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Abstract
Extreme learning machine (ELM) has shown to be a suitable algorithm for classification problems. Several ensemble meta-

algorithms have been developed in order to generalize the results of ELM models. Ensemble approaches introduced in the

ELM literature mainly come from boosting and bagging frameworks. The generalization of these methods relies on data

sampling procedures, under the assumption that training data are heterogeneously enough to set up diverse base learners.

The proposed ELM ensemble model overcomes this strong assumption by using the negative correlation learning (NCL)

framework. An alternative diversity metric based on the orthogonality of the outputs is proposed. The error function

formulation allows us to develop an analytical solution to the parameters of the ELM base learners, which significantly

reduce the computational burden of the standard NCL ensemble method. The proposed ensemble method has been

validated by an experimental study with a variety of benchmark datasets, comparing it with the existing ensemble methods

in ELM. Finally, the proposed method statistically outperforms the comparison ensemble methods in accuracy, also

reporting a competitive computational burden (specially if compared to the baseline NCL-inspired method).
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1 Introduction

Over the years, extreme learning machine (ELM) [30] has

become a competitive algorithm for both multi-classifica-

tion and regression problems. It has been extensively used

not only on traditional supervised machine learning prob-

lems, but also on time series prediction [57, 69], image

classification [10] and speech recognition [67]. Both then

single-hidden layer feedforward network (SLFN) [31] and

the kernel trick version [30] are widely used in supervised

machine learning problems due to its powerful nonlinear

mapping capability [18]. The neural network version of the

ELM framework relies on the randomness of the weights

between the input and the hidden layer. This allows a

speedy calculation and has shown good classification

results. In turn, this opened the door to deep learning and

ensemble methodologies, in order to solve more recent

problems [11, 55].

Deep learning and ensembles methodologies are dis-

puting for performance in main supervised machine

learning problems, both in multi-classification and regres-

sion [54, 66]. Deep learning predictors focus on decom-

posing features in multi-level representations through

hierarchical architectures for the learning tasks and mini-

mizing errors [48]. Deep learning methodologies are con-

sidered to be the natural evolution of artificial neural

networks (ANNs). These deep architectures have appeared

as powerful representation learning techniques in different

ways, such as convolutional neural networks [39, 42],

denoising autoencoders [61] or generative adversarial net-

works [25].

An important disadvantage in deep learning neural

networks is that they require excessive parameter tuning.

Similar to ANN, back propagation [41] and other gradient-

based methods [36] used as solvers are the main respon-

sible for the computational burden. One solution to this

problem is found in kernel deep architectures, with less
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hyperparameters to tweak [3, 33]. Some examples are

convolutional kernel networks [39] or deep Gaussian pro-

cesses [9, 15]. Different approaches to deep learning have

been studied by the ELM community, using autoencoder

ELM networks [56] or network embedding [14]. Although

these deep architectures have shown to achieve interesting

results, it still requires long training times because of the

high number of parameters to tune in a nonlinear opti-

mization problem [35, 48, 54].

Ensemble meta-algorithms focus on generalizing the

results of the mixture of classifiers (called base learners in

ensemble frameworks), looking for diversity among of

them [17]. Easiest ensemble methodologies are achieved

by training each base learner separately and then combin-

ing through weights, so considerable voting methods have

been presented in order to improve performance

[4, 8, 22, 53, 58]. In this context, bagging [4] and boosting

[22] are the most common approaches [1, 19, 66], mainly

because of their easy implementation and their balanced

trade-off between diversity among base learners and per-

formance of the ensemble.

Boosting is a family of machine learning meta-algo-

rithms that focuses on iteratively reducing error by com-

bining base learners and generating a weighted majority

hypothesis. The AdaBoost meta-algorithm is the better-

known example for this approach, with extended use in

applications and many variations [51]. Training subsets

from the data are selected from the complete training set

depending on the performance of the previous iteration. In

the ELM community, Riccardi et al. [52] proposed a cost-

sensitive adaptation for multi-class AdaBoost [27], using

ELM as base learners for ordinal regression problems.

From a different perspective, Ran et al. [50] adapted the

well-known boosting ridge regression algorithm [58] to the

ELM context.

Bagging stands for bootstrap aggregating [4]. It is a

learning method that generates several versions of a base

learner, selecting some subsets from the training set and

using them as new learning sets. Thus, each training subset

is used to train a different classifier, making this approach

easily parallelizable [60, 70]. In the ELM community, Tian

and Meng [57] proposed a bagging approach for day-ahead

electricity price prediction, leading to a generalizable

ensemble algorithm.

The key point of these ensemble meta-algorithms lies in

the training data to generate diversity among the base

learners. Diverse solutions are fostered implicitly through

sampling data. These subsets are selected under the

assumption that different data subsets generate diverse base

learners [37]. While this data sampling framework is easily

generalizable to several classifiers, it depends on how

heterogeneous the data are. If the training data are very

homogeneous, the subsets would not be different enough

and the base learners would be too similar. There are other

useful ways of generating base learners, such as kernel

diversity [34, 62] or hybrid systems [24, 65]. Unfortu-

nately, those approaches also fail in quantifying diversity

among base learners, as diversity is not promoted explicitly

while estimating the parameters of the individuals.

Motivated by this fact, Yao et al. [44–46] and Brown

et al. [5–7] proposed a novel ensemble method called

negative correlation learning (NCL), which fosters

explicitly diversity among ensemble individuals by

including it in the error function of the models. Thus, in the

concept version of the NCL ensemble method, the error

function of each individual in the ensemble is made of two

terms:

• A penalty term associated with the diversity among

ensemble individuals.

• The mean squared error of the model with respect to the

desired output.

NCL is inspired on the research by Perrone et al. [49],

describing that error in prediction (bias) and diversity

among base learners (variance) are two different ideas that

may collide when choosing base learners. Besides taking

into account bias and variance of each individual base

learner, the novelty of the NCL framework generalization

ensemble error also depends on the covariance of base

learners [59, 63]. Huanhuan Chen and Xin Yao found that

NCL optimization is prone to overfitting the noise in the

training set, independent of the hyperparameter tuning of

the NCL penalty term. This led them to first propose a

regularized negative correlation learning (RNCL) algo-

rithm [32]. In addition, they proposed an evolutionary

multi-objective approach [13] to simultaneously optimize

the three objectives involved (fitness, NCL diversity and

regularization).

From the beginning, the NCL framework was conceived

as a regression ensemble approach [45, 59]. Later on, the

machine learning community adapted this idea first to

binary classification problems [28], then to multi-class

problems [63], ordinal regression problems [21] and semi-

supervised machine learning problems [12]. Mostly, these

algorithms require gradient descent as an iterative opti-

mization of the ensemble. Wang et al. [63] proposed the

ambiguity term and AdaBoost to overcome this problem,

making that proposal a hybrid between NCL and data

sampling approaches.

In this paper, we implement ELM as the base learner of

the ensemble model, thus reducing the computational

burden of the system. The proposed method avoids the

excessive iterations required in traditional NCL algorithms,

based on gradient descent [13, 46]. Several ELMs are

trained separately and assembled by introducing negative

correlation penalty on each base learner. Diversity among
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ELM base learners is measured and promoted in this

research work by analyzing the angle between the outputs

of each individual and the outputs associated with the

ensemble model. Ensemble outputs are recalculated after

each iteration and orthogonal terms in objective functions

are updated. The number of inverses to be computed for

each base learner has been drastically reduced by imple-

menting a method inspired on the Sherman–Morrison for-

mula. The computational burden of the proposed method is

similar to the resolution of S independent ELM optimiza-

tion problems, being S the number of base learners com-

posing the ensemble.

The manuscript is organized as follows: an explanation

of extreme learning machine for classification problems in

Sect. 2. Our proposal is discussed in Sect. 3. The detailed

description of the implementation is then explained at the

end of this Section. The experimental framework is pre-

sented in Sect. 4, and the empirical comparisons are in

Sect. 5. Conclusions and discussion are in the final segment

of the article, Sect. 6.

2 The extreme learning machine model
for classification problems

The ELM paradigm implements the traditional regularized

least-squares regression (RLSR) model to address both

regression and classification problems. The goal of the

model (in its linear version) is to estimate a parameter

vector, b̂, which minimizes the following expression:

min
b2RK

XN

n¼1

yn �
XK

k¼1

bkxkn

 !2

þ c
XK

k¼1

WkðbkÞ

0

@

1

A; ð1Þ

where D ¼ fðxn; ynÞgNn¼1 ¼ fðx1n; . . .; xKn; ynÞgNn¼1 is the

training set, K is the dimension of the input space (number

of attributes of the problem), N is the number of patterns in

the training set, xn 2 RK is the vector of attributes of the

nth pattern, yn 2 R is the target value of the nth pattern,

c 2 R[ 0 is a user-specified parameter, and Wk are

mathematical functions that penalize the increasing value

of coefficients bk.
The parameters of the ELM models are estimated from

the previously described RLSR problem in its nonlinear

form (as the model predictor is based on a single layer

feedforward neural network). Thus, the main modifications

introduced by the ELM paradigm (for classification prob-

lems) in the RLSR model are:

• The parameters to be estimated (the output matrix of

coefficients) are the weights connecting the hidden

layer of the model to the output layer. Those parameters

are embedded in matrices of dimensions D� J (D is the

number of hidden nodes and J is the number of classes),

instead of vectors. For that reason, this matrix is defined

as: b ¼ ðb1; . . .; bJÞ 2 RD�J , being bj 2 RD the weights

(coefficients) associated with the jth output node. The

first dimension of the matrix, D, is associated with the

nonlinear transformation of the input space done by

ELM models, whereas the second one, J, is related to

the type of problem being addressed (classification

problems).

Below, the dimensions of the problem and the reason

for having those dimensions are described in more

detail.

• The ELM model is nonlinear in its input variables,

since these are transformed by a nonlinear function

h : RK ! RD. In the neural implementation of the

model, hðxÞ can be explicitly computed as:

hðxÞ ¼ ð/ðx;wd; bdÞ; d ¼ 1; . . .;DÞ; ð2Þ

where D is, as previously described, the dimension

of the transformed space, /ð�;wd; bdÞ : RK ! R is

the mapping function of the dth hidden node, wd 2
RK is the input weight vector associated with the dth

hidden node and bd 2 R is the bias of the dth hidden

node. The mapping function chosen is typically

sigmoidal, i.e.:

/ðx;wd; bdÞ ¼
1

1þ expð�ðw0
d � xþ bdÞÞ

: ð3Þ

• Each target, yn 2 RJ , is the ‘‘1-of-J’’ encoding of the

class label of the nth pattern (ynj ¼ 1 if xn is a

pattern of the jth class, ynj ¼ 0 otherwise), being

J the number of classes.

• The function that penalizes the increasing value of

coefficients is quadratic, WkðtÞ ¼ t2.

• The user-specified parameter weighs on the quadratic

error instead of the regularized term (which it is

equivalent to considering a new parameter C ¼ 1=c).

Hence, the ELM model in classification problems esti-

mates a coefficient matrix, b̂ 2 RD�J , that minimizes the

following equation (expressed in matrix form):

min
b2RD�J

kbk2 þ CkHb� Yk2
� �

; ð4Þ

where H ¼ h0 x1ð Þ; . . .; h0 xNð Þð Þ 2 RN�D is the output of

the hidden layer for the training patterns (nonlinear trans-

formation of the input space), Y ¼ ðY1; . . .;YJÞ ¼
y01
..
.

y0N

0
B@

1
CA 2 RN�J is the matrix with the desired targets, and

Neural Computing and Applications (2020) 32:13805–13823 13807

123



Yj is the jth column of the Y matrix. The solution to that

optimization problem is:

b̂ ¼ I

C
þH0H

� ��1

H0Y: ð5Þ

This solution can be also expressed as:

b̂ ¼ H0 I

C
þH0H

� ��1

Y: ð6Þ

The advantages of the ELM model with respect to

backpropagation (BP) networks are twofold: on the one

hand, ELM networks have the capability of providing

better generalization results than their BP networks coun-

terparts. On the other hand, ELM models have a much

faster learning speed than BP networks. Those advantages

are partially obtained thanks to the novel parameter tuning

of the ELM paradigm. Specifically, the training phase of

the neural version of the ELM model has three stages: first,

the input weights and bias of the hidden nodes are ran-

domly determined (wd and bd); second, the hidden layer

output matrix (H) is computed as defined in Eq. (2), and

third, the output weight matrix, b̂, is analytically deter-

mined using Eq. (5) or Eq. (6).

In the testing phase, each pattern, x, is projected from

the input space to the output space using the following

equation:

fðxÞ ¼ h0ðxÞb̂; ð7Þ

where f xð Þ 2 RJ is the output function of the ELM clas-

sifier. In a classification problem, fðxÞ is a vector with

J elements, ðfðxÞÞj will be used to denote the jth element of

that vector. The predicted class corresponds to the vector

component with highest value. It is important to stress that

the predicted class label for each pattern, x, will be stored

in a vector by xð Þ 2 RJ where all their values are equal to 0

except the element in position

arg max
j¼1;...;J

ðfðxÞÞj;

that is equal to 1.

3 Ensemble method proposed: negative
correlation learning in the ELM paradigm

The aim of this section is to describe how to build an

ensemble model inspired on the negative correlation

learning (NCL) framework and made of S ELM classifiers.

The ensemble method proposed will be named from now

on as Negative Correlation Extreme Learning Machine

(NCELM). The NCELM method trains during R iterations

S ELM classifiers with two conflicting goals: (i) individuals

should provide a competitive mean square error (MSE) and

(ii) the outputs generated for each individual should be

negatively correlated to the outputs provided by the

ensemble. In this research study, the algorithm proposed

has two well-defined stages:

• Initialization The goal of this stage is to create

S standard ELM classifiers using the guidelines

described in Sect. 2. On the implementation of the

ensemble proposed, each component has its own

transformation of the input space (hðsÞ; s ¼ 1; . . .; S),
which is randomly generated as proposed for the ELM

philosophy. Specifically, the output of the hidden layer

of the sth individual in the ensemble is defined as:

HðsÞ ¼ hðsÞ
0
x1ð Þ; . . .; hðsÞ

0
xNð Þ

� �
2 RN�D. It is impor-

tant to stress that the hidden layer outputs remain fixed

during the all the iterations of the algorithm.

On the other hand, the coefficients related to the

connections between the hidden and the output layer of

the sth individual in this first iteration of the algorithm

are determined as explained in Eq. (5)1:

b̂
ðsÞ
ð1Þ ¼ A

ðsÞ
ð1Þ

� ��1

HðsÞ0Y; ð8Þ

where A
ðsÞ
ð1Þ ¼ I

C þHðsÞ0HðsÞ
� �

.

Once the parameters of each classifier are estimated,

the next step is to obtain the initial set of outputs of the

ensemble. The outputs of the ensemble are obtained, on

each iteration, by simple averaging of the outputs

generated by the individuals. In the first iteration, the

output of the ensemble for a test pattern x is defined as:

fð1ÞðxÞ ¼
1

S

XS

s¼1

hðsÞ
0
ðxÞb̂ðsÞð1Þ: ð9Þ

The outputs of the ensemble for the training pattern

in the first iteration are collected in a matrix Fð1Þ, which

is defined as: Fð1Þ ¼ ðF1;ð1Þ; . . .;FJ;ð1ÞÞ ¼
fð1Þðx1Þ0

..

.

fð1ÞðxNÞ0

0

B@

1

CA 2 RN�J ; being Fj;ð1Þ the jth column of the

Fð1Þ matrix.

• Diversity promotion On this stage, the diversity mea-

sure is introduced in the error function of each ELM

classifier. As previously described, the hidden layer

outputs associated with each individual are not modified

after the initialization of the algorithm. Therefore, the

1 Subscripts are used to denote the number of the iteration

(initialization stage corresponds to the first iteration of the algorithm)

and superscripts to index the number of classifiers within the

ensemble.
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only parameters that need to be estimated from the

second iteration of the algorithm (where the diversity

promotion phase starts) are those associated with the

output coefficient matrices,

fb̂ð1ÞðrÞ ; . . .; b̂
ðSÞ
ðrÞg; r ¼ 2; . . .;R. Similarly to what was

done on the first iteration of the algorithm, the outputs

of the ensemble are collected in its corresponding

matrix after the estimation of the output coefficient

matrices, fb̂ð1ÞðrÞ ; . . .; b̂
ðSÞ
ðrÞg; r ¼ 2; . . .;R. The matrix with

the outputs of the ensemble in the rth iteration is

defined as:

FðrÞ ¼ ðF1;ðrÞ; . . .;FJ;ðrÞÞ ¼

fðrÞðx1Þ0

..

.

fðrÞðxNÞ0

0

BB@

1

CCA 2 RN�J ;

being Fj;ðrÞ the jth column of the FðrÞ matrix. The

output of the ensemble for each pattern in the rth iter-

ation is computed as:

fðrÞðxÞ ¼
1

S

XS

s¼1

hðsÞ
0
ðxÞb̂ðsÞðrÞ: ð10Þ

Below, the way to estimate the output weight matrices

of the individuals of the ensemble during the diversity

promotion stage is described. Specifically, the diversity

measure adopted in the model, the optimization function,

the analytical solution of each individual on each iteration

and the algorithmic flow of the ensemble are explained in

detail.

3.1 Diversity metric proposed

In the NCL framework, diversity among individuals of the

ensemble is promoted explicitly in the error function

[28, 44]. Therefore, the error functions of the components

of the ensemble include both a penalty term to promote

diversity among individuals and the mean square error

(MSE) of the model with respect to the desired outputs

[21]. Concretely, the error function (in regression prob-

lems) for the sth individual of the ensemble is defined as:

min
bðsÞ2RD;wðsÞ2RK�D;bðsÞ2RD

1=N
XN

n¼1
f ðsÞðxn; bðsÞ;wðsÞ; bðsÞÞ � yn

� �2�

þ1=N
XN

n¼1
kpðsÞðxn; bðsÞ;wðsÞ; bðsÞÞ

�

where f ðsÞ : RK ! R is the output of the sth regressor in the

nth pattern, bðsÞ;wðsÞ; bðsÞ are the parameters to be tuned in

a regression problem, yn 2 R is the desired target in the nth

pattern of the training set, k 2 R is a user-specified

hyperparameter that controls the importance of diversity

with respect to the MSE of the model and pðsÞ : RK ! R is

the correlation penalty function associated with the sth

individual and the nth pattern. The purpose of minimizing

pðsÞ is to negatively correlate each individual’s error with

errors of the ensemble, and therefore, the function is

defined as:

pðsÞðxn; bðsÞ;wðsÞ; bðsÞÞ ¼ f ðsÞðxn; bðsÞ;wðsÞ; bðsÞÞ
�

�fðxnÞÞ
X

j 6¼s

f ðjÞðxn; bðjÞ;wðjÞ; bðjÞÞ � fðxnÞ
� �

;

where fðxnÞ is the output of the final ensemble model for

the nth pattern, which is obtained by simply averaging the

corresponding outputs of the individuals in the ensemble.

As shown in [7], this penalty term can be understood as

a covariance among the individuals of the ensemble, which

is also related to the correlation coefficient (as the second

statistic is equal to the first one normalized to 1). Fur-

thermore, the correlation coefficient between two variables

u and v can be interpreted as the cosine of the angle

between them:

qu;v ¼
P

l ulvlffiffiffiffiffiffiffiffiffiffiffiffiP
l u

2
l

p ffiffiffiffiffiffiffiffiffiffiffiffiP
l v

2
l

p ¼ u; vh i
uk k vk k ¼ cos \ u; vð Þð Þ; ð11Þ

where ul and vl are the lth components of the variables u

and v after the standardization of the sample.

Motivated by this fact, diversity is measured and pro-

moted in this research work by analyzing the angle

between the outputs of each individual and the outputs

associated with the ensemble model. These vectors will be

most different when, \ðu; vÞj j ¼ p=2, and therefore,

u; vh i ¼ 0. When most similar,
u;vh i
uk k vk k ¼ �1. Taking this

into account, the metric of diversity among the outputs of

the sth classifier with respect to the output of the ensemble

(for the jth component of the desired targets in the rth

iteration) can be defined as2:

div HðsÞb̂
ðsÞ
ðrÞ

� �

j
;Fj;ðr�1Þ

� �
¼ HðsÞb̂

ðsÞ
ðrÞ

� �

j
;Fj;ðr�1Þ

� �2

;

ð12Þ

where hs; ti ¼ s0t is the standard dot product and

HðsÞb̂
ðsÞ
ðrÞ

� �

j
is the jth column of the matrix HðsÞb̂

ðsÞ
ðrÞ

� �
. As

can be seen in the equation, diversity of the individuals in

the rth iteration with respect to the ensemble is computed

taking into account the outputs of the ensemble in the r � 1

iteration.

2 The dot product is squared in order to consider solely the direction

of the vector.
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3.2 Error function formulation

The error function of the NCELM ensemble method is

made of three elements: the regularization term, the errors

associated with the individual in the ensemble and the

diversity among the outputs of the individual and the final

ensemble. Thus, the output weight matrices in the rth

iteration (b
ðsÞ
ðrÞ, s ¼ f2; . . .; SgÞ, for each individual, are

obtained from the following optimization problem:

min
b2RD�J

gðsÞðbÞ ¼ kbk2 þ CkHðsÞb� Yk2
 

þk
XJ

j¼1

HðsÞb
� �

j
;Fj;ðr�1Þ

� �2
!
;

ð13Þ

where k 2 R is a problem-dependent parameter that con-

trols the existing diversity among individuals of the

ensemble.

As previously explained, the third term defines the

diversity between individuals and the final ensemble

model. This component of the error function reaches its

minimum value, 0, when all its addends are null. This is

equivalent to the orthogonality, one by one, of the J outputs

generated by the sth ELM base learner with respect to the

outputs of the ensemble. The maximum value in this

component is obtained when those outputs (associated with

the sth ELM and the ensemble) are proportional. This

implies that both models provide the same type of classi-

fication (same decisions regarding the class label of each

pattern in the training set).

The NCELM optimization problem (associated with the

sth component of the ensemble) can also be formulated as

the sum of J separable vector problems, one for each class.

Hence, we could rewrite the optimization function for the

r-iteration as:

gðsÞ bð Þ ¼
XJ

j¼1

g
ðsÞ
j ðbÞ ¼

XJ

j¼1

kbjk2 þ CkHðsÞbj � Yjk2
�

þk HðsÞbj;Fj;ðr�1Þ

D E2�
:

ð14Þ

As can be seen in Eq. (14), the decision variables of

each addend are different, and therefore, the final solution

to the coefficient matrix of the sth individual of the

ensemble in the rth iteration, b̂
ðsÞ
ðrÞ, could be obtained by

grouping the b̂
ðsÞ
j;ðrÞ elements by columns. Taking into

account that ksk2 ¼ s0s and grouping terms:

min
ðbÞj2RD

g
ðsÞ
j ðbÞ ¼ b

0

j Iþ CHðsÞ0HðsÞ þ kHðsÞ0Fj;ðr�1ÞF
0

j;ðr�1ÞH
ðsÞ

� �
bj

�

�2Cb
0

jH
ðsÞ0Yj þ Y

0

jYj

�

where I is the identity matrix and Y
0

jYj a constant term.

Thus, the optimization problem can also be defined as:

min
bj2RD

b
0

jA
ðsÞ
j;ðrÞbj � 2b

0

jH
ðsÞ0Yj

� �
; ð15Þ

where A
ðsÞ
j;ðrÞ ¼ I

C þHðsÞ0HðsÞ þ k
CH

ðsÞ0Fj;ðr�1ÞF
0

j;ðr�1ÞH
ðsÞ

� �
:

The solution to that optimization problem (for positive

definite A
ðsÞ
j;ðrÞ matrices) is

b̂
ðsÞ
j;ðrÞ ¼ A

ðsÞ
j;ðrÞ

� ��1

HðsÞ0Yj; ð16Þ

being A
ðsÞ
j;ðrÞ a positive definite matrix and therefore

invertible. Furthermore, the g
ðsÞ
j function is strictly convex

and the critical point obtained is its unique and global

minimum.

3.3 Calculation of the inverses via the Sherman–
Morrison formula

The main drawback of the NCELM method is its high

computational burden, compared to other ensemble meth-

ods. To solve the complete optimization problem, it is

necessary to compute S inverses during the initialization

stage and S� J � R� 1 inverses in the Diversity promo-

tion stage, for a total of Sþ ðS� J � R� 1Þ inverses

during the whole procedure.

In this section, we will describe a method inspired in the

Sherman–Morrison formula [26] to reduce the number of

inverses to be computed from Sþ ðS� J � R� 1Þ to

S. The goal is to estimate all the inverses required in the

diversity promotion stage from those computed in the ini-

tialization stage. The formula is built from an invertible

square matrix (G) and two vectors (m and v) with the same

rank as G. The matrix F ¼ Gþmv0 is invertible if

1þ v0G�1m 6¼ 0. If Gþmv0 is invertible, then its inverse

is given by:

F�1 ¼ G�1 � G�1mv0G�1

1þ v0G�1m
: ð17Þ

We will first rewrite the inverse matrix to be computed

on each iteration of the diversity promotion stage, A
ðsÞ
j;ðrÞ, as:

A
ðsÞ
j;ðrÞ ¼

I

C
þHðsÞ0HðsÞ þ k

C
HðsÞ0Fj;ðr�1ÞF

0

j;ðr�1ÞH
ðsÞ

� �

¼ A
ðsÞ
ð1Þ þ u

ðsÞ
j;ðrÞu

ðsÞ0
j;ðrÞ;

with
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A
ðsÞ
ð1Þ ¼

I

C
þHðsÞ0HðsÞ; u

ðsÞ
j;ðrÞ ¼

ffiffiffiffi
k
C

r
HðsÞ0Fj;ðr�1Þ; ð18Þ

and therefore,

A
ðsÞ
j;ðrÞ

� ��1

¼ A
ðsÞ
ð1Þ

� ��1

�
A

ðsÞ
ð1Þ

� ��1

u
ðsÞ
j;ðrÞu

ðsÞ0
j;ðrÞ A

ðsÞ
ð1Þ

� ��1

1þ u
ðsÞ0
j;ðrÞ A

ðsÞ
ð1Þ

� ��1

u
ðsÞ
j;ðrÞ

:

ð19Þ

The A
ðsÞ
ð1Þ matrices and their corresponding inverses were

those computed in the initialization stage. Thus, the

existing inverses in the diversity promotion stage are esti-

mated from the inverses obtained in the first iteration of the

algorithm. For that reason, the computational burden of the

proposed method will be similar to the resolution of S in-

dependent ELM classification problems, achieving a sig-

nificant improvement in the efficiency of the ensemble

method.

3.4 Algorithmic flow of the NCELM method

The algorithmic steps required to estimate the parameters

of the proposed method are here briefly described. NCELM

has two stages: the initialization stage (Fig. 1, steps 1–8)

and the diversity promotion stage (Fig. 1, steps 9–19). On

each iteration of the initialization stage, the algorithm starts

randomly generating the hidden layer coefficient matrix of

the corresponding classifier (Fig. 1, steps 2–4). After that,

the inverse of the matrix required for the computation of

the coefficients output matrix of each base learner is stored

(Fig. 1, step 5). Then, the coefficients are determined in the

traditional ELM framework (Fig. 1, step 6). Once the

parameters of the initial S ELM classifiers are estimated,

the outputs of the ensemble model, for the first iteration,

are obtained (Fig. 1, step 8). During the diversity promo-

tion stage, the output matrix of coefficients associated with

the individuals of the ensemble is iteratively updated

according to the Sherman–Morrison formula (Fig. 1, steps

12–14). After that, the outputs of the ensemble, for that

iteration, are obtained (Fig. 1, step 17).

The output of the final ensemble model is:

fðRÞðxÞ ¼ 1=S
XS

s¼1

hðsÞ
0
xð Þb̂ðsÞðRÞ

� �
; ð20Þ

where fðRÞðxÞ is the numerical output of the ensemble

model in the last iteration and f j;ðRÞðxÞ is the jth element of

the vector in that iteration. Finally, it is important to clarify

that the predicted class label for a test pattern x is included

in a vector by xð Þ 2 RJ where all values are equal to 0 except

the element in position argmaxj¼1;...;J f j;ðRÞðxÞ; that is equal
to 1.

4 Experimental framework

The experimental framework implemented to illustrate the

competitive performance and efficiency of the proposed

ensemble is detailed throughout the following sec-

tion. First, the selected datasets for benchmarking are

described in Sect. 4.1. The measures to evaluate the per-

formance of the algorithms are analyzed in Sect. 4.2. The

taxonomy of the algorithms used for comparison purposes

in Sect. 4.3. Finally, the statistical tests applied to validate

the results are specified in Sect. 4.4.

4.1 Datasets

Sixty six datasets have been selected from the UCI

repository [20], presenting diversity in size, number of

instances and number of labels (binary and multi-class).

The features of each selected dataset are summarized in

Table 1, with the ascribed ID, the number of patterns

(Size), the number of attributes (#Attr.), the number of

classes (#Classes) and the number of instances per class

(Class distribution).

Although the UCI repository is a widely used source of

datasets for benchmarking machine learning models, the

format of these datasets is not consistent. Each dataset has

been downloaded and processed into a common format,

dropping the missing values by rows or by columns

depending on how much information is kept after such

process.3

Features have been standardized and rescaled following

a normal distribution Nð0; 1Þ. This transformation of the

features is extremely important for distance-based classi-

fiers, such as ELM or support vector machines, normalizing

the a priori importance among features. The experimental

design was conducted using a tenfold cross-validation

procedure, with 3 repetitions per fold. A total of 30 error

measures are obtained for all the models compared, which

assures a proper statistical significance of the results. The

partitions are the same for all compared models.

4.2 Measures

In order to evaluate the efficacy of the methods tested, two

performance measures are used: accuracy rate and root

mean squared error (RMSE).

• Accuracy rate (Acc) the proportion of correct predic-

tions from all predictions made. It has been by far the

most commonly used metric to assess the performance

3 It was carried out using a Python repository that has been developed

by the authors with this goal in mind and uploaded to Github (https://

github.com/cperales/uci-download-process).

Neural Computing and Applications (2020) 32:13805–13823 13811

123

https://github.com/cperales/uci-download-process
https://github.com/cperales/uci-download-process


of classifiers for years [64]. The mathematical expres-

sion of Acc is:

Acc ¼ 1

N

XN

n¼1

I by xnð Þ ¼ ynð Þ; ð21Þ

where Ið�Þ is the zero-one loss function.

• Root mean square error (RMSE) the standard deviation

of the differences between predicted values and target

values. This metric is optimized in the ELM loss

function and is defined as:

RMSE ¼ 1

N

XN

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J

XJ

j¼1

fj xnð Þ � ynj
	 
2

vuut : ð22Þ

where fj xnð Þ is the numerical output of the model for

the jth class.

Computational time is used for measuring the efficiency.

If two algorithms over certain database achieve the same

results, the faster one will be the more convenient to use.

This happens because, after learning the same information,

a less complex algorithm would be available to replicate

results from a more complex one. The computational time

measured is the sum of the cross-validation, training and

testing times.

4.3 Algorithms

The proposed method has been evaluated, comparing the

results to the ones of ensemble models both from bagging

and boosting approaches, and standard ELM4. All of them

have been already mentioned in the introduction section.

NCELM Negative correlation extreme learning

machine, previously detailed in Sect. 3.

NCELM(S, D, C, λ):
Require: Training set: D = {(xn, yn)}N

n=1, where xn ∈ R
K and yn ∈ R

J . Y = (Yj , j =

1, . . . , J) =

⎛
⎜⎜⎝

y′
1
...

y′
N

⎞
⎟⎟⎠

Ensure: Optimized ensemble model: {β
(1)
(R), . . . , β

(S)
(R)}.

{Initialization stage}
1: for s = 1 until S do
2: w(s) ← rand(D, K).
3: b(s) ← rand(D, 1).

4: H(s) ←
(
h(s)′

(xn) , n = 1, . . . , N
)

5:
(
A(s)

(1)

)−1 ←
(

I
C

+H(s)′
H(s)

)−1
.

6: β̂
(s)
(1) ←

(
A(s)

(1)

)−1
H(s)′

Y.
7: end for

8: F(1) ← (F1,(1), . . . ,FJ,(1)) =

⎛
⎜⎜⎝

f(1)(x1)′
...

f(1)(xN )′

⎞
⎟⎟⎠. {Output of the ensemble in the first iteration}

{Diversity promotion stage}
9: for r = 2 until R do
10: for s = 1 until S do
11: for j = 1 until J do

12: u(s)
j,(r) ←

√
λ
C
H(s)′

Fj,(r−1)

13:
(
A(s)

j,(r)

)−1 ←
(
A(s)

(1)

)−1 −
(
A(s)

(1)

)−1
u(s)
j,(r)u

(s)′
j,(r)

(
A(s)

(1)

)−1

1+u(s)′
j,(r)

(
A(s)

(1)

)−1
u(s)
j,(r)

14: β̂
(s)
j,(r) ←

(
A(s)

j,(r)

)−1
H(s)′

Yj

15: end for
16: end for

17: F(r) ← (F1,(r), . . . ,FJ,(r)) =

⎛
⎜⎜⎝

f(r)(x1)′
...

f(r)(xN )′

⎞
⎟⎟⎠. {Output of the ensemble in the r-th iter-

ation}
18: end for
19: return {β

(1)
(R), . . . , β

(S)
(R)}.

Fig. 1 NCELM training

algorithm framework

4 A Python library has been developed by the authors with the

algorithms used for these experiments and publicly uploaded to

Github (https://github.com/cperales/pyridge)
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Table 1 Characteristics of the datasets

ID Dataset Size #Attr. #Classes Class distribution

1 Adult 32,561 107 2 (24,720, 7841)

2 Magic-gamma-telescope 19,020 10 2 (12,332, 6688)

3 Crowdsourced-mapping 10,845 28 6 (7509, 1494, 1009, 482, 251, 100)

4 Mushroom 8124 106 2 (4208, 3916)

5 Pen-based-recognition 7494 16 10 (780, 779, 780, 719, 780, 720, 720, 778, 719, 719)

6 Robot-navigation 5456 24 4 (2205, 2097, 328, 826)

7 Spambase 4601 57 2 (2788, 1813)

8 Statlog-project-landsat-satellite 4435 36 6 (1072, 479, 961, 415, 470, 1038)

9 Weight-lifting-exercises 4024 68 5 (1365, 901, 112, 276, 1370)

10 Optical-recognition-digits 3823 64 10 (376, 389, 380, 389, 387, 376, 377, 387, 380, 382)

11 Chess-king-rook-vs-king-pawn 3196 38 2 (1527, 1669)

12 Thyroid-disease-sick-euthyroid 3163 17 2 (2870, 293)

13 Thyroid-disease-allhypo 2800 24 4 (154, 2580, 64, 2)

14 Thyroid-disease-allrep 2800 24 4 (2713, 23, 29, 35)

15 Thyroid-disease-allhyper 2800 24 4 (8, 7, 62, 2723)

16 Seismic-bumps 2584 22 2 (2414, 170)

17 Ozone-level-detection-one 1848 72 2 (1791, 57)

18 Ozone-level-detection-eight 1847 72 2 (1719, 128)

19 Car-evaluation 1728 21 4 (384, 69, 1210, 65)

20 Yeast 1484 8 10 (463, 5, 35, 44, 51, 163, 244, 429, 20, 30)

21 cnae-9 1080 856 9 (120, 120, 120, 120, 120, 120, 120, 120, 120)

22 Qsar-biodegradation 1055 41 2 (699, 356)

23 Statlog-project-german-credit 1000 59 2 (700, 300)

24 Connectionist-bench 990 13 11 (90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90)

25 Tic-tac-toe-endgame 958 27 2 (332, 626)

26 Mammographic-mass 830 5 2 (427, 403)

27 Blood-transfusion-service-center 748 4 2 (570, 178)

28 Breast-cancer-wisconsin 699 8 2 (458, 241)

29 Credit-approval 690 10 2 (307, 383)

30 Hill-valley-noise 606 100 2 307, 299)

31 Breast-cancer-wisconsin-diagnostic 569 30 2 (357, 212)

32 Climate-model-simulation-crashes 540 18 2 (46, 494)

33 Arrhythmia 452 274 13 (245, 44, 15, 15, 13, 25, 3, 2, 9, 50, 4, 5, 22)

34 Libras-movement 360 90 15 (24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24)

35 Ionosphere 351 34 2 (126, 225)

36 Ecoli 336 7 8 (143, 77, 2, 2, 35, 20, 5, 52)

37 Heart-disease-cleveland 303 11 5 (164, 55, 36, 35, 13)

38 Heart-disease-hungarian 294 4 2 (188, 106)

39 Breast-cancer 286 30 2 (218, 68)

40 Cylinder-bands 277 99 2 (99, 178)

41 Soybean-large 266 35 15 (40, 20, 10, 10, 40, 20, 10, 10, 10, 40, 10, 16, 10, 10, 10)

42 Congressional-voting-records 232 16 2 (124, 108)

43 Glass-identification 214 9 6 (70, 76, 17, 13, 9, 29)

44 Image-segmentation 210 19 7 (30, 30, 30, 30, 30, 30, 30)

45 Seeds 210 7 3 (70, 70, 70)

46 Connectionist-bench-sonar 208 60 2 8111, 97)

47 Breast-cancer-wisconsin-prognostic 198 32 2 (151, 47)

48 Parkinsons 195 22 2 (48, 147)
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ELM Standard extreme learning machine, as

described in Sect. 2.

BELM Bagging extreme learning machine [57]. In

this implementation, each base learner in the

ensemble has the same importance (same

weight in the final decision) and was created

using a random subset which contains 75% of

the training set.

BRELM Boosting ridge extreme learning machine

[50]. The result of applying each classifier to

the training dataset, without renormalizing

using 1-of-J encoding, is added to the next

classifier. Prediction of each bðsÞ is adjusted to

lðsÞ ¼ Y�
Ps�1

l¼1 HbðlÞ.

AELM AdaBoost extreme learning machine [52]. It is

based on the classical idea of multi-class

AdaBoost [27], but training instances are

weighted and not completely removed from

one base learner to the next. Using ELM as

base learner implies that from a given H, the

different b are estimated, making patterns that

were wrongly classified on previous iterations

more important than the rest. During all

iterations, cost-sensitive weights remain nor-

malized avoiding overfitting.

ANCELM AdaBoost negative correlation extreme learn-

ing machine [63]. Apart from multi-class

AdaBoost implementation from SAMME loss

[27], diversity among the outputs of the base

learners is introduced explicitly through an

ambiguity penalty, making this algorithm a

mixed approach from boosting and NCL

frameworks.

Multi-class AdaBoost algorithms (AELM and

ANCELM) relying on SAMME loss function [27], so they

are not able to compute the RMSE metric as their outputs

are categorical. Consequently, only accuracy is reported on

those methods. Except for ANCELM, the rest of the

ensembles have been already tested for ELM base learners

[50, 52, 57]. This ensemble was tested by Wang et al. [63]

for both binary and multi-class classification problems

using neural networks and decision trees as base learners.

ANCELM is not only an AdaBoost approach but also a

combination of NCL ideas previously discussed in Sect. 1.

The ensemble is computed sequentially while encouraging

diversity through an ambiguity term, which makes this

algorithm more flexible and simpler than other NCL

algorithms. It is applicable to both binary and multi-class

problems using SAMME modification Hastie et al. [27].

Hyperparameters for each algorithm are selected by a

grid search in a fivefold nested cross-validation. This grid

is defined in Table 2. Every ELM base learner uses the

sigmoid activation function. The ensemble size has been

set as S ¼ 25 for all the methods, since Brown et al. study

Table 1 (continued)

ID Dataset Size #Attr. #Classes Class distribution

49 FLags 194 48 8 (40, 60, 36, 8, 4, 27, 15, 4)

50 Monks-problems-2 169 6 2 (105, 64)

51 Teaching-assistant-evaluation 151 5 3 (49, 50, 52)

52 Iris 150 4 3 (50, 50, 50)

53 Monks-problems-1 124 6 2 (62, 62)

54 Monks-problems-3 122 6 2 (62, 60)

55 Zoo 101 16 7 (41, 20, 5, 13, 4, 8, 10)

56 Fertility 100 9 2 (88, 12)

57 Post-operative-patient 90 17 4 (63, 1, 2, 24)

58 Hepatitis 80 19 2 (13, 67)

59 Spectf-heart 80 44 2 (40, 40)

60 Spect-heart 80 22 2 (40, 40)

61 Soybean-small 47 35 4 (10, 10, 10, 17)

62 Lenses 24 4 3 (4, 5, 15)

63 Balloons-b 20 4 2 (8, 12)

64 Balloons-a 20 4 2 (8, 12)

65 Balloons-c 20 4 2 (8, 12)

66 Balloons-d 16 4 2 (7, 9)

For each dataset, the number of patterns (Size), attributes (#Attr.), classes (#Classes) and the distribution of instances within classes (Class
distribution) are shown
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[7] supports ensembles of this size as a competitive trade-

off between ensemble diversity and performance. Grid

values for the regularization parameter C are chosen from

other ELM articles [30]. The selected number of neurons in

the hidden layer D follows the criteria from neural ELM

ensemble articles [50, 57] and for k values for ANCELM

are assigned according to Wang et al. [63]. Comparing

Eqs. (4) and (13), the NCL term with k is a perturbation

from an individual ELM error function, so only small

values are considered, k 2 f10�4; 10�3. . .; 1g.

4.4 Statistical tests

The decision about selecting the best method according to

performances is not a trivial task. It is necessary to provide

statistical support in order to compare NCELM with the

rest of the algorithms presented in Sect. 4.3. The nature of

our benchmark datasets does not assure normality [16], so

assumptions to apply parametric tests will not be made. It

will be necessary to proceed with nonparametric tests for

multiple comparisons.

Since six different algorithms are handled, a pre-hoc test

is needed in order to determine whether the output results

are statistically similar or different as a group. The Fried-

man test [23] can be used for these comparisons. It detects

differences taking into account the global set of algorithms.

The procedure involves ranking the result of each algo-

rithm over a dataset, then considering the values of ranks

by methods. Once the null hypothesis (all classifiers per-

form equally well) is rejected by the Friedman’s test, it is

possible to continue with a post hoc test for finding the

pairwise comparisons.

Then, the post hoc test is needed to ensure that NCELM

performs better than the algorithms described in Sect. 4.3.

The Holm test [29] performs sequentially pairwise com-

parisons against the control method (NCELM) with a step-

down procedure that starts with the most significant

p value. If this p value is low according to the significance

level, the corresponding hypothesis is rejected. Then, the

second significant p value needs to be compared. If the

second hypothesis is also rejected, the test proceeds with

the third, and so on. As soon as a certain null hypothesis

cannot be rejected, all remaining hypotheses are retained as

well. For these statistical tests, two significance levels are

considered, a ¼ 0:05 and a ¼ 0:10.

5 Results and discussion

As explained in Sect. 4, comparative analysis among the

algorithms previously detailed is carried out following the

experimental design. Results for accuracy (Acc) are given

in Table 3, for RMSE in Table 4 and for time in Fig. 4. ID

of each dataset referenced in these Tables comes from

Table 1 in Sect. 4.1. Both performance measures, results

and discussion are in Sect. 5.1, while computational time is

reported in Sect. 5.2.

5.1 Performance measures

Table 3 reports the average generalization results for the

Acc metric for all the datasets considered and the methods

used for comparison purposes. It also includes the standard

deviation per dataset and method in subscript. As can be

seen in this table, NCELM achieves best results in forty of

the sixty six datasets, followed by ELM, which is best in

fifteen datasets.

Figure 2 compares the performance in Acc between the

proposed and the comparative ensemble methods in pairs.

Each bar is the difference between the Acc result of

NCELM minus another method. Dataset IDs are specified

on the horizontal axis. Positive values indicate that

NCELM outperforms the alternative method. Datasets are

ordered by how much they are outperformed by NCELM.

The figures show that NCELM is an interesting proposal

for different types of dataset. Positive differences of Acc

are not biased toward large or small datasets, since dataset

numbers are ordered by size according to Table 1. It can

also be deduced that when NCELM outperforms other

methods, and it does so with more significance than when it

loses.

Table 2 Hyperparameters for

each model
Algorithm References Hyperparameters

NCELM S ¼ 25, C 2 f10�2; . . .; 102g, D 2 f10; . . .; 50g, k 2 f10�4; 10�3. . .; 1g
ELM [30] C 2 f10�2; 1; 10; 102g, D 2 f10; 20; 30; 40; 50g
BELM [57] S ¼ 25, C 2 f10�2; . . .; 102g, D 2 f10; . . .; 50g
BRELM [50] S ¼ 25, C 2 f10�2; . . .; 102g, D 2 f10; . . .; 50g
AELM [52] S ¼ 25, C 2 f10�2; . . .; 102g, D 2 f10; . . .; 50g
ANCELM [63] S ¼ 25, C 2 f10�2; . . .; 102g, D 2 f10; . . .; 50g, k 2 f0:25; 0:5; 1; 5; 10g

Neural Computing and Applications (2020) 32:13805–13823 13815

123



Table 3 Accuracy generalized results

ID NCELM ELM BELM BRELM AELM ANCELM

1 0:822220:00482 0:820980:00561 0:821010:00807 0:820370:00555 0:758680:01725 0:750990:01387

2 0:780090:00838 0:825290:00976 0:825890:009388 0:821980:00946 0:754680:01253 0:733040:02623

3 0:797550:02732 0:824380:03300 0:824320:03645 0:821120:03304 0:783920:04000 0:767720:03693

1 0:943320:09188 0:918910:08431 0:914120:09441 0:938620:05902 0:854780:10042 0:843440:10354

2 0:945830:00797 0:934350:00879 0:932660:00903 0:934530:01045 0:950670:01052 0:947830:01478

3 0:658970:02478 0:667180:03124 0:670580:02790 0:671310:02395 0:641830:03667 0:638100:03098

4 0:913040:02036 0:885080:03185 0:884280:03158 0:886460:02592 0:792180:05341 0:799060:06159

5 0:840840:03971 0:827060:05009 0:838790:04277 0:840210:04458 0:754290:08071 0:757810:06959

6 0:872400:07520 0:811280:10877 0:836150:07259 0:835950:09319 0:822520:08361 0:840300:07309

7 0:935490:01245 0:890970:01750 0:889780:01789 0:886650:01768 0:899700:02195 0:901540:01877

8 0:882350:06417 0:817450:08440 0:815050:07225 0:812150:07683 0:824380:08247 0:799230:08095

9 0:907370:00131 0:907370:00131 0:907370:00131 0:907370:00131 0:907370:00131 0:907370:00131

10 0:921330:00438 0:921450:00415 0:921450:00415 0:921450:00415 0:921450:00415 0:921450:00415

11 0:968350:00521 0:968950:00343 0:968950:00343 0:968950:00343 0:968950:00343 0:968710:00349

12 0:972520:00347 0:972520:00347 0:972520:00347 0:972520:00347 0:969670:00925 0:972160:00415

13 0:933700:00274 0:932020:00759 0:933180:00345 0:932790:00547 0:934210:00012 0:934210:00012

14 0:969160:00240 0:969160:00240 0:969160:00240 0:969160:00240 0:969160:00240 0:969160:00240

15 0:930700:00195 0:930700:00195 0:930700:00195 0:930700:00195 0:930700:00195 0:930700:00195

16 0:763080:05765 0:759120:06501 0:757220:06418 0:766280:06466 0:783590:07564 0:793970:07024

17 0:588880:02689 0:583050:03219 0:577900:03539 0:572180:03452 0:516380:03920 0:513310:03380

18 0:914810:03736 0:559220:04416 0:573010:03988 0:556480:05004 0:482920:05199 0:476540:04048

19 0:855110:06266 0:846910:05813 0:849140:05675 0:842440:06650 0:790180:05654 0:795190:06564

20 0:747670:04609 0:722330:04835 0:718330:03541 0:720330:05148 0:732670:04049 0:734000:04484

21 0:579800:07905 0:440400:07160 0:411110:06970 0:429290:07141 0:458250:06590 0:497980:08705

22 0:813920:05585 0:791280:07569 0:778760:06055 0:790390:07282 0:766890:08336 0:779810:05749

23 0:819670:04980 0:813520:04719 0:815970:04683 0:807090:05542 0:744580:09915 0:767290:08133

24 0:760280:02617 0:754500:10637 0:762500:10234 0:751840:10285 0:762050:00411 0:762050:00411

25 0:958620:02675 0:960040:02521 0:956250:02858 0:958140:02534 0:905720:11721 0:902890:10450

26 0:851090:16735 0:844890:17257 0:843330:16533 0:850670:16933 0:761920:12412 0:759050:13577

27 0:527580:05442 0:610620:04524 0:635020:05824 0:632580:05682 0:524760:03953 0:543920:05324

28 0:975500:02193 0:964310:02660 0:962740:02784 0:958490:02227 0:862640:07521 0:861250:07502

29 0:915550:00797 0:918610:00940 0:916110:00860 0:921130:01432 0:914930:00786 0:911180:01264

30 0:652270:05971 0:590970:06174 0:593860:06260 0:595260:05403 0:513070:07208 0:518350:06688

31 0:794070:14197 0:637780:11938 0:667780:15002 0:688150:13253 0:719630:14826 0:711110:11877

32 0:870050:05551 0:869320:06922 0:849930:05599 0:858560:06372 0:779130:07638 0:807610:07016

33 0:869800:03206 0:866330:04570 0:865490:04117 0:867930:03303 0:774720:05757 0:776130:05598

34 0:564220:03974 0:563640:03389 0:562500:05053 0:558160:05616 0:554600:06380 0:545300:06247

35 0:792730:06200 0:796660:07307 0:794440:06833 0:784050:07886 0:726700:10745 0:719140:12535

36 0:733890:09669 0:731590:06720 0:732820:08753 0:724780:09597 0:763600:00939 0:724690:09228

37 0:629160:07248 0:636970:10027 0:644780:07227 0:626300:11132 0:630410:07946 0:609790:11015

38 0:899810:04876 0:863770:05943 0:853610:06504 0:859830:06044 0:827110:07563 0:814290:05628

39 0:967950:03370 0:959360:04218 0:956770:04110 0:966560:03683 0:848570:08942 0:844310:10536

40 0:663330:10045 0:652360:11055 0:648360:08019 0:620350:09212 0:584340:12809 0:632780:11236

41 0:887300:05830 0:873020:05119 0:866670:06890 0:865080:05510 0:842860:07693 0:831750:07034

42 0:936510:05406 0:946030:05732 0:941270:06109 0:947620:05813 0:930160:06704 0:941270:05314

43 0:693660:18093 0:678520:13544 0:661250:18618 0:670890:16390 0:643980:18190 0:646880:16414

44 0:820930:05721 0:785030:07635 0:784990:05326 0:781290:05497 0:757940:02656 0:759700:02685

45 0:822760:13341 0:801280:11837 0:821460:08873 0:786930:10410 0:794040:10728 0:795170:12504
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Similarly, Table 4 reports the average values provided

by the comparison methods in the datasets considered for

the RMSE metric. Columns represent methods, while rows

represent datasets, with standard deviation as a subscript.

As explained in Sect. 4.3, AdaBoost methods (AELM and

ANCELM) are not able to compute RMSE values, and

therefore, these algorithms do not appear in Table 4. The

table shows how the NCELM method achieved the best

results in thirty eight of the sixty six datasets (providing

competitive results in both large and small datasets), fol-

lowed by BRELM outperforming others in ten datasets.

Both BELM and ELM obtained the best results in nine

datasets.

Figure 3 compares the RMSE performance between

NCELM and the comparative ensemble methods in pairs

by plotting the difference in average RMSE for a dataset.

Since a low value of RMSE is searched and difference is

calculated as in Fig. 3, the lower the bars, the better the

comparative performance of our method. As with Acc,

datasets are ordered on each figure depending on this

outperformance of NCELM, not showing a dependence on

dataset number.

In order to determine the statistical significance of

NCELM, nonparametric Friedman tests [23] are carried out

with the rankings of Acc and RMSE. Statistical significance

of the Acc rank differences with a ¼ 0:05, with a confi-

dence interval of C0 ¼ ð0;F0:05Þ ¼ ð0; 2:24177Þ and the

F-distribution statistical values being F� ¼ 19:25809 62 C0.

For RMSE, C0 ¼ ð0;F0:05Þ ¼ ð0; 2:65091Þ and

F� ¼ 3:00365 62 C0. Based on the rejection of the null

hypothesis, the Holm post hoc test [29] is used to compare

all classifiers to NCELM both in Acc and RMSE. Table 5

summarizes the ranks and the output of Holm post hoc test

for Acc and RMSE, respectively. From a purely descriptive

point of view, NCELM achieves the best ranking in both

performance measures (RAccNCELM ¼ 2:21212 and

RRMSENCELM
¼ 2:10606), followed by ELM in Acc

(RAccELM ¼ 2:96212) and in RMSE (RRMSEELM
¼ 2:57576).

Considering the results in Table 5, it can be concluded that

the proposed method is significantly better in both Acc and

RMSE than the compared methods.

5.2 Execution time

The computational time required to perform the nested

cross-validation, training and testing for the experimental

design adopted for the classification problems (ordered

from larger to smaller datasets) and the ensemble methods

considered is shown in Fig. 4. The NCELM method is

computationally more efficient than the baseline NCL-in-

spired method (ANCELM).

Figure 4 shows that there is an offset for small datasets

due to random matrix construction. NCELM does not

reduce time for small datasets, since it requires the initial

Table 3 (continued)

ID NCELM ELM BELM BRELM AELM ANCELM

46 0:504290:10415 0:457890:13582 0:470280:10917 0:465680:11506 0:429580:12279 0:394370:10111

47 0:584420:11019 0:637990:12321 0:564310:13823 0:615260:13944 0:598040:06248 0:605120:04608

48 0:525020:13150 0:518810:13907 0:553750:13574 0:518630:12846 0:520460:14048 0:512140:12873

49 0:975560:04383 0:962220:06367 0:962220:05072 0:968890:04787 0:948890:04771 0:942220:05370

50 0:708930:12390 0:670240:15432 0:703370:14711 0:658730:13641 0:661900:13520 0:618450:12136

51 0:797210:12227 0:797980:12883 0:791010:10910 0:785530:11020 0:698370:12392 0:655140:14081

52 0:958320:04825 0:958530:04807 0:940940:05818 0:952760:05253 0:941560:05330 0:945170:05914

53 0:874750:03732 0:853230:08761 0:878080:03488 0:874440:04644 0:881410:03191 0:881410:03191

54 0:636690:11880 0:692430:06550 0:708640:06591 0:675300:06813 0:583520:15347 0:583780:16658

55 0:826120:11535 0:803970:14498 0:792920:17873 0:787430:15609 0:843720:08354 0:849930:06819

56 0:762500:10383 0:741670:12472 0:745830:12700 0:700000:13919 0:650000:13844 0:595830:16035

57 0:750000:18257 0:708330:13044 0:720830:14678 0:670830:13495 0:750000:15811 0:700000:18708

58 0:983330:06236 0:985000:05649 0:961670:08630 1:000000:00000 0:980000:06000 0:916670:14568

59 0:788890:34543 0:788890:34543 0:783330:36742 0:797220:34740 0:805560:31131 0:725000:36524

60 1:000000:00000 1:000000:00000 1:000000:00000 1:000000:00000 0:944440:21228 0:855560:24242

61 1:000000:00000 1:000000:00000 0:988890:05984 0:922220:21830 0:966670:12472 0:966670:12472

62 1:000000:00000 1:000000:00000 0:961110:11928 0:977780:08315 0:944440:16851 0:944440:17392

63 0:991670:04488 0:991670:04488 0:908330:14649 1:000000:00000 0:925000:16576 0:969440:12635

From all the tests, the average value is presented together with the standard deviation of the results. The best average result for each dataset is

highlighted in bold face and the second one in italics
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generation of 25 random matrices, while other methods

simply generate a singular H that all base learners share.

For larger datasets, while other comparative methods such

as AELM increase highly with the size of the datasets,

NCELM’s computational time increase is slower. Thus,

NCELM seems to be an appealing model for medium and

large datasets. The Sherman–Morrison theorem avoids the

calculation of several matrix inverses for NCELM, which

is definitely an improvement in computational terms.

5.3 Sensitivity analysis

The performance of the proposed ensemble method

depends on the configuration of two user-specified hyper-

parameters: C and k. The way in which the performance of

the ensemble method changes with respect to different

values of the hyperparameters has been analyzed on two

datasets, breast cancer (binary) and seeds (multi-class). In

this analysis, the values of the hyperparameters are repre-

sented in the X and Y axes, and the accuracy of the

ensemble in the Z-axis. The number of hidden nodes in the

hyperparameters study was set to 50, (as it was the maxi-

mum value considered in the nested cross-validation). The

ensemble size was of 25 (S ¼ 25) for the two classification

Table 4 RMSE tenfold results

ID NCELM ELM BELM BRELM

1 0:275080:00194 0:283670:00347 0:283660:00612 0:286110:00347

2 0:347870:00638 0:283460:00568 0:283150:00462 0:285080:00550

3 0:468840:02447 0:445840:03350 0:445940:03445 0:449060:03356

1 0:168630:07216 0:203310:06780 0:208310:07387 0:191450:04937

2 0:421640:00681 0:469100:00988 0:468900:01184 0:466260:01198

3 0:631820:01504 0:624980:02035 0:624360:01633 0:621290:02087

4 0:226920:02916 0:247410:02961 0:247640:02838 0:248610:02299

5 0:404820:06160 0:433610:06213 0:429520:06273 0:425300:06132

6 0:417580:07543 0:514770:08580 0:497240:06835 0:507140:07206

7 0:534170:01000 0:600230:01082 0:602770:01156 0:601190:01052

8 0:320530:04578 0:325890:04623 0:328030:04019 0:326500:04345

9 0:185030:00608 0:162350:00288 0:162260:00278 0:165120:00428

10 0:227590:01944 0:212450:01733 0:217940:02343 0:208720:01924

11 0:127650:01531 0:147840:02311 0:144370:01502 0:137340:02480

12 0:121100:00674 0:145650:02248 0:149840:01944 0:127360:01919

13 0:140260:04144 0:136300:04744 0:133560:04396 0:135180:04670

14 0:058920:00870 0:063100:00831 0:062320:00785 0:067660:00833

15 0:119040:01439 0:129700:01853 0:128800:01819 0:135780:01773

16 0:502080:03677 0:521060:05220 0:519030:04665 0:518590:04046

17 0:729870:01664 0:722730:01890 0:723820:02059 0:728780:02074

18 0:717810:01248 0:805000:01680 0:806060:02032 0:803550:01810

19 0:266350:03965 0:280170:03796 0:280930:03549 0:280580:04158

20 0:347270:01790 0:358760:02200 0:358990:01861 0:361780:02185

21 0:801990:01313 0:900450:03615 0:912730:03566 0:914890:03757

22 0:329570:04274 0:331380:04647 0:330010:03872 0:317150:04014

23 0:278790:03467 0:270440:03432 0:264130:03451 0:270290:03636

24 0:328940:06701 0:323850:06339 0:322210:06353 0:326510:06352

25 0:117720:03840 0:099190:02562 0:109330:03429 0:107250:02564

26 0:246180:10108 0:245930:11155 0:248540:11104 0:227270:11338

27 0:513830:05412 0:470730:01804 0:456080:02631 0:462790:02216

28 0:142050:01580 0:154580:01905 0:152430:01967 0:148500:01796

29 0:209680:01464 0:178100:01503 0:178780:01167 0:179550:01457

30 0:652010:03163 0:718220:03744 0:715470:03936 0:720920:03756

31 0:697510:05853 0:822000:06559 0:813430:07571 0:804530:07147

32 0:237310:04064 0:250880:04366 0:248440:04082 0:250380:04763

33 0:444210:03942 0:422990:04185 0:425330:03134 0:431450:04408

34 0:649350:03892 0:656100:04420 0:653380:04443 0:662410:04418

35 0:318170:03669 0:302910:03063 0:297140:03784 0:277640:03080

36 0:322910:06391 0:340880:05571 0:339650:05552 0:340990:06392

37 0:413430:04197 0:413530:05348 0:423350:04185 0:440600:06730

38 0:469780:04955 0:572950:04735 0:584990:05015 0:587790:04513

39 0:109000:03955 0:127370:03825 0:125200:03841 0:123630:03410

40 0:648070:06373 0:680650:08625 0:687230:07967 0:718310:13050

41 0:433650:04176 0:472120:03891 0:491270:05368 0:484040:05501

42 0:307040:09642 0:280360:07670 0:273910:08978 0:283390:08468

43 0:383940:08566 0:416360:07562 0:397830:09818 0:396030:10339

44 0:322810:02174 0:333010:03788 0:330910:03044 0:336170:03042

45 0:283420:07258 0:321330:08458 0:312770:06916 0:334330:07731

Table 4 (continued)

ID NCELM ELM BELM BRELM

46 0:779510:03885 0:820290:07266 0:807710:05722 0:838220:07337

47 0:448450:03713 0:426820:07346 0:461580:05711 0:446690:08615

48 0:738690:06084 0:740130:07696 0:750300:07184 0:766700:11323

49 0:246680:03841 0:234660:04915 0:228770:04944 0:224310:05278

50 0:366220:06962 0:402760:09297 0:388500:09387 0:417760:10369

51 0:307520:06948 0:315440:08166 0:308080:06254 0:321900:06578

52 0:219220:06972 0:279190:04691 0:267850:05133 0:288460:05354

53 0:214860:04621 0:228950:08370 0:211980:05531 0:233730:06336

54 0:718000:08524 0:608460:05331 0:613480:04709 0:614620:05618

55 0:237860:07820 0:270670:09808 0:264120:09056 0:284420:10751

56 0:363640:04643 0:351620:05458 0:370980:06666 0:384490:09224

57 0:380990:05283 0:380450:06207 0:387660:06981 0:392450:09859

58 0:421700:08404 0:347980:09185 0:367540:10179 0:228770:10450

59 0:482020:28442 0:532450:33152 0:491550:25384 0:569180:34581

60 0:297190:09674 0:295240:09978 0:249190:09557 0:261650:06701

61 0:404280:04849 0:322920:07965 0:327350:07938 0:282120:07528

62 0:290620:13384 0:274600:11330 0:285780:10068 0:266180:10223

63 0:149320:07715 0:130590:06630 0:229010:11126 0:079890:07213

From all the tests, the average value is presented together with the

variance of the results. The best average result for each dataset is

highlighted in bold face and the second best in italics
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problems considered. The method was run 3 times in a

tenfold for hyperparameter ranges: C 2 f10�3; 10�2; . . .;

103g; k 2 f10�4; . . .; 1g.

Figure 5 reports the average performance of the method

over the 3 repetitions per fold for the selected classification

datasets. The axis that represented the hyperparameters is

(a) (b)

(c) (d)

Fig. 2 Plots of comparison of the Acc generalization results

(a) (b)

Fig. 3 Plots of comparison of the RMSE generalization results
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on logarithmic scale for a better understanding of the fig-

ures. Figure 5a shows surface slopes from high values of

accuracy near 1 (100% of correct classification rate) to 0

(0% of correct classification rate), while in Fig. 5b accu-

racy generalization results are within 0.85 and 0.35 (as

indicated in the side legends). Figure 5 shows how the

differences in accuracy with respect to the different values

of the hyperparameters are considerable. For this reason,

the ensemble method requires a proper hyperparameter

selection in order to achieve a competitive performance.

The study of hyperparameter optimization (HPO) has a

long history in machine learning [2, 38, 47], and each

methodology has its own advantages and disadvantages.

Thus, there is a family of methods that addresses HPO with

Table 5 Acc and RMSE
performances and rankings with

Holm test

Method Acc RAcc z-statistic p value a0:05 a0:10

Acc statistical analysis

ANCELM� 0.77001 4.65909 7.51366 0.00000 0.01000 0.01000

AELM� 0.77592 4.33333 6.51338 0.00000 0.01250 0.01250

BELM� 0.80435 3.42424 3.72193 0.00020 0.01667 0.01667

BRELM� 0.80318 3.40909 3.67541 0.00024 0.02500 0.02500

ELM� 0.80629 2.96212 2.30295 0.02128 0.05000 0.0500

NCELM 0.82323 2.21212 – – – –

Method RMSE RRMSE z-statistic p value a0:05 a0:10

RMSE statistical analysis

BRELM� 0.38060 2.72727 2.76421 0.00571 0.01667 0.03333

BELM� 0.38213 2.59091 2.15745 0.03097 0.02500 0.05000

ELM� 0.38162 2.57576 2.09003 0.03661 0.05000 0.10000

NCELM 0.37105 2.10606 – – – –

Best results are in bold face; second best in italics. � for significance with a ¼ 0:05; � for significance with

a ¼ 0:10; Acc is the average Acc in the generalization set, and RAcc is the average ranking; RMSE is the

average RMSE in the generalization set, and RRMSE is the average ranking

Fig. 4 Execution time in seconds needed for each dataset
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computationally expensive approaches. The main advan-

tage of this family of methods is its high performance (if

compared to approaches with lesser computational burden).

Evolutionary HPO is based on the idea of hyperparameter

systematic evaluation, beginning with a random point and

optimizing gradually toward a proper solution [68]. Rein-

forcement learning ideas have also been applied to HPO.

For instance, Li et al. [43] define a hyperparameter

exploratory as a non-stochastic infinite-armed bandit

problem.

Although the importance of a proper choice of hyper-

parameters is graphically exposed in Fig. 5, adding com-

putational time to complex machine learning algorithms

significantly extends the total execution time, making it

unfeasible in some cases. Less costly HPO methodologies

could sometimes lead to machine learning models being

accurate enough. For instance, Krueger et al. [40] propose

an improved cross-validation procedure by selecting

training subsets and sequentially choosing the best hyper-

parameter set. In this context, the hyperparameters of the

proposed ensemble method are determined through a grid

search as it achieves a competitive compromise between

performance and computational burden. Additionally, the

definition of a grid for hyperparameters allows experiments

to be easily reproduced by other researchers, thus stan-

dardizing experimental frameworks in the research field.

6 Conclusions

This paper presents a new ensemble approach that intro-

duces the negative correlation learning (NCL) framework

into the extreme learning machine (ELM) community. The

proposed ensemble method, named negative correlation

extreme learning machine (NCELM), generates S initial

ELM base classifiers and then incorporates into their error

functions a penalty term inspired in the NCL framework.

The proposed penalty term promotes explicitly diversity

among the base classifiers and the final ensemble by ana-

lyzing the angle between the outputs of each individual and

the outputs of the ensemble. Additionally, the computa-

tional burden of the proposed NCELM method is similar to

the resolution of S independent ELM optimization prob-

lems, as the inverses are estimated through the Sherman–

Morrison formula. The experiments show that: (1) foster-

ing explicitly diversity among base classifiers generates

ensembles with significantly better performances than

those that promote diversity by data sampling and (2) the

proposed NCELM method is more efficient than the

baseline NCL-inspired method used for comparison pur-

poses. The main limitation of the proposed method is that

the outputs of the ensemble are assumed to be constant

with respect to each base classifier in the iterations of the

optimization procedure. Moreover, the parameters of the

models are determined in a iterative way which undoubt-

edly increase the computational burden of the method

(partially reduced by the implementation of the Sherman–

Morrison formula). For these reasons, a highly desirable

future work would be the global optimization of the

parameters. This would address the two previously men-

tioned limitations of the proposed method.
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Fig. 5 Hyperparameters study on accuracy for the NCLELM method and the parameters C and k
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