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Abstract
Car-following (CF) and lane-changing (LC) behavior models have been widely studied separately as the core models of

traffic simulation. However, in practice, CF and LC are inseparable and thus integrated driving (ID) models containing CF

and LC behaviors emerge. Here, we proposed a new work to introduce the social force (SF) model to the operational ID

behavioral model on the highway. First, a data-driven-based operational ID behavioral model is proposed in the hierar-

chical social force behavioral model framework. Then, the inputs/output of the SF-ID behavioral model is determined. SF-

ID model is built by the feed-forward neural networks (FNN), and the network structure and other parameters are calibrated

and verified by field data. Results of the test on CF and LC situations show that our proposed FNN SF-ID model has a good

capability in reproducing/predicting the operational ID behaviors on the highway. In addition, we also analyzed the

structural features of the FNN SF-ID models, and refine the original models by removing insignificant inputs. The

comparison results showed that the refined model—FNN SF-ID (R)—performed better than the original models.

Keywords Integrated driving � Neural network � Social force � Lane changing

1 Introduction

Car-following (CF) and lane-changing (LC) behavioral

model has been the focus of traffic flow theory research

[47, 56]. They are often regarded as two basic driving tasks

and have been analyzed separately by extensive researches

[22, 52].

While in actual driving practice, CF and LC are insep-

arable [42, 45, 46, 57, 58], the driver could consider LC in

the process of CF and may also consider the influence of

the leading vehicle in the target lane in the LC process [42].

Some researchers have also recognized this problem and

proposed LC model considering CF [49], and the CF model

considering LC [39]. Toledo et al. [42] proposed an inte-

grated driving (ID) behavior model framework and verified

the ID model outperformed the independent models in

different cases by field data [43]. However, the ID driving

model is rather complicated with different modules and

many parameters to be calibrated, limiting its further

development and application.

The lately rapid development of traffic detection tech-

nology, connected vehicle (CV) and machine learning

methods [30, 38] has laid the data resource and method-

ology foundation for the application of data-driven mod-

eling method in the field of traffic simulation modeling.

Researchers have attempted to apply data-driven methods

in the CF and LC behavior modeling and gained satisfied

results, [4, 26, 27, 47, 57, 58].

Meanwhile, the social force (SF) model has been first

applied in pedestrians’ walking behaviors [19, 21], then in

other road users’ behaviors such as cyclists’ conflict
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avoidance behaviors [25] and drivers’ CF behaviors [8] and

crossing behaviors at intersections [32].

As Helbing and Tilch [20] mentioned, the SF model

could be applied to model the car following behavior.

Later, Anvari et al. [1] pointed out that the SF-based

models offer the possibility of a unified theory that can

explain different road user’s movements (including vehicle

and pedestrian).

Hence, it seems reasonable to build the drivers’ ID

behavior model framework by SF theory and calibrate the

parameters by the data-driven methods. Very lately,

researchers used SF theory and data-driven methods to

model the driver’s operational level LC behavior and ver-

ified the proposed deep neural network (DNN)-based LC

model by the trajectory data of NGSIM dataset [26, 27].

Here, we proposed a new work to built the NN-based

operational ID model on highway, under the hierarchical

SF behavioral model framework. The operational ID

behaviors on highway refer to all driving behaviors of the

driver when he/she is driving a car toward a particular off-

ramp or a lane (such as HOV lane), including CF, LC and

gap acceptance, etc.

We first present the hierarchical SF behavioral model

framework and then analyze the impact forces for the

social force-integrated driving (SF-ID) model. On this

basis, the input and output of SF-ID model are determined.

Then feed-forward neural networks (FNN)-based SF-ID

models are proposed. The model structure, training sample

size and input historic periods of the SF-ID models with

different structures are optimized by field data extracted

from the NGSIM dataset (FHWA [13], respectively. Then

we refine our FNN SF-ID (L1) model by cutting off some

unsignificant factors. Finally, the FNN SF-ID (L1, L2, L3,

and R) models are compared with the field trajectory data.

Model test results showed that the FNN SF-ID (R) is a little

bit outperformed than the other 3 FNN SF-ID models by

comprehensive evaluations on CF and LC behaviors. Our

study provides inspirations to capturing drivers’ ID

behaviors on the highway and to new traffic simulation

modeling.

Following is the structure of paper: Sect. 2 reviews the

studies on SF behavioral models, ID models and the data-

driven CF/LC models; Sect. 3 presents the ID model

structure in the hierarchical SF behavioral model frame-

work; Sect. 4 configuration of the SF-ID model by field

data; Sect. 5 the model calibration and verification; and

Sect. 6 discussions and main conclusions.

2 Literature review

2.1 The SF behavioral models

In the original crowds’ SF Model [19], the movement of

pedestrians is affected by a driving force from the desti-

nation and by repulsive forces from other pedestrians and

obstacles around.

SF models successfully reproduce many crowd phe-

nomena such as lane formation [19] and faster-is-slower

effects [21]. By modifying the SF model of Helbing and

Molnar [19], different force-based models can reproduce

more realistic pedestrian behavior.

Recently, researchers have extended the SF model to

other road user behavior modeling and achieved good

results. Coverage includes improved car-following models

[8, 55], driver’s lane-changing decision behavior [53],

right-turn behaviors at intersections [32], motorcar–

pedestrian mixed traffic in share space [1], to the cyclist’s

conflict avoidance behaviors in mixed traffic at un-signal-

ized intersections [25].

In addition, researchers also attempt to apply data-dri-

ven methods to SF models. Liu et al. [35] propose a video

data-driven social force model for simulating crowd

evacuation: the initialization of pedestrian position, path

navigation, and goal selection in the improved SF model

were guided by real video data.

2.2 Integrated driving models

Psychologists have noticed and proposed the concept of

driving style to explain individual’s stable tendency in the

car following, speeding and road safety [6, 10, 37]. On the

other hand, researchers also found that different driving

behaviors (such as CF and LC) interact with each other in

some way (Zhu and Lei 2007), [39].

Later, Toledo et al. [42] proposed a hierarchical inte-

grated driving (ID) behavior model framework, integrating

LC, CF, gap acceptance and the inter-dependencies

between these behaviors. The framework is based on the

concepts of short-term goals and short-term plans, and

drivers are assumed to conceive and perform short-term

plans in order to accomplish short-term goals. The ID

behavior model framework supports a more realistic rep-

resentation of driving tasks. And the ID model outper-

formed the independent models in different cases by field

data [43]. However, the ID model is rather complicated

with different modules and many parameters to be cali-

brated, which limits its further development and

application.

However, with the development of physiological and

psychological theories on driving behavior and data-driven
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methods, new LC models [9, 48] and traffic flow simula-

tion models [11, 33] have emerged, and they all inspired by

the idea of ID behavior.

2.3 Data-driven CF/LC models

Recently, with the advancement of data-driven methods,

field data-based CF/LC models are put forward. On the CF

model, He et al. [17, 18] present the k-nearest neighbor

(kNN)-based CF model and verified the validity, transfer-

ability. Zhou et al. [57, 58] study the recurrent neural

network (RNN)-based CF model, which exceeds the

intelligent driver model (IDM) [44]. Lately, Wang et al.

[47] validate the Gate Recurrent Unit (GRU) neural net-

work-based CF model considering 10 s historical data

perform better than the IDM and the feed-forward neural

network (FNN)-based CF model.

On the LC model, Bakhit et al. [2] verified an artificial

neural network (ANN)-based LC detection models by Next

Generation Simulation (NGSIM) data collected from a

weaving freeway segment in Arlington, Virginia. And NN-

based models were also built to predict drivers’ lane-

changing behaviors [7, 31, 36, 40]. Lately, under the theory

of SF, Huang et al. [26, 27] built ANN and GRU NN-based

LC behaviors models on the operational level.

From these earlier studies, we have some preliminary

ideas: (1) SF-based model framework seems to offer the

possibility of a unified theory that can explain the vehicle,

bicycle, and pedestrian movements, both separately and in

interaction with each other. (2) From the perspective of

psychology and behavior analysis, ID behavior generally

exists in reality, which could have a significant influence

on traffic flow. (3) The incorporation of the ID behavior

could enhance the accuracy of simulation models. (4) Data-

driven CF/LC models have been tested to outrun the classic

CF/LC models. (5) The application of the SF model

framework and data-driven methods on the ID model is not

fully studied yet.

Therefore, in this paper, we first propose the ID model in

the hierarchical SF behavioral model framework and then

built a data-driven SF-based ID model using the artificial

neural network (ANN) to depict the operational ID

behaviors on the highways.

3 Integrated driving model in hierarchical
SF behavioral model framework

3.1 Hierarchical SF behavioral model framework

In the operational integrated driving behaviors in hierar-

chical SF behavioral model framework, a number of salient

characteristics are considered for modeling:

• Under the premise of obeying traffic rules and safety,

drivers tend to follow the shortest/direct path to the

temporal destination (TD) or short-term goal, according

to impacts from infrastructures and other surrounding

influencing vehicles. This reflects the motivation effect

of the TD in the SF behavioral model.

• Environmental characteristics of infrastructure EI

include the location of lanes and other related infras-

tructure (curbs, ramps, HOV, etc.). The location of

lanes and curbs are assumed to define the space limits

of the movements of the subject vehicle and surround-

ing vehicle.

• Personal characteristics P of the subject driver includ-

ing age, driving experience, gender, occupation, etc.,

are assumed to be incorporated in the driving behaviors

(speeds, gap acceptance, etc.). That means if there are

ample samples on vehicle dynamic movement behav-

iors and the corresponding environmental characteris-

tics E, the driver’s Personal characteristics P can be

extracted in some way.

It is noted that not all considerations of the problem are

listed above. The environmental characteristics of weather

and climate EW are also assumed to be incorporated in

dynamic movement behaviors of the subject vehicle and

corresponding influencing vehicles [28]. However, due to

the limited time period coverage of our research data, our

research does not consider EW here.

In the hierarchical SF driving behavioral model frame-

work (Fig. 1), the driver’s behavior is also categorized into

three levels: operational, tactical and strategic [23]. The

strategic level behavior model mainly deals with trip

planning-related choices, such as choice on trip mode, trip

departure time, and trip route. The output of the strategic

level model would be the planned trip, which is also the

inputs of the following tactical level model. The tactical

level behavior model mainly deals with path planning-re-

lated decisions, such as whether enter an off-ramp/HOV

lane. And the output of this level model would be the

planned path formed by temporal destinations, which is

also the inputs of the following operational level model.

The operational level behavior models mainly deal with

specific dynamic changes of the vehicle’s trajectory, i.e.,

the longitudinal acceleration (including the so-called car-

following behaviors) and the lateral acceleration (including

the so-called lane change behaviors).

The relationship between the three hierarchical models

is a causal relationship, specifically: the output of the

strategic level model is the input of the tactical level

model, the output of the tactical level model is the input of

the operation level model, and the output of the operation

level model is the vehicle dynamic behavior/trajectory

change. Here, we proposed a social force-based integrated
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driving behavioral model (SF-ID) for the operational level

driving behavior model. The inputs of the SF-ID model

include the planned path from tactical level model, the

information on surrounding infrastructure and related

vehicles, and the information on weather and climate, etc.

Because the SF-based models usually have complex for-

mulas and numerous parameters, we adopt the powerful

neural network models and data-driven methods to build

the SF-ID model.

3.2 Impact forces analysis for SF-ID model

The complexity of the SF-ID behavioral model lies in the

numerous impacting forces/factors. According to the

characteristics listed above, the first impact force for the

SF-ID model considered is the driven force f0 caused by the

driver’s temporal destination (TD) or short-term goal.

In the SF-ID model, the function of driven force f0 is to

motivate the driver i to drive in the desired direction e~0
i tð Þ

at his/her desired speed v0i tð Þ adapted to his actual driving

speed vi tð Þ within a certain time DTDi

f0 ¼
v0i tð Þe~0

i tð Þ � vi tð ÞÞ
DTDi

; where e~0
i tð Þ ¼ D~i tð Þ � s~i tð Þ

D~i tð Þ � s~i tð Þ
�
�

�
�

ð1Þ

where D~i tð Þ and s~i tð Þ are the position of TD and the actual

current trajectory of vehicle i, respectively.

Accordingly, the impact factors accounting for the dri-

ven force often include the driver’s TD’s location TD
�!

i tð Þ
and the expected arriving time TDi. Then the driver’s TD

would be input of the SF-ID model as:

TD
�!

i tð Þ ¼ DTD
�!

i tð Þ;DTDi
n o

ð2Þ

where DTD
�!

i tð Þ is the vector difference between position of

TD and vehicle i, DTDi is the vehicle i’s expected running

time to TD:

DTD
�!

i tð Þ ¼ TD
�!

i tð Þ � s!i tð Þ ð3Þ
DTDi ¼ TDi � t ð4Þ

where TDi is the vehicle i’s expected arriving time at TD. It

is worth noting that the information on the location of

related off-ramps and HOV lanes of the environmental

characteristics on infrastructure EI is incorporated in the

TD—the outputs of the tactical level model. For example,

if a driver wants to leave the highway via an off-ramp

nearby, he/she will naturally take it as a TD/short-term

goal. In addition, we assume that only the location of

current lanes and adjacent left and right lanes would have a

direct impact on vehicle movement, and the farther lanes

will not have an impact. Therefore, the inputs of infras-

tructure EI in the SF-ID model only include the central

locations of the current lane, left lane and right lane of the

subject vehicle:

E~
I ¼ LC tð Þ; LL tð Þ; LR tð Þf g ð5Þ

where LC(t), LL(t) and LR(t) stand for the latitude position

of the centers of the current lane, left lane, and right lane of

vehicle i at time t.

As assumed above, both the drivers’ personal charac-

teristics P and environment characteristics E can be

extracted from ample samples of the dynamic movement

behaviors of the subject vehicle and corresponding influ-

encing vehicles by powerful NN models. The influencing

Behavioral model B=f(P,E)

Traffic
Mode

Departure
Time

Route
Choice

Strategic Level Model
Environmental

Factors E

.

.

.

Personal
Characteristics P

.

.

.

Path Planning Models

Tactical Level Model

Force-based Integrated Driving Model

Operational Level model

Culture

Economic

Weather
& Climate

Infrastructure

Age

Driving
Experience

Driving Skill

Preference

Gender Planned Trip

Planned Path Surrounding
Influencing

Vehicles

Dynamic changes of trajectory
(longitudinal and lateral accelerations)

Fig. 1 Hierarchical SF driving behavioral model framework
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vehicles include adjacent vehicles in the current lane, the

left lane and the right lane of the subject vehicle as illus-

trated in Fig. 2.

In the two-dimensional SF-ID models, the acceleration/

deceleration along the travel direction and LC behavior are

integrated; the trajectory and velocity of all vehicles are

vectors, such as the subject i’s position:

s~i tð Þ ¼ xi tð Þ; yi tð Þf g ð6Þ

where xi(t) and yi(t) stand for the subject i’s longitudinal

and lateral position at time t, respectively.

The relative distance Ds~j;iðtÞ of vehicle i to the sur-

rounding vehicles j is also vectors, and if there is no sur-

rounding vehicle j, the relative distance is set as infinity:

Ds~j;i tð Þ ¼
s~j tð Þ � s~i tð Þ if j exists

1 else

�

ð7Þ

and

s~j tð Þ � s~i tð Þ ¼ xj tð Þ � xi tð Þ; yj tð Þ � yi tð Þ
� �

ð8Þ

Vehicle j includes the current-lane leading (CL) and

current-lane following (CF) vehicles, and the nearby

vehicle in the adjacent lanes, denoted as left-lane leading

(LL), left-lane following (LF), right-lane leading (RL) and

right-lane following (RF) in the subscripts, respectively.

And the velocity v~i tð Þ of i and relative velocity Dv~j;i tð Þ
of vehicle i to j can be calculated by:

v~i tð Þ ¼ s~i tð Þ � s~i t � sð Þð Þ=s ð9Þ

and

Dv~j;i tð Þ ¼ v~j tð Þ � v~i tð Þ

¼ s~j tð Þ � s~j t � Tð Þ
s

� s~i tð Þ � s~i t � Tð Þ
s

ð10Þ

where s is the time step, when s is very small, (9) can

represent the momentary speed of i.

The velocity-related variables are derived from previous

and current position data. However, in view of the SF

model, the moving direction and speed of the surrounding

vehicle will produce ‘‘forces’’, so the relative velocity will

also be one of the impact factors of the SF-ID model.

What is more, considering the drivers’ driving experi-

ence or prediction capability [47], the vehicles’ previous

position data a few time steps before are also taken into

account in our ID model.

According to SF model, the output of the SF-ID model

should be the ‘‘force’’ representing behavioral change.

Here, we use the ‘‘results’’ of behavioral changes—tra-

jectory change of i Ds~i tð Þ–as the output of the model:

Ds~i tð Þ ¼ s~i tð Þ � s~i t � Tð Þ ð11Þ

where Ds~i tð Þ is vehicle i’s the position difference from time

t–T to t.

Then the inputs and outputs of the SF-ID model would

be:

Input ¼ DTD
�!

i tð Þ;E~
I
; Li;Wi; Lj;Wj;Ds~j;i t � Tð Þ

n

;Dv~j;i t � Tð Þ;

Ds~j;i t � T � sð Þ;Dv~j:i t � T � sð Þ;
Ds~j;i t � T � 2sð Þ;Dv~j:i t � T � 2sð Þ; . . .. . .;
Ds~j;i t � T � Nsð Þ;Dv~j:i t � T � Nsð Þ

�

j ¼ CL;CF; LL; LF;RL and RF

Output ¼ Ds~i tð Þf g
ð12Þ

where L and W stand for the vehicle lengths and widths,

respectively; and the subscripts i and j stand for vehicle’s

identification. As we know, the vehicle’s length and width

can represent the type and size of the vehicle and thus are

taken as part of ID model inputs.

Here, T is the predict time interval of the model, which

is taken as 1 s, while s stands for the time step for vehicle

trajectory sampling and it is closely related to the accuracy

of derived velocity. Considering the data acquisition

technology and data accuracy requirements of intelligent

transport system (ITS) and intelligent vehicle (IV), we take

s = 0.2 s. N is the parameter that defines the range of the

LF

CLCF

RL

LL Left
lane

Current
lane

∆⃗ , (t) 

∆⃗ , (t) ∆⃗ , (t) ⃗ (t) 

⃗ (t) 

∆⃗ , (t) 

RF
∆⃗ , (t) ∆⃗ , (t) Right

lane

i

Travel direction

Fig. 2 A typical scenario of ID behavior on the highway
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influencing historical time Ns, which will be discussed in

the model calibration section.

3.3 Feed-forward NN-based ID model

From the hierarchical SF behavioral model framework and

the analysis on the impact factors of the operational ID

behaviors on the highway, we propose a feed-forward

neural network (FNN)-based SF-ID model, formulated as:

ŝ~i tjhð Þ ¼ s~i t � Tð Þ þ Ds~i tjhð Þ ð14Þ

where Ds~i tjhð Þ is the estimated vehicle i’s position differ-

ence during T, Ds~Max
i is the maximum position difference

vector during T, defined by the speed limits of the vehicle

and infrastructure. Note that (13) is a model built on the

basis of ideal data, and infrastructure E
!I

can be omitted,

considering that most driving behavior dataset lacks

infrastructure data, including the NGSIM dataset we use in

Sect. 5.

The ID function f(•) will be learned by NNs. And h
stands for the parameters of the NN, mainly including the

transfer functions and weight vectors.

The FNN-based SF-ID model contains three kinds of

layers (see Fig. 3). The input layer that takes the inputs, the

hidden layer (one or more) that calculates, and the output

layer that generates the outputs [31].

The transfer function for neurons is the sigmoid func-

tion, which has been extensively used and proven to be

suitable for the recent DNN-based CF model [47]. For

data-driven method, it is important to define the range of

model inputs. Table 1 lists the range of input parameters

for the FNN SF-ID model.

Theoretically, if we have ample high-quality samples,

which could reflect all the mechanisms of drivers’ ID

behaviors, then with proper transfer functions and neuron

quantity, a simple NN with only one hidden layer has the

power of capturing the behavior rules of ID behaviors.

Thus, we believe the NN-based SF-ID model has the

capability to reproduce the drivers’ operational level ID

behaviors properly. However, NN models with over one

hidden layer (also known as deep NN) have obtained up-to-

day accomplishments in many challenging works, includ-

ing traffic flow forecasting, CF modeling, natural language

Fig. 3 The Structure of SF-ID

model based on FNN

dD s!i tjhð Þ ¼
f

DTDi
�!

tð Þ; E!
I
; Li;Wi; Lj;Wj;D s!j;i t � Tð Þ;D v!j;i t � Tð Þ;

. . .. . .

D s!j;i t � T � Nsð Þ;D v!j:i t � T � Nsð Þ

0

B
B
@

1

C
C
A
; j ¼ CL;CF; LL; LF;RL and RF

if dD s!i tjhð Þ
�
�
�

�
�
�\ D s!Max

i

�
�
�

�
�
�

D s!Max

i else

8

>>>>>>><

>>>>>>>:

ð13Þ
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processing, computer vision, and speech recognition, etc.

[5, 28, 34, 47, 54]. Therefore, we intend to try and compare

the simple and complex NN structures in the SF-ID model.

4 Configurations for ID models

The configuration of NN model contains the performance

index, decisive parameters and training algorithms for NN.

Conforming to the calibrating principles [24] and other

related researches [25, 47], we adopted the widely used

correlation coefficient (R) and mean squared error (MSE)

of predicted and empirical positions as the performance

indices:

Rx ¼
PM

k¼1 x~k � �Xð Þ x~k � �Xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PM

k¼1 x~k � �Xð Þ2D
PM

k¼1 x~k � �Xð Þ2
q ð15Þ

Ry ¼
PM

k¼1 y~k � �Yð Þ y~k � �Yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PM

k¼1 y~k � �Yð Þ2D
PM

k¼1 y~k � �Yð Þ2
q ð16Þ

MSE ¼ 1

M

XM

k¼1
ŝ~k � s!k

� 	2

¼ 1

M

XM

k¼1
xk � xkð Þ2� yk � ykð Þ2

h i

ð17Þ

where Rx and Ry stand for the correlation coefficient for x

and y-axis coordinate values of trajectory. x~k, y~k, x~k and y~k

stand for the kth estimated and empirical xand y-axis

coordinate values of trajectory, respectively. M stands for

the total number of the validation sample. �X, �Y , �X and �Y

stand for the means of x~k, �yk, x~k and y~k, respectively.

The followings are decisive parameters in our FNN-

based SF-ID models.

(1) Historical time steps N of inputs: Parameter N defines

the range of subject vehicle i’s historical position

data being input to the model. The larger N implies

more historical information being considered by the

NNs. The process of finding out the best value of N is

presented in Sect. 5.2.

(2) Activation function: According to the DNN-based

CF and LC models [26, 27, 47], we take the sigmoid

function as the activation function for neurons in the

FNN’s input and output layers.

For neurons in the hidden layers, we take the Parametric

Rectified Linear Unit (PReLU) as the transfer function,

because it could reduce the risk of overfitting [17, 18]. The

Relu function is:

PReLU xið Þ ¼ xi if xi [ 0

axi if xi � 0

�

ð18Þ

where a stands for the threshold parameter. In the experi-

ment of finding out the appropriate a, we set a from 0.2 to

0.9 with a step size of 0.05. Finally, the value of a is 0.80.

(3) The NN structure: The NN structure contains the

number of the hidden layers and their corresponding

neurons. Since there is no direct way to find out the

most appropriate NN structure, researchers usually

get appropriate NN structure by field data testing. A

number of typical NN structure schemes are tested

and compared in Sect. 5.

(4) The loss function: The loss function (or objective

function) in the SF-ID model considers the relative

error in both lateral and longitudinal positions of the

vehicle trajectory. The MSE is adapted to measure

the error between the estimated and empirical

positions.

(5) Epoch: The epoch stands for the iteration times in

training. ‘Early Stopping’ is used in training to avoid

overfitting or underfitting. When the results are no

Table 1 Input parameters range of the SF-ID model based on FNN

Parameter description Range Parameter description Range

Length (ft) [4, 80] Width(ft) [2, 10]

The lateral position of vehicle (ft) [0,

12 9 n]*

The longitudinal position of vehicle (ft) [0, 106]

The velocity of subject vehicle (ft/s) [0, 120] Expected arriving time(s) [1, 106]

Lateral position of temporal destination (ft) [0, 12 9 n] Longitudinal position of temporal destination

(ft)

[4, 106]

Relative lateral position of CL and CF (ft) [- 18, 18] Relative lateral position of RL and RF (ft) [0, 35]

Relative longitudinal position of CL, LL and RL (ft) [0, 180] Relative longitudinal position of CF, LF and

RF (ft)

[- 180,

0]

Relative velocity of adjacent vehicles (CL, CF, LL, LF, RL, and RF)

(ft/s)

[- 100,

100]

Relative lateral position of LF & LL (ft) [- 35, 0]

*n stands for the number of lanes
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better than 50 times, the model stops training. The

epoch is set from 50 to 3000.

In line with the recent work of Wang et al. [47] and

Huang et al. [26, 27], the widely used backpropagation

(BP) algorithm is adopted to train the FNN-based SF-ID

models.

5 Model calibration and verification

Here, the FNN-based SF-ID models will be calibrated and

verified by field data. First, the empirical field data are

presented. Then structures of the FNN-based SF-ID model

are compared with diverse training sample sizes. Next, the

historical time steps N are determined with the suit-

able structure (from simple one hidden layer to complex 3

hidden layers NNs) and training sample size. Last, the

performance of the FNN-based SF-ID models is verified by

comparing model outputs and field data from different

aspects of driving behaviors.

5.1 Data preparation

We take the Next Generation Simulation (NGSIM)

(FHWA [13] as the testing dataset. NGSIM contains

accurate and reliable highway vehicles’ trajectory data,

related vehicle information (including the vehicle’s length

and width, the leading and the following vehicle, lane,

etc.), and infrastructure information. The dataset is of U.S.

Highway I-101. The study area of I-101 is about 2100 ft

long with one on-ramp and one off-ramp (Fig. 4).

The I-101 dataset also has a total of 45 min of data: 7:50

a.m. to 8:05 a.m.; 8:05 a.m. to 8:20 a.m.; and 8:20 a.m. to

8:35 a.m. These periods represent the buildup of conges-

tion, or the transition between uncongested and congested

conditions, and full congestion during the peak period. The

NGSIM I-101 dataset has been widely used for CF and LC

modeling [16–18, 26, 27, 29, 41, 47, 51, 53, 57, 58].

Three data filtering procedures had been conducted for

the NGSIM dataset before extracting the training samples:

(1) Primarily, vehicles with discontinuous time records

are filtered out. That means part of the vehicles’

trajectory records were missing. The trajectory data

of such vehicles are unable to provide valid samples

for the model.

(2) Then, the vehicles running shorter than 200 m are

filtered out. This is to provide valid samples for CF

and LC behavior modeling in the SDF-ID model

[17, 18].

(3) Last, vehicles type as motorcycles were filtered out.

Some vehicles in the NGSIM dataset are motorcy-

cles, which are not included in our study.

Extracting SF-ID model training sample from the orig-

inal NGSIM trajectory dataset mainly includes three parts:

position and time of vehicle i’s TD, determination of the

surrounding influencing vehicles’ ID and extraction of

relative dynamic information, and verification of the con-

tinuity of vehicles’ trajectory data.

Fig. 4 The study area of U.S. Highway I-101 in the NGSIM dataset
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To determination of vehicle i’s TD is to extract the

trajectory position and timestamp just before the vehicle i

leaving the vehicle trajectory study area. And the data

related to TD in the samples can be calculated by (2)–(4)

according to vehicle i’s trajectory and timestamp.

Figure 2 shows that the number of influencing vehicles

of vehicle i changes from 0 to 6. The judgment of the

surrounding influencing vehicles is based on the minimum

relative distance Ds~j;i
�
�

�
� between vehicle j and vehicle i.

According to the car-following theory (FHWA [12], there

is a correlation between vehicles in a range of inter-vehicle

spacing, from zero to about 100–125 m. Here, if the min-

imum relative distance between vehicle j and vehicle i is

less than 125 m, the ID of the vehicle with the smallest

relative distance is recorded as influencing vehicle; other-

wise, the ID would be Null. i.e.,

IDj ¼
jjmin

j
D s!j;i

�
�

�
�

� �

if D s!j;i

�
�

�
�\ 125m

Null else

(

ð19Þ

In case of the missing records of some vehicles’ tra-

jectory in the original NGSIM data, the continuity of the

vehicle trajectory has been judged in sample data prepro-

cess as the training samples need historical information.

After preprocessing, we get samples of 2193 vehicles

and about 1,225,000 records of vehicle trajectories for

training/tests. Samples with excessive deviations of tra-

jectory displacement within 0.1 s (for example over 200 ft)

are filtered out. Then we get over 1,150,000 valid sample

records, and they are denoted as empirical ID samples.

The empirical ID samples are first randomly divided into

three parts: training datasets (40%), cross-validation data-

sets (30%), and test datasets (30%).

5.2 Calibration results of SF-ID models

In this section, we first propose 12 schemes of the model

structure with 1 to 3 hidden layers for the FNN for SF-ID

models. We take preliminary tests with a small sample size

to obtain the initial suitable value of historical time steps

N for the schemes. Then we search for the appropriate

network structures and sample size by training and cross-

validation on field data with the initial N. With the

appropriate network structures and sample size, we go back

to determine the suitable value of N again. In this way, we

finally find out the suitable FNN SF-ID models.

5.2.1 Choice of Model Structure and Sample Size

When implementing NNs to model driving behaviors, we

should be cautious about the problem of overfitting, as the

driving behavior dataset is relatively small. And complex

structured NN tends to overfit with a small sample size [3].

What is more, as it is hard to define the correlation of

training sample size and NN structures [47], we test dif-

ferent schemes from one to three hidden layers (see

Table 2) to find the appropriate sample size and NN

structure.

The NN schemes in Table 2 are trained by sample size

from 50,000 to 450,000 (randomly pick from the training

dataset) and tested by 200,000 samples randomly pick from

the cross-validation dataset. Here, the historical time steps

N of input are taken as 5. In the test, the weight coefficients

of the NN are mostly not close to 0, showing the effec-

tiveness of the NN model.

Figure 5 shows the MSE values in ft2 of FNN-based SF-

ID models with diverse structure schemes and training

sample sizes. The correlation coefficients Rx and Ry of all

FNN-based SF-ID models are very high, up to about 0.999.

The results show that the FNN SF-ID model with one

hidden layer is scheme S2 (see Table 2) with the corre-

sponding training sample size of 100,000, and the MSE is

16.53 ft2 (1.53 m2). And the best FNN SF-ID model with 2

and 3 hidden layers are schemes S7 and S11, with a cor-

responding training sample size of 200,000 and 250,000,

and the MSEs are 15.78 ft2 (1.47 m2) and 15.80 ft2

(1.47 m2), respectively.

As shown in Fig. 5, the FNN models with more complex

structures (S7 and S11 in Table 2, with 2 and 3 hidden

layers) performed a bit better than the simple FNN model

(S2 in Table 2, with 1 hidden layer). However, the overall

MSEs under different training sample sizes of the simple

FNN model (S2) seem smaller than the other two models,

indicating that the simpler FNN model may outperform the

complicated FNN models in some cases.

Table 2 NN structure schemes
Schemes Hidden layer

1 2 3

S1 50 – –

S2 100 – –

S3 200 – –

S4 50 50 –

S5 100 50 –

S6 100 100 –

S7 200 100 –

S8 200 100 –

S9 50 50 50

S10 100 50 50

S11 100 100 50

S12 200 100 50

Denotes no corresponding hid-

den layer in that structure

scheme
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To further explore the model performance of FNN

models with different hidden layers in operational ID

behavioral modeling, we compare the best three FNN

models with different number of hidden layers—S2 in

Table 2, with one hidden layer, S7 with two hidden layer

and S11 with three hidden layer—in the following work,

and named them as FNN SF-ID (L1), FNN SF-ID (L2) and

FNN SF-ID (L3), respectively.

5.2.2 Suitable value of historical time steps N

Before testing the suitable structure schemes and training

sample size for the FNN model, we randomly pick 100,000

samples from the training dataset to test and compare dif-

ferent values of historical time steps N for all the structures

schemes of Table 2. The preliminary results showed that

the MSE of most schemes were lowest when N is 5 or 6.

Then, we take N = 5 to find out the suitable structure

schemes and the corresponding training sample sizes for

FNN SF-ID (L1, L2, and L3) models.

Next, with the suitable NN structures and corresponding

training sample sizes, we compare the FNN SF-ID (L1, L2,

and L3) model with different historical time steps N. The

results (Fig. 6) show that N = 5 for all the FNN SF-ID (L1,

L2 and L3) models can achieve the best performance.

Table 3 shows the parameters of the best fitted FNN SF-ID

models with different hidden layer numbers.

5.3 Model structure features

We use statistical methods to analyze the weight matrix in

the FNN SF-ID (L1) to explore the model structure fea-

tures. The weight between the input layer and the hidden

layer isW1, and the weight matrix between the hidden layer

and the output layer is W2 (see Fig. 3). In W1, inputs with

weights ranking over 75% of all are considered as main

influencing factors of hidden features, and inputs with

weights ranking below 15% are considered as insignificant

factors. Table 4 lists the main and insignificant influencing

factors for the FNN SF-ID (L1) model.
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Fig. 5 Comparisons of MSE results of FNN with structural schemes in Table 2 and training sample sizes (N = 5)
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The main influencing factors listed in Table 4 are

basically consistent with the influencing factors of the

traditional CF behavior and the LC behavior model

[14, 15, 50]. In the traditional CF model, the vehicle is

mainly influenced by the state of the leading one (relative

distance and velocity) [14, 50]; in SF-ID FNN, the pres-

ence and the velocity of the leading vehicle have greater

weights. In Gipps’ LC model, the driver needs to perform a

comprehensive evaluation on the current lane and the target

lane (the presence of heavy vehicle, whether there is a safe

distance for lane change, etc.); in the FNN SF-ID (L1)

model, the presence and state of the vehicle on the adjacent

lane (including the vehicle size and relative distance) also

have greater weights.

In W2, the hidden features that have a greater influence

on the outputs D s!i are mainly affected by the adjacent

vehicle state (including presence and relative position

D s!j;i), and the lateral position of temporal destination

TDxi.

Interestingly, the main influencing hidden features on

output DyiðtÞ are basically only affected by the historical

longitudinal positions; while the main influencing hidden

features on output Dxi tð Þ are not only affected by the his-

torical lateral positions Dxi t � T � nsð Þ, n = 0,1…5, but

also the historical longitudinal positions Dyiðt � T � nsÞ,
n = 0,1…5. This seems to indicate that the driver’s LC

behavior and CF behavior cannot be completely separated.

We also analyzed the insignificant influencing factors in

W1. The insignificant influencing factors for the FNN SF-

ID (L1) model include the relative velocities of surround-

ing vehicles EXCEPT for the leading one, length and rel-

ative longitudinal distance of the following vehicle.

Considering that the relative velocities of the sur-

rounding vehicles can be derived from the historical rela-

tive position by Newton’s kinematics, they can be

considered as redundant inputs. And to our common sense,

the driver generally does not care much about the relative

velocities of the surrounding vehicles except the leading

car, not to mention the length and the relative longitudinal

position of the following car.

Table 3 Parameter range and calibration results of best fitted FNN SF-ID (L1\L2\L3\R*)

Parameter Value Parameter Value

Loss function MSE of trajectory Learning rate 0.001

Structure of NN L1(100)\L2(200/100)\L3(100/100\50)\\R(50)

Activation function PReLU(a = 0.80) Optimizer RMSProp

Epoch 260\380/\650\270 Historical time steps N 5\5\5\5

Training sample size 100,000\200,000\250,000 \100,000 MSE (ft2) 16.53\15.78\15.80\15.09

Rx 0.9990\0.9990\0.9990\0.9990 Ry 0.9999\0.9999\0.9999\0.9990

*L1, L2, L3 stand for the original FNN SF-ID models with one, two and three hidden layers, respectively; R stands for the Refined FNN SF-

ID(L1) model introduced in Sect. 5.4

Table 4 The main and insignificant influencing factors for the FNN SF-ID (L1) model

Main influencing factors with weights ranking over 75% Insignificant influencing factors with weights ranking below 15%

Presence of Adjacent Vehicles (CL\CF\LF\RL\RF)

Current Lateral Position of Subject Vehicles

Relative Velocities of Adjacent Vehicles (CF\LF\RL\RF\LL\LF)

Relative Lateral Distance of Temporal Destination (TDx) Length of Adjacent Vehicles (CF\LF\CL\LL)

Subject Vehicles’ Historical Lateral Position Relative Lateral Distance of the Following Vehicles (CF)

Presence of Adjacent Vehicles(LF\LL) Relative Longitude Distance of the Following Vehicles (CF)

Width of Adjacent Vehicles(RL\RF) Historical Velocity of the Subject Vehicle

Relative Lateral Distance of Adjacent Vehicles(RL) Width of the Following Vehicle (CF)

Expected Arriving Time (TDt)

Relative Velocity of Leading Vehicles (CL)

Presence of Adjacent Vehicles (LL\RF\CL)

•Length of Adjacent Vehicles (RF\RL)
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5.4 Refined FNN SF-ID model

Based on the analysis of the model structure features, we

refine the original FNN SF-ID (L1) by removing the

insignificant inputs (the relative velocities of surrounding

vehicles EXCEPT for the leading one, all the information

of the following vehicle in current lane CL). The refined

FNN SF-ID (L1) is noted as FNN SF-ID (R).

We calibrate FNN SF-ID (R) by the method in Sect. 4.

To facilitate comparisons with the original FNN SF-ID

models, the historical time steps N are taken as 5. The

parameter calibration results are shown in Table 3.

Overall, FNN SF-ID (R) performed a bit better than the

original FNN SF-ID (L1, L2 and L3) models, with smaller

MSEs, smaller NN structure, smaller training sample size,

and less epoch needed for model calibration.

Then the refined FNN-based SF-ID model—FNN SF-ID

(R)—can be formulated as:

5.5 Comparisons with field data

To examine the validity and accuracy of the FNN SF-ID

models, we compared some specific driving behaviors of

FNN SF-ID(L1, L2, L3, and R) model and field data ran-

domly extracted from the empirical ID test dataset.

5.5.1 Comparison on avoiding collisions

In the traditional CF models, the collision-free can be

mathematically proved (FHWA [12]. The FNN SF-ID

assumed that the driving behaviors can be speculated from

historical behaviors and surrounding impacts. Here, we will

validate the collision-free situations in statistics. Therefore,

we calculate the relative error of the estimated space

headway as follows:

REhs tð Þ ¼ hs tð Þ � hs tð Þ
hs tð Þ ¼ yi tð Þ � yi tð Þ

yCL tð Þ � yi tð Þ
ð21Þ

where hs tð Þ and hs tð Þhs tð Þ represent the estimated and real

space headway at t; yCL tð Þ represents the leading vehicle’s

longitudinal position at t; other denotes are the same as

above.

Totally 455 pairs of leader–follower vehicles moving

over 800 ft on US I-101 of the test dataset are estimated by

the FNN SF-ID (L1, L2, L3, and R) models. In the results,

the percentage of relative error REhs tð Þ smaller than 0.1

was 96.50%, 98.04%, 82.67% and 94.38% for FNN SF-ID

(L1, L2, L3, and R), respectively. And the results of Lane 1

to 4 are presented in Fig. 7. It shows that FNN SF-ID (L1,

L2, and R) have outperformed than FNN SF-ID (L3) in

collision avoidance situation, as their relative errors are

near zero.

As the minimum space headway is about 18 ft, the

relative errors imply collision-free exists in all our FNN

SF-ID (L1, L2, L3, and R) models. From Fig. 7, we can see

that for each type of FNN SF-ID model, the relative errors

of space headway in different lanes are quite close. This

shows that the SF-ID models are in line with the actual

situation in car-following and collision avoidance.

5.5.2 Comparisons on the trajectories in different lane
change scenarios

To further analyze whether the FNN SF-ID model can truly

reproduce the operational lane change behavior on high-

way, we compare the estimated and empirical trajectories

of four different lane change scenarios in US I-101 dataset:

(1) merging vehicles via the on-ramp with multiple lane

change operations (i.e., Vehicle 2006) and (2) diverging

vehicles to the off-ramp with lane change operations (i.e.,

Vehicle 2107).

In merge scenario, the subject vehicle 2006 changes

from lane 6 to 5. Before lane changing, vehicle 2006 was

only with CF vehicle 2010, and without CL, LL, LF, RL or

RF vehicle. After lane change, it was with CL vehicle 1996

and CF vehicle 2007, LL vehicle 1991, RL vehicle 2000,

respectively. The maximum longitudinal trajectory devia-

tions were 29.74 ft (9.06 m), 18.33 ft (5.59 m), 12.47 ft

(3.80 m) and 16.92 ft (5.16 m) for FNN SF-ID (L1, L2, L3

and R), respectively. The maximum lateral trajectory

deviations were 4.95 ft (1.51 m), 2.89 ft (0.88 m), 2.94 ft

(0.90 m) and 2.55 ft (0.78 m) for FNN SF-ID (L1, L2, L3

and R) models, respectively.

dD s!i tjhð Þ ¼ f

DTDi
�!

tð Þ; Li;Wi; Lj;Wj;D s!j;i t � Tð Þ;D v!CL;i t � Tð Þ;
. . .. . .

D s!j;i t � T � Nsð Þ;D v!CL:i t � T � Nsð Þ

0

B
@

1

C
A; j ¼ CL,LL,LF,RL and RF if dD s!i tjhð Þ

�
�
�

�
�
�\ D s!Max

i

�
�
�

�
�
�

D s!Max

i else

8

>>>><

>>>>:

ð20Þ
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In diverge scenario, the subject vehicle 2107 changes

from lane 5 to 6. Before lane changing, vehicle 2107 was

with CL vehicle 2104 and CF vehicle 2116, LL vehicle

2112, RL vehicle 2119, without LF or RF vehicle. After

lane change, it was with CL vehicle 2099 and CF vehicle

2117, and without LL, LF, RL or RF vehicle. The maxi-

mum longitudinal trajectory deviations were 14.80 ft

(4.51 m), 16.00 ft (4.88 m), 33.40 ft (10.18 m) and 7.02 ft

(2.14 m) for FNN SF-ID (L1, L2, L3 and R), respectively.

The maximum lateral trajectory deviations were 3.66 ft

(0.12 m), 1.96 ft (0.60 m), 2.60 ft (0.79 m) and 2.40 ft

(0.73 m) for FNN SF-ID (L1, L2, L3 and R) models,

respectively.

Figure 8 shows the comparisons of the estimated by

FNN SF-ID (L1, L2, L3, and R) models and empirical

vehicles’ trajectories. We can see in the enlarged details of

Fig. 8 that the refined model FNN SF-ID (R) performed

better than the original FNN SF-ID (L1, L2, and L3) model

in both merge and diverge situations.

All vehicles in the test dataset with full LC behaviors

(totally 384 vehicles, 84,482 samples) were tested. A

vehicle with full LC behaviors means that it keeps moving

for 300 fts on lanes before and after LC operation in the

test dataset. Overall, the FNN-based SF-ID models could

all reproduce the drivers behaviors in merge and diverge

situations satisfactorily with MSEs of 19.69 ft2 (1.83 m2),

(a) FNN SF-ID(L1) 

(b) FNN SF-ID(L2) 

(c) FNN SF-ID(L3)  

(d) FNN SF-ID(R) 

Fig. 7 Histogram plots for the REhs of different FNN SF-ID models on different lanes
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18.06 ft2 (1.68 m2), 18.59 ft2 (1.72 m2) and 16.05 ft2

(1.49 m2) for FNN SF-ID (L1, L2, L3 and R), respectively.

Table 5 presents the performance of FNN SF-ID (L1,

L2, L3, and R). The refined model FNN SF-ID (R) out-

performed a bit than the three original models, as most of

the performance indexes are better.

6 Discussions and conclusions

Our effort in this paper is an attempt to model the driver’s

operational ID behavior on the highway. The driver’s ID

behavior phenomenon has been recognized by researchers,

and Toledo et al. [42] have proposed the ID modeling

incorporating CF, LC and gap acceptance behaviors and

the model calibration results. However, the further research

and application of the ID model have stagnated since then

due to two main obstacles: the lack of proper psychological

and behavioral theoretical framework to explain the

underlying mechanism of ID behavioral, and a powerful

method to handle the complex model parameter

calibration.

The recent emerging of hierarchical social force (SF)

behavioral model framework and data-driven method

seems to clear the obstacles on the theoretical basis and

calibration method of the modeling of driver’s ID

behaviors.

In the process of modeling, we are surprised by the

power of data-driven methods. A relatively simple NN

model with a single hidden layer (compared with image

recognition NNs) can capture the driver’s ID behavior

features on the highway by using only a small sample size

on positions and other information on the subject and

surrounding vehicles.

(a) Merge situation of Vehicle 2006

(b) Diverge situation of Vehicle 2107

Fig. 8 The target vehicle’s

trajectories reproduced by

different FNN SF-ID models in

merge and diverge situations in

US I-101
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During NN modeling, we have also tried other more

complex NN models, such as GRU (Gated Recurrent Unit)

[47] and LSTM (long short-term memory) [26, 27] models.

However, the performance of GRU and LSTM models is

no better than that of FNN models. Instead, the inputs of

the model need to be adjusted according to the structural

characteristics of the GRU and LSTM model, making the

modeling process more complex. Therefore, the FNN

model is adopted in the end. Test results showed that the

FNN SF-ID models on the highway can capture underlying

driving behavioral features, as it could reproduce both the

different LC maneuvers and collision avoidance in CF.

Then, we analyze the FNN SF-ID (L1) model structure

features and finding out the main influencing factors and

insignificant ones for the hidden features for FNN SF-ID

(L1). The main influencing factors basically include all the

considered factors of the traditional CF and LC behavior

models [14], 1986; [50]. In addition, TDx as the main

influencing factor shows that the impact of goal driving

force in SF theory on driving behavior is significant. This

proves that the SF theory is suitable for ID driving behavior

modeling.

Interestingly, in the FNN SF-ID model structure, the

main influencing hidden features on output Dxi tð Þ are not

only affected by the historical lateral positions but also the

historical longitudinal positions. This seems to verify that

driver’s LC behavior and CF behavior are integrated [42].

Through the analysis of the insignificant factors, we

exclude the CF vehicle from the surrounding vehicles,

because both the static and dynamic states of CF belong to

the insignificant factors. Thus, we refine the original FNN

SF-ID (L1) by removing some of the insignificant factors.

We also compare the performance of the four FNN SF-

ID (L1, L2, L3, and R). From the comprehensive evalua-

tion of collision avoidance in CF and LC situations, the

FNN SF-ID (R) seems to outperform a bit than the three

original models in our study. Performance results presented

in Table 5 show that our FNN SF-ID models have a good

capability in reproducing/predicting the operational ID

behaviors on the highway.

The satisfactory performance of the FNN SF-ID model

may be partly attributed to the relatively specific and

simple operational ID behavior on the highway, but also

benefit from the appropriate behavioral model framework.

In addition to providing the theoretical model basis for

traffic flow microscopic ID simulation models on the

highway, the FNN SF-ID model can also be applied in

advance driving assistant system (ADAS) of IV, connected

vehicles (CVs) and autonomous vehicles (AVs). The FNN

SF-ID model could also be used to predict the positions of

the surrounding human-driven vehicles.

Due to the powerful parameter fitting capability of data-

driven methods, we must be very cautious when applying

these methods in driving behavior modeling. As many

researchers don’t want to find that the microscopic traffic

flow simulation model becomes a huge black box one day.

However, by exploring the NN structural features, we still

can have some understanding of the relationship between

model input and model hidden features and can qualita-

tively understand whether the data-driven driving behavior

model conforms to our common sense. This can alleviate

Table 5 Performance results of best fitted FNN SF-ID (L1, L2, L3, and R) models

Performance index FNN SF-ID

(L1)

FNN SF-ID

(L2)

FNN SF-ID

(L3)

FNN SF-ID

(R)

Sample

size

Longitudinal MSE (ft2/m2) 15.62 (1.45) 14.99 (1.39) 15.08 (1.40) 14.20 (1.32)

Lateral MSE (ft2/m2) 0.91 (0.09) 0.79 (0.07) 0.72 (0.07) 0.89 (0.08)

Total MSE (ft2/m2) 16.53 (1.53) 15.78 (1.47) 15.80 (1.47) 15.09 (1.40)

Rx 0.9988 0.9990 0.9990 0.9985

Ry 0.9999 0.9999 0.9999 0.9999 301,853

Longitudinal MAE* (ft/m) 3.95 (1.20) 3.87 (1.18) 3.88 (1.18) 2.40 (0.73)

Lateral MAE** (ft/m) 0.95 (0.29) 0.89 (0.27) 0.85 (0.26) 0.65 (0.20)

Trajectory MAE (ft/m) 4.07 (1.24) 3.97 (1.21) 3.97 (1.21) 3.05 (0.93)

Percentage of relative error REhs tð Þ less than 0.1 in CF

situations

96.50% 98.04% 82.67% 94.38% 101,998

Longitudinal MSE (ft2/m2) in LC situations 15.50 (1.44) 15.65 (1.45) 15.75 (1.46) 14.40 (1.34)

Lateral MSE (ft2/m2) in LC situations 4.19 (0.39) 2.41 (0.22) 2.84 (0.26) 1.65 (0.15) 84,482

Total MSE (ft2/m2) in LC situations 19.69 (1.83) 18.06 (1.68) 18.59 (1.72) 16.05 (1.49)

*The longitudinal MAE is the mean absolute longitudinal trajectory deviation

**The lateral MAE is the mean absolute lateral trajectory deviation
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the black box problem to some extent. Moreover, our

refined FNN SF-ID model also fully demonstrates that the

data-driven driving behavior model can be refined by

analyzing its structural features.

This can improve the black box problem to some extent.

And our refined FNN SF-ID model also fully shows that

the model can be improved by analyzing the structural

characteristics of NN. This can improve the black box

problem to some extent. Moreover, our refined FNN SF-ID

model also fully demonstrates that the model can be

improved by analyzing the NN structural features.

The limitation of this method lies in the general limi-

tations of data-driven modeling methods, that is, the model

performance has a large dependence on the accuracy,

reliability, and sample size of field sample dataset. More-

over, the trained model has strong location adaptability.

For example, the model trained on the sample dataset of

I-101 in this paper may not be able to apply to other

highway sections directly. This limitation will be further

improved in our subsequent studies.

Our work is only a preliminary small part of this course.

Due to data limitations, our model does not incorporate

information on the infrastructure. Our future work is an

attempt to build ID models with infrastructure information

and in more complex driving situations such as urban road

sections by applying more data-driven methods.
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