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Abstract
Wireless sensor networks (WSNs) act as a building block of Internet of Things and have been used in various applications

to sense environment and transmit data to the Internet. However, WSNs are very vulnerable to congestion problem,

resulting in higher packet loss ratio, longer delay and lower throughput. To address this issue, this paper presents a fuzzy

sliding mode congestion control algorithm (FSMC) for WSNs. Firstly, by applying the signal-to-noise ratio of wireless

channel to TCP model, a new cross-layer congestion control model between transmission layer and MAC layer is proposed.

Then, by combining fuzzy control with sliding mode control (SMC), a fuzzy sliding mode controller (FSMC) is designed,

which adaptively regulates the queue length of buffer in congested nodes and significantly reduces the impact of external

uncertain disturbance. Finally, numerous simulations are implemented in MATLAB/Simulink and NS-2.35 by comparing

with traditional control strategies such as fuzzy, PID and SMC, which show that the proposed FSMC effectively adapts to

the change of queue length and has good performance, such as rapid convergence, lower average delay, less packet loss

ratio and higher throughput.

Keywords Wireless sensor networks (WSNs) � Internet of Things (IoT) � Cross-layer congestion control �
Fuzzy sliding mode control � NS-2.35

1 Introduction

Nowadays, Internet of Things (IoT) is playing a significant

role in achieving various real-world applications, such as

agricultural monitoring, intelligent transportation, disaster

prediction and smart cities [1]. Within IoT framework,

wireless sensor networks (WSNs) act as a bridge that

connects the ‘‘things’’ in the physical world to the virtual

digital world. In a WSN, a group of tiny sensors or actu-

ators are wirelessly connected with each other, capable of

collecting, computing and transmitting sensory data to the

Internet [2, 3]. However, owing to open characteristics like

large-scale, self-organizing, dynamic topology and battery-

constrained, WSNs are very vulnerable to congestion

problem, resulting in unsatisfactory situations such as

higher packet loss ratio, longer delay and lower throughput

[4]. Generally speaking, there are two representative rea-

sons for congestion problem in WSNs [5]: (1) buffer

overflow and (2) link collision. As shown in Fig. 1a, buffer

overflow (node-level congestion) occurs when the number

of transmitted packets exceeds the packet handling

capacity of a particular node (node A), leading to packets

drops and a waste of nodes’ energy. On the other hand, link

collision (link-level congestion) occurs when many active

nodes attempt to communicate with a particular node (node

B) simultaneously, causing packet loss due to competition

and interference, as shown in Fig. 1b.

In recent years, many researches have been carried out

on the congestion control of WSNs and are mainly divided

into two categories [6]: (1) traffic-based control and (2)

resource-based control. In traffic-based congestion control

schemes, the data rate of incoming flows from the down-

stream nodes is adjusted against the forwarding capacity of

the upstream node(s). For instance, Javaid et al. [7]
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proposed a traffic-aware congestion control protocol

(TACC) that operates on the end-to-end principle at the

transport layer of wireless multimedia sensor networks

(WMSNs). TACC uses burst loss information to detect

congestion at the destination and directs source nodes to

adjust reporting rate accordingly. However, TACC should

be further improved to support prioritized event transport

to multiple flows. Alipio and Tiglao [8] developed a new

reliable transport protocol with a cache-aware congestion

control mechanism called RT-CaCC. RT-CaCC utilizes

cache management policies such as cache insertion, cache

elimination and cache size allocation to mitigate packet

losses in WSNs while maximizing cache utilization and

bandwidth allocation. Nevertheless, the analysis of energy

consumption, another significant metric of WSNs, is

ignored. Zhuang et al. [9] analyzed the impact of conges-

tion control on the data accuracy and proposed a Conges-

tion-Adaptive Data Collection scheme (CADC) to

efficiently resolve the congestion under the guarantee of

data accuracy. CADC mitigates congestion by adaptive

lossy compression while ensuring a given overall data

estimation error bound in a distributed manner. Sonmez

et al. [10] proposed a sensor fuzzy-based image transmis-

sion (SUIT) for wireless multimedia sensor networks

(WMSNs). SUIT decreases the image quality on the fly to

an acceptable level and thus improves the continuity of the

video streaming. But SUIT does not use any ACK/NACK,

resulting in receiver can only know about the loss of

packets through packet sequence numbers. By combining

standard particle swarm optimization (PSO) with single

neuron PID control, Yang et al. [11] designed a standard

PSO-neural PID congestion controller (PNPID), which

outperformed the traditional PID controller in terms of

convergence and accuracy. However, the performance of

PNPID in different scenarios needs to be verified.

Resource-based congestion control, on the other hand,

exploits the idle network resources to balance the traffic

load whenever congestion arises [12]. For example,

Nikokheslat and Ghaffari [13] used a hierarchical tree and

grid structure to produce an initial topology and then

utilized Prim’s algorithm to find appropriate neighbors. In

their proposed method, a hierarchical tree structure was

used to produce network topologies and a resource control

algorithm was used as a factor to control congestion in

WSNs. However, more convincing experiments should be

performed to further justify their method. Kafi et al. [14]

designed an efficient congestion control-based schedule

algorithm, dubbed REFIACC (Reliable, Efficient, Fair and

Interference-Aware Congestion Control) protocol.

REFIACC prevents the interferences and ensures high

fairness of bandwidth utilization among sensor nodes by

scheduling the communications. The congestion and the

interference in inter- and intra-paths hot spots are mitigated

through taking into account the dissimilarity between links’

capacities at the scheduling process. Li et al. [15] proposed

a discrete quasi-sliding mode control strategy (SMC) for

link-level congestion in WSNs. By giving packets with

minimum data a higher priority to be transmitted, queuing

time can be decreased and congestion can be alleviated.

Although MATLAB simulation results demonstrate the

effectiveness of SMC, network characteristics of SMC

should be comprehensively evaluated by using a dedicated

WSNs simulation tool like NS-2.

To the best of our knowledge, this paper makes the

following contributions: (1) We propose a cross-layer

congestion control mathematical model between trans-

mission layer and MAC layer by applying the signal-to-

noise ratio (SNR) of wireless channel to transmission

control protocol (TCP) model. (2) We design a fuzzy

sliding mode control algorithm (FSMC) by combining

fuzzy control with sliding mode control. FSMC not only

adaptively regulates the queue length of buffer in con-

gested nodes, but also effectively reduces the impact of

uncertain disturbance and thus weakens the chattering

phenomenon of queue length.

The rest of this paper is organized as follows: Sect. 2

introduces the mathematical model of cross-layer conges-

tion control in WSNs. Section 3 describes the design of

fuzzy sliding mode controller. Section 4 evaluates the

simulation results in MATLAB/Simulink and NS-2.35,

Fig. 1 Typical congestion

occurrence scenarios in WSNs
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respectively. Finally, Sect. 5 concludes the paper and

presents our future work.

2 Mathematical model

2.1 A SNR-based cross-layer congestion control
model

Reference [16] proposed a dynamical model of TCP

behavior by using fluid flow and stochastic differential

equation analysis, while, in this paper, we present a novel

cross-layer version of that model that uses the signal-to-

noise ratio instead of packet-marking probability, as shown

in Fig. 2. It can be seen that based on the received SNR

from the wireless channel, the fuzzy sliding mode con-

troller can adjust the queue length of buffer in MAC layer

by dropping packets. Therefore, the proposed cross-layer

model can be described by the following nonlinear differ-

ential equations:

_WðtÞ ¼ 1

RðtÞ �
WðtÞ
2

Wðt � RðtÞÞ
Rðt � RðtÞÞ Snrðt � RðtÞÞ

SnrðtÞ ¼ 1� SNRðtÞ
20

_qðtÞ ¼
�CðtÞ þ NðtÞ

RðtÞWðtÞ; q[ 0

max 0; �CðtÞ þ NðtÞ
RðtÞWðtÞ

� �
; q ¼ 0

8>><
>>:

ð1Þ

where WðtÞ is the average TCP window size, CðtÞ is the

link capacity, NðtÞ is the load factor, SnrðtÞ is the corre-

sponding value of the SNRðtÞ 2 0; 20ð �, RðtÞ is the round-

trip time and RðtÞ ¼ Tp þ qðtÞ
CðtÞ, qðtÞ is the average queue

length and Tp is the propagation delay.

The first differential equation in (1) describes the TCP

window control dynamic. To linearize (1), we assume that

NðtÞ, CðtÞ and RðtÞ are constants, i.e., NðtÞ � N, CðtÞ � C

and RðtÞ � R. Consider ðW ; qÞ as the state and Snr as the

input, the operating point ðW0; q0; Snr0Þ is then defined by
_W ¼ 0 and _q ¼ 0. Hence, we have

_W ¼ 0 ) W2
0Snr0 ¼ 2

_q ¼ 0 ) W0 ¼
R0C

N
;R0 ¼

q0
C

þ Tp

8<
: ð2Þ

By linearizing (1) about the operating point

ðW0; q0; Snr0Þ, it yields

d _WðtÞ ¼ � 2N

R2
0C

dWðtÞ � R0C
2

2N2
dSnrðt�R0Þ

d _qðtÞ ¼ N

R0

dWðtÞ � 1

R0

dqðtÞ

8>><
>>:

ð3Þ

where dWðtÞ ¼ WðtÞ �W0, dqðtÞ ¼ qðtÞ � q0, and

dSnrðtÞ ¼ SnrðtÞ � Snr0.

Let x1ðtÞ ¼ dqðtÞ, x2ðtÞ ¼ d _qðtÞ and uðtÞ ¼ dSnrðtÞ
(Snr0 � uðtÞ� 1� Snr0); then, the system state equation can

be written as:

_xðtÞ ¼ AxðtÞ þ Buðt�sÞ; ð4Þ

where xðtÞ¼ x1ðtÞ
x2ðtÞ

� �
, A¼

0 1

� 2N

R3
0C

� 1

R0

þ 2N

R2
0C

� �0
@

1
A,

B¼
0

� C2

2N

 !
and s ¼ R0.

Assume that R0 � N
C, and then, the transfer function of

cross-layer congestion model can be described as:

GðsÞ ¼ dqðtÞ
dSnrðtÞ

¼
C2

2N

sþ 2N
R2
0
C

� �
sþ 1

R0

� � : ð5Þ
Fig. 2 Cross-layer congestion control model
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2.2 Dynamics of the proposed model

In this section, the objective is to analyze the dynamics of

the proposed model described in (5), which shows that

SNRðtÞ dynamically affects the queue length.

For (5), we consider the case when Tp ¼ 0:05s, C ¼
650 packets=s and N ¼ 25. If SNRðtÞ ¼ 18 dB, then we

have W0 ¼ 2
ffiffiffi
5

p
and R0 ¼ 0:1720, so (5) becomes

GðsÞ ¼ 8450

ðsþ 2:6002Þðsþ 5:8138Þ
¼ 8450

s2 þ 8:414sþ 15:117
: ð6Þ

If SNRðtÞ ¼ 12 dB, then we have W0 ¼
ffiffiffi
5

p
and

R0 ¼ 0:0860, so (5) becomes

GðsÞ ¼ 8450

ðsþ 10:4006Þðsþ 11:6276Þ
¼ 8450

s2 þ 22:0282sþ 120:934
: ð7Þ

The magnitude and phase Bode plots for (6) and (7) are

shown in Figs. 3 and 4, respectively. It can be seen that

phase margin of Fig. 3 is 5:25� and that of Fig. 4 is 13:8�.
According to the Nyquist theorem, systems (6) and (7) are

stable because their phase margin is positive value. Fur-

thermore, if SNRðtÞ decreases, then Snr will increase, and

the value range of u(t) will also change accordingly, which

contributes to achieving the proper queue length. SNR has

a great influence on the performance of WSNs, because

unreasonable SNR will cause longer delay, higher packet

loss ratio and even serious network congestion. Hence, the

proposed SNR-based cross-layer congestion model is

innovative and feasible.

3 Design of fuzzy sliding mode controller

WSN is a complicated distributed system with features like

nonlinearity, time variance and uncertainty [17, 18]. In

order to overcome the drawbacks such as chattering action

and sensitive to disturbance of the traditional sliding mode

controller, a fuzzy sliding mode controller (FSMC) is

designed by combining fuzzy controller [19, 20] with the

sliding mode controller, as shown in Fig. 5. It can be seen

from Fig. 5 that the sliding mode controller first uses the

error between the desired and actual queue lengths to fig-

ure out s _s, then gives s _s to fuzzy controller to produce a

reasonable K̂ðtÞ, finally utilizes K̂ðtÞ to self-adjust and

outputs a control u that can reduce the impact of uncertain

disturbance dðtÞ. Thanks to its rapid response, simplicity

and robustness, insensitivity to parameter variations, and

rejection of disturbances and chattering, FSMC is very

applicable to solving congestion problem of WSN systems.

3.1 System description

Consider a second-order uncertain system:

GðsÞ ¼ k

s2 þ asþ b
; ð8Þ

and system (8) can also be written as:

€h ¼ �a _h� bhþ kuðtÞ þ dðtÞ; ð9Þ

where h is the queue length signal, uðtÞ is the control input,
dðtÞ is the unknown disturbance, a ¼ 1

R0
þ 2N

R2
0
C
; b ¼ 2N

R3
0
C
and

k ¼ C2

2N are known parameters.

Fig. 3 Bode plots when SNRðtÞ ¼ 18 dB

Fig. 4 Bode plots when SNRðtÞ ¼ 12 dB
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3.2 Design and analysis of sliding mode
controller

Define sliding mode function as:

s ¼ ceþ _e; ð10Þ

where c[ 0, e is tracking error and e ¼ hd � h, hd and h
are the desired and actual queue length, respectively.

The sliding mode controller is designed as:

uðtÞ ¼ 1

k
a _hþ bhþ €hd þ c _eþ KðtÞsgnðsÞ
� �

; ð11Þ

where KðtÞ ¼ max dðtÞj j þ g, g[ 0.

Stability analysis is given as follows:

Let the Lyapunov function be

V ¼ 1

2
s2;

and hence, we have

_V ¼ s _s ¼ sðc _eþ €eÞ ¼ sðc _eþ €hd � €hÞ

¼ s c _eþ €hd þ a _hþ bh� kuðtÞ � dðtÞ
� �

:
ð12Þ

Substitute control law (11) into (12), we can get

_V ¼ s _s ¼ sð�KðtÞsgnðsÞ � dðtÞÞ
¼ �KðtÞ sj j � sdðtÞ� � g sj j � 0: ð13Þ

In (11), KðtÞ is used to compensate the uncertain distur-

bance dðtÞ and satisfy the existence condition of sliding

mode plane. If dðtÞ is a time-varying disturbance, KðtÞ
should also be designed as time-varying in order to weaken

the chattering phenomenon. Hence, fuzzy logic rules are

introduced to realize the estimation of KðtÞ.

3.3 Design of fuzzy logic rules

According to the existing condition of the sliding mode

s _s\0; ð14Þ

KðtÞ must effectively eliminate the influence of uncertain

disturbance dðtÞ and satisfy (14), which guarantees system

state converge to the sliding mode surface. Therefore, KðtÞ
needs to be adjusted adaptively according to the value of

s _s, and the basic fuzzy logic is described as:

If s _s\0, then KðtÞ should be reduced;

If s _s[ 0, then KðtÞ should be increased.

Based on the above idea, fuzzy control rules between input

s _s and output DKðtÞ are designed. Fuzzy languages to

describe s _s and DKðtÞ are defined as {negative big, negative

medium, negative small, zero, positive small, positive med-

ium, positive big}, that is NB;NM;NS;ZO; PS; PM; PBf g,
and their membership functions (MFs) and universe are

shown in Figs. 6 and 7, respectively.

According to experts’ knowledge and practical experi-

ence in [21, 22], seven fuzzy logic rules describing the

relationship between s _s and DKðtÞ are established as

follows:

Fig. 5 Architecture of fuzzy

sliding mode controller

Fig. 6 Membership functions and universes of s _s
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Rule 1: If s _s is PB, then DKðtÞ is PB;
Rule 2: If s _s is PM, then DKðtÞ is PM;

Rule 3: If s _s is PS, then DKðtÞ is PS;
Rule 4: If s _s is ZO, then DKðtÞ is ZO;
Rule 5: If s _s is NS, then DKðtÞ is NS;
Rule 6: If s _s is NM, then DKðtÞ is NM;

Rule 7: If s _s is NB, then DKðtÞ is NB.

By using the integration method, the top limit of K̂ðtÞ
can be estimated as:

K̂ðtÞ ¼ Gk

Z t

0

DKdt; ð15Þ

where Gk is integral coefficient and depends on experts’

experience.

Replace KðtÞ in (11) with K̂ðtÞ in (15); then, the fuzzy

sliding mode controller is designed as:

uðtÞ ¼ 1

k
a _hþ bhþ €hd þ c _eþ K̂ðtÞsgnðsÞ
� �

: ð16Þ

When the queue buffer is full, all arrival packets will be

dropped. Otherwise, controller (16) will control the queue

length to reach the expected value by dropping packets

according to the signal-to-noise ratio SnrðtÞ
(SnrðtÞ 2 ½0; 1�). As a result, we have:

SnrðtÞ ¼
1 if SnrðtÞ[ 1;
uðtÞ if 0� SnrðtÞ� 1;
0 if SnrðtÞ\0:

8<
:

The pseudo-code of the proposed FSMC algorithm for

WSNs is shown as follows.

4 Simulation results and analysis

In this section, the performance of the proposed FSMC and

other traditional methods (RED [23], DropTail [24], fuzzy

[10], PID [11] and SMC [15]) is assessed using MATLAB/

Simulink [25] and NS-2.35 [26], respectively. During

simulation, the control parameters of traditional algorithms

are repeatedly adjusted to make sure that their performance

is as good as possible.

Fig. 7 Membership functions and universes of DKðtÞ
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4.1 Simulation in MATLAB/Simulink

In this subsection, the proper parameters are set as follows:

Tp ¼ 0:05 s, T ¼ 0:001 s, C ¼ 650 packets=s, N ¼ 25 and

SNRðtÞ ¼ 18 dB, that is, (6) is considered as the transfer

function of WSNs’ congestion model. Therefore, (9) can be

written as:

€h ¼ �8:414 _h� 15:117hþ 8450uðtÞ þ dðtÞ; ð17Þ

where dðtÞ ¼ 300 exp � ðt�ciÞ2
2b2i

� �
.

Let bi ¼ 0:8, ci ¼ 5:0, g ¼ 1:0. Then,

K̂ðtÞ ¼ max dðtÞj j þ g ¼ 300þ 1 ¼ 301.

Define the desired queue length signal hd ¼ sinðptÞ þ 1

and the initial queue length hinit ¼ 0:75. Fuzzy sliding

mode controller is constructed by combining the sliding

mode controller with fuzzy logic controller, as shown in

Fig. 8.

When the FSMC (16) with parameters c ¼ 150,

a ¼ 8:414, b ¼ 15:117, k ¼ 8450 and Gk ¼ 300 is imple-

mented for system (17), then the estimation of dðtÞ, control
input u and change of reaching law s is shown in Figs. 9,

10 and 11, respectively.

Figure 12 shows the performance comparison of tradi-

tional algorithms and the proposed FSMC when the desired

queue length is a sine signal. It can be seen that all these

methods perform similarly in the initial stage of simulation.

However, when uncertain disturbance occurs, traditional

approaches show poor anti-jamming performance, while

FSMC still performs well. The performance metrics of

these control methods when uncertain disturbance occurs

are summarized in Table 1.

As can be seen from Table 1, compared with classic

fuzzy, PID and SMC approaches, FSMC can reduce

Fig. 8 Detailed structure of FSMC in Simulink

Fig. 9 Estimation of uncertain disturbance dðtÞ

Fig. 10 Control input u of FSMC
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overshoot to 1.24%, adjustment time to 2.33 s and maxi-

mum error to 0.0248 and has zero steady-state error.

Hence, FSMC is more robust to tolerate the influence of

disturbance and more adaptive to the dynamical queue

length and converges more rapidly, which can effectively

avoid and alleviate WSNs’ congestion problem.

4.2 Simulation in NS-2.35

In order to thoroughly evaluate the characteristics of FSMC

in a dedicated WSN simulation tool, NS-2.35 simulation

experiments are performed under two different scenarios:

100 9 100 m2 and 200 9 200 m2. The detailed NS-2.35

simulation parameters are summarized in Table 2.

4.2.1 Case 1: simulation in a 100 3 100 m2 monitoring
area

In this NS-2.35 simulation, there are 20 nodes randomly

deployed in a 100 9 100 m2 area, as shown in Fig. 13.

Sensor nodes are sending CBR (constant bit rate) packets

to sink node (node 9) through intermediate nodes 1, 4, 6, 14

and 15 by using AODV routing protocol and different

queuing methods. And the experiments are performed

repeatedly by increasing the data rate from 0 to 200 kbps,

while keeping all other parameters fixed. The performance

metrics of traditional queuing methods and the proposed

FSMC mainly include four aspects [27, 28]: average delay,

loss ratio, throughput and queue length.

4.2.1.1 Average delay in 100 3 100 m2 As shown in

Fig. 14, average delay (AD) for traditional methods and

FSMC in 100 9 100 m2 increases dramatically when the

data rate reaches 90 kbps. However, AD of the proposed

FSMC increases more humbly than that of other traditional

methods. After 130 kbps, AD of these methods all tends to

become stable, but that of FSMC is the lowest (around

0.9 s) and reduced by 0.4 s.

4.2.1.2 Loss ratio in 100 3 100 m2 Figure 15 shows the

comparison of packet loss ratio for traditional methods and

FSMC in 100 9 100 m2. It can be seen that they begin to

lose packets when the data rate exceeds 90 kbps. Although

loss ratio of them raises significantly after 90 kbps, FSMC

climbs the most slowly. And when the data rate is

200 kbps, loss ratio of fuzzy control is almost 68%, while

that of FSMC is much lower (almost 48%) and reduced by

around 20%.

4.2.1.3 Throughput in 100 3 100 m2 Figure 16 shows

the comparison of throughput for traditional methods and

FSMC in 100 9 100 m2. Obviously, throughput of these

Fig. 11 Change of reaching law s

Fig. 12 Performance comparison of traditional algorithms and the

proposed FSMC when the desired queue length is a sine signal

Table 1 The performance

metrics of four control methods

when uncertain disturbance

occurs

Control method Overshoot (%) Adjustment time (s) Maximum error Steady-state error

Fuzzy 69.695 5.5 2.8996 Very small

PID 5.825 5.4 0.7400 Small

SMC 73.455 4.37 1.7259 Zero

FSMC 1.24 2.33 0.0248 Zero
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six algorithms all increases in positive proportion when the

data rate is less than 100 kbps. However, when the data

rate exceeds 100 kbps, throughput of them all converges.

This is because when the data rate exceeds the maximum

packets that a WSN node can transmit, the redundant

packets will be dropped, and throughput will no longer

increase. Furthermore, FSMC wins the ‘‘champion’’ in the

comparison due to its biggest throughput (around 525 kbps

and increased by 125 kbps).

4.2.1.4 Queue length in 100 3 100 m2 Figure 17 shows

the comparison of instantaneous queue length of node 1

using FSMC and traditional approaches when the data rate

is 100 kbps and the monitoring area is 100 9 100 m2. It

can be seen from Fig. 16 that queue length of these algo-

rithms increases gradually over time. However, traditional

control methods can easily fill the queue buffer and result

in dropping packets, because queue length of them always

fluctuates around the top limit (70 packets). It can also be

seen from Fig. 16 that FSMC outperforms traditional

methods, because it stays in ‘‘full-queue’’ state for only a

short time (during 17–19 s) and its queue length finally

stabilizes around 45.

Figure 18 shows the comparison of average queue

length of five sensor nodes (nodes 1, 4, 6, 14 and 15) under

different queuing methods when the data rate is 100 kbps

and the monitoring area is 100 9 100 m2. As expected, in

whichever node, average queue length of FSMC is rela-

tively shorter than that of traditional approaches, which can

effectively avoid packet loss, reduce end-to-end delay and

increase the total amount of data.

Table 2 Detailed NS-2.35

simulation parameters
Parameter Value

Monitoring area 100 9 100 m2/200 9 200 m2

Number of nodes 20

Routing protocol AODV

Queuing method RED/DropTail/Fuzzy/PID/SMC/DSMC

Intermediate node Node 1, 4, 6, 14, 15/node 2, 10, 11, 14, 15

Sink node Node 9/node 3

Mac type IEEE 802.11

Max. packet in queue buffer 70

Data rate 0–200 kbps

Simulation time 30 s

Fig. 13 Distribution of 20

nodes in a 100 9 100 m2 area
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4.2.2 Case 2: simulation in a 200 3 200 m2 monitoring
area

This subsection aims at evaluating the performance of

FSMC in a larger network topology. Hence, similar

experiments are performed again by enlarging the area

from 100 9 100 m2 to 200 9 200 m2 (Fig. 19), while

maintaining all other network parameters unchanged.

Similarly, after 20 nodes are randomly deployed, they

keep sending CBR packets to sink node (node 3) through

intermediate nodes 2, 10, 11, 14 and 15. Meanwhile, the

performance metrics also include four aspects: average

delay, loss ratio, throughput and queue length.

4.2.2.1 Average delay in 200 3 200 m2 Figure 20 shows

the comparison of average delay (AD) for FSMC and tra-

ditional approaches in 200 9 200 m2. Similar to Fig. 13,

AD of them increases significantly at 70 kbps and becomes

stable at 150 kbps. Although the stabilized AD of FSMC is

the lowest (around 1.1 s) among all methods involved in

Fig. 14 Comparison of average

delay for FSMC and traditional

approaches in 100 9 100 m2

Fig. 15 Comparison of loss

ratio for FSMC and traditional

approaches in 100 9 100 m2
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this study, it is still 0.2 s bigger than AD of FSMC in case

1. This is because when region of interest (ROI) becomes

broader, the distance from source node to destination node

also gets longer. Hence, transmitting the same number of

packets will consume more time, which leads to higher

delay.

4.2.2.2 Loss ratio in 200 3 200 m2 Figure 21 shows the

comparison of packet loss ratio for traditional methods and

FSMC in 200 9 200 m2. Similar to Fig. 14, loss ratio of

these approaches starts to climb at 70 kbps. Compared with

traditional approaches, FSMC has the lowest loss ratio

(around 54%) at 200 kbps, but it is 6% higher than loss

ratio of FSMC in case 1. This is because longer transmis-

sion distance will increase the risk of losing packets.

4.2.2.3 Throughput in 200 3 200 m2 Figure 22 shows

the comparison of throughput for traditional methods and

FSMC in 200 9 200 m2. Similar to Fig. 15, throughput of

these strategies increases proportionally at the beginning

Fig. 16 Comparison of

throughput for FSMC and

traditional approaches in

100 9 100 m2

Fig. 17 Comparison of instantaneous queue length of node 1 using FSMC and traditional approaches when the data rate is 100 kbps and the

monitoring area is 100 9 100 m2
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and stabilizes when the data rate is 80 kbps. Among them,

FSMC possesses the largest throughput (around 450 kbps).

Nevertheless, compared with the throughput of FSMC in

case 1, that of FSMC in this case reduces 75 kbps since

ROI is enlarged from 100 9 100 m2 to 200 9 200 m2.

4.2.2.4 Queue length in 200 3 200 m2 Figure 23 shows

the comparison of instantaneous queue length of node 14

using FSMC and traditional approaches when the data rate

is 100 kbps and the monitoring area is 200 9 200 m2.

Different from Fig. 16, the queue length of these methods

increases sharply during the first 5 s and then fluctuates

around the boundary (70 packets). In contrast, FSMC

achieves better performance owing to its temporary ‘‘full-

queue’’ state (during 9–15 s) and lower convergent queue

length (around 45). However, the stability of FSMC in this

case is worse than that of FSMC in case 1 due to its bigger

steady-state error.

Figure 24 shows the comparison of average queue

length of five sensor nodes (nodes 2, 10, 11, 14 and 15)

Fig. 18 Comparison of average

queue length of five sensor

nodes using FSMC and

traditional approaches when the

data rate is 100 kbps and the

monitoring area is

100 9 100 m2

Fig. 19 Distribution of 20

nodes in a 200 9 200 m2 area
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under different queuing methods when the data rate is

100 kbps and the monitoring area is 200 9 200 m2. Sim-

ilar to Fig. 17, whether in nodes 2, 10, 11, 14 or 15, the

average queue length of FSMC is smaller than that of other

traditional methods, which contributes to reducing loss rate

and improving throughput of WSN systems. Please note

that longer transmission distance can easily lead to con-

gested wireless channel and increased queue size. As a

result, the average queue length of FSMC in this case is

bigger than that of FSMC in case 1.

5 Conclusion

By applying the received SNR of wireless channel to

dynamic TCP model, this paper proposes a cross-layer

congestion control model between transmission layer and

Fig. 20 Comparison of average

delay for FSMC and traditional

approaches in 200 9 200 m2

Fig. 21 Comparison of loss

ratio for FSMC and traditional

approaches in 200 9 200 m2
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MAC layer as well as a fuzzy sliding mode control algo-

rithm for WSNs. Simulation results show that the proposed

algorithm not only adaptively regulates the queue length of

buffer in intermediate nodes and effectively avoids the

occurrence of congestion, but also significantly reduces the

queuing time and increases the speed and stability of

convergence and thus improves WSNs’ performance in

terms of average delay, packet loss ratio and throughput,

whether ROI is 100 9 100 m2 or 200 9 200 m2.

In the future, physical experiments will be performed to

verify the effectiveness and prominence of the proposed

congestion control scheme in realistic WSN-based IoT

applications such as smart home and agriculture automa-

tion. And the impact of algorithm parameters on network

performance will be taken into account to optimize FSMC,

so as to provide a more stable and reliable WSNs’ cross-

layer congestion control.

Fig. 22 Comparison of

throughput for FSMC and

traditional approaches in

200 9 200 m2

Fig. 23 Comparison of instantaneous queue length of node 14 using FSMC and traditional approaches when the data rate is 100 kbps and the

monitoring area is 200 9 200 m2
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