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Abstract
Convolutional neural network (CNN) is one of the deep structured algorithms widely applied to analyze the ability to

visualize and extract the hidden texture features of image datasets. The study aims to automatically extract the self-learned

features using an end-to-end learning CNN and compares the results with the conventional state-of-art and traditional

computer-aided diagnosis system’s performance. The architecture consists of eight layers: one input layer, three convo-

lutional layers and three sub-sampling layers intercepted with batch normalization, ReLu and max-pooling for salient

feature extraction, and one fully connected layer that uses softmax function connected to 3 neurons as output layer,

classifying an input image into one of three classes categorized as nodules � 3 mm as benign (low malignancy nodules),

malignant (high malignancy nodules), and nodules\ 3 mm and non-nodules � 3 mm combined as non-cancerous. For

the input layer, lung nodule CT images are acquired from the Lung Image Database Consortium public repository having

1018 cases. Images are pre-processed to uniquely segment the nodule region of interest (NROI) in correspondence to four

radiologists’ annotations and markings describing the coordinates and ground-truth values. A two-dimensional set of re-

sampled images of size 52 � 52 pixels with random translation, rotation, and scaling corresponding to the NROI are

generated as input samples. In addition, generative adversarial networks (GANs) are employed to generate additional

images with similar characteristics as pulmonary nodules. CNNs are trained using images generated by GAN and are fine-

tuned with actual input samples to differentiate and classify the lung nodules based on the classification strategy. The pre-

trained and fine-tuned process upon the trained network’s architecture results in aggregate probability scores for nodule

detection reducing false positives. A total of 5188 images with an augmented image data store are used to enhance the

performance of the network in the study generating high sensitivity scores with good true positives. Our proposed CNN

achieved the classification accuracy of 93.9%, an average specificity of 93%, and an average sensitivity of 93.4% with

reduced false positives and evaluated the area under the receiver operating characteristic curve with the highest observed

value of 0.934 using the GAN generated images.

Keywords Convolutional neural network � Deep structured algorithm � Batch normalization � ReLu � Max-pooling �
Softmax � Benign and malignant � Morphological features

1 Introduction

Cancer is one of the major public health issues spread

worldwide leading to deaths with high mortality among

both men and women due to noninvasive treatment and

unclear clinical examinations. The American Cancer

Society in the USA estimated the new projected cancer

cases of 234,030 and deaths of 154,050 in 2018 [51].

Among the other types of cancers, lung cancer is one of the

leading cancers with high mortality rates [1]. Risk factors

causing cancer are due to the consumption of tobacco,
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smoking, biological and chemical reactions (exposure to

radon gas), and environmental conditions (exposure to

secondhand smoke). The survival rates are low when

compared to many other types of cancers. The difficulty

lies in detecting the region of nodules in the soft lung

tissues at its early stages.

Radiologists recommend different imaging modalities

for detecting pulmonary nodule regions, such as computed

tomography (CT), magnetic resonance imaging (MRI), and

positron emission tomography (PET) [21]. The most

commonly preferred imaging modality is the CT scans by

the radiologists. CT scans are popular due to their advan-

tages with respect to cost, availability, and rapid acquisi-

tion of scans across complete lung sections. In recent years,

the mortality of lung cancer has decreased by around 20%

with low-dose CT images as reported by the National Lung

Screening Trial [55].

Patients with lung cancer symptoms undergo CT scans

to distinguish certain abnormal growth observed in the

lungs. More exceptionally, sensitively identifying the little

knobs (cancerous cells) is a trivial task as the nodules may

be attached to vessels or the walls of the chest or false

positively considered as irregularly shaped due to noise.

The pulmonary nodules are irregularly shaped growth in

the lungs with its diameter measured up to 3 mm in the

chest region [20]. Also, the pulmonary nodules are cate-

gorized based on its shape (round, irregular shaped), size

(small or large), location (vascular or pleural regions),

texture (solid or non-solid), and so on. As the patient

receives the CT scans in a clinical laboratory, the radiol-

ogists evaluate and detect the suspicious nodule from the

numerous CT images. Based on the possibility of malig-

nancy examined through the nodule information (density,

morphology, texture features), their diagnosis is acknowl-

edged with an appropriate treatment plan. The task in

identifying the nodules is rigorous. Inappropriate profes-

sional experience, distraction, fatigue while capturing

scans, etc., may destabilize nodule detection contributing

to misinterpretations of false positives with the available

data. Therefore, a number of CADx systems were devel-

oped to help radiologists process and analyze images

automatically and accurately identify the pulmonary lung

nodules [36]. But radiologists believe that both detecting

and diagnosing the pulmonary lung nodules at the early

stages are the key factors for patient’s survival rates. To

improve efficiency, CADx systems must be highly sensi-

tive to low false positives, low cost in implementation, low

system maintenance, and software security assurance with

high levels of automation and must have the ability to

detect different types of pulmonary nodules [16, 53].

Recent developed CADx systems are optimized to

enhance the performance and interpretation of radiologist’s

readings toward medical imaging [4]. Researches have

focused on manual feature extraction and classification of

lung nodules to distinguish benign from malignant using

linear classifiers. However, feature extraction is one of the

simplest dimensionality reduction methods widely used in

image processing [14]. The features are categorized as

texture, density, fractal [42], and morphological features

extracted from the whole CT image or from the region of

interest (ROI). Texture features include wavelet features

[2, 8], histogram of oriented gradient (HOG) [28], gray-

level co-occurrence matrix (GLCM) [35], curvelet trans-

form [40], run level features, and local binary pattern

(LBP) [56] features. Morphological features include area

and circularity [3]. Density features include average

intensity, entropy, and standard deviation used for mass

detection [61].

The existing CADx systems are in need to design these

features as an essential model. But the process is time-

consuming and complicated [45]. Moreover, the features

are to be correlated to obtain expected performance mea-

sures. The feature selection algorithms like the genetic

algorithms generate an optimal combination of features,

but are limited to high-dimensional features in terms of

efficiency [5]. The appropriate extracted features from the

ROI are further used for training and testing the data using

different classification techniques to eliminate false posi-

tives. Some of the classifiers are support vector machine

(SVM) [34], AdaBoost, fuzzy logic [38], naive Bayes, k-

nearest neighborhood, k-means clustering [17], proba-

bilistic neural networks (PNN) [59], multi-view convolu-

tion neural networks (MV-CNN) [48], artificial neural

networks (ANN) [29], feed-forward back-propagation

neural network (FF-BPNN) [8], Bayesian supervised,

decision tree, and regression analysis.

In addition, there are architectures that allow algorithms

to automatically learn and extract feature maps at multiple

levels of abstraction generating complex functions linking

the inputs (input layer) to categories of classes (output

layer) directly from the raw image dataset without using

any of the above manually handcrafted features. The

extracted features at higher layers of hierarchy are deter-

mined by the combination of input features at lower layers

with appropriate weights and a bias (hidden layers). Each

layer consists of hundreds to thousands of neurons as

similar to human brain architecture. Different neural net-

work architectures are used in feature learning. Some are

categorized as shallow neural networks, deep neural net-

works, and hybrid neural networks [57, 58]. Learning

features from architectures with multiple layers and hier-

archical models of input data like deep neural network/

hybrid structures are the trend changing concepts topping

the big companies like Google, Amazon, Facebook,

Microsoft, etc. The study results show that deep neural

network algorithms can outperform compared to traditional
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machine learning concepts [34, 43]. Recent advances in

deep learning involve the concept of parallel computing

with more accessibility and affordability in using graphics

processing units for training huge annotated datasets. Many

researchers made progress in training and classifying huge

datasets using deep learning algorithms for pattern recog-

nition. This led to substantial advancements in using deep

neural network algorithms for medical imaging applica-

tions as well [54].

The concept of transfer learning from CNN models is

useful for nodule segmentation and classification approa-

ches, encouraging the usage in medical imaging [12, 33].

However, the neural network with hyperparameters is to be

explicitly defined for capturing the salient features from

heterogeneous volumes of CT images with the same size of

input patches. Deeper the network layer increases the

power of expression. Training the neural network with

more number of layers requires good training data. But the

amount of medical data available is limited for image

classification according to malignancy suspiciousness due

to insufficient professional experience for analysis, time

constraints, and ethical issues.

To overcome the drawback, GANs [18] are incorporated

in the study generating additional images with similar

characteristics as training samples of pulmonary nodules.

As a result, the ethical problems are avoided by generating

new samples that do not correspond to real cancer patients.

The generated new images are meant to compete with

actual lung cancer images. Faking the lung nodules using

GAN may improve the classification of pulmonary nodules

based on malignancy levels.

In the study, we incorporate an end-to-end convolutional

neural network to automatically learn the features for the

classification of pulmonary lung nodules as benign,

malignant, or non-cancerous. The NROI is extracted,

trained, and tested via deep learning using CNN as shown

in Fig. 1. To compare its performance, CNNs are trained

using images generated by GAN and are fined-tuned with

actual input samples to differentiate and classify the lung

nodules based on the classification strategy. In addition,

CADx systems are implemented to extract the handcrafted

texture, density, and morphological features. The method-

ology is compared with the state-of-the-art methods and

traditional handcrafted methods for performance

evaluation.

2 Related work

The lung nodule detection systems with nodule segmen-

tation, feature extraction, and nodule classification have

certain challenging tasks to overcome as discussed previ-

ously. In nodule segmentation, identifying the exact

pulmonary nodule boundaries in CT scans is crucial due to

the similar visualization characteristics of candidate nod-

ules and its surroundings close to the ribs, vessels, or walls

of the chest. In feature extraction, designing and extracting

invariant features from segmented images is time-con-

suming and complicated if the correlation between features

is not properly considered. Reducing false positives plays a

vital role in nodule classification, increasing sensitivity

rates. Over the past, several researchers have developed

methodologies to overcome these challenges. In this sec-

tion, the works related to the proposed methodology are

discussed.

Reference [29] proposed a classification methodology

using ANNs using CT images. The lung nodules are seg-

mented using morphological operations, and the features

are extracted using statistical descriptors. For classification,

feed-forward neural network (FFNN) and FF-BNN are

implemented. FF-BNN exhibits better classification com-

pared to FFNN. The methodology exhibits a classification

accuracy of 93.33%, the specificity of 100%, and the sen-

sitivity of 91.4%.

Reference [44] implemented an automated CADx sys-

tem for lung nodule classification. The methodology was

evaluated on 3 datasets: (1) sclerotic nodules from 59

patients, (2) lymph nodules from 176 patients, and (3)

colonic polyp nodules from 1186 patients. The images

were sampled with 2D and 2.5D views through scaling,

rotating transformations, and random translations. Deep

CNNs (ConvNet) were trained with these views classifying

images according to probability scores, resulting in a sen-

sitivity of 70% for sclerotic metastases, 77% for lymph

nodules, and 75% for colonic polyps with 3 false positives

per patient.

Reference [52] designed an end-to-end machine learning

architectures to automatically extract features from CT

images for lung cancer diagnosis. The nodules were seg-

mented and re-sampled by rotating nodule slices annotated

by four expert radiologist’s markups forming 13,668

samples. Three multichannel ROI-based deep learning

algorithms are designed: (1) CNN, (2) deep belief networks

(DBN), (3) stacked denoising autoencoder (SDEA). The

methodology exhibited an AUC of 0.899 for CNN, 0.884

for DBN, 0.852 for SDEA, and 0.848 for traditional CADx.

Reference [49] designed deep structured algorithms for

lung nodule classification using a multi-crop convolutional

neural network (MC-CNN). A total of 2618 images from

the LIDC-IDRI database having 880 low malignancy

nodules and 495 high malignancy nodules were used in the

study. The methodology recorded the highest nodule

classification accuracy of 87.14%, the specificity of 93%,

the sensitivity of 77%, and an AUC score of 0.93.

Reference [13] proposed a classification approach dif-

ferentiating the patterns of benign and malignant samples
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using topology-based phylogenetic diversity index on CT

images. CNN was used to classify the extracted features.

LIDC image dataset comprising 1405 nodules (394

malignant and 1011 benign nodules) was used in the study

achieving an accuracy of 92.63%, the specificity of

93.47%, the sensitivity of 90.7%, and the AUC of 0.934.

Reference [37] developed a computer-assisted decision

support system for nodule detection and classification

according to malignancy stages using internet-of-things

(IOTs) on medical datasets obtained from medical body

area network (MBAN). Deep fully convolutional neural

network (DFCNet) was used for pulmonary nodule classi-

fication based on their stages of cancer. The performance

of the approach was evaluated on different datasets,

resulting in the classification accuracy of 84.58%.

Reference [39] proposed an approach for classifying

nodules as primary lung cancer, benign and metastatic

nodules using deep CNN. VGG-16 CNN was applied to

1236 patients obtained from Toshiba Medical Systems

(TMS) with the cropped volume of interest of 64 � 64

pixels. With hyperparameter optimization, the DCNN

method resulted in a classification accuracy of 60.7% for

an image size of 56, 64.7% for an image size 112, and

68.0% for an image size of 224.

Reference [32] implemented a nodule detection

approach to reduce false positives on JSRT image datasets.

The nodules were enhanced using unsharp masking. The

database images were cropped into 229 � 229 pixel sizes

with nodules or non-nodules. Ensemble CNNs with layers

of 5, 7, and 9 were used to train the input patches sepa-

rately (CNN1, CNN2, CNN3) with varying inputs of sizes

12 � 12, 32 � 32, and 60 � 60, respectively. The approach

resulted in the sensitivity of 94% with 5 FPs per image and

84% with 2 FPs per image differentiating nodules from

non-nodules with minimal datasets used.

Reference [60] designed an automated pulmonary nod-

ule detection scheme using a faster region-based CNN with

two regions and a deconvolutional layer to detect the

candidate nodules. In order to reduce false positives, all 3

models were trained using 2D CNN in the study. Experi-

ments were conducted on total candidates of 150,414 (339

nodule images and 150,075 non-nodule images) from

LUNA 16 datasets for training. Each candidate was labeled

with class 0 for non-nodules and 1 for nodule images. The

system exhibited a nodule detection sensitivity of 86.42%.

Reference [12] proposed a lung nodule classification

methodology using transfer learning and CNN. Several

CNN’s like VGG16, VGG19, Xception, InceptionV3,

MobileNet, ResNet50, DenseNet169, DenseNet201,

InceptionResNetV2, NASNetMobile, and NASNetLarge

were built and trained on ImageNet dataset with feature

extractors applied on LIDC images. The extracted deep

features were classified with SVM, naive Bayes, k-nearest

neighbor, multilayer perception, and random forest classi-

fier. Upon experiments, ResNet50-based feature extractor

with SVM classifier exhibited the highest AUC of 93.1%

among the other evaluated combinations.

Reference [50] developed a CADx system for lung

nodule detection using deep CNN based on transfer

learning. Images were extracted from the LIDC dataset

comprising of 700 nodules and 700 non-nodule samples.

The samples were pre-processed and cropped into a 224 �

Fig. 1 Process in designing a deep learning scheme
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244 pixel rectangle. VGG-16 were used as feature extrac-

tors to extract the features from the input patches and were

classified using SVM classifiers. The system exhibited a

sensitivity of 87.2% with 0.39 FPs per scan and 85.4% with

4 FPs per scan.

Reference [27] proposed an attention-based fully CNN

for medical image segmentation. The methodology incor-

porated a separate attention mechanism into ResNet ? SE

nets [22] hybrid architecture defined as focusNet. A total of

267 images of re-size 256 � 256 were used in the study. An

accuracy of 99.32% was recorded by the hybrid architec-

ture with a drawback of lack in responsiveness to sensi-

tivity metrics of the input data. The time complexity is

undefined, and the architecture is trained on limited image

datasets.

A study on transfer learning by Ref. [33] depicts the

performance of deep CNN classifying pulmonary lung

nodules as benign or malignant. Images from subjects of

796 patients with biopsy-proven ground-truth values from

one institution from 2012 to 2017 were used in the study.

The nodule locations were manually traced from high-

resolution CT images. The network was trained with prior

knowledge of pathology confirmed diagnosis from the CT-

guided biopsy values. Transfer learning on initial layers of

the network with input datasets resulted in an AUC of 0.70

and a classification accuracy of 71%. Similarly, Ardila

et al. [6] predicts the risk of lung cancers using a deep

learning algorithm considering the patient’s current and

prior CT volumes. The AUC of 94.4% was observed in

1139 validation cases with 11% reduction in false positives

and a 5% reduction in false negatives. The methodology

optimizes the screening process with prior CT and radiol-

ogists testing. Rather than training and testing the network

with prior knowledge on nodule locations, which risks the

time complexity on huge datasets, we employed CNN with

ROI-based feature learning as most of the studies rely on

subjective analysis and ratings of malignancy levels

annotated by expert radiologists.

Reference [47] developed a lung classification approach

for lung cancer diagnosis using DCNN on high-level image

representations. The images were acquired from the Kaggle

Data Science Bowl 2017 comprising of 63,890 cancer

patients and 171,345 non-cancer patients. Images from the

dataset were re-sized from 512 � 512 to 120 � 120 pixels.

The first convolution layer in the method uses 50 feature

maps with a filter size of 11 � 11. The second convolution

layer uses 120 feature maps with a filter size of 5 � 5. The

last layer used 120 feature maps with a filter size of 3 � 3.

The approach categorizes the candidate nodules as

cancerous and non-cancerous. The time complexity is

undefined, and the training set of 50% and testing set of

25% were used in the experiments. The classification

accuracy of 94.1%, the sensitivity of 0.87, and the

specificity of 0.991 were recorded. With a minimum

number of filters, feature maps, and augmented dataset

with balanced categories of images, our methodology

classifies candidate nodules as non-cancerous, benign, and

malignant nodules based on their malignancy levels.

All the above methods exhibit promising results related

to sensitivity, but few approaches result in high false pos-

itives either per scan or per patient or per image basis with

minimal datasets used for validation, in turn, affecting the

performance of classification accuracy. In addition, one of

the major challenges in medical image classification tech-

niques with CNN’s is the difficulty in acquiring datasets

with enough samples for training. Most of the methods

discussed do not have an equal number of image samples

for each class of malignancy categorized, resulting in

overfitting. Overall, several approaches demonstrated

potential progress in lung nodule detection and classifica-

tion, but still require significant improvement to overcome

the challenging issues like detection of irregularly struc-

tured nodules from heterogeneous volumes of lung CT

images with varying shape, size and location, differentiat-

ing vascular, solitary (non-solid or part-solid), pleural and

juxta-pleural nodules with high accuracy and sensitivity,

exhibiting robust methodologies applicable across different

databases, and reduced time complexity on huge datasets as

well.

The proposed work aims to automatically extract the

self-learned features using an end-to-end learning CNN for

lung cancer diagnosis based on their malignancy suspi-

ciousness. The results are promising in terms of classifi-

cation accuracy, sensitivity, specificity, and AUC with

reduced false positives. The above issues are addressed

with ROI-based feature learning with subjective analysis

on annotated images from expert radiologists on huge

datasets. In summary, Table 1 represents the key differ-

ences between the CNN method and state-of-the-art

method. The methodology is highlighted with techniques

and datasets used, and the results obtained are compared

with other works.

3 Methodology

3.1 Data acquisition

Images used in the study are acquired from the Lung Image

Database Consortium and Infectious Disease Research

Institute (LIDC-IDRI) publically available repository,

consisting of diagnostic and lung cancer screening thoracic

CT scans with marked-up annotated lesions [7, 11, 24]. A

total of 1018 cases from seven academic centers and eight

medical imaging companies are collaborated to create the

LIDC dataset with the scan slice thickness varying from
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Table 1 Related work

Research

papers

Objective Image database No. of

images

Implementation key difference Results

[29] Nodule

classification

LIDC – Segmentation using morphological operations

Classification using FF-BPNN

Accuracy—93.3%

Sensitivity—

91.4%

Specificity—100%

[44] Nodule

classification

– 59—

sclerotic

lesions

176—

lymph

nodes

1186—

colonic

polyps

Image samples are generated with

2D and 2.5D views by translating, scaling, and rotating

transformations

Deep CNN for training

Sensitivity scores

Sclerotic—70%

Lymph—77%

Colonic—75%

With 3 FPs per

patient

[52] Nodule

detection

LIDC 13,668

images

Three multichannel ROI based

Deep learning

(1) CNN, (2) DBN, (3) SDAE

AUC—

CNN—0.899

DBN—0.884

SDAE—0.852

Traditional

CADx—0.848

[49] Nodule

classification

LIDC 2618 CT

slices

880—

LMNs

495—

HMNs

Multi-crop convolutional neural network (MC-CNN) Accuracy—

87.14%

Sensitivity—77%

Specificity—93%

ROC curve of 0.93

[13] Nodule

classification

LIDC 1404

nodules

394—

malignant

1011—

benign

Topology-based phylogenetic diversity index

classification—CNN

Accuracy—

92.63%

Sensitivity—

90.70%

Specificity—93.47

ROC curve of

0.934%

[37] Nodule

classification

MBAN, LIDC – Input patch—100 � 100

Pre-processing—thresholding

Classification—DFCNet

Accuracy—

84.58%

[39] Nodule

classification

Toshiba medical

systems

1236

patients

1113—

training

samples

123

validation

samples

VGG—16 CNN

Hyperparameter optimization

Effect of image size to DCNN

Validation

accuracy with

image size

56—60.7%

112–64.7%

224—68.0%

[32] Nodule

detection

JSRT 93—normal

cases

154—

abnormal

cases

Unsharp mask—nodule enhancement

Crop image—229 � 229

Ensemble CNN with layers 5, 7, 9 with varying input size

of 12 � 12, 32 � 32, and 60 � 60

Sensitivity—

94% with 5 FPs

84% with 2 FPs

[60] Nodule

detection

LIDC, LUNA16 1,500,752

non-

nodules

339—

nodules

Faster R-CNN with 2 regions

Deconvolutional layer

All 3 models are applied to detect candidate nodules and

are trained using 2D CNN to reduce false positives

Sensitivity—

86.42%
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1.25 to 3 mm, indicating the malignancy suspiciousness

from levels 1 to 5. CT scan images are pre-processed to

uniquely segment the NROI in correspondence to four

radiologists’ annotations and markings. The XML files

associated with the CT scan images have annotations

evaluated by four expert radiologists. Each radiologist

reviewed and labeled the nodules/lesions to one of the three

key categories: nodule greater than or equal to 3 mm, non-

nodule larger than 3 mm, and nodule less than 3 mm. The

retrieved Digital Imaging and Communications in Medi-

cine (DICOM) images are 512 � 512 dimensions in size.

Each individual annotations are read from the XML files,

and their corresponding locations in DICOM images are

traced and cropped. The dataset images are segmented

based on these annotations in correspondence to the

malignancy levels ranging from level 1 to 5, extracting the

nodule area in each slice into a 52 � 52 pixel rectangle.

The segmented candidate nodules are fitted into a 52 � 52

rectangle and are converted into a TIF image format for

easier processing [30]. The extracted ROI is rescaled,

translated in a range of [- 3 3], and rotated to three dif-

ferent angles (90, 180, 270) forming a training set of

images. Figure 2 shows the original CT scan image,

extracted nodule ROI rectangle of 52 � 52 pixels by four

expert radiologists and the corresponding ground-truth

values.

In the study, 5188 ROI samples with an augmented

image data store are used as a training set as suggested by

[52] eliminating the intermediate samples having level 3

malignancy, level 1 and 2 samples combined to form the

benign samples (low malignancy nodules), level 4 and

level 5 samples combined to form malignant samples (high

malignancy nodules), and nodules less than 3 mm and non-

nodules greater than 3 mm combined forming non-

cancerous samples, with each sample containing 2704

pixels. Most of the methods discussed in related works

have eliminated the nodules with malignancy 3 level and

nodules having ambiguous ids. Few methods have cate-

gories like nodules and non-nodules for classification. Few

methods have categories like low malignancy nodules

(LMNs) and high malignancy nodules(HMNs) as shown in

Table 1. For an accurate comparison, similar datasets and

training metrics are followed in our study as well.

System specification—The proposed methodology is run

on Matlab 2018b version on a desktop machine with a

memory of 8 GB, 12(4C and 8G) core AMD A10 processor

and an Nvidia GeForce GTX 960 GPU enabled to analyze

the results of the proposed method.

3.2 Pre-processing

The raw CT scan images are pre-processed to improve the

quality and more often reduce the noisy artifacts that

occurred during the image acquisition process. In addition,

few algorithms incorporate pre-processing as an important

component to enhance the detection ability, reduce noisy

Table 1 (continued)

Research

papers

Objective Image database No. of

images

Implementation key difference Results

[12] Nodule

classification

LIDC 700—

nodules

700—non-

nodules

Crop image—224 � 224

Transfer learning and CNN

ResNet50-based feature extractor

Classification—SVM

AUC—93.1%

[50] Nodule

detection

LIDC – Transfer learning—deep CNN

Feature extraction—VGG-16

Classification—SVM

Sensitivity—

87.2% with 0.39

FPs

85.4% with 4 FPs

per scan

[33] Nodule

detection

Institution

records

796 patients Transfer learning—deep 3D CNN Accuracy—71%

AUC—0.70

[47] Nodule

classification

Kaggle Data

Science Bowl

2017

171,345—

non-

cancers

63,890—

cancer

images

CNN Accuracy—94.1%

Sensitivity—0.87

Specificity—0.991
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artifacts, and optimize the input information for further

processing. Some of the pre-processing steps adopted by

many researchers are the contrast stretching [25], discrete

wavelet transforms [2, 15], Hough transform [41], thresh-

olding [19], morphological operations [46], unsharp mask

technique [32], smoothing and median filtering [9, 26]. In

the study, we used the schema suggested by [2] using

discrete wavelet transforms as a pre-processing step to

enhance the input CT images. The images are decomposed

into 4 frequency sub-bands at different scales using the

low-pass and high-pass filters by applying Daubechies fil-

ters. Daubechies filters achieve the perfect reconstruction

of the original signal when compared to other filters. These

filters help in identifying the sudden changes in intensities

in detail with respect to the original image. The LL band

represents information about light illumination. The LH,

HL, HH bands represent the intensity values of edges. In

order to enhance the intensity values of edges, unsharp

energy mask (UEM) is employed on LH, HL, HH bands.

Finally, all 4 frequency sub-bands are reconstructed using

inverse DWT, resulting in the enhanced original image.

The mathematical representation of high-pass filters and

low-pass filters are defined, respectively, as

Yhigh½n� ¼
X

k

S½k� � H½2n� k� ð1Þ

Ylow½n� ¼
X

k

S½k� � L½2n� k� ð2Þ

where Yhigh½n�—output of high-pass filters and Ylow½n�—
output of low-pass filters.

The two-level high-pass and low-pass wavelet decom-

position can be expressed in a combined way reconstruct-

ing the high-contrast CT image and representing low

energy of each band as e(b)

eðbÞ ¼
Xb¼1

n¼3

Ylow½n� þ Yhigh½n�: ð3Þ

e(b) is the low energy of each sub-band and is calculated

as

EðeðbÞÞ ¼ ð1 � aÞ � ½EððeðbÞÞ=2� þ ða � Ylow½n�Þ ð4Þ

and the final cost of low level energy (UEM) is expressed

as

costðnÞ ¼¼
Xb¼1

n¼3

Ylow½n� þ ½EððeðbÞÞ=2�: ð5Þ

3.3 Method

The study involves the design and implementation of a

convolutional neural network architecture for learning the

feature maps of images for lung nodule classification as

benign, malignant, or non-cancerous. In addition, GANs

are employed to generate additional images with similar

characteristics as pulmonary nodules. CNN’s are trained

Fig. 2 CT scan image with small bottom left lung nodule annotated by four expert radiologists and their corresponding GTs
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using images generated by GAN and are fined-tuned with

actual input samples to differentiate and classify the lung

nodules based on the classification strategy. For compar-

ison, the traditional handcrafted features are also extracted

from the categories—texture, density, and morphological

features to classify the pulmonary nodules using SVM

classifiers.

3.3.1 Convolutional neural network

One of the deep neural network algorithms used in our

study is the convolutional neural network based on

LeCun’s model. CNNs are the most powerful, commonly

used neural networks designed for applications having

inputs with an inherent two-dimensional structure like

images. CNN’s are end-to-end learning algorithms having

several convolutional layers and sub-sampling layers, fol-

lowed by a fully connected layer with each layer having a

topographic structure [31]. The augmented ROI images

with the size of 52 � 52 pixels mentioned above are fed as

the input to the input layer. The size of the sub-patch/

region passed as input is referred to as ‘‘receptive field,’’

that is, the region space that a particular CNN’s feature is

being extracted for (the input from the previous layer).

Figure 3 shows the architecture of the proposed CNN

algorithm. The architecture contains a total of 8 layers: The

first and last layer forms the input and the output layer,

respectively, and the layers 2, 4, and 6 are the convolu-

tional layers, and 3, 5, and 7 are the sub-sampling layers

intercepted with max-pooling, ReLu, and batch normal-

ization for salient feature extraction, and the last layer

before the output layer is the fully connected layer that uses

softmax function connected to 3 neurons as output layer,

classifying an input image into one of three classes cate-

gorized. Convolution helps to extract the salient features

from the input patches preserving the spatial relationships

among pixels. In particular, the design details are as fol-

lows: The second layer has 12 filters of size 5 � 5 (feature

maps) connected to the input image, followed by a max-

pooling layer of 2 � 2. The pooling layer performs down-

sampling along the width and height of the convolved

image. Max-pooling reduces the computational cost as the

dimensionality of the features maps reduces and helps the

neural network remain unchanged to any translations,

distortions, and small transformations on the sampled input

patches. The number of output feature maps in each

dimension (width, height) can be calculated using Eq. 6.

The fourth layer has 8 feature maps connected to the pre-

vious layer (small region connected to previous layers

12 � 8 ¼ 96) through 96 5 � 5 filters. There exists one

more max-pooling layer, followed by the sixth layer having

6 feature maps, and 48 5 � 5 filters were used from the

previous layer (8 � 6 ¼ 48). The last layer before the

output layer (eight layers), which is the fully connected

layer, has the input shrunk to 3 � 3 matrices using softmax

nonlinear functions having 3 output neurons that fall into

one of the 3 categories of classes benign, malignant, or

non-cancerous nodules. Fully connected implies that every

neuron in one layer is connected to the same location at the

other layers. As a result, each neuron receives input as

linear combinations from its corresponding neurons with a

set of input weights and bias in the previous layer as shown

in Eq. 7. Finally, the output layer provides the strength of

the network prediction for each possible category of clas-

ses. The output of each layer in the CNN architectures was

Fig. 3 Architecture of CNN algorithm demonstrating the ROI image, convolution filter of 5 � 5 applied over the ROI image using 2 � 2 strides,

convolutional layer feature maps, sub-sampling process, fully connected layer with three categorized classes
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normalized, whitened to enhance the contrast before it was

sent to the next layer [23].

The entire training process of CNN is depicted in Fig. 4.

A learning rate of 0.1 was used, the number of epochs to

train was set to 50, the batch size was set to 100, and the

sub-sampling rate was set constantly to 2. An adaptive

moment estimation optimizer (Adam) is used in the

research to optimize the performance of the neural net-

work. Figure 5 shows the learning curve of the deep

learning scheme using Adam optimizer. We also experi-

mented using stochastic gradient descent with momentum

(Sgdm) to optimize the performance of the network, but

observed good results with Adam when compared to the

Sgdm optimizer. The prediction results from the test data

provide aggregate probability scores for nodule detection,

reducing false positives while generating high sensitivity

scores. Figure 6 shows the feature maps extracted from (a)

first convolutional layer using Adam optimizer and (b) first

convolutional layer using Sgdm optimizer, through the

proposed CNN architecture. The learning rate of the Sgdm

optimizer is shown in Fig. 7.

Fout ¼ ½ðFin þ 2p� kÞ=s� þ 1 ð6Þ

were Fout—number of output feature maps, Fin—number

of input feature maps, k—kernel, s—stride, p—zero

padding.

vk ¼
X

n

Wknun þ bk ð7Þ

where vk—kth output neuron, Wkn—weight connecting the

input neurons uk with vk, uk—nth input neuron, bk—bias

term with vk.

3.3.2 Generating pulmonary nodules using GAN

Figure 8 depicts the architecture of GAN to generate new

image datasets for performance evaluation. GAN com-

prises of two networks—generator and discriminator that

train together. The structure of the generator is composed

of 4 convolution layers. The generator network generates

images from an array of 100 random numbers drawn from

the input data and outputs an image of size 64 � 64 pixels.

The convolution layer with the filter size of 5 � 5 is fol-

lowed by sub-sampling layers intercepted with max-pool-

ing, ReLu, and batch normalization. Since the output image

from the generator is of size 64 � 64 pixels, to match with

the input ROI of size 52 � 52 pixels, we performed down-

sampling to fit the new nodule images into the ROI rect-

angle of the same size without any loss in information. The

discriminator is composed of 4 convolution layers with the

filter size of 5 � 5 and helps determine whether the given

input image is fake or real. The GAN is trained using the

Jensen–Shannon divergence expressing the distance

between the probability scores. A learning rate of 0.01 was

used, and the number of epochs to train was set to 500. An

Adam optimizer is used in the research to optimize the

performance of the neural network. In the study, 5000

images with pulmonary nodules are generated to conduct

experiments.

3.3.3 Traditional handcrafted features

To have a comparison, the traditional handcrafted feature

maps were extracted from the pre-processed samples.

Traditional CADx systems with statistical, morphological,

and texture-based descriptors discussed in the literature are

extracted for nodule classification in the methodology. For

extracting texture features, the images are decomposed into

4 frequency sub-bands at different scales using the low-

pass and high-pass filters by applying Daubechies filters

with level 2 decomposition. In the study, 20 features were

extracted from the NROI based on three categories asFig. 4 Training process of CNN
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described in Table 2. The pulmonary nodules are trained

using SVM classifiers to distinguish the nodules as benign

or malignant based on the suspicious malignancy level

features extracted. SVM is straightforward supervised

learning algorithms used for classifying categories of

classes. The re-sampled 52 � 52 rectangle images from the

LIDC datasets were analyzed by the existing SVM classi-

fiers of the Matlab tool. SVM classifier uses a radial basis

function as the kernel to standardize the input data for

classifying the lung nodules. A range of values was cal-

culated from the benign and malignant features for classi-

fying the images according to levels of malignancy based

on their corresponding probability scores. Using the pos-

terior probability scores, the standard area under the

receiver operating characteristic curve (AUC) is plotted.

4 Results

The main objective of the study is to evaluate if the CNN

methodology can achieve better performance metrics in

classifying the nodules as normal, benign, or malignant in

comparison with the conventional feature extraction and

classification methods. To compare the results of the CNN

method with conventional state-of-art methods and tradi-

tional handcrafted methods, the re-sampled ROI extracted

images were tested with the above-mentioned methods. We

also conducted a detailed analysis of modeling the input

data based on the nodule malignancy suspiciousness

according to their uncertainty.

The CNN method was evaluated on 4 LIDC datasets as

shown in Table 3. The classification of candidate nodules

Fig. 5 The learning curve of the proposed CNN scheme using Adam optimizer

(a) Features extracted using Adam
     optimizer

(b) Features extracted using Sgdm
     optimizer

Fig. 6 Feature maps

visualization
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Fig. 7 The learning curve of the proposed CNN scheme using Sgdm optimizer

Fig. 8 Architecture of GAN to generate new images

Table 2 Traditional handcrafted features used in the study for comparison

Category Features extracted

Texture

Wavelet Variance of LL, LH, HL and HH

GLCM Contrast, correlation, energy, homogeneity, variance, mean, uniformity, inverse difference, sum entropy

Density Standard deviation, average intensity, skewness, Kurtosis, entropy

Morphological Area, ratio of semi-axis, circularity
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with the DS1 dataset was easy compared to the other 2

datasets. Datasets DS2 and DS3 having intermediate sam-

ples (malignancy level 3) made the CNN architecture to

perform less when compared to the results obtained with-

out these intermediate nodules. Therefore, the intermediate

malignancy level 3 nodules were neither categorized as

benign (LMNs) or malignant (HMNs) due to the ambiguity

in differentiating the nodules. Hence, the intermediate

malignancy level 3 samples were eliminated in the study to

distinguish the pulmonary nodules better. We additionally

tested DS4 considering these intermediate samples as

separate categories forming 4 groups of classes. The

resultant classification accuracy was 87.91% compared to

DS1.

Later, to have a separate training and testing set of

images with an equal number of image samples for each

class of malignancy, tenfold cross-validation was applied

to generate the training and testing folds. The experiment

was carried in 2 phases: Phase 1: A training set of samples

with GAN generated images (5000 samples) and Phase 2:

A training set of samples with actual ROI images. Image

sets from the training folds were used for training, while

the ROIs from the testing folds were used for testing pur-

poses. For the classification of candidate nodules, CNN

was trained with GAN generated and actual ROI samples,

respectively. Table 4 shows the classification accuracy of

both the training datasets with a testing combination of

input samples to see if the algorithm results in consistent

behavior. From Table 4, CNN trained with GAN generated

samples exhibited good classification accuracy compared

to actual ROI pre-training. As the number of generated

samples increases, a decrease in classification accuracy was

observed. But with actual ROI trained CNN, a behavior

with classification accuracy all above 91.9% was observed.

In addition, we also conducted experiments with pre-

trained models as depicted in Fig. 9. Among these meth-

ods, CNN with GAN generated images outperformed and

ResNet50 produced better classification accuracy com-

pared to other pre-trained models.

A systematic evaluation was conduct against different

input parameters including the convolution filter sizes,

learning rates, and the number of layers in the architecture.

The performance of the algorithm was evaluated by cal-

culating the ROI-based accuracy and AUC scores, and the

testing results were significantly efficient. Table 5 shows

the tested combinations of input parameters for the CNN

architecture.

The CNN architecture with Adam training optimizer

was tested upon different configurations of candidate

parameters with performance values all above 88.5%, with

a maximum classification accuracy of 93.46% as shown in

Table 6 and AUC score of 0.9316. We also evaluated if

there is any drastic change in performance measurements

when the number of neurons varies in the hidden layers.

But the variations in performance were quite stable and less

than 0.4% for certain kernel size in correspondence to a

particular epoch value. Finally, based on the experiments,

we fixed the hidden layer’s neurons as [12, 8, 6] with the

kernel size of [5, 5, 5] due to their relative stability while

continuing our experiments. In addition, the experiments

Table 3 Performance evaluation with varying training and testing sets

Dataset Category Images with malignancy

levels

No. of

nodules

Total

nodules

Accuracy with

DCNN (%)

Accuracy with traditional hand crafted

method (%)

DS1 Benign 1, 2 1644 5188 93.46 84.48

Malignant 4, 5 1704

Non-

cancerous

– 1840

DS2 Benign 1, 2, 3 2332 5876 86.3 71.6

Malignant 4, 5 1704

Non-

cancerous

– 1840

DS3 Benign 1, 2 1644 5876 84.6 68.36

Malignant 3, 4, 5 2392

Non-

cancerous

– 1840

DS4 Benign 1, 2 1644 5876 87.91 70.04

Intermediate 3 688

Malignant 4, 5 1704

Non-

cancerous

– 1840
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were repeated to train CNN using Sgdm optimizer having

the same input size, the number of layers, and same con-

volution filters to evaluate its performance as shown in

Table 7. As a result, the methodology achieved good

promising results with Adam optimizer compared to Sgdm

as shown in Fig. 10. The classification accuracy for all the

tested combinations of input parameters using Sgdm opti-

mizer was all above 88.1%, with a maximum value of

91.9% as highlighted bold.

To compare the performance metrics of automatically

generated salient features and the traditional handcrafted

features, we tested the methods with the same ROI input

samples. The classification accuracy of 85.36% and 77.5%

was recorded by traditional CADx systems using the actual

and GAN generated images, respectively. Overall, the

automatically extracted features from LIDC datasets by

deep learning procedures using CNN outperformed the

conventional state-of-the-art methods as shown in Table 8

as well as traditional handcrafted methods as shown in

Table 9. In most cases, traditional CADx methods evaluate

nodules by considering the ‘‘size’’ as a characteristic fea-

ture to distinguish between benign or malignant but not

taking into consideration large variations of nodule pat-

terns. However, dependence on the nodule size led to

misclassification of small candidate nodules as benign and

large candidate nodules as malignant in some cases. Few

ROI images as depicted in Fig. 11 exhibit good results by

extracting their salient features manually, but are uncertain

Fig. 9 Graph representing the classification accuracy of few training

models

Table 5 Tested combinations of input parameters for the CNN

architecture

Input parameters Values

# of layers 4, 6, 8, 10, 12

# of kernels 32, 16, 12, 8, 6

Learning rate(Alpha) 0.01, 0.1

Kernel size 3, 5

Table 6 The input parameters used in the CNN architecture and their corresponding performance measure using Adam optimizer

# of layers Architecture Alpha Kernel size Accuracy

epoch 20 epoch 30 epoch 40 epoch 50 epoch 100

8 12, 8, 6 0.1 5, 5, 5 0.913 0.919 0.919 0.934 0.919

8 12, 8, 4 0.1 5, 5, 5 0.904 0.906 0.910 0.914 0.915

8 12, 8, 6 0.1 5, 5, 3 0.904 0.906 0.906 0.911 0.903

8 12, 8, 4 0.1 5, 5, 3 0.885 0.910 0.900 0.899 0.921

10 12, 8, 6, 4 0.1 5, 5, 5, 5 0.915 0.900 0.899 0.910 0.900

Table 4 Classification accuracy of CNN architecture based on the training model

Training set Dataset No. of images for testing Classification accuracy (%)

CNN with GAN generated images 5000 generated new images 3632 (70% images) 93.9

4150 (80% images) 92.16

4670 (90% images) 91.63

CNN with actual ROI samples 5188 actual ROIs 3632 (70% images) 92.15

4150 (80% images) 91.9

4670 (90% images) 93.46

16002 Neural Computing and Applications (2020) 32:15989–16009

123



to the different patterns of nodules due to the sensitivity

observed with small variations in the features.

In addition, some malignancy nodules may be false

positively classified as non-nodules by radiologists in their

reviews with similar morphological appearances due to

their irregular shapes closer to the ribs, vessels, or walls of

the chest or presence of noise. Therefore, critically ana-

lyzing and classifying malignancy nodules play an impor-

tant role. Few cases observed in the study with the above-

discussed criterion are depicted in Fig. 12. The methodol-

ogy was successful in classifying these nodules as true

nodules differentiating their intensity values. A consistent

improvement in the performance of the CNN was observed

by automatically learning the salient feature for differen-

tiating vascular, solitary (non-solid or part-solid), pleural

and juxta-pleural nodules with varying size, shape, and

location compared to the conventional state-of-the-art

methods. Non-cancerous lung nodule samples are gener-

ated from the benchmark (LIDC) datasets based on

marked-up annotations by expert radiologists and are very

well classified as a separate category in the methodology

with reduced false positives without affecting the classifi-

cation accuracy. The approach exhibits better results in

classifying the candidate nodules as normal, benign, or

malignant nodules when compared to other implementation

approaches in Sect. 2. Figure 13 shows the confusion

matrix of the proposed CNN with possible outcomes as

true positive (TP), true negative (TN), false positive (FP),

and false negative (FN) generated upon the tested data with

average specificity and sensitivity of 92.8% and 93%,

respectively, calculated using Eqs. 8–10. As a performance

metric, the area under the receiver operating characteristic

curve (AUC) was plotted as shown in Fig. 14 with the

highest value of 0.9316. Also, the time complexity in

training the CNN was 1.33 min on GPU mode, indicating

an efficient computation time when compared to compu-

tation time more than hours on CPU mode.

Sensitivity ¼ TP=ðTP þ FNÞ ð8Þ

Specificity ¼ TN=ðTN þ FPÞ ð9Þ

False Positive rate ¼ FP=ðTN þ FPÞ : ð10Þ

5 Discussions

In the study, we proposed a deep structured algorithm to

automatically extract the self-learned featured using an

end-to-end learning CNN in diagnosing lung cancer CT

images. A well-tuned CNN algorithm with GAN exhibited

promising results when compared to actual ROI samples in

terms of classification accuracy (93.9%), differentiating the

benign, malignant, and non-cancerous lung nodules with

low false positives. Some of the images generated using

GAN may be dissimilar to actual lung nodules, blurred or

even different from its resolution compared to the original

images, henceforth are easily spotted by the human eye.

Increasing the number of GAN generated samples

decreased the classification accuracy of pulmonary nodules

with respect to malignancy levels. As a result, CNN trained

with the actual ROI dataset having images with real non-

cancerous, benign, or malignant images categorized sepa-

rately for classification exhibits almost the same results

Fig. 10 Proposed methodology tested using ‘Adam’ and ‘Sgdm’

optimizer

Table 7 The input parameters used in the CNN architecture and their corresponding performance measure using Sgdm optimizer

# of layers Architecture Alpha Kernel size Accuracy

epoch 20 epoch 30 epoch 40 epoch 50 epoch 100

8 12, 8, 6 0.1 5, 5, 5 0.885 0.890 0.893 0.899 0.899

8 12, 8, 4 0.1 5, 5, 5 0.895 0.898 0.894 0.893 0.894

8 12, 8, 6 0.1 5, 5, 3 0.885 0.905 0.899 0.904 0.919

8 12, 8, 4 0.1 5, 5, 3 0.881 0.883 0.885 0.885 0.889

10 12, 8, 6. 4 0.1 5, 5, 5, 5 0.881 0.890 0.896 0.885 0.889
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compared to GAN generated images while training. In the

study, non-cancerous images segmented manually from the

XML file of the LIDC dataset using radiologists annotation

play a vital role similar to using fake lung images for

performance evaluation. Since non-cancerous images are

included in the actual ROI dataset, introducing fake lung

nodules had no major effect on the classification accuracy.

In addition, the algorithm was compared with pre-

trained models and traditional handcrafted methods as

discussed in Sect. 4. A challenging task with traditional

CADx systems was identifying and designing a set of

features relevant to image datasets. The procedures in

identifying features are time-consuming and may not

guarantee good results if correlations between features

were not properly considered. In the study, a set of features

were manually computed as described in Sect. 3.3.2,

resulting in the classification accuracy of 85.36% on a

similar dataset, but are still uncertain to different image

datasets due to the sensitivity observed with small varia-

tions in the features. However, deep learning methods can

handle huge datasets and automatically generate compu-

tational features potential to the existing problem, sus-

tainable and reliable to any changing situations.

As the deep learning algorithm performs an end-to-end

learning procedure, the only input passed is the re-sampled

ROI images. However, pre-processing the image datasets

plays a vital role in our study enhancing the nodules for

early detection of lung cancers. The prerequisites for the

deep structured scheme include input data of the same size

and a feasible procedure for pre-processing all the images

in the datasets. The candidate nodules segmented differs in

sizes having information concerning to nodule’s shape and

its surroundings. Using the deep learning scheme, the

information around the nodules structure along with its

shapes and sizes was extracted efficiently at the same time.

As a result, if the segmented ROI has a nodule of large size

Table 8 Comparison of results with related works using LIDC dataset

Research

papers

Image database No. of images Accuracy

(%)

Specificity Sensitivity ROC

[29] LIDC – 93.3 91.4% 100% –

[49] LIDC 2618 CT slices

880—LMNs

495—HMNs

87.14 77% 93% 0.93

[13] LIDC 1404 nodules

394—malignant

1011—benign

92.36 90.70% 93.47% 0.934

[60] LUNA 16 150,414 images

150,075—non-nodules

339—nodules

– – 86.42 –

[52] LIDC 13,668 images 89.9 – – –

[37] LIDC , MBAN – 84.58 – – –

[12] LIDC 700—nodules

700—non-nodules

– – – 0.931

[50] LIDC – – Sensitivity—

87.2% with 0.39

FPs

85.4% with 4 FPs

ps

– –

Proposed
CNN

LIDC actual images 1644—benign

1704—malignant, 1840—non-

cancerous

93.46 92.8% 93% 0.9316

LIDC GAN generated

images

93.9 93% 93.4% 0.934

CNN with GAN generated images exhibited better classification accuracy, sensitivity, specificity as highlighted in bold compared to CNN with

actual ROI images

Table 9 Comparison of

proposed CNN with traditional

CADx

Methodology Actual ROI images (%) GAN generated images (%)

Proposed CNN 93.46 93.9

Traditional handcrafted method 85.36 77.5
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as input to train and test the network, it may result in

increased dimensions of data, leading to more number of

entries to the network. To avoid this criterion, the entire

nodule with its information should be embedded in the ROI

rectangle, if not down-sampling is performed. In case the

nodules exceed the ROI rectangle size, we down-sampled

the large nodules to fit into the ROI rectangle of size 52 �
52 pixels. Not all nodules are down-sampled as it incurs

information loss. Meanwhile, the smaller nodules are

retained without any loss in information making each

nodule fit into ROI rectangle of the same size. Nodule size

details must be taken into consideration as an important

feature for pre-processing the data. This makes the deep

structured scheme preserve the nodule size information for

processing huge datasets and can be applied to other

datasets in medical imaging for better computational

efficiency.

6 Conclusion

In this paper, we visualized the convolutional neural net-

work architecture with GAN generated and original image

datasets and compared the performance metrics with the

traditional CADx system’s texture, density, and morpho-

logical behavior. CNN with GAN generated images

achieved good promising results in handling the challeng-

ing problem of malignancy classification at early stages

Fig. 11 ROI images with traditional CADx exhibiting good results
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with the highest classification accuracy among the other

methods. Deep learning the features potentially increased

the ability in capturing the salient information of the

nodules with the limited number of layered structures in the

method.

The following observations were made as to future

works

1. Although the results of the preliminary study are

encouraging, we tested the images only to a limited

number of deep learning layers. CNNs need to be

further tested using deep layered structures on larger

datasets and incorporate the extracted featured into the

traditional state-of-the-art methods to further improve

the performance metrics for lung cancer diagnosis.

2. The optimal size of the input patch for deep learning

algorithms is to be further investigated.

3. Also features from 3D input data are to be extracted to

train the CNN even though it could incur more network

complexity.

4. Although the ROI-based feature learning with CNN

exhibits promising results, advancement in feature

extractors from ROI segmented rectangle with an

attention mechanism incorporated in CNN architecture

can be further investigated.

5. To further investigate, high-quality realistic generated

fake lung nodules samples can be generated in addition

to the current implementation using generative adver-

sarial networks [10] as future work to train radiologists

for learning discriminative features for educational

Fig. 12 Special cases of candidate nodules
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purposes and improve the diagnostic decision making

on cancer images.
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