVNGFCC features with the i-vector-PLDA system. In

fact, we can obtain important gains that go beyond 3%, 7%

and 10% with the proposed RMVNGFCC features,

respectively, for TIMIT, NTIMIT, and NIST SRE 2010

databases.

Therefore, we can deduce that the use of the proposed

features is very efficient, and a special attention can be

made for the RMVNGFCC-based system and the

RMNGFCC-based system which outperforms the use of

the RGFCC-based system when a reduced amount of

speech data is used for speaker identification.

The following set of experiments is dealt with more

shortened speech data. In fact, we prepared a set of utter-

ances having a length of 10 s, 8 s, 6 s, and even 4 s per

speaker for the training task and utterances having a length

of 3 s, 2 s, 1 s, and 0.5 s per speaker for the test task. The

two baseline systems were then conducted with the stan-

dards MFCC and GFCC features evaluated with the

i-vector-PLDA algorithm. Since the use of the RMNGFCC

and RMVNGFCC features almost outperforms the use of

the RGFCC features for the different databases, we decide

to keep the RMNGFCC and RMVNGFCC features for the

next set of experiments. Indeed, we evaluate our experi-

ments with a first baseline system using the standards

MFCC features and a second baseline system using the

standards GFCC features and proposed systems using,

respectively, the RMNGFCC features, the RMVNGFCC

features and both concatenated RMNGFCC and

RMVNGFCC features that we called FRMVGFCC fea-

tures. Results achieved from the different set of experi-

ences evaluated on the different databases are given with

Figs. 6, 7, 8 and 9.

Overall, experimental results show that as the utterance

length diminishes, the performance degrades with a

decreasing identification rate. The results presented above

clearly indicate how sensitive the systems are to the

amount of training and testing data.

We can also remark that the GFCC-based approach

often outperforms the MFCC-based approach for the dif-

ferent training and testing durations. In fact, with TIMIT

database, with 8-s utterance training duration and 3-s data

testing duration, the GFCC-based system performance

achieved 96.88% against 95.31% obtained with the MFCC-

based system. With more reduced data like 4 s utterance

training duration, the GFCC-based system also outper-

forms the MFCC-based approach and achieved 92.19%,

88.28%, 65.63%, and 34.38% with, respectively, 3 s, 2 s,

1 s, and 0.5 s testing data duration against only 87.5%,

78.13%, 53.13%, and 32.81% obtained with the MFCC-

based approach. The same remark is also validated with

NTIMIT database for which the GFCC-based system

Table 2 The gain achieved with the proposed RMNGFCC and

RMVNGFCC features compared to baseline GFCC features in term

of correct Speaker IR for 10 s for training and 6 s for testing with the

different databases

Features TIMIT NTIMIT NIST SRE 2010

Gain (%) Gain (%) Gain (%)

RGFCC 0.78 3.91 7.81

RMNGFCC 2.35 5.47 9.37

RMVNGFCC 3.91 7.82 10.94

Neural Computing and Applications (2020) 32:13863–13883 13875

123



outperforms the MFCC-based system and achieved for

example with 10 s utterance training duration 93.75% and

92.19% with, respectively, 3 s and 2 s testing data duration

against only 90.63% and 81.25% with the MFCC-based

system with more reduced training data like 4 s utterance

training duration, the GFCC-based system gives 85.94%,

78.91% 53.91%, and 28.13% with, respectively, 3 s, 2 s,

1 s, and 0.5 s testing data duration against only 76.56%,

68.75%, 39.06%, and 18.75% obtained with the MFCC-

based approach. With NIST SRE 2010 database, we can

also remark that the use of the GFCC features can favorite

the system performance and gives for example 57.81%

with 4 s of training and 3 s of testing data duration against

only 54.69% obtained with the MFCC-based approach.

If we compare between the proposed systems using the

RMNGFCC and RMVNGFCC features and baseline

systems, we can clearly remark the effectiveness of these

features with the increase of the obtained IR for the dif-

ferent databases. In fact, with TIMIT database, the pro-

posed system using the RMNGFCC features achieves for

example 98.44% with 10 s of training duration and 3 s s

testing data duration. The use of RMVNGFCC features

further increased the performances which attain 100% of

correct IR with 10 s of training duration, 3 s and even 2 s

of testing data duration.

The use of the proposed features is also very beneficial

for more reduced training and testing data duration. In fact,

the use of the RMNGFCC achieved for 4 s of training

90.63%, 92.97%, 82.81%, and 59.38% with, respectively,

3 s, 2 s, 1 s and 0.5 s testing data duration against only

87.5%, 78.13%, 53.13%, and 32.81% with the MFCC-

based approach. The use of RMVNGFCC features clearly
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Fig. 6 Speaker IR for 10 s of
training and different testing

durations with TIMIT, NTIMIT,

and NIST SRE 2010 databases.

a IR for TIMIT database, b IR

for NTIMIT database, c IR for

NIST SRE 2010 database
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proves the outperformance of the proposed system which

achieved, respectively, 98.44%, 92.19%, 81.25% and

64.06% with, respectively, 3 s, 2 s, 1 s, and 0.5 s of testing

data duration.

With NTIMIT database, we notice a great improvement

for the proposed system performance. For example, the

proposed system succeeds to achieve 100% of speaker

identification with 10 s of training and 3 s of testing with

RMVNGFCC features and 96.88% with RMNGFCC fea-

tures against only 90.63% and 93.75% of speaker IR with

standard MFCC and GFCC features.

Similar observation can also be made for more short-

ened training and testing data. In fact, with 4 s of training

and 3 s test utterance durations, the performances are

proved and the proposed features increase the speaker IR

from 76.56% and 85.94% with the standard MFCC and

GFCC features to 89.06% and 92.19% with the proposed

RMNGFCC and RMVNGFCC features.

The results obtained with NIST SRE 2010 database

clearly prove the superiority of the proposed system. In

applying RMVNGFCC features with the proposed system,

the system gives additional improvement compared to the

results obtained with the proposed system using

RMNGFCC features. In fact, for example, with 10 s of

training and 0.5 s of testing, the best-achieved results with

the proposed system were 56.25% and 73.44%, respec-

tively, with RMNGFCC and RMVNGFCC features against

only 46.88% and 48.44% with the standard MFCC and

GFCC features. For 10 s of speech training duration and

3 s test utterance durations, the proposed system improve

the system performance which increases from 84.38% and
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Fig. 7 Speaker IR for 8 s of
training and different testing

durations with TIMIT, NTIMIT,

and NIST SRE 2010 databases.

a IR for TIMIT database, b IR

for NTIMIT database, c IR for

NIST SRE 2010 database
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75% with the standard features and reaches 88.28% and

95.31% with the proposed features.

For more reduced training duration like 8 s, the per-

formance decrease and the identification rate fall to 42.19%

with the reduction of the testing duration to 0.5 s with the

standard MFCC features. Hence, we can also observe better

performance with the proposed features which enhance the

results and give 56.25% and 67.19%, respectively, with

RMNGFCC and RMVNGFCC features. We can remark

inferior performance obtained with 6 s of training. In fact,

with baseline systems we have for example only 70.31%

for 3 s of testing with the standard MFCC features. The

proposed features succeed to increase the system perfor-

mance which reaches 81.25% and 85.94%, respectively,

with RMNGFCC and RMVNGFCC features.

The use of 4 s only of training data diminishes further

the system performance and gives 54.69% and 57.81% of

identification with 3 s of testing with the standard MFCC

and GFCC features. The proposed features ameliorate the

system performance which reaches 75.78% and 79.69%,

respectively, with RMNGFCC and RMVNGFCC features.

These results prove how sensible the speaker identifi-

cation system is to the duration of training and testing

speech segments. For that, the use of the proposed features

is very essential to compensate the decreasing performance

caused by the use of short utterances especially in non-

controlled conditions.

Motivated by their superior performance with regard to

the other features as demonstrated with experimental

results given above, we decide to take further advantage of
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Fig. 8 Speaker IR for 6 s of
training and different testing

durations with TIMIT, NTIMIT,

and NIST SRE 2010 databases.

a IR for TIMIT database, b IR

for NTIMIT database, c IR for

NIST SRE 2010 database
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the potential superiority of RMNGFCC and RMVNGFCC

features when limited amounts of training and testing data

are available. Hence, we decide to use both of the two

proposed features. The performance of the new proposed

speaker identification system which depends on both

combined RMNGFCC and RMVNGFCC features called

FRMVGFCC features was evaluated following the proto-

col described previously with the new resulting feature

vector so we can clearly demonstrate our contribution to

short utterance speaker identification. In fact, experimental

results given above clearly highlight that the use of the

proposed approach helps to favor the system performance

for the different databases. In fact, if we focus for example

on NIST SRE 2010 database, we found that the best result

achieved with the proposed resulting system is 98.44%

with 10 s of training and 3 s of testing when both features

are used against 95.31% with RMVNGFCC features only

and 88.28% with RMNGFCC features. With 0.5 s per

speaker for the test task, the best result achieved with the

proposed system with 10 s of training was 78.13% of

identification. However, it was only 73.44% of identifica-

tion with the RMVNGFCC-based system.

We achieve also 85.94% of identification with 8 s of

training and 1 s of testing with the proposed system.

However the best performance was only 79.69% with the

RMVNGFCC-based system.

The use of the proposed system with more reduced

training data like 6 s help to improve the system perfor-

mance which gives 93.75% for 3 s of testing data and

79.69% for 0.5 s of testing which outperform the use of the

outperformed RMVNGFCC features only which gives,

respectively, 85.94 and 57.81% in these cases.
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Fig. 9 Speaker IR for 4 s of

training and different testing

durations with TIMIT, NTIMIT

and NIST SRE 2010 databases.

a IR for TIMIT database, b IR

for NTIMIT database, c IR for

NIST SRE 2010 database
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The use of 4 s of training data further diminishes the

proposed system performance and gives 92.18% with 4 s

for training and 3 s of testing and 75% with 4 s of training

and 0.5 s of testing. Despite this reduction, this system still

outperform the RMVNGFCC-based system which achieves

only 79.69% of identification with 4 s of training and 3 s of

testing and only 54.69% of identification with 0.5 s of

testing.

The same remarks are also clear for the other databases.

In fact, with TIMIT database, the proposed system further

increase the speaker identification performance which

passes for example from 84.38% and 87.5% respectively

with RMNGFCC and RMVNGFCC features to 95.31%

with the proposed system for 8 s of training and 1 s of

testing.

The proposed system also increase the recognition per-

formance for more reduced speech data achieve 76.56%

with only 4 s of training and 0.5 s of testing against only

59.38% and 64.06% respectively with RMNGFCC and

RMVNGFCC features.

The superior outperformance is also remarkable for

NTIMIT database. In fact, for 4 s of training and 0.5 s of

testing, the proposed system achieves 71.88% of correct IR

against only 53.13% and 54.69% respectively with

RMNGFCC and RMVNGFCC features.

The effectiveness of the proposed features and the pro-

posed system is highly efficient for the different databases.

In fact, for example, if we focus on reduced data like 4 s of

training and 0.5 s of testing, we found that the proposed

system increase the IR from 32.81% and 34.38% with

standard MFCC and GFCC features to 76.56% with the

proposed system with TIMIT database.

The same remark is also valid for NTIMIT Database

since the proposed system achieves 71.88% against only

21.88% and 28.13% respectively with standard MFCC and

GFCC features. For NIST SRE 2010 database, the best-

achieved result with the proposed resulting system for 4 s

of training and 0.5 s of testing is 75% against only 37.5%

and 32.81% with standard MFCC and GFCC features. For

4 s of training and 3 s of testing, the proposed system

achieved 92.19% against only 54.69% and 57.81% with

standard MFCC and GFCC features.

In order to further highlight the contribution imported by

the proposed new features, we calculate the achieved gain

realized by the proposed RMNGFCC, RMVNGFCC, and

FRMVGFCC features compared to baseline GFCC features

for the limited 4 s of training utterance duration and the

different short testing durations for the different databases,

and we report them with Tables 3, 4 and 5.

From the results given above, we can conclude the

effectiveness of the proposed RMNGFCC, RMVNGFCC,

and FRMVGFCC features with the i-vector-PLDA system.

In fact, the superiority of the new features is remarkable

with the different databases. For TIMIT database, impor-

tant gains that surpass 6% are observed for 3 s of testing

data duration. With the use of 2 s of testing utterance

duration, the proposed FRMVGFCC features achieved a

gain that go beyond 8% of correct identification rate. Using

shorter testing utterances like 1 s of testing segments’

duration demonstrates the usefulness of the proposed fea-

tures which achieved a gain of about 17% and 15%,

respectively, with the proposed RMNGFCC and

RMVNGFCC features. The proposed FRMVGFCC fea-

tures achieved an important gain of 25% in this case. The

same remark is also validated with 0.5 s of testing utter-

ance duration where the proposed FRMVGFCC features

achieved an important gain of about 44% of correct iden-

tification rate.

We can also appreciate the outperformance of the pro-

posed features for the NTIMIT database. In fact, for 3 s of

testing data duration, the proposed FRMVGFCC features

Table 3 The gain achieved with the proposed RMNGFCC,

RMVNGFCC and FRMVGFCC features compared to baseline GFCC

features in term of correct Speaker IR for 4 s of training and different

testing durations with TIMIT database

Features Gain (%)

3 s 2 s 1 s 0.5 s

RMNGFCC – 4.69 17.18 25

RMVNGFCC 6.25 3.91 15.62 29.68

FRMVGFCC 6.25 8.6 25 42.18

Table 4 The gain achieved with the proposed RMNGFCC,

RMVNGFCC and FRMVGFCC features compared to baseline GFCC

features in term of correct Speaker IR for 4 s of training and different

testing durations with NTIMIT database

Features Gain (%)

3 s 2 s 1 s 0.5 s

RMNGFCC 3.12 5.47 24.22 25

RMVNGFCC 6.25 14.06 30.47 26.56

FRMVGFCC 12.5 17.97 38.28 43.75

Table 5 The gain achieved with the proposed RMNGFCC,

RMVNGFCC and FRMVGFCC features compared to baseline GFCC

features in term of correct Speaker IR for 4 s of training and different

testing durations with NIST SRE 2010 databases

Features Gain (%)

3 s 2 s 1 s 0.5 s

RMNGFCC 17.97 14.85 10.94 14.07

RMVNGFCC 21.88 28.91 21.88 21.88

FRMVGFCC 34.38 35.16 34.38 42.19
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achieved an important gain that surpasses 12% of correct

identification rate compared to the GFCC baseline features.

For the use of more shortened testing data like 2 s of

testing utterance duration, the proposed RMNGFCC

achieved a gain of more than 5% of correct identification

rate, the RMVNGFCC features achieved an important gain

of about 14% of correct identification rate and the proposed

FRMVGFCC features achieved higher gain of about 18%

of correct identification rate compared to the baseline

features. These features are also very efficient with more

shortened testing utterance duration. In fact, the proposed

FRMVGFCC features improve the system performance

with more than 38% of correct identification rate compared

to baseline features with 1 s of testing utterance duration

and more than 43% of correct identification rate compared

to baseline features with 0.5 s of testing data duration.

The evaluations with the NIST SRE 2010 database

permit also to prove the efficiency of the new features. In

fact, with 3 s of testing data duration the achieved gains

outperform 17%, 21%, and 34%, respectively, with the

proposed RMNGFCC, RMVNGFCC, and FRMVGFCC

features compared to the standards GFCC features. These

features prove also their effectiveness with more reduced

speech utterance durations and the achieved gain go

beyond 35% of correct identification rate with the use of

2 s of testing utterance duration with the FRMVGFCC

features. The same remark is also appreciated with 1 s of

testing data duration since the RMNGFCC, RMVNGFCC,

and FRMVGFCC features succeed to increase the system

performance with about 11%, 22%, and 35% compared to

the baseline system. The contribution of the proposed

system using the FRMVGFCC features is thereby validated

with 0.5 s of testing utterance duration and the proposed

system increase the system performance with an important

gain of 42.19% of correct identification rate in this case.

In this way, we can conclude that the proposed system

using FRMVGFCC features is very efficient since it can

achieves higher identification rate with regard to baseline

approaches for both reduced training and testing utterance

with clean and noisy speech utterances. In fact, the given

evaluations showed that our approach achieved remarkable

results with short test utterances and limited data in the

training phase. Hence, the proposed features succeed to

store the maximum of information about the speaker’s

characteristics. Seen that we use reduced feature vectors

compared to baseline and standard approaches, the pro-

posed system presents an efficient solution to overcome

and mollify also the constraints related to the memory and

computational resource limitation in realistic applications,

and hence makes possible the use of large datasets con-

taining many speakers without the need of incorporating

additional, lengthy and complicated algorithms requiring

more time and memory space.

5 Conclusions and perspectives

Although many recent advances and successes have been

achieved with speech researchers, the challenges of pro-

viding effective robust speaker identification on short

utterances remain a key consideration when deploying

automatic speaker recognition, as many real-world appli-

cations often have access to only limited duration speech

data recorded under uncontrolled conditions.

This paper has introduced and evaluated the use of an

enhanced i-vector-PLDA system based on new reduced

dimensional feature vectors for robust text-independent

speaker identification. The proposed system was specifi-

cally evaluated for speaker identification purpose using

short-duration utterances for both training and testing task

obtained from unconstrained speech transmitted over noise

encountered telephone channels. This proposed method has

focused on the formulation of a new approach looking for

new information able to facilitate the identification of

speakers with much reduced speech information. We prove

that this method is suitable for a realistic speaker recog-

nition application. In fact we do not need to use a large

amount of training dataset as in traditional algorithms.

Besides, we don’t require long test utterances to recognize

the speaker. Moreover, there is no need to incorporate

lengthy and complicated calculations to handle the situa-

tions of having small amounts of speech data. This is an

interesting advantage especially for realistic applications

that need to reduce the computational and time complexity

of the system and so the memory size of the system. Future

work will also consider the performance of the proposed

system with other features or applications.
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