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Abstract
Many engineering optimization problems are typically multi-objective in their natures and multidisciplinary with a large

number of decision variables. Furthermore, Pareto dominance loses its effectiveness in such situations. Thus, developing a

robust optimization algorithm undoubtedly becomes a true challenge. This paper proposes a multi-objective orthogonal

opposition-based crow search algorithm (M2O-CSA) for solving large-scale multi-objective optimization problems

(LSMOPs). In the M2O-CSA, a multi-orthogonal opposition strategy is employed to mitigate the conflicts among the

convergence and distribution of solutions. First, two individuals are randomly chosen to undergo the crossover stage and

then orthogonal array is presented to obtain nine individuals. Then individuals are used in the opposition stage to improve

the diversity of solutions. The effectiveness of the proposed M2O-CSA is investigated by implementing it on different

dimensions of multi-objective optimization problems (MOPs). The Pareto front solutions of these MOPs have various

characteristics such as convex, non-convex and discrete. It is also applied to solve multi-objective design applications with

distinctive features such as four bar truss (FBT) design, welded beam (WB) deign, disk brake (DB) design, and speed

reduced (SR) design, where they involve different characteristics. In this context, a new decision making tool based on

multi-objective optimization on the basis of ratio analysis (MOORA) technique is employed to help the designer for

extracting the operating point as the best compromise or satisfactory solution to execute the candidate engineering design.

Simulation results affirm that the proposed M2O-CSA works efficiently and effectively.

Keywords Crow search algorithm � Orthogonal � Opposition � Multi-objective optimization � Metaheuristic �
Engineering designs � MOORA

1 Introduction

In almost real design applications, the designer often faces

the problem of achieving many design targets. These tar-

gets are often conflicting and incommensurable and needed

to be optimized simultaneously. The process of optimizing

multiple targets (objectives) is denoted by a multi-objective

optimization problem (MOP). In this regard, there is no

single optimal solution but a set of solutions that optimize

all the objective functions simultaneously. The set of

solutions is denoted as Pareto-optimal solutions, non-infe-

rior, non-dominated or efficient solutions [1]. According to

Pareto optimality, a solution is identified as Pareto-optimal

solution (or non-dominated, efficient, non-inferior), if no

objective can be improved without deteriorating one other

objective at least.

The traditional approaches for solving multi-objective

optimization problems (MOPs) are classified into three
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categories according to the preferences that are provided by

expert or decision maker (DM), namely a priori, a poste-

riori or generation, and progressive approaches. In a priori

approach (decide ) search), the expert or the DM set his/

her preferences before the solution process (e.g., weight for

each objective function that reflects the significance of the

objective). Afterward, the MOP is converted into a single-

objective problem (SOP) using the set of weights and then

it can be solved as a single-objective optimizer. The dis-

advantages are as follows: there is a difficulty in quanti-

fying (i.e., weights) his/her preferences. They give one

solution for certain weights, so they required multiple runs

to obtain the Pareto-optimal set (POS). In addition, they

fail to deal with non-convex problems. The prominent

methods of this category are the weighted sum method and

e-constraint method [1–4]. In a posteriori approach

(search ) decide), the expert or the DM engages eventu-

ally to choose one of the obtained solutions according to

preferences. However, they require higher computational

cost, the advantage of such approaches is that the Pareto-

optimal set can be obtained in one single run. For pro-

gressive method (decide $ search), the decision maker is

integrated with an interactive form to set his/her prefer-

ences during the optimization process until a satisfying

solution is obtained or no further improvement is possible

[5]. Since the conventional approaches are occupied by

some drawbacks, such as they suffer from stagnation in

local optima, they rely on initial guess and are derivative

based-algorithms. Thus, such techniques are not suit-

able for solving a large variety of optimization problems

[6].

In 1985, Schaffer [7] proposed a revolutionary idea to

handle multi-objective optimization using an evolutionary

optimization technique. The advantages occupied by this

technique are: it can avoid local optima and gradient-free

mechanism, which made it readily applicable to the real

problems as well. Since this work was proposed, a signif-

icant number of studies were flourished in this regard such

as vector evaluated genetic algorithms (VEGA) [8], non-

dominated sorting genetic algorithm (NSGA) [9], niched

Pareto genetic algorithm (NPGA) [10], multi-objective

genetic algorithm (MOGA) [11], strength Pareto evolu-

tionary algorithm (SPEA) [12]. Also, some recent popu-

lation-based search algorithms for multi-objective

optimization [13–17] have been proposed in the literature

and applied to a variety of MOPs among them multi-ob-

jective bee algorithm [18], multi-objective salp swarm

[19], multi-objective ant lion optimizer [20], and multi-

objective grey wolf optimizer (MOGWO) [21], etc.

Apart from the previously developed optimization

algorithms, the literature becomes very rich with several

recent methodologies that presented to solve different

aspects of multi-objective optimization applications

[22–31]. Tian et al. [22] developed an enhanced multi-

objective evolutionary algorithm (MOEA) based on dis-

tance indicator to address the versatility. Rong et al. [23]

solved the dynamic MOPs through the multidirectional

prediction strategy, where the multiple directions are

induced by multiple representative solutions acquiring

from the previous environments to predict the new set of

the Pareto-optimal solutions. Zhang et al. [24] proposed a

novel multi-objective particle swarm algorithm based on

the competitive mechanism as a learning strategy to guide

the search of particles and enhance the robustness while

handling the MOPs. The MOPs that contain more than

three objectives are usually denoted as many-objective

optimization problems (Ma-OPs). In this sense, Liu et al.

[25] proposed a many-objective EA based on a one-by-one

selection mechanism to maintain the balance among the

convergence and diversity of solution while solving the

Ma-OPs. Additionally, Liu et al. [26] introduced a refer-

ence point-based EA to maintain the spread and uniform

distribution of solutions while tackling the Ma-OPs. Gong

Liu et al. [27] presented a set-based GA to solve interval

Ma-OPs, where an evolutionary scheme and set-based

Pareto dominance concepts are introduced to improve the

performance of this approach. Yue et al. [28] exhibited a

novel multi-objective particle swarm algorithm based on

ring topology and crowding distance concept. The crowd-

ing distance aims to improve the distribution of solutions in

both decision and objective spaces while the ring topology

technique helps in generating stable niches. Gu et al. [29]

introduced a self-organizing multi-objective PSO algorithm

to deal with multimodal MOPs. This approach can map the

solutions of the population to a latent space in which a

neighboring relation is building to emphasize the distri-

bution of solutions. Adel et al. [30] proposed a new multi-

objective whale optimization algorithm (WOA) for MOPs.

It is established based on the external archive to store the

non-dominated, where an external archive is to guide the

population toward promising areas in the search space. In

addition, crowding distance strategy is introduced to

maintain the diversity of solutions. Wenjun et al. [31]

developed an effective ensemble algorithm for solving

MOPs. This algorithm embeds various evolutionary oper-

ators and different selection criteria which are performed

on multiple populations to achieve more distribution of

solutions. Additionally, there is an increasing interest in

mathematical MOPs using recent MOEAs as it is presented

in the papers [32, 33].

Despite the notable number of optimization algorithms

which are proposed in this field, there is an important

question: why we create more optimization techniques?

The answer is referring to the No Free Lunch (NFL) the-

orem [34] which proves that no optimization algorithm

copes all optimization problems; when the algorithm
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successes in solving a specific set of problems, it does not

mean that it successes with all natures and types of opti-

mization problems. Meanwhile, all the optimization tech-

niques are supposed to equal on average when considering

all optimization problems, despite the superior perfor-

mance on a subset of optimization problems. Thus NFL

theorem permits the researchers to develop new algorithms

or enhance/modify the current ones to deal with different

natures of optimization fields whether for single opti-

mization (SO) or multi-objective optimization (MOO)

techniques. In an effort to maintain the diversity and con-

vergence of the Pareto front solutions for the multiple

objectives, this work proposes a modified version of the

recently proposed crow search algorithm (CSA) [35]. The

proposed is named multi-objective orthogonal opposition-

based crow search algorithm (M2O-CSA) for solving

large-scale multi-objective optimization problems

(LSMOPs). The M2O-CSA comprises a multi-orthogonal-

opposition strategy to maintain the convergence and dis-

tribution of solutions. It works by making a crossover

among two individuals chosen randomly to generate a third

one. These three individuals are arranged as orthogonal

arrays and also their opposition arrays are obtained, where

the former enhances the convergence and the later enables

the diversity of solutions. The validation of the proposed

M2O-CSA is investigated by employing different dimen-

sions for multi-objective optimization problems (MOPs).

Also, multi-objective design applications are solved such

as four bar truss (FBT) design, welded beam (WB) deign,

disk brake (DB) design, and speed reduced (SR) design.

Simulation results affirm that the proposed M2O-CSA

works efficiently and effectively.

The contributions of this research are as follows:

1. A multi-objective orthogonal opposition-based crow

search algorithm (M2O-CSA) is proposed for large-

scale multi-objective optimization.

2. The crows’ memory is updated using the domination

concepts by using a parallel-orthogonal-opposition

(P2O) strategy.

3. An archive is integrated into the M2O-CSA to maintain

Pareto (non-dominated) solutions.

4. A grid mechanism based on P2O is employed to

improve the stored solutions in the archive.

5. The effectiveness of M2O-CSA is validated by com-

prehensive simulation for different dimensions of

MOPs and real engineering applications.

6. A new strategy based on the MOORA technique to

extract the satisfactory or compromise solution which

helps the designers to perform prudent designs.

The novelty and strength of the M2O-CSA lie in the

amalgamation of the orthogonal arrays-based crossover

scheme and opposition arrays-based strategy that is

dynamically evolved during the optimization process,

thereby maintaining the balance among the convergence

pattern and distribution of solutions. In addition, the

MOORA technique is suggested for automatically deter-

mining the best compromise solution from Pareto-optimal

solutions, which practically help the inexperienced

designer to meet the diverse needs regarding different

operating conditions and then provide a more realistic

decision. Besides, to the best of our information, no

endeavors have been suggested in the literature to innovate

the M2O-CSA algorithm in solving the multi-objective

optimization applications as well as the integration of the

MOORA technique for solving MOPs.

Following the introduction in Sect. 1, the rest of the

paper is organized as follows. Section 2 provides the pre-

liminaries of multi-objective optimization with some per-

formance indices. Section 3 briefly overviews the basics of

CSA and then presents the M2O-CSA algorithm. The

simulations of the obtained results as well as discussion are

developed in Sect. 4. Lastly, Sect. 5 concludes the present

work and states some recommendations for future works.

2 Preliminaries

This section gives the fundamental concepts of multi-ob-

jective optimization and performance assessments of the

optimization techniques.

2.1 Statements of the multi-objective
optimization

A multi-objective optimization problem refers to optimize

more than one objective function. This means that set

conflicted objective functions are optimized simultane-

ously in the presence of some equality and inequality

constraints. It can be formulated as a minimization problem

as follows:

Minimize : FðxÞ ¼ f1ðxÞ; f2ðxÞ; . . .; fKðxÞ½ �;
Subject to :

glðxÞ� 0; l ¼ 1; 2; . . .;m;

hjðxÞ ¼ 0; j ¼ 1; 2; . . .; p;

x ¼ x1; x2; . . .; xn½ �; xLi � xi � xUi :

ð1Þ

where K, m; p;, and n represent the number of objective

functions, inequality constraints, equality constraints, and

variables, respectively.fk is the kth objective function in the

vector F, gl denotes the lth inequality constraints, hj defines

the jth equality constraints, and ½xLi ; xUi � denotes the interval
of lower and upper boundaries of ith variable.

It is worth mentioning that for single-objective function,

the optimal solution can be obtained easily due to the unary
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single criterion or objective. For the minimization problem,

the solution u is better than v if and only if f ðuÞ\f ðvÞ.
However, the solutions in multiple objectives cannot be

compared due to the presence of multiple criteria that judge

the solutions. In this case, the concepts of Vilfredo Pareto

[1] are employed that state that a solution dominates (is

better than) another solution if and only if it provides better

or equal on all of the objectives and shows a better value in

at least one of the objective functions. Without loss of

generality, the definitions regarding Pareto dominance for a

minimization problem are as follows [1]:

Definition 1 Pareto dominance Assume that there are two

vectors x1 and x2, where vector x1 dominates vector x2
(denote as x1 � x2) iff :

8 i 2 1; 2; . . .;K : fiðx1Þ� fiðx2Þ ^ 9 j 2 1; 2; . . .;K
: fjðx1Þ\fjðx2Þ: ð2Þ

Figure 1 provides an overview of Definition 1, where

three are solutions a, b, and c. It can be seen that the

solution c has the biggest values for both f1 and f2. This

explains that the solution c is dominated by solutions a and

b. In contrast, solutions a and b are non-dominated solu-

tions, as neither of them dominates each other.

Definition 2 Pareto optimality The solution x1 2 X is

defined as Pareto-optimal iff:

9 x2 2 X : Fðx2Þ � Fðx1Þ ð3Þ

where X is feasible region that is defined as

X ¼ x 2 Rn : glðxÞ� 0 8l; hjðxÞ ¼ 0 8j; xLi � xi � xUi 8i
� �

ð4Þ

It is worth mentioning that the set which includes all

non-dominated solutions of a problem is named Pareto-

optimal set and it is shown as follows:

Definition 3 Pareto-optimal set A set all Pareto-optimal

solutions is called Pareto set as follows:

PS ¼ fxi : 8xi; xj 2 X ^ FðxiÞ � FðxjÞg ð5Þ

Definition 4 Pareto -optimal front The set containing the

value of objective functions for Pareto solutions set is

called Pareto-optimal front:

PF ¼ fFðxiÞjxi 2 PSg ð6Þ

The Pareto-optimal set and the Pareto-optimal front are

illustrated for a minimization problem in Fig. 2.

2.2 Performance indices

To perform fair quantitative judgments and evaluations

among different types of metaheuristic algorithms, some

performance indices that are widely employed are inves-

tigated to evaluate the performances of metaheuristic

algorithms. These performance indices are defined in detail

in the following subsections.

2.2.1 Generational distance index

The generational distance (GD) index was proposed by

Veldhuizen and Lamont [36] with the aim to clarify the

capability of the candidate algorithms for obtaining a set of

non-dominated solutions at a lowest distance to the true

Pareto-optimal front (PFO). Meanwhile, the algorithm that

has a minimum value of GD possesses the best conver-

gence to PFO. The GD index can be defined mathematically

as follows [37]:

GD ¼ 1

nPF

XnPF

i¼1

d2i

 !1=2

ð7Þ

where nPF indicates the number of solutions in generated

Pareto front (PFG) and di denotes the Euclidean distance

between ith member of the PFG and the nearest one in PFO.

Meanwhile, the Euclidean distance (d) is determined as

follows:

dðr; lÞ ¼ dðl; rÞ ¼
Xn

i¼1

fil � firð Þ2
" #1=2

ð8Þ

where l ¼ f1l; f2l; . . .; fnlð Þ is a point on PFG and r ¼
f1r; f2r; . . .; fnrð Þ is the nearest member to l in PFO. Figure 3

provides a schematic diagram of this performance index inFig. 1 Pareto solutions a, b for the 2-D domain
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the 2D space. The best value for the GD index is equal to

zero which occurs when the PFG exactly coincides with the

PFO. On the other hand, the inverted generational distance

(IGD) can be defined mathematically as follows [37]:

IGD ¼ 1

nt

Xnt

i¼1

d0i
� �2

 !1=2

ð9Þ

where nt denotes the number of solutions in the true Pareto-

optimal front (PFO) and d0i defines the Euclidean distance

between the ith true Pareto-optimal solution and the closest

Pareto solution obtained by a certain methodology.

2.2.2 Metric of spacing

The metric of spacing (S) was developed by Scott [38] to

show the distribution among non-dominated solutions

which are obtained by a particular algorithm. This criterion

can be defined mathematically as follows [6]:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nPF � 1

XnPF

i¼1

di � �dð Þ2
s

ð10Þ

where nPF represents the number of solutions in PFG, while

di denotes the Euclidean distance between ith member and

its nearest one in PFG, and �d is the average (mean) of all

distances. The small value of S provides a better uniform

distribution in PFG. If all non-dominated solutions are

uniformly distributed in the PFG, this implies that di is

equal to �d and therefore, the value of S metric equals zero.

Figure 4 presents a schematic diagram for the spacing

index.

2.2.3 Spread metric

The spread metric presents the third performance index

which was proposed by Deb [6]. It aims to determine the

extent of spread achieved by the non-dominated solutions

found from a certain algorithm. To be more precise, this

criterion shows how the obtained solutions are extended

across PFO. This criterion is stated as follows [6]:

D ¼
df þ dl þ

Pnpf
i¼1 di � �d
�� ��

df þ dl þ ðnpf � 1Þ �d
ð11Þ

Fig. 2 Decision variable space

and objective space of MOP for

minimization case

Fig. 3 Schematic diagram of the generational distance (GD) index for

MOPs

Fig. 4 Schematic diagram of spacing metric (S) for MOPs
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where df and dl represent the Euclidean distances between

the extreme solutions in the PFO and PFG, respectively. npf
and �d are the total number of members in PFG and the

mean (average) of all distances, respectively. Further, di
represents the Euclidean distance between each member in

PFG and the closest one in PFO. Equation (11) shows that

the value of D index is always greater than zero, while the

small value of D means spread of the solutions and well

distribution. In this regard, when the value of D is equal to

zero this indicates that the extreme solutions of PFO have

been found and di ¼ �d for all non-dominated points. Fig-

ure 5 shows a schematic structure of the index D for a

given Pareto front.

3 Multi-objective crow search algorithm

This section focuses on extending the classical CSA to

develop a multi-objective approach variant. In this context,

two subsections are discussed. The first one presents the

concepts of classical CSA. The second subsection incor-

porates multi-objective strategies based on orthogonal

opposition improvements to the CSA leading to the multi-

objective orthogonal opposition-based crow search algo-

rithm (M2O-CSA).

3.1 Crow search algorithm

Crow search algorithm is introduced by Askarzadeh [35]

which mimics the intelligent behaviors of crows. Crows

exhibit awesome behaviors during collecting and storing

foods. In this sense, crows memorize the positions where

they hide exceeded food and during this process two cases

may be occur. The first one, a specific crow pilfers the

hidden food of another crow when it does not realize that it

is followed by another one. The second one, the crow

protects hidden food if it realizes that followed by another

crow and therefore it can fool this crow.

From a searching point of view, CSA is a population-

based search algorithm with population dt ¼ dt1; d
t
2; . . .;

�

dtNg of N crows (individuals) is evolved during each iter-

ation t. The ith crow di is represented by a n-dimensional

vector as di ¼ di;1; di;2; . . .; di;n, where each of its element

(dimension) corresponds to a decision variable of the

candidate problem to be solved. According to the two

scenarios of crow behavior, the new population dtþ1 is

updated by considering two options whether it is aware

(realizes) or not aware (not realizes) being followed by

another crow. Thus each new element can be determined as

follows:

dtþ1
i ¼ dti þ ri � fl ðmctj � dtiÞ rj � AP

a randomposition otherwise

�
ð12Þ

where the memory of each crow (mc) is updated as follows:

mctþ1
i ¼ dtþ1

i f ðdtþ1
i Þ [ f ðmctiÞ

mcti otherwise

�
ð13Þ

where ri and rj are random numbers between 0 and 1 which

are drawn from a uniform distribution, fl defines the flight

length parameter that controls the searching extent, mctj
denotes the memory of the crow j at iteration t; it saves the

best location obtained so far by the crow j, and AP is

awareness probability of the following. The working steps

of the CSA are listed in Algorithm 1.

3.2 The proposed M2O-CSA algorithm

In this section, the CSA is extended to deal with multiple

objectives which is named multi-objective orthogonal

opposition CSA (M2O-CSA), where some modifications

are developed. The first is that an external archive is

equipped to store the obtained Pareto-optimal solutions

during runs of the proposed algorithm. The second, all

crows employ an external archive as the memory of the

hoard positions. Finally, a parallel-orthogonal-opposition

(P2O) strategy is introduced to enhance the convergence to

the true Pareto front as well as acquire its well-spread

solutions over the Pareto front.

3.2.1 Updating mechanism

The algorithm starts with the initialization process, and the

archive is filled by non-dominated solutions by this pro-

cess. Afterward, the updating strategy is presented to

enhance the convergence of solutions, improve the distri-

bution of the whole Pareto front, and complete the finite

archive until it is filled. Also, the redundancy or the

Fig. 5 Schematic diagram of the spread metric (D) for MOPs
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existence of similar solutions is prevented according to the

dominance concepts. To perform the updating strategy, one

of the memorized solutions in the archive (Ac) is selecting

by a roulette-wheel mechanism with the following proba-

bility for each segment:

Pi ¼
t

T
ð14Þ

where t and T define the current iteration and maximum

number of iterations, respectively. In this regard, the

solution is determined as follows:

dtþ1
i ¼ dti þ ri � fl ðActj � dtiÞ rj � Pt

i

a randomposition otherwise

�
ð15Þ

Therefore, the crows will be encouraged to update their

positions by such archive’ solutions. On the other hand, the

archive is updated regularly in each iteration and may be

fully filled during optimization. In this sense, the archive is

managed by dominance criteria such that the solution is

prevented from entering if it is dominated by at least one of

the archive residences. Also, it should be allowed to enter

the archive if it is non-dominated with respect to all of the

solutions in the archive, and if the solution dominates some

of the Pareto solutions of the archive, they all should be

removed from the archive. If the archive is full, some

solutions are removed using the rule of Coello Coello et al.

[39].

3.2.2 Orthogonal opposition strategy

The orthogonal opposition strategy (OOS) is a novel phase

that combines both the merits of orthogonal arrays and

oppositional points. This strategy is incorporated with CSA

to solve large-scale MOPS. Therefore, a wider space can be

explored during evolution. The OOS is parallelized to

perverse the spread and convergence of solutions. This

strategy is working by three stages, namely forming the

orthogonal arrays-based crossover, generating the opposi-

tion points, and parallelization. The strategy of the OOS is

stated by the pseudo-code as in Algorithm 2.

3.2.2.1 Orthogonal crossover In this stage, the orthogonal

array of N factors (variables) through G levels and C

combinations is often denoted as LCðGNÞ. For example, if

an experiment has four factors (variables) and three levels,

then there are 81 combinations for this experiment, but

when the orthogonal array is employed, only nine
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combinations can be attained (L9ð34Þ). The term orthogo-

nal means that each level per factor occurs at the same time

for any column.

The orthogonal crossover strategy is introduced based

on generating two individuals (v1; v2) randomly, and these

individuals are quantified to generate the dynamic third

level that involves ðG2 � 2Þ combinations indexed from 2

to G2 � 1 arrays in which the difference among any two

successive arrays is the same. The first array (level) is the

minimum among the individuals v1 and v2, while the last

array or level represents the maximum among them. By

this strategy, C ¼ G� G individuals or combinations are

obtained that are incorporated for survival. In this sense,

the general idea behind the orthogonal crossover strategy is

to provide a set of solutions that are controlled by the

dynamic G levels to maintain a better diversification in the

early stages and enhance the intensification of convergence

behavior toward the promising regions of the Pareto front

at the later stages. Besides, the proposed dynamic orthog-

onal crossover strategy provides a general intelligent

framework to overcome the lack of conventional crossover

that generates only two individuals which leads to insuf-

ficient population diversity and falling into non-efficient

solutions. In this context, the different combinations are

obtained as follows:

For large-scale dimensions, the d (i.e., the number of

dimensions) is usually much larger than N. In such a sit-

uation, the different variables are group into N sub-vectors.

Finally, C arrays are obtained according to the orthogonal

array LCðGNÞ. In this work, L9ð34Þ is used to define an

orthogonal-based crossover and it is denoted as ObC9.

3.2.2.2 Oppositional learning Oppositional learning is

proposed by Tizhoosh et al. [40] which aims to accelerate

the convergence speeds of optimization algorithms. It

operates to consider the opposite of each individual. The

concepts of opposition learning are as follows:

Definition 5 Assume that x is a real number with bounds l

and u such that x 2 ½l; u�, then its opposite value xo is

obtained as (Fig. 6).

xo ¼ lþ u� x ð17Þ

Definition 6 Suppose that x is a real number such that

x 2 ½l; u�, then its new opposite value xo is determined as

(Fig. 6).

nxo ¼ randðx; xoÞ ð18Þ

where xo is the opposite of x.

Fig. 6 The point (x), its opposite (xo), and new opposite nxo

li;j ¼

min ðv1;j; v2;jÞ; for i ¼ 1 and 1� j�N

min ðv1;j; v2;jÞ þ ði� 1Þ 	
v1;j; v2;j
�� ��

G� 1

 !

; for 2� i�G2 � 1 and 1� j�N

max ðv1;j; v2;jÞ; for i ¼ G and 1� j�N

8
>>><

>>>:

ð16Þ
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3.3 Eliciting the satisfactory solution

The multiple objective optimization algorithms yield a set

of Pareto-optimal solutions due to the conflict natures

among the objectives. The practical situations are con-

cerned with one design point or one operating point for

these purposes. Such a design point is called the best

(satisfactory) compromise solution. MOORA (multi-ob-

jective optimization on the basis of ratio analysis) method

has the ability to extract the one option from a set of

available options. The idea of MOORA can be stated in a

series of steps.

1. Exhibit the performance for N alternatives over K

criteria.

F ¼

f11 f12 � � � � � � f1K
f21 f22 � � � � � � f2K
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
fN1 fN2 � � � � � � fNK

2

66664

3

77775

where fij presents the performance measure of the ith

option on jth attribute or criterion which also fij
represents the value of the ith solution at the jth

criterion. The row of the matrix F represents the

values of all K objective functions for ith solution.

2. Obtain the normalized form of the decision matrix so

that it becomes dimensionless. This normalization or

the system ratio is expressed as follows:

f 	ij ¼ fij

,
XN

i¼1

f 2ij

 !1=2

; j ¼ 1; 2; . . .;K

where f 	ij is a dimensionless value that belongs to the

interval [0, 1] and represents the normalized perfor-

mance of the ith option on jth attribute or criterion.

(3) Add the obtained normalized performances for

maximization cases (for beneficial attributes) and

subtract these performances for minimization cases

(for non-beneficial attributes). This step is expressed

as follows:

Yi ¼
Xl

j¼1

f 	ij �
XK

j¼lþ1

f 	ij

where Yi denotes the normalized assessment for ith

option (alternative) with considering all the attri-

butes.

The Yi may be positive or negative according to

the totals of its maxima and minima, respectively.

4. Rank the values of Yi to show the final preference.

5. Recommend the highest value of Yi as the best

alternative.

All the parameters of the M2O-CSA are typical of the

original work of the CSA by introducing a new parameter

for denoting archive size. After all, the working of the

M2O-CSA is exhibited by the pseudo-code as in Algorithm

3 and the flowchart of M2O-CSA is provided in Fig. 7.

4 Simulation results

In this section, a set of multi-objective benchmark prob-

lems are employed to clarify and validate the performance

of the proposed M2O-CSA. These multi-objective prob-

lems involve two categories of experiments. The first cat-

egory is to test our algorithm on a well-known ZDT test

suites that have been selected from some of the credible

research studies and these suites are listed in Table 1,

where the ZDT5 isn’t considered in Table 1 because this

problem involves a discrete Pareto front and thus it needs a

different methodology to generate discrete Pareto front.

Also, in this category, we focus on investigating the per-

formance of the proposed M2O-CSA regarding two scales

of dimensions, namely, n ¼ 30; and n ¼ 100. In the second

category, a set of real engineering multi-objective design

problems are employed for investigating the performance

of the proposed M2O-CSA. Moreover, the M2O-CSA as a

modified optimizer is compared with its classical version

(i.e., MOCSA [41]) and chaotic version (MOCCSA [41]).

To achieve unbiased results, all algorithms are per-

formed under the same conditions. In this regard, all

algorithms are uniformly randomly initialized within the

candidate range and the maximum number of iterations is

set to 200 and the number of individuals in the population

is set to 100 for all algorithms. Also, the number of parallel

branches for M2O-CSA is set to 4. Furthermore, in order to

mitigate the impact of randomness, all algorithms were run

20 times independently of all categories. The selected

parameters of the candidate algorithms are set as in their

respective works, where they are: population size, archive

size, flight length, awareness probability, and the number

of iterations which are 100, 100, 2, 0.1, and 200, respec-

tively. For a fair comparison among MOCSA, MOCCSA

and M2O-CSA, the first randomly generated population is

used for the first run of MOCSA, MOCCSA and M2O-

CSA, the second randomly generated population is used for

the second run of MOCSA, MOCCSA and M2O-CSA, and

so on.

4.1 Results of ZDT test functions

In this subsection, the proposed M2O-CSA is evaluated

and compared with the MOCSA and MOCCSA algorithms

on the ZDT test functions. The validation is investigated

through the different assessment metrics such as (1)
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No

Initialize the parameters and 
generate the crows’ population

Start

Checking the 
stopping criteria

End 

Evaluate the objective values for 
each crow

Find the compromise 
solution using 

MOORA technique

If  jr AP≥

Print the non-
dominated 
solutions

Randomly select one of the 
solutions from the memory 

Find the non-dominated solutions
and initialize the archive

Fill the memory of crows by the 
initial archive

Update the position 
by Eq.(15)

Generate the position 
randomly

Evaluate the objective values for 
each crow

Elicit two solutions at
random

Split the large-scale into 
four subgroups

Constitute the three 
levels by Eq. (16)

Generate the orthogonal 
arrays ( 4

9 (3 )L ) and their 
oppositions ( 4

9 (3 )OL )

Elicit two solutions at
random

Split the large-scale into 
four subgroups

Constitute the three 
levels by Eq. (16) 

Generate the orthogonal 
arrays ( 4

9 (3 )L ) and their 
oppositions ( 4

9 (3 )OL )

…

…

…

…

Elicit two solutions at
random

Split the large-scale into 
four subgroups

Constitute the three 
levels by Eq. (16)

Generate the orthogonal 
arrays ( 4

9 (3 )L ) and their 
oppositions ( 4

9 (3 )OL )

Amalgamate all solutions in one 
pool 

Find the non-dominated solutions
and update the archive

Fig. 7 Flowchart of the proposed M2O-CSA
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generational distance (GD), (2) inverted generational dis-

tance (IGD), (3) spacing (SP), and (4) the maximum spread

(MS). The proposed M2O-CSA is investigated through two

experiments. Experiment 1 employs thirty variables

(n ¼ 30), while, experiment 2 employs a hundred variables

(n ¼ 100).

In experiment 1, the assessment metrics (i.e., GD, IGD,

SP, and MS) are obtained and reported in Tables 2, 3, 4,

and 5. The obtained results regarding these metrics show

that the M2O-CSA outperforms the compared versions,

namely MOCSA and MOCCSA for all ZDT test suits with

n ¼ 30. The superiority is demonstrated by the mean val-

ues, where the reported values show a higher accuracy of

M2O-CSA compared to the other algorithms. Also, the

shape of the obtained Pareto-optimal front by the proposed

M2O-CSA and the compared ones on ZDT1, ZDT2, ZDT3,

ZDT4, and ZDT6 are portrayed in Fig. 8. Inspecting this

figure, it is noted that MOCCSA exhibits the poorest

convergence, while the proposed M2O-CSA provides a

good convergence and useful diversity toward the true

Pareto fronts on all ZDT test suits. On the other hand, the

MOCSA provides good convergence for ZDT2 and ZDT6.

The most interesting features behind the superior perfor-

mance of the proposed M2O-CSA are contained in paral-

lel-orthogonal-opposition (P2O) strategy that preserves the

diversity of solutions and enhances the convergence toward

the true Pareto fronts.

Table 1 ZDT test suits (D: Dimension)

Problem Functions’ descriptions Range D Optimal front

ZDT1 Minimize: f1ðxÞ ¼ x1

Minimize: f2ðxÞ ¼ gðxÞ 	 ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1=gðxÞ

p
Þ;

where : gðxÞ ¼ 1þ 9

n� 1
	
Xn

i¼2

xi

[0, 1] 30, 100 x1 2 ½0; 1�;
xi ¼ 0; i ¼ 2 : n

ZDT2 Minimize: f1ðxÞ ¼ x1

Minimize: f2ðxÞ ¼ gðxÞ 	 1� ðf1=gðxÞÞ2
	 


;

where : gðxÞ ¼ 1þ 9

n� 1
	
Xn

i¼2

xi

[0, 1] 30, 100 x1 2 ½0; 1�;
xi ¼ 0; i ¼ 2 : n

ZDT3 Minimize: f1ðxÞ ¼ x1

Minimize: f2ðxÞ ¼ gðxÞ 	 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1=gðxÞ

p
� ðf1=gðxÞÞ sinð10px1Þ

	 

;

where : gðxÞ ¼ 1þ 9

n� 1
	
Xn

i¼2

xi

[0, 1] 30, 100 x1 2 ½0; 1�;
xi ¼ 0; i ¼ 2 : n

ZDT4 Minimize: f1ðxÞ ¼ x1

Minimize: f2ðxÞ ¼ gðxÞ 	 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1=gðxÞ

p	 

;

where : gðxÞ ¼ 1þ 10ðn� 1Þ þ
Xn

i¼2

x2i � 10 cosð4pxiÞ
� �

 !

x1 2 ½0; 1�
xi 2 ½�5; 5�;
i ¼ 2 : n

30, 100 x1 2 ½0; 1�;
xi ¼ 0; i ¼ 2 : n

ZDT6 Minimize: f1ðxÞ ¼ 1� expð�4x1Þ 	 sin6ð6px1Þ

Minimize: f2ðxÞ ¼ gðxÞ 	 1� ðf1=gðxÞÞ2
	 


;

where : gðxÞ ¼ 1þ 9
1

n� 1
	
Xn

i¼2

xi

 !0:25

[0, 1] 30, 100 x1 2 ½0; 1�;
xi ¼ 0; i ¼ 2 : n
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In experiment 2, the behavior of the proposed M2O-

CSA is further investigated and compared with the

MOCSA and MOCCSA on ZDT1, ZDT2, ZDT3, ZDT4,

and ZDT6 test suits with n ¼ 100 to analyze their

scalability. The statistical measures of the assessment

metrics include the best, mean, worst values, and standard

deviation (SD) are obtained and listed in Tables 6, 7, 8, and

9. The reported results provide that the proposed M2O-

Table 2 Statistical results for GD on ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 for 30 dimensions

Method ZTD1 ZTD2

Mean Median SD Best Worst Mean Median SD Best Worst

MOCSA 0.440022 0.328264 0.248344 0.157755 0.895094 0.46616 0.57907 0.33286 0.004793 0.87973

MOCCSA 2.255486 2.241715 0.138 2.047034 2.527346 3.31984 3.26807 0.121017 3.209934 3.54827

M2O-CSA 0.000308 0.000239 0.000211 8.55E-05 0.00064 4.72E-05 4.72E-05 4.38E-06 4.41E-05 5.03E-05

Method ZTD3 ZTD4

Mean Median SD Best Worst Mean Median SD Best Worst

MOCSA 0.443457 0.425613 0.220698 0.08474 0.739996 14.8949 15.43874 12.9013 0.464534 37.68461

MOCCSA 2.153157 2.149536 0.164283 1.837869 2.314501 80.6278 74.95245 18.28148 63.13257 125.334

M2O-CSA 3.08E-03 3.00E-03 4.60E-04 2.58E-03 3.88E-03 3.72E-04 4.80E-04 2.30E-04 1.08E-04 5.27E-04

Method ZTD6

Mean Median SD Best Worst

MOCSA 1.250934 0.098801 2.127796 0.01975 5.2473

MOCCSA 6.006829 6.050078 0.206774 5.55698 6.275276

M2O-

CSA

8.08E-02 3.57E-04 1.70E-01 2.72E-04 4.37E-01

Table 3 Statistical results for IGD on ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 for 30 dimensions

Method ZTD1 ZTD2

Mean Median SD Best Worst Mean Median SD Best Worst

MOCSA 0.425131 0.320903 0.230445 0.156945 0.841729 0.506639 0.629995 0.362325 0.006922 0.959283

MOCCSA 1.953679 1.918242 0.095759 1.848102 2.115394 3.236088 3.204521 0.114286 3.046126 3.405229

M2O-CSA 0.000101 9.96E-05 1.30E-05 8.50E-05 0.000123 9.33E-05 9.33E-05 2.04E-06 9.18E-05 9.47E-05

Method ZTD3 ZTD4

Mean Median SD Best Worst Mean Median SD Best Worst

MOCSA 0.245108 0.243769 0.043168 0.191951 0.302796 4.069727 0.783467 6.939034 0.284181 22.37024

MOCCSA 1.304741 1.369996 0.192513 0.842974 1.488893 19.60672 21.07413 5.505553 11.54718 27.01433

M2O-CSA 9.56E-03 9.57E-03 4.03E-05 9.50E-03 9.61E-03 9.91E-05 9.40E-05 1.04E-05 9.22E-05 1.11E-04

Method ZTD6

Mean Median SD Best Worst

MOCSA 1.185574 0.003905 2.49198 0.002299 5.913776

MOCCSA 6.442483 6.474644 0.194266 6.055729 6.740418

M2O-

CSA

1.08E-04 9.60E-05 3.25E-05 7.14E-05 1.66E-04
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Table 4 Statistical results for SP on ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 for 30 dimensions

Method ZTD1 ZTD2

Mean Median SD Best Worst Mean Median SD Best Worst

MOCSA 0.08995 0.080937 0.024638 0.065584 0.144665 0.11547 0.138093 0.032189 0.076346 0.140155

MOCCSA 0.400523 0.418763 0.09661 0.230749 0.541592 0.191213 0.205418 0.069586 0.056327 0.274667

M2O-CSA 0.077091 0.076677 0.008803 0.062098 0.091813 0.079145 0.079145 0.005304 0.075395 0.082896

Method ZTD3 ZTD4

Mean Median SD Best Worst Mean Median SD Best Worst

MOCSA 0.295456 0.285195 0.031873 0.262202 0.355798 7.207835 8.830306 5.126228 0.08122 13.72118

MOCCSA 0.435521 0.441755 0.088688 0.261037 0.579891 33.59741 33.75935 10.59575 15.79048 51.62622

M2O-CSA 0.246764 0.241037 0.028862 0.202053 0.295544 0.072254 0.071163 0.006025 0.066848 0.07875

Method ZTD6

Mean Median SD Best Worst

MOCSA 0.254635 0.143016 0.266595 0.070052 0.77021

MOCCSA 0.169937 0.17807 0.059717 0.064676 0.241464

M2O-

CSA

0.154685 0.073659 0.175822 0.061163 0.53179

Table 5 Statistical results for MS on ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 for 30 dimensions

Method ZTD1 ZTD2

Mean Median SD Best Worst Mean Median SD Best Worst

MOCSA 1.639651 1.600426 0.129396 1.485744 1.847334 1.218761 1.169757 0.114077 1.105779 1.401842

MOCCSA 3.333086 3.310255 0.194899 3.02852 3.640172 1.826214 1.822699 0.545682 0.910689 2.610752

M2O-CSA 0.983795 0.987311 0.012179 0.956188 0.996147 0.997497 0.997497 0.002747 0.995555 0.999439

Method ZTD3 ZTD4

Mean Median SD Best Worst Mean Median SD Best Worst

MOCSA 2.265764 2.280908 0.099991 2.077011 2.376677 26.32447 29.27306 19.18476 0.766169 54.10424

MOCCSA 3.820768 3.746044 0.487154 3.276426 4.660992 139.3872 140.308 24.10723 106.3494 177.5755

M2O-CSA 1.379455 1.379417 0.009072 1.361235 1.390662 0.992575 0.994707 0.006172 0.98562 0.997399

Method ZTD6

Mean Median SD Best Worst

MOCSA 2.853867 1.168652 2.94905 0.741725 8.597349

MOCCSA 1.650576 1.665099 0.686172 0.81896 2.937119

M2O-

CSA

1.366481 0.826164 1.148256 0.819532 3.774333
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CSA achieves better results of GD, IGD, SP, and MS in

terms of mean values under increasing the dimensionality.

Thus, we can conclude that the proposed M2O-CSA is

insensitive to grow the dimensionality. Compared to the

MOCSA and MOCCSA algorithms, the proposed M2O-

CSA gives better results for all ZDT test suits. Further-

more, the Pareto front shapes obtained by the proposed

M2O-CSA and the other algorithms are depicted in Fig. 9.

Based on Fig. 9, it is noted that M2O-CSA provides the

boost convergence in finding Pareto-optimal fronts. The

compared algorithms suffer from achieving the Pareto-

optimal fronts. The superior performance regarding the

proposed M2O-CSA is due to the parallel-orthogonal-op-

position (P2O) strategy that helps in exploring more

regions of the search space and focuses on approaching the

true Pareto fronts.

4.2 Comparison with state-of-the-art
optimization algorithms

In this subsection, the proposed M2O-CSA is further ver-

ified and compared against some recent state-of-the-art

algorithms: MOGOA [33], MOALO [33], MOPSO [33],

NSGA-II [33], MOLAPO [32], MOGWO [32], HEIA [31],

MOEA/D-DRA [31], FRRMAB [31], EAG [31], BCE [31],

and EF-PD [31]. The performance evaluations of these

algorithms are performed with four assessment criteria

including GD, IGD, SP, and MS, where lower GD, IGD,

and SP values indicate better performance, while the high

MS value defines the better performance of the candidate

method. For the mentioned algorithms, the results are

reported in terms of mean and standard deviation (St. dev)

values. Table 10 provides the comparisons among the

Z
D

T
1 

w
ith

 3
0

-
Z

D
T

2 
w

ith
 3

0-d
im

en
si

on
s

di
m

en
si

on
s

Z
D

T
3 

w
ith

 3
0-

di
m

en
si

on
s

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f 2

True Pareto front
 Obtained solutions by MOCSA

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

f1

f 2

True Pareto front
 Obtained solutions by MOCCSA

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f1

f 2

True Pareto front
 Obtained solutions by M2O-CSA

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f 2

True Pareto front
 Obtained solutions by MOCSA

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

f1

f 2

True Pareto front
 Obtained solutions by MOCCSA

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f 2

True Pareto front
 Obtained solutions by M2O-CSA

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5

f1

f 2

True Pareto front
 Obtained solutions by MOCSA

0 0.2 0.4 0.6 0.8 1
-1

0

1

2

3

4

5

f1

f 2

True Pareto front
 Obtained solutions by MOCCSA

0 0.2 0.4 0.6 0.8 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

f1

f 2

True Pareto front
 Obtained solutions by M2O-CSA

Fig. 8 Obtained Pareto front by MOCSA, MOCCSA, and M2O-CSA on ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 for 30 dimensions
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proposed M2O-CSA and the comparative ones, M2O-CSA

MOGOA, MOALO, MOPSO, NSGA-II, MOLAPO, and

MOGWO, where the comparisons show that the M2O-CSA

outperforms the other comparative algorithms for GD and

MS metrics for most ZDT problems and it can provide

competitive results in terms of SP metric. In terms of the

IGD, Table 10 shows that the proposed M2O-CSA affirms

its superiority over the HEIA, MOEA/D-DRA, FRRMAB,

EAG, BCE, and EF-PD algorithms for all ZDT problems.

Also, the rank for each algorithm at each ZDT problem is

provided and the average rank (AR) regarding all ZDT

problems is provided. Based on the results of average rank,

the presented algorithms follow this order based on GD

metric: M2O-CSA[MOLAPO[MOGOA[
MOALO[MOGWO[MOPSO[NSGA-II, M2O-

CSA[NSGA-II[MOLAPO[MOGWO[MOPSO[
MOALO[MOGOA in terms of MS metric, and follow

this order for SP metric: MOLAPO[M2O-CSA &
MOGWO[MOGOA[MOALO[MOPSO[NSGA-

II. Also in terms of IGD metric, the following order is

conducted: M2O-CSA[EF-PD[HEIA[BCE[
MOEA/D-DRA & EAG[ FRRMAB. According to the

assessment criteria, the M2O-CSA has a superior perfor-

mance in terms of GD and MS metrics, and a strong

competitive edge based on SP metric. Here, the symbol[
is to indicate that a certain algorithm better than another,

while & is to indicate similar results for both competitors

in terms of average rank.

4.3 Results of multi-objective constrained
problems (MOCPs)

In this section, a set of well-known multi-objective con-

strained optimization problems are employed to evaluate

and clarify the performance of the proposed M2O-CSA.

The constrained test suits problems are named as follows:

SRN, CONSTR, BNH, KIT, and TNK. These problems

have diverse features of Pareto fronts such as continuous

convex and discrete natures. The details of the MOCPs are

shown in Table 11.

To compare the performance of the proposed M2O-CSA

against the other ones, the assessment metrics including

GD and IGD are utilized to quantify and compare the

performances in terms of convergence and coverage. These

metrics are obtained and reported in Tables 12 and 13 for

the proposed M2O-CSA and the compared ones. Based on

the obtained results, we can note that the M2O-CSA out-

performs the other algorithms in terms of means for GD
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and IGD metrics. In addition, the Pareto-optimal fronts for

all algorithms are depicted and shown in Fig. 10. It is noted

that the proposed M2O-CSA provides high coverage

toward the true Pareto fronts for all multi-objective

constrained test suits. The results show that the proposed

M2O-CSA managed to achieve the Pareto fronts success-

fully for all multi-objective constrained problems.

Table 6 Statistical results for GD on ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 for 100 dimensions

Method ZTD1 ZTD2

Mean Median SD Best Worst Mean Median SD Best Worst

MOCSA 1.101661 1.131581 1.85E-01 0.808119 1.321551 2.299403 2.318409 2.99E-01 1.860917 2.682559

MOCCSA 2.668672 2.690509 9.58E-02 2.500291 2.823633 3.873993 3.905588 1.25E-01 3.661894 4.041318

M2O-CSA 0.000268 0.000172 0.000171 0.000133 0.000529 0.001295 0.001472 0.000619 0.000607 0.001805

Method ZTD3 ZTD4

Mean Median SD Best Worst Mean Median SD Best Worst

MOCSA 1.268118 1.201477 3.23E-01 0.828948 1.652988 1.649261 1.452268 4.73E-01 1.306326 2.189188

MOCCSA 2.616507 2.555031 1.57E-01 2.430174 2.875724 2.355743 1.899442 1.10E?00 1.625925 3.998164

M2O-CSA 0.002851 0.002865 0.000259 0.00257 0.003237 0.000172 0.000172 5.44E-05 0.000134 0.000211

Method ZTD6

Mean Median SD Best Worst

MOCSA 6.52502 6.48634 1.83E-01 6.354613 6.759463

MOCCSA 6.655139 6.638391 1.84E-01 6.408671 6.856911

M2O-CSA 0.081744 0.000328 0.182067 0.000291 0.407435

Table 7 Statistical results for IGD on ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 for 100 dimensions

Method ZTD1 ZTD2

Mean Median SD Best Worst Mean Median SD Best Worst

MOCSA 1.02E-02 1.06E-02 1.82E-03 7.22E-03 1.21E-02 2.47E-02 2.49E-02 3.13E-03 2.01E-02 2.87E-02

MOCCSA 2.46E-02 2.47E-02 5.06E-04 2.38E-02 2.53E-02 3.91E-02 3.91E-02 1.42E-03 3.60E-02 4.12E-02

M2O-CSA 9.97E-05 0.0001 9.72E-06 8.57E-05 0.000111 9.33E-05 9.01E-05 7.66E-06 8.78E-05 1.02E-04

Method ZTD3 ZTD4

Mean Median SD Best Worst Mean Median SD Best Worst

MOCSA 2.18E-02 1.92E-02 4.77E-03 1.73E-02 2.78E-02 1.50E-02 1.55E-02 1.31E-03 1.35E-02 1.60E-02

MOCCSA 5.74E-02 5.74E-02 3.65E-03 5.01E-02 6.25E-02 1.74E-02 1.70E-02 2.95E-03 1.44E-02 2.13E-02

M2O-CSA 9.61E-03 0.009593 4.41E-05 9.57E-03 0.009675 9.46E-05 9.46E-05 2.12E-06 9.31E-05 9.61E-05

Method ZTD6

Mean Median SD Best Worst

MOCSA 7.23E-02 7.19E-02 1.90E-03 7.06E-02 7.48E-02

MOCCSA 7.35E-02 7.33E-02 1.82E-03 7.12E-02 7.58E-02

M2O-CSA 9.93E-05 0.000103 3.50E-05 5.70E-05 0.000137
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Table 8 Statistical results for SP on ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 for 100 dimensions

Method ZTD1 ZTD2

Mean Median SD Best Worst Mean Median SD Best Worst

MOCSA 0.164975 0.159783 0.022454 0.140636 0.197018 0.183083 0.19615 0.030556 0.142103 0.213283

MOCCSA 0.3113 0.310176 0.083744 0.199198 0.423325 0.134581 0.12706 0.07726 0.020284 0.258232

M2O-CSA 0.082504 0.083094 0.002923 0.078227 0.085732 0.068091 0.064761 0.015171 0.054861 0.08465

Method ZTD3 ZTD4

MOCSA 0.400808 0.366387 0.067837 0.332685 0.489705 0.270997 0.252905 0.049712 0.232864 0.327221

MOCCSA 0.417804 0.427419 0.085503 0.309344 0.558356 0.315281 0.255026 0.137204 0.230704 0.520367

M2O-CSA 0.230272 0.232538 0.028177 0.190255 0.258216 0.06442 0.06442 0.014459 0.054195 0.074644

Method ZTD6

Mean Median SD Best Worst

MOCSA 0.216646 0.217595 0.020525 0.188602 0.245112

MOCCSA 0.173067 0.162902 0.039285 0.121247 0.244444

M2O-CSA 0.171633 0.069821 0.230163 0.053281 0.582852

Table 9 Statistical results for MS on ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 for 100 dimensions

Method ZTD1 ZTD2

Mean Median SD Best Worst Mean Median SD Best Worst

MOCSA 1.374971 1.379563 0.063469 1.28346 1.462082 0.731866 0.731015 0.012403 0.714519 0.747711

MOCCSA 2.027612 2.086932 0.202502 1.548546 2.206083 0.791625 0.790086 0.202621 0.546052 1.201445

M2O-CSA 0.99444 0.993853 0.004918 0.986985 0.999471 0.990139 0.990019 0.000773 0.989433 0.990964

Method ZTD3 ZTD4

Mean Median SD Best Worst Mean Median SD Best Worst

MOCSA 1.787694 1.777542 0.12239 1.660037 1.913739 1.586838 1.624982 0.1768 1.394079 1.741453

MOCCSA 2.460545 2.494443 0.172447 2.205154 2.672856 1.660605 1.559032 0.244915 1.499667 2.02469

M2O-CSA 1.368546 1.374133 0.012954 1.354012 1.381514 0.987574 0.987574 0.005226 0.983879 0.99127

Method ZTD6

Mean Median SD Best Worst

MOCSA 0.986023 1.095015 0.275789 0.51511 1.178402

MOCCSA 0.658219 0.58485 0.148562 0.546531 0.905849

M2O-CSA 1.374337 0.826126 1.226659 0.824412 3.568651
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4.4 Results of multi-objective constrained
engineering designs (MOCEDs)

In this subsection, M2O-CSA has experimented on four

multi-objective constrained engineering designs

(MOCEDs) which are popular in the engineering design

field. The engineering design suits are as follows: four bar

truss (FBT) design, welded beam (WB) deign, disk brake

(DB) design and speed reduced (SR) design, where they

involve different characteristics. The details for all engi-

neering designs are provided in Table 14, where their fig-

ures are appended in Fig. 11. The proposed M2O-CSA is

compared with MOCSA and MOCCSA algorithms for all

engineering design suits. All engineering design suits have

experimented through a population size of 60, 200 for

iterations, archive size of 100, flight length of 2, and 0.1 for

awareness probability.

For design suits, 100 Pareto-optimal points are gener-

ated. In this context, a new methodology-based MOORA

technique is employed to help the designer for extracting

the operating point as the best compromise or satisfactory

solution to execute the candidate engineering design.

The Pareto fronts for all engineering designs are pre-

sented in Fig. 12, where the proposed M2O-CSA provides

spread Pareto fronts for all designs and also can dominate

the most points of the compared algorithms. On the other

hand, MOCSA and MOCCSA provide the poorest con-

vergence of Pareto fronts. As the designers or engineers
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Fig. 9 Obtained Pareto front by MOCSA, MOCCSA, and M2O-CSA on ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 for 100 dimensions

Neural Computing and Applications (2020) 32:13715–13746 13733

123



concern and realize the carrying out of the design tasks,

MOORA technique is introduced as a decision making tool

to acquire the operating point of the candidate design. This

operating point is denoted as the compromise solution that

is elicited from the obtained Pareto front based on

MOORA technique, where the results of the compromise

solutions for all designs are reported in Table 15. Based on

the obtained results, we can see that the proposed M2O-

CSA gives superior solutions in terms of the constraints

violations compared with the MOCSA and MOCCSA.

4.5 Discussion

The convergence and coverage of the Pareto fronts

obtained by the proposed M2O-CSA are shown based on

its benefits of qualitative and quantitative results. The

convergence of M2O-CSA is guaranteed by implanting the

orthogonal-based crossover strategy of solutions, while the

coverage is emphasized through adopting the opposition

strategy. In this context, the proposed method is applied on

different tests such as ZDT test suits, some constrained

problems such as SRN, CONSTR, BNH, KIT, TNK

problems and some of the real applications such as FBT,

WB, DB, and SR designs. The comparisons among the

different algorithms prove that the M2O-CSA algorithm

performs the test suits well and does not suffer from

attaining the Pareto fronts, while the compared algorithms

suffer from achieving the Pareto solutions. Furthermore,

visualizing the Pareto fronts for engineering design prob-

lems can hesitate inexpert designer to perform them, so the

MOORA technique is employed to extract the compromise

solution of the candidate design. Therefore, it helps and

facilities the mission of designs for engineering fields.

Finally, the feasibility of employing the proposed M2O-

CSA methodology for solving the multi-objective design

problems has been practically approved, where it was

employed to study four real-world optimization problems

related to computational design fields that involve multiple

objectives optimization. These designs include four bar

truss design, welded beam design, disk brake design, and

speed reduced design. The recorded simulations show that

the M2O-CSA provides a powerful assistance for designing
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Table 11 Multi-objective constrained test suits

Problem name Functions and constraints Range Pareto front’ feature

SRN
Minimize

f1ðxÞ ¼ 2þ ðx1 � 2Þ2 þ ðx2 � 2Þ2

f2ðxÞ ¼ 9x1 � ðx2 � 1Þ2

(

Subject to :

g1ðxÞ ¼ x21 þ x22 � 225

g2ðxÞ ¼ x1 � 3x2 þ 10� 0

x1 2 ½�20; 20�
x2 2 ½�20; 20�

Continuous convex

CONSTR

Minimize

f1ðxÞ ¼ x1

f2ðxÞ ¼
1þ x2
x1

8
<

:

Subject to :

g1ðxÞ ¼ 6� x2 þ 9x1ð Þ� 0

g2ðxÞ ¼ 1þ x2 � 9x1 � 0

x1 2 ½0:1; 1�
x2 2 ½0; 5�

Continuous concave

BNH
Minimize

f1ðxÞ ¼ 4x21 þ 4x22

f2ðxÞ ¼ ðx1 � 5Þ2 þ ðx2 � 5Þ2

(

Subject to :

g1ðxÞ ¼ ðx1 � 5Þ2 þ x22 � 25� 0

g2ðxÞ ¼ 7:7� ðx1 � 8Þ2 � ðx2 þ 3Þ2 � 0

x1 2 ½0; 5�
x2 2 ½0; 3�

Continuous convex

KIT
Maximize

f1ðxÞ ¼ �x21 þ x2

f2ðxÞ ¼ 0:5x1 þ x2 þ 1

�

Subject to

g1ðxÞ ¼
1

6
x1 þ x2 �

13

2
� 0

g2ðxÞ ¼
1

2
x1 þ x2 �

15

2
� 0

g3ðxÞ ¼ 5x1 þ x2 � 30� 0

x1 2 ½0; 7�
x2 2 ½0; 7�

Continuous convex

TNK
Minimize

f1ðxÞ ¼ x1

f2ðxÞ ¼ x2

�

Subject to

g1ðxÞ ¼ �x21 � x22 þ 1þ 0:1 cosð16arctan x1
x2
Þ� 0

g2ðxÞ ¼ 0:5� ðx1 � 0:5Þ2 � ðx2 � 0:5Þ2 � 0

x1 2 ½0; p�
x2 2 ½0; p�

Discrete
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Table 12 Statistical results of GD for constrained problems

Method SRN CONSTR

Mean Median SD Best Worst Mean Median SD Best Worst

MOCSA 133.4477 130.6098 11.35244 114.1482 153.2962 0.00926 0.008488 0.002887 0.005898 0.012938

MOCCSA 53.37386 53.17986 6.48591 46.33395 65.90961 0.016889 0.018935 0.006813 0.006077 0.025527

M2O-CSA 0.310903 0.295142 0.060893 0.243306 0.398874 0.003865 0.003535 0.000992 0.003184 0.006248

Method BNH KIT

Mean Median SD Best Worst Mean Median SD Best Worst

MOCSA 0.353228 0.369699 0.045825 0.288872 0.395399 0.378178 0.355244 0.288454 0.028031 0.958209

MOCCSA 0.376366 0.407966 0.082848 0.253671 0.435861 0.139575 0.081274 0.191616 0.007304 0.65307

M2O-CSA 0.314963 0.315786 0.017739 0.292164 0.344243 0.047906 0.007839 0.081177 0.006164 0.261082

Method TNK

Mean Median SD Best Worst

MOCSA 0.027717 0.025003 0.010958 0.010598 0.042447

MOCCSA 0.015541 0.015386 0.005859 0.009796 0.021597

M2O-CSA 0.003827 0.003802 0.000681 0.002665 0.005231

Table 13 Statistical results of IGD for constrained problems

Method SRN CONSTR

Mean Median SD Best Worst Mean Median SD Best Worst

MOCSA 0.055305 0.054208 0.006128 0.045937 0.068767 0.001433 0.001412 0.000205 0.001154 0.001712

MOCCSA 0.061372 0.051048 0.026218 0.041867 0.128152 0.003419 0.003069 0.001424 0.002077 0.007092

M2O-CSA 0.01476 0.014748 0.001241 0.013048 0.017043 0.000876 0.000867 0.000155 0.000705 0.001139

Method BNH KIT

Mean Median SD Best Worst Mean Median SD Best Worst

MOCSA 0.174789 0.17816 0.069794 0.091334 0.272204 0.005587 0.005864 0.00328 0.001351 0.011421

MOCCSA 0.223935 0.190016 0.097121 0.150988 0.364718 0.010865 0.007598 0.00766 0.004728 0.02491

M2O-CSA 0.046038 0.045814 0.003606 0.039822 0.052371 0.001051 0.00103 6.74E-05 0.000961 0.001152

Method TNK

Mean Median SD Best Worst

MOCSA 0.002858 0.002857 8.92E-04 0.00145 0.004386

MOCCSA 0.002446 0.0027 1.13E-03 0.000926 0.003458

M2O-CSA 0.000187 0.000185 1.24E-05 0.00017 0.000208
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tasks not only for inexpert designers by invoking the

MOORA tool to attain satisfactory or preferred solution

from the Pareto front to execute the candidate engineering

design but also for experts through envisioning various

scenarios of designing conditions that are denoted by

Pareto front and they can choose the most preferred

scenario according to their preferences. Also, it is useful

when no a priori knowledge about the candidate applica-

tion is available. Prudently, this methodology can be a very

promising candidate tool in handling practical situations

with complicated operating conditions as well. Further-

more, we hope that the released methodology will
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Fig. 10 Obtained Pareto front by MOCSA, MOCCSA, and M2O-CSA for SRN, CONSTR, BNH, KIT, and TNK
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encourage the engineers and practitioners to apply it in

multi-objective real environmental areas such as environ-

mental-economic load dispatch problem that aims to

simultaneously minimize the pollution induced by fossil

fuels and the operational costs. Another further direction

including the energy-based wind farm layout that aims to

maximize the output power produced by this farm and

minimize the operating cost is also a very environmental

interesting area.

5 Conclusion

This paper proposed an improved multi-objective orthog-

onal opposition version of the CSA called M2O-CSA. With

maintaining the search strategy of CSA, M2O-CSA is

introduced through incorporating CSA with a multi-

orthogonal opposition strategy, an archive and a new

updating mechanism based on Pareto solutions as the

stored food sources. The proposed M2O-CSA algorithm is

benchmarked on ten test instances including five uncon-

strained test suits and five constrained test suits. The results

are assessed through some performance metrics as quan-

titative indicators such as GD, IGD, SP, and MS. The

results are verified by comparisons with MOCSA and

MOCSA algorithms. For further investigation, the pro-

posed M2O-CSA is compared with some recent state-of-

the-art algorithms. The obtained results prove that the

proposed M2O-CSA is highly competitive or outperform

the compared algorithms and it is insensitive to the high

dimensional problems. Moreover, the proposed M2O-CSA

algorithm was successfully investigated to tackle real

engineering applications including four bar truss design,

welded beam design, disk brake design, and speed reduced

design. The results of M2O-CSA show the superiority over

those reported by other methods, indicating that the pro-

posed M2O-CSA algorithm has an improved convergence

and coverage capabilities for these designs and can be a

good alternative to effectively solve the multi-objective

design tasks. In addition, qualitative results are
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Table 14 Engineering designs with their details

Design 
Name

The Design description Mathematical model The Shape of design

Fo
ur

 b
ar

 tr
us

s (
FB

T
) d

es
ig

n

This design aims to 
minimize simultaneously the 
volume and displacement of 
joints. Where the area of 
each link represents the 
design variables. 

( )1 1 2 3 4

2
2 2 3 4

1 4

2 3

( ) 2 2

Min: 2 2 2 2 2 2( )

 :
1 , 3,

2 , 3,
10, 2 5, 200.

f x L x x x x

Lf x F
E x x x x

Subject to
x x

x x
F E e L

⎧ = + + +
⎪⎪
⎨ ⎛ ⎞

= + − +⎪ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎩

≤ ≤

≤ ≤
= = =

Fig.11-(a). FBT shape

W
el

de
d 

be
am

 (W
B

) d
ei

gn

The aim of this design is to 
minimize both the cost and 
the end deflection 
simultaneously. The 
problem involves some 
constraints such as shear 
stress, bending stress, weld 
length and the buckling 
load. Also, the design 
contains four different 
design variables which are 
the height, the length of the
welded joint, thickness, and 
the width of the beam. 

2
1

2
2

1

2

3

4

1 2 3 4

2

( ) 1.10471 0.04811 (14 )
Min:

( ) 2.1952 /
 :

( ) 13600 0,    
( ) 30000 0,
( ) 0,
( ) 6000 0,

, [0.125,5],  
, [0.1,10],

[ , , , ] [ , , , ],

( ) ( )

f x h l tb l
f x t b

Subject to
g x
g x
g x b h
g x P
h b
l t
h l t b x x x x
where

τ
σ

τ τ τ
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⎨ =⎪⎩
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= − ≥
= − ≥

∈
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2 2 ( / 12 0.25( ) )
504000 / ,
64746.022(1 .0282346 ) .
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Fig.11-(b). WB shape
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e 

(D
B

) d
es
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n

The application of the multi-
plate disk brake appears in 
airplanes, with the aim to 
exhibit effective braking during 
landing. The purpose of this 
design is to minimize both the 
mass of the brake and the 
stopping time simultaneously. It 
contains four design variables 
include the inner radius, outer 
radius, the engaging force 
(applied force) and the number 
of friction surfaces (number of 
friction plates). Out of these 
variables, number of friction 
surfaces takes a discrete integer 
value and then this can make the 
design mixed-integer problem. 
In addition, five different 
restrictions are considered as 
constraints which are the 
distance between the radii of the 
friction plates, length of the 
brake, pressure sustained by the 
plates, the maximum limitation 
for the temperature generated 
and the braking torque.

( ) ( )

( )

( )

( )

( )

( )

( )

( )

2

2

2 2
2 1 4
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2 1

3 3
3 4 2 1
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2 4
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x xg x e x
x x

e x x x x
g x

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎧ = − − −
⎪

−⎨
=⎪ −⎩

= + ≤
= +

= ≤
−

−= − ≤
−

− −
=

≤

( )
2 2
2 1

1 2

43

0

55 80, 75 110,
1000 3000, 2 20

x x

x x
x x

⎞⎛
⎟⎜
⎟⎜
⎟⎜
⎟⎜ ⎟⎜ ⎠⎝

≤
−

≤ ≤ ≤ ≤
≤ ≤ ≤ ≤

Fig.11-(c). DB shape

Neural Computing and Applications (2020) 32:13715–13746 13741

123



demonstrated by visualizing the Pareto front for engineer-

ing design problems. Furthermore, the hesitance of the

designer handled by introducing MOORA technique is to

extract the compromise solution of the candidate design

and therefore it provides a friendly-user system for

designers.

Besides, the proposed work is giving two new directions

toward practical implementation: (1) improving the crows’

searchability such that multi-objective real life problems

can be handled; (2) presenting a fruitful decision making

model for engineers or designers to decide the best alter-

native regarding the operating situations when the non-

dominated set is considered. Although the M2O-CSA has

been demonstrated to be superior and competitive to other

compared algorithms, a fact of no free lunch (NFL) theo-

rem cannot be ignored, that is the M2O-CSA may still have

more room to be competitive enough with huge dimensions

and/or many constraints that may deteriorate both of the

convergence pattern and diversification abilities toward the

true Pareto front. Therefore, some improvement strategies

such as mutation schemes, parallel implementation, and

hybridization with other algorithms are other research

paths that can be implemented in the future to improve

performance behavior where these strategies can be applied

around the best Pareto front obtained by M2O-CSA to

guide the search toward better vicinities and then the per-

formance of the solutions is strengthened. In addition, we

attempt to develop a discrete fusion of the M2O-CSA to

solve combinatorial optimization applications. In this

context, the discrete fusion can be implemented through a

truncation strategy or mapping mechanism to transfer the

continuous decision variable to a discrete decision variable.

Table 14 continued
Sp
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The goal of this design problem 
is to minimize the weight of the 
gear assembly and the 
transverse deflection of the 
simultaneously optimize shaft. 
In this design, different 
constraints are considered on 
bending stress of the gear teeth, 
surfaces stress, transverse 
deflections of the shafts and 
stresses in the shafts while 
seven design variables are 
imposed such as the face width, 
module of teeth, number of 
teeth in the pinion, length of the 
first shaft between bearings, 
length of the second shaft 
between bearings and the 
diameter of the first and second 
shafts, respectively. This design 
is considered as a mixed-integer
problem because of the third 
variable is an integer while the 
rest variables are continuous.
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Fig. 12 Obtained Pareto front for design problems
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Table 15 The best compromise

solution using MOORA

mechanism for FBT, WB, DB,

and SR designs

Design name Design characteristic MOCSA MOCCSA M2O-CSA

FBT Design variables

x1 1.059914 1.065766 1

x2 2.871824 1.916232 2.969928

x3 1.549023 1.496284 1.414214

x4 2.876502 1.099561 1.324033

Objective functions

f1ðxÞ 1727.504 1282.397 1390.084

f2ðxÞ 0.005507 0.024484 0.011363

WB Design variables

x1 0.737506 0.98478 0.931073

x2 0.948432 1.091289 0.57131

x3 9.433933 8.743876 10

x4 0.410887 1.96115 1.058428

Constraints

g1ðxÞ - 2589.16 - 6131.72 - 144.593

g2ðxÞ - 16217.7 - 26638.7 - 25238.2

g3ðxÞ 0.326619 - 0.97637 - 0.12736

g4ðxÞ - 0.61251 - 0.85978 - 0.80607

g5ðxÞ - 43149.9 - 5078912 - 865,128

Objective functions

f1ðxÞ 3.6842 13.61934 7.966978

f2ðxÞ 0.332983 0.001674 0.002074

DB Design variables

x1 64.98809 63.09972 80

x2 85.69782 86.38307 100.0575

x3 2720.737 2878.739 2999.994

x4 7.115609 4.510027 7

Constraints

g1ðxÞ - 0.70973 - 3.28335 - 0.0575

g2ðxÞ - 9.71098 - 16.2249 - 10

g3ðxÞ - 0.12234 - 0.13659 - 0.13545

g4ðxÞ - 0.77988 - 0.79248 - 0.74994

g5ðxÞ - 57665.3 - 38131.3 - 74847

Objective functions

f1ðxÞ 0.935153 0.598609 1.061782

f2ðxÞ 4.460186 6.692364 3.448482

SR Design variables

x1 3.051515 2.693731 3.6

x2 0.732546 0.712028 0.7

x3 17 17 17

x4 7.640489 7.68032 7.785744

x5 7.972066 7.471643 7.786991

x6 3.871891 3.252395 3.9

x7 5.403132 5.162313 5.290751
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Furthermore, investigating the performance of M2O-CSA

on dynamic many-objective optimization problems, incor-

poration of uncertainties in optimization models and more

practical problems such as energy-based optimization, and

labor-aware flexible job shop scheduling under dynamic

electricity pricing optimization tasks are also worthwhile

directions.
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