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Abstract
A closed-loop supply chain structure organises material and information flows from origin points to consumption points,

including production, recycling, disposal, and other reverse logistic activities. Some integration problems arise with this

structure including production, inventory, location, routing, distribution, collection, recycling, and routing. The integration

problems that are facing scientific researchers include inventory routing, location routing, and location inventory. This

study considers the integration problem of a closed-loop supply chain for the production, distribution, collection, and

recycling quantities, along with the distribution and collection routes for each time period of a finite planning horizon. We

refer to this problem as the ‘‘Closed-Loop Supply Chain Integrated Production-Inventory-Distribution-Routing Problem’’

(CLSC-PRP). A mathematical model is proposed that is the first to determine both quantities and routes for the CLSC-PRP

simultaneously. As the problem is known to be NP-hard in terms of computational complexity, a simulated annealing-

based decomposition heuristic is developed for solving large-scale CLSC-PRP instances. The results of the proposed

mathematical model for the CLSC-PRP are compared with the results of the developed heuristic and two separate models

that manage forward and backward production routing problems. An extensive comparative study indicated the following:

(i) the proposed model was able to reduce the cost required for operating the total supply chain by an average of 12%, along

with providing a positive impact on the environment and (ii) the proposed heuristic is able to generate solutions that are

close to optimal in most cases.

Keywords Closed-loop supply chains � Production routing problem � Closed-loop supply chain integration �
Meta-heuristics

1 Introduction

A closed-loop supply chain (CLSC) involves the coordi-

nated planning and managing of all production, distribu-

tion, and collection processes along with the reverse

processes, such as recycling, remanufacturing, or refur-

bishing, in the same supply chain. In a typical CLSC with

recycling, new products are manufactured at the production

facility and are then stored in a warehouse to be distributed

to customers via distributors. Returned products are col-

lected from customers by collectors or distributors and are

then transferred to a recycler or the manufacturer. A

returned product is a product that has one of the following

conditions: out of order, out of date, unsold, recalled, or

includes pull-and-replace repair parts [1].

CLSCs have been increasing in many areas, not only

owing to recent legislation (e.g. white and brown goods

disposal legislation in the Netherlands, waste electrical and

electronic equipment (WEEE) directives in the EU) but

also to environmental concerns and economic gains from

reverse processes. Figure 1 shows a summary of results for

returned products, in terms of how they are processed in the

USA [2]. In recent years, paper and metal recycling have

been substituted for landfilling options, and plastic and

food have been increasingly recycled. Plastic recycling has

been increasing annually by 18% (on average) since 2000.

These results have inspired researchers to find models that

can manage CLSC problems for different products.
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Although the production, distribution, and reverse pro-

cesses of a CLSC can be handled separately, integration

problems considering two or more processes need to be

studied more deeply in this area. This study considers the

integration problem of a CLSC for the production, distri-

bution, collection, and recycling of quantities, along with

distribution and collection routes at each time period for a

finite planning horizon. We refer to this problem as ‘‘The

CLSC Integrated Production-Inventory-Distribution-Rout-

ing Problem’’ (CLSC-PRP).

The CLSC-PRP has two distinct sub-problems: forward-

and backward-coordinated production routing problems

(PRPs). The forward-coordinated PRP is concerned with

determining the operational schedules to manage produc-

tion, inventory, and transportation routing to meet cus-

tomer demands. In this problem, the total cost comprises

production, inventory, and transportation costs and should

be minimised over a given planning horizon while meeting

transport times, production capacity, and inventory con-

straints [3]. One of the first studies in this area, by Chandra

and Fisher, shows that optimal coordinated production and

distribution decisions may provide a decrease in total costs

of between 3 and 20% [4].

The backward-coordinated PRP concerns determining

the operational schedules for minimising the total cost of

managing recycling, inventory, and collection routing

activities. As companies are forced to collect and process

their returned products owing to legislative and cost con-

cerns, they need to consider integrating both collection and

distribution networks together in the schedules [5]. In

addition to integration, the production and recycling should

be balanced to avoid redundant make-to-stock production

or unnecessary inventory levels. Therefore, the collection,

distribution, production, and recycling activities are inter-

connected and should be considered together to achieve the

cost-efficient management of CLSCs. In this study, a

Fig. 1 Returned products recycling, combusting, and landfilling amounts: a paper, b metal, c plastic, and d foods
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mathematical model is proposed and is the first study to

schedule these activities for a CLSC-PRP. A multi-period,

single-product, single-manufacturer, and single-recycler

problem is considered for this aim. As the problem may be

non-deterministic polynomial-time (NP)-hard for large-

scale CLSC-PRP instances in terms of computational

complexity, a simulated annealing (SA)-based decompo-

sition heuristic is also developed in this study.

The remainder of the paper is organised as follows.

Section 2 presents the related literature regarding the

integrated production and distribution problems in CLSCs.

The proposed mathematical model for a CLSC-PRP and

two-stage modelling approach mathematical models are

provided in Sect. 3. Section 4 explains the developed

decomposition heuristic. A case study and extensive

comparative studies are conducted to compare the model

results in Sects. 5 and 6. The managerial implications are

summarised in Sect. 7, and the conclusion and further

suggestions are provided in Sect. 8.

2 Related literature

In classic manufacturing systems, there are two decisions:

production and distribution. Production-related decisions

concern production and inventory levels, whereas distri-

bution-related decisions concern shipping and routing

problems. Although production- and distribution-related

decisions have been generally addressed separately, the

integration of these decisions (called the PRP) provides

more robust and efficient solutions for supply chains [4]. In

a PRP, the decisions are related to production and distri-

bution in the forward flow, while in CLSCs, integrated

decisions have been widely used in production and the

reverse processes in both forward and backward flows.

In the literature, there are many studies in which the

production- and distribution-related decisions are solved in

an integrated manner [6–8]. The PRP types in the literature

are classified in terms of the number of products, plants,

and planning periods, which can be single or multiple. As

the problem is known to be NP-hard, heuristic solution

methods are frequently used [3, 9–18].

Integrated production and distribution problems affect

operational-level decisions, such as inventory, production,

collection, recycling (or other reverse processes), and

routing aspects; therefore, these decisions should be con-

sidered together. However, this makes solving CLSC

integration problems at the operational level more difficult.

In a CLSC, operations in the forward and backward flows

are planned in the same facility, coordinating the produc-

tion and reverse processes and neglecting collection to

minimise production costs [19–23], whereas the production

and return amounts are determined in an integrated

manner, considering inventory and collection costs [24].

While most of the studies focused on the cost minimisation

objectives, Darvish et al. [25] considered environmental

objectives in order to handle environmental emissions

reduction. Some researchers extend this problem by con-

sidering distribution decisions along with production and

reverse logistics operations. These decisions generally

involve the production and distribution quantities of both

new and returned products [26–29]. Other studies have

considered and integrated new problems into a CLSC, such

as supplier contracting, inventory routing, and facility

location problems. Recent studies on the integration of

CLSCs show that decisions made simultaneously lead to a

better supply chain performance. In a recent study, supplier

contracting, facility location, and production and distribu-

tion decisions were made for single period, multi-echelon,

and multi-product CLSCs [30]. A CLSC inventory routing

problem with a pickup delivery problem was considered by

determining the inventories within the routing of these

inventories for returnable transport items [31].

The studies classified for both PRP and CLSC integra-

tion are summarised in Table 1. The studies consider

integrating different processes to different manufacturing

and product environments with different planning horizons.

Supply chain types denote the consideration of closed-loop

chain decisions or only classical supply chain decisions.

The numbers of products, plants, and periods affect the

decisions of the problem. The production decisions are

primarily the production amounts of each product, plant,

and period. The inventory decisions are the inventory

levels of each product, plant, and period. While the dis-

tribution decisions are the distribution amounts to the

nodes during the periods, routing decisions consider the

routes that will be travelled for these distributions. The

amounts of the collected products are considered in some

CLSC-PRP studies.

The studies focused on the PRP show that the problem is

affected by the application area. Perishable products can

also be considered in the PRP environments as in the study

of Qui et al. [32]. In another application of the problem, a

mathematical modelling approach was proposed for the

furniture industry in order to handle case specific setup and

routing aspects [33].

The integration of a PRP and CLSC is another problem

in this area and must consider all decisions in both forward

and backward flows. This is a difficult task, and this inte-

gration is minimally studied in the literature. Fang et al.

studied an integration problem involving the determination

of the inventory levels, production, and distribution and

collection quantities, along with the routes [34]. However,

this study disregarded the integration of reverse processes

such as recycling and remanufacturing with the PRP. To

the best of our knowledge, a fully integrated CLSC-PRP

Neural Computing and Applications (2020) 32:13605–13623 13607
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has not yet been studied. This is the first study to consider

the integration of recycling and collection decisions along

with the classical PRP. This study proposes a mixed integer

mathematical model for a fully integrated CLSC-PRP.

Subsequently, a decomposition heuristic based on an SA

approach is developed to solve large-scale instances.

Extensive computational experiments are conducted for

evaluating the effects of the integration between production

and distribution decisions in such a CLSC, and managerial

implications are developed.

3 CLSC-PRP

3.1 Problem environment

The CLSC-PRP periodically determines the production,

inventory, distribution, collection, and recycling quantities,

along with the routes. The objective of this problem is to

find the minimum total costs in a finite horizon while

deciding the production, inventory, recycling, distribution,

and collection quantities and pickup/delivery routes. As

illustrated in Fig. 2, in each period, the problem is deciding

whether production or recycling may take place or not and

what nodes (manufacturer, distributors, collectors) are

visited during the period while satisfying customer

demands and other constraints. While a forward route

(depicted with lines) includes distribution activities during

a period, a backward route (depicted with long dashes)

considers the collection activities during the same period.

Some nodes may not be included in any routes in a period

(depicted with short dash).

In this problem, a central company with a single facility

(to manufacture new products and to recycle returned

products) is considered to make a production and distri-

bution plan over periods in planning horizon T. In one day,

customer demands known in advance must be satisfied, and

similarly, returned products must be collected.

The company has a single product, and production and/

or recycling operations take place each day, with a limited

Fig. 2 Multi-period CLSC-PRP
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production/recycling capacity. If new products are manu-

factured or returned products are recycled in a period, a

fixed setup cost (different for production and recycling) is

incurred. Recycled material quantities are bounded as a

proportion of production quantities, owing to legislation.

Purchasing costs for raw materials and collection costs for

returned products occur; therefore, the most cost-effective

decisions on production and recycling should be chosen.

Products can be distributed or stored in the production site

or at other nodes, while adhering to the lower (owing to

safety stock requirements) and upper (owing to physical

place) bounds of each place.

In addition to the production decisions, the distribution

and collection activities are carried out by K trucks from/to

N nodes. A node may be a distribution (retail) centre,

collection centre, or combined distribution/collection cen-

tre. New and returned products having the same trans-

portation volume and weight can be transported together in

a truck. In the CLSC-PRP, it is assumed that customers

travel to distribution/collection centres (retails) themselves

for buying/returning the products as is usual in the most of

CLSC studies. Therefore, distributions from facility to

nodes for new products and collections and from nodes to

facility for returned products are planned together, with the

intent of minimising the number of trucks in a day. There

are two costs while using a truck: fixed costs and trans-

portation costs. The transportation cost is related to the

length of the route travelled by the truck, whereas the fixed

cost does not change with an increase or decrease in the

length of the route.

3.2 Mathematical model

The mathematical model of the CLSC-PRP is given in this

section, and the assumptions considered in this model are

as follows:

• The CLSC has the following characteristics: a single

product is produced at a single manufacturing facility,

and returned products are recycled at the same facility.

This condition can be realised for different products,

such as fat oils, milks, and plastics.

• Manufacturing and recycling facilities have different

setup costs for producing and recycling materials each

day, and the quantities of production and recycling are

limited to the capacities (different for production and

recycling).

• The number of customers and their demand forecasts

are known. Each customer (and manufacturing facility)

can keep inventories for new and returned products with

a holding cost (different for new and returned products)

per period.

• Periods can be a shift, day, or week. In this study, a

period is assumed as a day.

• The returned products are only stored as new products

and recycled products when they are needed. Raw

materials can be purchased; however, it is not allowed

to hold them in the inventory.

• It is assumed that a truck can only travel at a constant

velocity; this means that the travelling time can be

computed using a length of a tour. At the start of a day,

all trucks settle in the facility, and all trucks must return

to the facility at the end of a day (if a tour is

constructed) as is usual in other PRP studies.

The notation of the mathematical model is given in

Appendix 1, and the mixed integer programming model is

given below in (1)–(23).

min z ¼
XT

t¼1

smt � Ym
t þ

XT

t¼1

srt � Yr
t

þ
XT

t¼1

cmt � pt þ
XT

t¼1

crt � prt

þ
XT

t¼1

qmt � pmt þ
XT

t¼1

wr
t �
XN

i¼0

XV

k¼1

Qr
ikt

 !

þ
XT

t¼1

XK

k¼1

fk � Ukt þ
XT

t¼1

XN

i¼0

X

j¼0

N

i 6¼j

XV

k¼1

cv � lij � Zijkt

þ
XT

t¼1

XN

i¼0

hm � Imit þ
XT

t¼1

XN

i¼0

hr � Irit

ð1Þ

Subject to:

Im0t ¼ Im0t�1 þ pt �
XN

i¼1

XK

k¼1

Qm
ikt t 2 T ð2Þ

Ir0t ¼ Ir0t�1 � c� prt þ
XN

i¼1

XK

k¼1

Qr
ikt t 2 T ð3Þ

Imit ¼ Imit�1 � dmit þ
XK

k¼1

Qm
ikt t 2 T; i 2 Nc ð4Þ

Irit ¼ Irit�1 þ drit �
XK

k¼1

Qr
ikt t 2 T ; i 2 Nc ð5Þ

Xm
ijkt þ Xr

ijkt �Ck � Zijkt i 2 N; j 2 N; t 2 T ; k 2 K ð6Þ

X

j¼1

N

i 6¼j

Xm
jikt �

X

v¼1

N

i 6¼v

Xm
ivkt ¼ Qm

ikt k 2 K; t 2 T ; i 2 N ð7Þ

XK

k¼1

XN

j¼1

Xm
0jkt �

XK

k¼1

XN

i¼1

Xm
i0kt ¼

XK

k¼1

XN

v¼0

Qm
vkt t 2 T ð8Þ
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X

j¼1

N

i 6¼j

Xr
jikt �

X

v¼1

N

i 6¼v

Xr
ivkt ¼ �Qr

ikt k 2 K; t 2 T ; i 2 N ð9Þ

XK

k¼1

XN

j¼1

Xr
0jkt �

XK

k¼1

XN

i¼1

Xr
i0kt ¼

XK

k¼1

XN

v¼0

�Qr
vkt t 2 T

ð10Þ
X

i¼1

N

i 6¼j

Zijkt �
X

v¼1

N

i 6¼v

Zjvkt ¼ 0 k 2 K; t 2 T; i 2 N ð11Þ

XN

i¼0

X

j¼0

N

i 6¼j

Zijkt � lij � L� Ukt k 2 K; t 2 T ð12Þ

XN

i¼1

Z0ikt �Ukt k 2 K; t 2 T ð13Þ

XN

i¼1

Zi0kt �Ukt k 2 K; t 2 T ð14Þ

pt �Bm � Ym
t t 2 T ð15Þ

prt �Br � Yr
t t 2 T ð16Þ

prt � b� pt t 2 T ð17Þ

pt � a� prt þ pmt
� �

t 2 T ð18Þ

gmi � Imit � ami t 2 T ; i 2 N ð19Þ

gri � Irit � ari t 2 T ; i 2 N ð20Þ

pt � 0;Xm
ijkt � 0;Qm

ikt � 0; Ym
t 2 0; 1f g

i 2 N; j 2 N; t 2 T ; k 2 K
ð21Þ

prt � 0;Xr
ijkt � 0;Qr

ikt � 0; Yr
t 2 0; 1f g

i 2 N; j 2 N; t 2 T ; k 2 K
ð22Þ

Ukt 2 0; 1f g; Zijkt 2 0; 1f g i 2 N; j 2 N; t 2 T ; k 2 K

ð23Þ

The objective function (1) expresses the total costs

consisting of the following: (i) setup costs, (ii) variable

operating costs, (iii) purchase/collection costs, (iv) routing

costs, and (v) holding costs. Constraints (2) to (5) are the

inventory balancing constraints. Constraints (2) and (3) are

provided to balance the production and recycling invento-

ries at the facility, whereas Constraints (4) and (5) ensure

the inventory levels at other nodes.

Constraints (6) to (10) are the distribution constraints.

Constraint (6) ensures that a truck cannot pick up a number

of products exceeding the truck capacity when a node is

visited. Constraint (7) forces delivery quantities to be

transferred to provide incoming-outgoing balance. Simi-

larly, Constraint (9) imposes the same for returned prod-

ucts. Constraint (8) ensures that total delivery quantities are

taken from the central depot. Similarly, Constraint (10)

imposes the same for returned products. Constraints (11) to

(14) are for vehicle routing. Constraint (11) ensures route

continuity. Constraint (12) ensures that the travel does not

exceed the tour length. Constraints (13) and (14) ensure

that a tour should start and end at the central depot. Typical

sub-tour breaking constraints are not needed in the model,

because Constraints (7) to (10) are used for demand ful-

filment, as used previously in [9].

Constraints (15) to (18) are the production constraints. If

production (recycling) takes place at a facility, it is boun-

ded by a production (recycling) capacity. This is ensured

by Constraints (15) and (16). As mentioned previously,

only limited recycled quantities can be used for production,

which is imposed by Constraint (17). Constraint (18) is a

specific production rate constraint. For instance, in mar-

garine production, the amount of crude oil used is mixed

with water, and therefore, the actual production quantities

are greater than the used raw material quantities. Therefore,

the used raw materials (new or recycled) are multiplied by

a production coefficient to find the production quantities.

Constraints (19) and (20) force the system into bound

inventories within permitted limits for each point. Finally,

Constraints (21) to (23) are the valid ranges of decision

variables.

This model is known as NP-hard, even if it is reduced to

a classical PRP or vehicle routing problem (VRP), which

are also known as NP-hard.

3.3 Two-stage modelling approach

As shown in previous studies, the coordinated PRP model

is efficient for classical supply chains when production and

distribution issues are separated. However, we focus on

investigating whether this model is effective when forward

and reverse flows are considered in an integrated manner.

In the classical way, the forward and reverse PRP models

are solved separately. First, the forward PRP model is

solved, and production quantities and distribution planning

decisions are acquired from this model; then, possible

recycling and collection decisions are made based on these

results. With this approach, the forward PRP (FPRP) is

solved first, and then, the reverse PRP (RPRP) is solved by

using the production plan acquired from the FPRP.

Neural Computing and Applications (2020) 32:13605–13623 13611
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3.3.1 Forward production routing problem (FPRP)

In the FPRP, the production quantities of each period (pt) if

production took place (Ym
t ), inventory levels of nodes (Imit ),

delivery routes (Zijkt) if used by a vehicle (Ukt), and dis-

tribution quantities (Qm
ikt,X

m
ijkt) are determined for the

planning horizon. The Objective (24) of the model min-

imises the total cost, as relevant to forward flows. Con-

straint (25) ensures that the vehicle capacity in each node is

not exceeded. Constraints (2), (4), (7), (8), (11), (12), (13),

(14), (15), (19), (21), and (23) are the same as with the

CLSC-PRP. The FPRP model is given below:

FPRP model

minz ¼
XT

t¼1

smt � Ym
t þ

XT

t¼1

cmt � pt þ
XT

t¼1

XK

k¼1

fk � Ukt

þ
XT

t¼1

XN

i¼0

X

j¼0

N

i6¼j

XV

k¼1

cv � lij � Zijkt þ
XT

t¼1

XN

i¼0

hm � Imit

ð24Þ

subject to

Xm
ijkt �Ck � Zijkt i 2 N; j 2 N; t 2 T; k 2 K ð25Þ

With Constraints (2), (4), (7), (9), (11), (12), (13), (14),

(15), (19), (21), and (23).

3.3.2 Backward PRP (RPRP)

In the RPRP, the recycled and rawmaterial quantities of each

period (prt ,p
m
t ) if recycling took place (Yr

t ), inventory levels

of nodes (Irit), delivery routes (Zijkt) if used by a vehicle (Ukt),

and distribution quantities (Qr
ikt,X

r
ijkt) are determined for the

planning horizon. TheObjective (26) of themodelminimises

the total cost, as relevant to reverse flows. Constraint (27)

ensures that the total capacity of a truck cannot be exceeded.

Constraints (3), (5), (9), (10), (11), (12), (13), (14), (16), (17),

(18), (20), (22), and (23) are the same aswith theCLSC-PRP.

The RPRP model is given below:

RPRP model

minz ¼
XT

t¼1

srt � Yr
t þ

XT

t¼1

crt � prt þ
XT

t¼1

qmt � pmt

þ
XT

t¼1

wr
t �
XN

i¼0

XV

k¼1

Qr
ikt

 !
þ
XT

t¼1

XK

k¼1

fk � Ukt

þ
XT

t¼1

XN

i¼0

X

j¼0

N

i 6¼j

XV

k¼1

cv � lij � Zijkt þ
XT

t¼1

XN

i¼0

hr � Irit

ð26Þ

subject to

Xr
ijkt �Ck � Zijkt i 2 N; j 2 N; t 2 T; k 2 K ð27Þ

with Constraints (3), (5), (8), (10), (11), (12), (13), (14),

(16), (17), (18), (20), (22), and (23).

4 Proposed heuristic (DH)

As mentioned previously, the CLSC-PRP has integrated

production and distribution problems. The decomposition

heuristic solves each of these problems independently and

updates the solution according to their trade-offs. The

framework of the decomposition heuristic to solve the

CLSC-PRP is described in the following. In the CLSC-

PRP, there are two groups of variables: continuous vari-

ables including production, inventory, and distribution

quantities, and binary variables including production (tak-

ing place or not), recycling (taking place or not), and

routing decisions. The requirements of the solution method

are as follows: (i) to decide on a solution that manages both

binary and continuous variables together, (ii) to construct

tours considering different production plans, and (iii) to

determine production, inventory, and distribution quantities

within the bounds. The rest of this section explains these

requirements.

4.1 The DH framework

The proposed framework of the decomposition heuristic is

explained in Algorithm 1. The algorithm starts by gener-

ating initial solutions (Line 2). An example solution is

detailed in Sect. 4.2. An initial solution is generated uni-

formly and randomly. Then, the trip feasibility (Line 3)

must be checked to avoid infeasible route plans, as

described in Sect. 4.3, and the solution is evaluated as

described in Sect. 4.5 (Line 4). If the initial solution is

feasible, then it is assigned as a global best solution (Lines

5–8). After these initialisation steps, the iterative procedure

starts (Lines 9–21). An SA method is used in this proce-

dure, as described in Sect. 4.6. The algorithm stops when

the maximum number of iterations (IterMax) is reached. In

each iteration, a number of neighbour solutions (nMax) are

searched and evaluated to find the best neighbour.
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4.2 Solution encoding

An encoded example solution for the present method is

given Table 2. A cell that is equal to one in the solution

matrix represents a given node being visited on a given

day. Conversely, if it equals zero, the node is not visited on

the given day. The decision variables of the mathematical

model (production, inventory, distribution, and routing) are

determined using the solution matrix.

4.3 Checking trip feasibility of a solution

A solution may be infeasible because of failing to ensure

the following: (i) daily loads do not exceed the total

available truck capacities, and (ii) the tour includes the

facility. A repair function, proposed to check the feasibility

of a solution, is explained in Algorithm 2.

The algorithm converts a solution into the solution

matrix S (Line 2) to ensure that the aggregated truckloads

do not exceed the total capacity. If the aggregated truck-

loads are exceeded, the visiting day of a randomly selected

node is postponed to one of the upcoming days (Lines

4–13). If the second infeasibility condition is detected, the

facility is added to the visiting plan for the given day

(Lines 16–20).

4.4 Constructing tours of a solution

The savings algorithm proposed by Clarke and Wright

constructs tours by consolidating visiting nodes according

to the distance savings of the consolidation [36]. In this

algorithm, routes are determined by demands for a finite
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number of capacitated trucks. It also provides a tour that

starts and ends at the depot. The algorithm is called a

saving algorithm as it focuses on the idea that visiting two

nodes in the same tour provides a cost savings, rather than

constructing a new separate tour. Cost savings can be

calculated using (28). The costs of traversing between

locations b and a can be calculated by cba ¼ cv � lba: Let

Sab denote the savings from adding a and b in a same tour:

Sab ¼ c0a þ cb0 � cba ð28Þ

Near-optimal solutions can be determined by constructing

tours that maximise the cost savings. In the CLSC-PRP, both

new and returned products are transported together, consid-

ering not only capacitated trucks, but also limited tour lengths.

Therefore, the algorithm needs to be improved for such con-

ditions, as depicted in Algorithm 3. The algorithm starts with

the initial situation (no pair is visited, and a null route is set

(Lines 2–3)). Then, the savings are calculated for all pairs

(Lines 4–13), and the savings are organised in descending

order (Line 14). After these steps, each pair is traversed (Lines

15–30). If both arcs are included in a route, the pair is ignored

(Line 16). If one of the paired arcs is assigned to a previous

route, the other is added to the route, considering the capacity

and route length (Lines 17–26). Then, if none of the paired

arcs are a part of a route, a new route is constructed (Lines

27–29). The algorithm constructs the routes after one pass of

all pairs. Owing to the simplicity of the algorithm, routes are

determined by this algorithm during the iterations of the DH.

Table 2 Example solution

representation
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Facility 1 0 1 0 1 1 1

Distributor 1 1 0 1 0 1 0 1

Distributor 2 1 0 0 0 1 0 0

Collector 1 0 0 1 0 1 1 0

Collector 2 0 0 1 0 0 1 1
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4.5 Evaluating a solution

The constructed tours could represent the routing decision

variables of the CLSC-PRP, which is composed of almost

all binary variables. For this reason, the mathematical

model is reduced to exclude the routing problem to eval-

uate the solution. The reduced problem determines the

production, inventory, and distribution quantities of a given

route.

The one problem occurs from this reduced model is that

production and inventory constraints may not be satisfied

in given routes (infeasible solution). In such a condition,

the objective (evaluation of solution) is multiplied by a

penalty cost to avoid being trapped in infeasible solutions.

4.6 Random search mechanism

In the DH, a random search mechanism is provided by the

SA method, which is inspired by a physical annealing

system. The energy level of the system refers to the

objective of the problem. This means a better solution,

similar to a lower energy state of a physical system. This

method simulates the physical system’s behaviour with

annealing, until there is too low an energy level and/or high

order of temperature progression [37].

Similar to some metaheuristic algorithms, SA searches

the solution space with neighbour solutions. The main

problem regarding that approach is being trapped into local

minima. To avoid such conditions, a worse solution (a

solution that does not positively affect the systems condi-

tion) may be accepted, using the Boltzmann distribution

probability function (29) which depends on the system

temperature and differences between solutions [38].

p xnewð Þ ¼ e
� fnew�foldð Þ

T ð29Þ

The acceptance criteria of the SA approach are depicted

in Algorithm 4. If the new solution is better than the old

one (which provides less total cost value), the solution is

accepted and is saved as a better solution (Lines 2–3). If the

new solution is worse than the old one, the probability is

calculated, and it is accepted if this probability is larger

than a threshold (Lines 4–6).

5 A case study

Oil supply chains can be used as an example of the CLSC

environments discussed in this study. In this section, as an

example, the CLSC-PRP is used for a regional fats and oils

production company in Turkey. The company environment

is as follows:

1. Most food products go only to disposal; in contrast, oil

products can be recycled.

2. A margarine product can be returned for the following

conditions: (i) having rheological defects (colour,

tissue, taste, smell), (ii) expired shelf life, and (iii)

damaged product (transportation and process

damages).

3. The recycled margarine reaches a crude oil specifica-

tion owing to the purification process. This means that

recycled margarine can be used as a raw material,

considering regulations and functionality. From that

perspective, returned margarines may decrease the

production costs.

4. New and returned margarines can be transported within

same acclimatised trucks.

The closed-loop cycle of the margarine is depicted in

Fig. 3. In this process, the collected margarines are melted

and decanted to transform to recycled oil. Crude oil and

recycled oil are mixed in a premix tank while adding water.

Then, a cooling and kneading process is applied to the

Fig. 3 Margarine’s closed-loop cycle [39]
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mixed margarine, and it is stored in acclimatised depot for

distribution.

In this case study, a 15-day planning problem is con-

sidered, and the dataset is briefly described in Table 3.

Distribution activities are carried out by different capacities

of vehicles (4.5, 14, and 23 ton), and during the planning

horizon, six different points demand new products or col-

lection requests for recycling. The distances between cities

are gathered from Google Maps.

The results of the mathematical model and two-stage

modelling approach for the given case study are sum-

marised in Table 4. It is observed that the integrated

approach saves approximately 12% of the total costs. In

particular, it reduces the distribution costs. Both approa-

ches were solved in a reasonable time, and the mathe-

matical model solution took considerably less effort. As the

problem was solved in a reasonable time, there was no

need to solve this problem with a DH approach.

6 Computational studies

In this section, computational studies are conducted to

analyse the proposed approaches’ performances, based on

different conditions. A CPLEX engine with a single thread

in a general algebraic modelling system (GAMS) is used

for solving all the mathematical models. The computer has

a 3.5 GHz Intel i7 CPU with up to 16 GB of random-

access memory. Finally, the DH heuristic is coded in

MATLAB.

6.1 Data generation

To the best of our knowledge, there is no common dataset

for evaluating the CLSC-PRP. For this reason, randomly

generated test instances are used. All of the parameter

values are uniformly distributed, and the distances are

calculated with Euclidean distances.

A 4 9 2 general factorial design with two replications is

implemented to measure the performance of the solution

methods under different conditions. The main factors are

the number of nodes, with 4 levels (5, 10, 15, and 20), and

the number of periods, with 2 levels (5 and 10).

6.2 Parameter setting of the DH

In the DH, some of the user-defined parameters influence

the solution time and quality, and these parameters are

determined using trial-error method. The initial tempera-

ture, temperature reduction rate, and number of neighbour

solutions are the user-defined parameters of the SA. The

base test instance is randomly generated for 8 nodes and 7

periods (for data set see Appendix 2). To avoid the ran-

domness of the heuristic approach, the SA algorithm is run

30 times, and the average results obtained from these

experiments are used for determining the user-defined

parameters. A total of 1000 iterations is selected as the

stopping criterion, and the results are given in Fig. 4.

The initial temperature is changed from 1000 to 25,000

in the 1000 increments, and it is found to be a significant

parameter. Whereas the CPU times slightly vary for

Table 3 Case study parameters
Parameters Values

Daily production capacity 1.68 ton

Daily recycling capacity 0.80 ton

Minimum–maximum distance of two points 192–1361 km

Setup cost/handling cost 432.00

Setup cost/handling cost (returned products) 368.57

Truck use fixed/variable costs (truck capacity values) 180 (4.5 ton)–560 (14 ton)–920 (23 ton)

Production rate 1.19

Maximum recycling rate 0.1

Table 4 Case study results
Performance indicator Mathematical modelling approach Two-stage modelling approach

Objective function value ($) 57,106.16 64,996.16

CPU time (s) 32.29 72.04

Number of tours 8 11

Number of production days 7 7

Number of recycling days 4 4

Sum of inventories 17.876 17.876

Sum of return inventories 297.56 297.56
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different initial temperatures (Fig. 4a), the gap between the

optimal costs is approximately 10% in some cases

(Fig. 4b). The results are predictable, owing to the fact that

the solution acceptance probability increases when the

selected temperature is too high (see (29)). Conversely, a

suitable solution may be rejected when the temperature is

set to lower values. For this reason, the initial temperature

is set at 19,000, which provides the best cost value and

solution time.

Another issue is to determine the best temperature

reduction rate, which ranges from 0.1 to 0.99 in this study.

Compared with the initial temperature value, it has a

greater influence in terms of the CPU times and objectives

(see Fig. 4c and d). The temperature reduction rate pro-

vides a decrease in the acceptance probability during the

iterations, and this affects the convergence ability of the

algorithm. The best value is acquired when a equals 0.9,

and therefore, it is set to 0.9.

Finally, the last parameter, the number of neighbour

solutions being searched in each iteration, is examined

between 1 and 10 (Fig. 4e and f). The number of neighbour

solutions searched in an iteration may increase the solution

time if set to higher values. It is evident that when the value

of the number of neighbour solutions searched in each

iteration equals five, the heuristic finds the optimal solution

with the minimum CPU time. Therefore, the number of

neighbour solutions that will be searched by each iteration

is set to five.

6.3 Numerical results

The performances of the mathematical model, two-stage

modelling approach, and DH are analysed and compared,

obeying a general factorial design. First, we compare the

mathematical model and two-stage modelling approach to

make a fair comparison while considering exact solutions

Fig. 4 Comparison of different

user-defined parameters for

a objective values of initial

temperature levels, b CPU times

of initial temperature levels,

c objective values of

temperature reduction ratios,

d CPU times of temperature

reduction ratios, e objective

values of number of neighbour

solutions searched in each

iteration and f CPU times of

number of neighbour solutions

searched in each iteration
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(Table 5). The aim of this comparison is to show the per-

formance when integrating forward and backward deci-

sions. It is shown that both approaches need significant

computational time, on average approximately 5 h. For

some cases (N = 15 T = 10, N = 15 T = 5, N = 10 T = 10),

the mathematical model fails to find an optimal solution at

the end of 12 h. However, the results have an optimal gap,

under 0.01%. In that regard, the mathematical model needs

less computational effort on average than the two-stage

modelling approach. Another significant finding regarding

this comparison is that the mathematical model obtains

better cost solutions for almost all cases. The difference in

costs is seen as 12% on average, meaning that integrated

decisions have more efficient planning and routing.

The mathematical model provides an optimum plan.

However, it takes much time to solve, even if medium-size

instances are being handled. Therefore, the results of the

DH are compared with the mathematical model results to

decide whether this heuristic can be substituted for the

mathematical model (Table 6). The results show that the

DH does not need much computational time, and it needs

28 min in the worst case (N = 15 and T = 10). Even if the

reduced model must be solved iteratively in the DH, the

computational times do not become excessively worse.

According to the total costs, the DH deviates from the

optimal solutions by a maximum of 10%. The difference

between the cost values resulting from the proposed

methods is 6% on average, which indicates that the DH can

be used for solving the problem.

The comparison results show the efficiency of the pro-

posed mathematical model and DH. In addition to these

conclusions, the effects of the number of customers,

number of periods, and solution methods on the objective

function values are analysed by the general factorial

design. The results obtained from the experimental design

are shown in Tables 7 and 8. The significant values of the

general linear model for the factorial design is less than the

alpha level (0.05) in each objective and CPU time value.

This means that the results obtained from this experimental

design are significant. As can be expected, changing the

number of periods and number of customers individually

has significant effects on both the objective and CPU time

values. Similarly, the different solution methods have sig-

nificantly different CPU time values. However, the differ-

ent solution methods have not significantly affected on the

objective value. This means that the solution methods have

statistically similar objective values for all experiments.

The interactions between the two factors does not change

the individual effects (significant values greater than 0.05).

Therefore, analysing the individual effects is sufficient for

this experimental design.

Table 5 Comparison between the results of mathematical modelling approaches

N T The mathematical model Two-stage modelling approach Difference (%)

Objective value CPU time (s) Objective value CPU time (s) Objective value CPU time

5 5 245,951 3 276,878 2 11.17 - 50.00

5 5 249,008 4 262,213 17 5.04 76.47

5 10 1,015,744 684 1,064,968 18,623 4.62 96.33

5 10 641,226 484 696,811 1789 7.98 72.95

10 5 592,490 21,538 769,188 16,162 22.97 - 33.26

10 5 473,646 3274 578,377 162 18.11 - 1920.99

10 10 729,038 380 1,347,072 11 45.88 - 3354.55

10 10 447,154 43,231 505,408 51,342 11.53 15.80

15 5 898,019 43,200 910,803 18,629 1.40 - 131.90

15 5 1,954,518 8937 2,140,525 10,064 8.69 11.20

15 10 1,213,158 43,217 1,261,695 17,998 3.85 - 140.12

15 10 2,391,846 43,200 3,445,891 86,401 30.59 50.00

20 5 239,310 46 244,217 39 2.01 - 17.95

20 5 155,928 144 155,928 97 0.00 - 48.45

20 10 996,984 43,256 1,016,199 48,674 1.89 11.13

20 10 1,137,637 5591 1,649,252 45,904 31.02 87.82

Average 836,354 16,074.3 1,020,339 19,744.6 12.92 - 329.72

Difference = [Two stage approach - The mathematical model]/Two stage approach

N number of customers, T number of periods
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Table 8 shows which solution method is better on

objective values and CPU times. While the lower triangular

values depict the significance values between the pair on

the CPU time, the upper triangular values show the sig-

nificance values between the pair on the objective value in

Table 8. According to the comparisons, none of the com-

pared pairs show a statistically significant difference on

objective values. This means all the solution methods have

similar objective values for different cases. However, the

proposed DH has better a CPU time than each of the other

methods.

Exact solution approaches (mathematical model and

two-stage modelling approach) cannot solve large-scale

instances within a reasonable time limit, whereas the DH

can achieve this aim. In that regard, test instances having

different numbers of nodes are investigated. The test

Table 6 Comparison of the mathematical model and decomposition heuristic (DH) results

N T The mathematical model Decomposition heuristic Difference (%)

Objective value CPU time (s) Objective value CPU time (s) Objective value CPU time (s)

5 5 245,951 3 248,801 15 1.16 344.39

5 5 249,008 4 256,021 17 2.82 312.29

5 10 1,015,744 684 1,070,640 33 5.4 - 95.15

5 10 641,226 484 690,819 46 7.73 - 90.42

10 5 592,490 21,538 626,733 135 5.78 - 99.37

10 5 473,646 3274 505,809 81 6.79 - 97.54

10 10 729,038 380 781,252 11 7.16 - 97.19

10 10 447,154 43,231 488,185 100 9.18 - 99.77

15 5 898,019 43,200 939,431 118 4.61 - 99.73

15 5 1,954,518 8937 1,998,077 284 2.23 - 96.83

15 10 1,213,158 43,217 1,300,380 842 7.19 - 98.05

15 10 2,391,846 43,200 2,510,590 1694 4.96 - 96.08

20 5 239,310 46 264,518 29 10.53 - 37.18

20 5 155,928 144 168,081 65 7.79 - 54.41

20 10 996,984 43,256 1,091,453 1669 9.48 - 96.14

20 10 1,137,637 5591 1,189,740 1366 4.58 - 75.56

Average 836,353 16,074 891,908 407 6.09 - 36.05

Difference =
Decomposition heuristic � The mathematical model½ �

The mathematical model

N number of customers, T number of periods

Table 7 Results of the

experimental design (significant

values)

Factors Objective value CPU time

General linear model 0.011 0.042

Number of customers 0.000 0.035

Number of periods 0.001 0.007

Solution methods 0.594 0.006

Number of customers 9 number of periods 0.290 0.413

Number of customers 9 solution methods 0.999 0.502

Number of periods 9 solution methods 0.797 0.075

Table 8 Significance values of

solution methods on the

objective values and CPU times

Two-stage approach Proposed mathematical model Proposed DH

Two-stage approach – 0588 0742

Proposed mathematical model 0801 – 0965

Proposed DH 0007 0031 –
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instances are generated randomly for different numbers of

nodes between 10 and 100. Each test instance is solved five

times to show the robustness of the DH. The results, as

shown in Fig. 5, emphasise the following: (i) the solution

time is under the 23 min, even if the number of nodes

increases to 100, (ii) the CPU time increases as a linear

function, and (iii) the results obtained from the replications

are slightly different from each other in most cases.

The solution times are not highly affected by the repli-

cations; however, it should be analysed further to see

whether the cost values are changed. Figure 6 shows the

changes in the objective values, in terms of number of

nodes. It is concluded that the cost values are almost the

same in most of the instances. Only one instance (N = 100)

shows a slight difference between replications. The gap

between the best cost and average cost values is in a range

between 1 and 7%. Finally, it can be observed that the DH

has a good ability to solve medium- and large-scale

instances within reasonable CPU times.

6.4 Managerial implications

The CLSC-PRP is a fully integrated production and dis-

tribution planning problem for CLSCs. An example case of

a regional fat oil company is used to show that the pro-

posed models can be implemented in industry. The results

imply that the proposed mathematical model overcomes

the classical separate decision approaches used frequently

by professionals.

The proposed methods tend to consolidate new and

returned products on routing decisions, meaning that the

method has a fewer or equal number of routes than do the

Fig. 5 CPU times of the decomposition heuristic (DH) for different numbers of nodes

Fig. 6 Total operational chain costs for different numbers of nodes
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classical approaches. Moreover, production decisions are

considered with inventory, distribution, collecting, and

recycling decisions. The CLSC-PRP decides on keeping

inventory, creating routes, and managing production and

recycling quantities by comparing related costs and pro-

vides better total costs.

Different scenarios are generated for analysing the

parameters that affect the problem solutions and CPU

times. A total of 16 alternative scenarios are generated with

a factorial design, and the results are shown in Tables 5

and 6. This is important for building a robust methodology,

to show the methods’ availability for real-case applications.

It is demonstrated that the number of nodes and number of

periods significantly effect total costs and CPU times.

Therefore, a DH is developed, and it has a good conver-

gence (6% on average) for different cases, as shown in

Table 6.

The results obtained from the study show that integrated

production and distribution decisions on CLSCs provide

more efficient supply chains. The CLSC-PRP and the DH

could be adapted to a software to widen their usability.

7 Conclusion

In this study, a CLSC-PRP is investigated for which pro-

duction and distribution decisions are handled for both

forward and backward flows of the CLSCs. A mathemati-

cal model is proposed for this problem that determines the

production, distribution, collection, and recycling quanti-

ties, along with distribution and collection routes of a

CLSC at each period, for a finite planning horizon.

Owing to the integration decisions, the total costs (in-

cluding transportation and production costs) are decreased.

In such systems, while collecting products may increase

costs, recycling provides some gain on decreasing the

production costs. According to the findings of the case

study, consolidating new and returned products in distri-

bution/collection provides cost benefits. However, the

mathematical model needs significant calculation time, and

it is NP-hard. Therefore, a faster solution approach (i.e. a

DH) based on the SA method is proposed for solving the

problem. The contribution of the proposed DH is twofold:

(i) a classical savings algorithm is improved to manage

some conditions in constructing tours, and (ii) a random

search mechanism based on the SA is combined with a

linear programming model. The DH provides near-optimal

solutions with less solution effort, while other mathemati-

cal models do not achieve this performance.

The proposed mathematical model provides a 12.92%

cost advantage on average when compared with the two-

stage approach (solve forward sub-problem first and

backward sub-problem second). The proposed

mathematical model performs better on cost savings for

almost all experiments; therefore, the proposed model is as

good as the classical approach. The DH solves this com-

plex problem with an approximately 36% time advantage

on average and with only a 6% cost increase when com-

pared with the mathematical model. As the statistical test

results show, the DH provides a better time efficiency

while acquiring a similar objective function. It can be

concluded from these results that the DH can be easily

implemented for large-scale problems.

Problem characteristics such as multi-product or multi-

facility environments can be further expanded in prospec-

tive studies. Other perishable products can be considered,

such as milk and cheese production, which allow for the

use of the returned products (milk) in production (cheese).

Furthermore, this problem can be solved with other solu-

tion methods, such as meta-heuristics, problem specific

heuristics, and greedy solution procedures.
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Appendix 1

Notation of Mathematical Formulations

Indices

i; j; v Indices for nodes, where 0 denotes the facility,

recyler, and warehouse

k Index for vehicles

t Index for periods

Nc Set of consumption nodes N ¼ Nc [ 0f g
K Set of avaliable trucks

T Set of periods in the planning horizon

T0 ¼ T [ 0f g

Parameters

Ck Capacity of vehicle k unitð Þ
Bm Brð Þ Manufacturing recyclingð Þ

capacity unit/periodð Þ
qmt wr

t

� �
Raw material purchasing returnedð
product collectionÞ cost for period t money/unitð Þ

gmi gri
� �

Minimum new returnedð Þ inventory level

of node i unitð Þ
ami ari
� �

Maximum new returnedð Þ inventory
level of node i unitð Þ
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fk Fixed usage cost for vehicle k

money/periodð Þ
cv Variable cost for transportation

money/distanceð Þ
smt srt
� �

Production recyclingð Þ setup cost for

period t money/periodð Þ
cmt crt
� �

Variable production recyclingð Þ cost for
period t money/periodð Þ

hmi hmi
� �

Holding cost for new returnedð Þ product of
node i ðmoney/ unit� periodð Þ

lij Distance between i; jð Þ pair distanceð Þ
L Maximum tour length in a period

dmit drit
� �

New returnedð Þ product demand of node i

at period t unitð Þ
a production rate

b Maximum recycling ratio

c Coefficient of calculating the returned product

regarding recycling quantities

Decision Variables

pt p
r
t

� �
Production recyclingð Þ
quantity at period t unitð Þ

pmt Purshased raw material quantity

at period t unitð Þ
Ym
t Yr

t

� �
1; if new returnedð Þ product is produced recycledð Þ

at period t
0; otherwise

8
<

:

Imit Irit
� �

New returnedð Þ inventory level

on node i at period t unitð Þ
Qm

ikt Q
r
ikt

� �
New returnedð Þ product delivery
pick upð Þamount to fromð Þ node iat period t

with vehicle k unitð Þ
Xm
ijkt Xr

ijkt

� �
New returnedð Þproduct load on travelling

i; jð Þpair at period t with vehicle k unitð Þ
Zijkt 1, if a delivery made to i; jð Þ pair at period t

with vehicle k
0, otherwise

8
<

:

Ukt 1; if vehicle k is used on period t
0; otherwise

�

Appendix 2

Parameter setting case problem instanceIn this parameters

setting test instance, a 7-day planning problem is consid-

ered, and the dataset is briefly described in Table 9.

Distribution activities are carried out by different capacities

of vehicles (72.09 ton), and during the planning horizon,

eight different points demand new products or collection

requests for recycling. The distances between cities are

generated randomly.
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