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Abstract
Nowadays the incredibly advanced developments in information technologies have led to exponential growth in the

datasets with respect to both the dimensionality and the sample size. This trend can be easily illustrated in popular online

data repositories (e.g., UCI machine learning repository). The more growth in the datasets, the more challenging the data

management becomes. This is because such datasets usually comprise a high level of noise as well as the necessary

information. Therefore, the elimination of noisy features in the datasets is an important task to discover meaningful

knowledge. Although a large number of feature selection approaches have been proposed in the literature to deal with noisy

features, the need for the studies based on feature selection has not come to an end. In this paper, we propose differential

evolution-based feature selection approaches wrapped around the principles of fuzzy rough set theory. In contrast to well-

known feature selection criteria such as standard mutual information, standard rough set and probabilistic rough set, our

approaches can also deal with real-valued variables without the requirement of discretization. Moreover, the feature subsets

selected by our approaches can profoundly improve the classification performance compared to the recent particle swarm

optimization approaches based on probabilistic rough set and the state-of-the-art filter approaches.

Keywords Fuzzy rough set � Differential evolution � Feature selection � Classification

1 Introduction

Nowadays a real-world dataset is usually represented

through many features, causing the existence of noisy

features to the target. There are two kinds of noisy features,

irrelevant and redundant. An irrelevant feature does not

have a direct relationship with the target, but adversely

affects the performance of the learning process. A redun-

dant feature does not provide any additional information to

the target. Removing such features can improve both the

efficiency and the effectiveness of a learning algorithm. It

can therefore be possible to get a better insight into a

learning problem. However, the selection process of an

optimal feature subset in the dataset is not an easy task due

to the following challenges. First, an individual feature

may not be significantly correlated with the target. How-

ever, if this feature is evaluated with other features, it may

have a considerable relation with the target. Second, for a

dataset with m number of features, there exist 2m candidate

feature subsets. Accordingly, the selection process of an

optimal feature subset among all candidate subsets may

become intensive and impractical, even for a medium

number of features. Third and last, the selection process of

an optimal feature subset is expected to improve not only

the classification performance, but should also consider

other important issues, such as interpretability, complexity,

scalability and generalization of the learning model.

In the terminology of machine learning, feature selec-

tion can be applied using the principles of three funda-

mental schemes: supervised, unsupervised and semi-

supervised [36]. Supervised feature selection requires the

labeled information in the data to identify the goodness of

features. The labeled information can be a real or order

value, or a category depending on the specific task. Semi-

supervised feature selection only requires a small amount

of the labeled information. In contrast to supervised and
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semi-supervised schemes, unsupervised feature selection

does not require any external or labeled information to

carry out the selection process of an optimal feature subset

and so is treated as more challenging.

In terms of evaluation, both supervised and unsuper-

vised feature selection approaches can be divided into

wrapper, embedded and filter approaches. Wrapper

approaches first select a candidate feature subset using a

predefined search strategy (e.g., sequential forward,

sequential floating forward, random search) and then use a

specific learning algorithm to evaluate the quality of the

chosen feature subset. This procedure is repeated until

achieving higher learning performance. However, the

selected feature subset is dependent on the specific learning

algorithm, i.e., may not perform well through another

learning algorithm. Embedded approaches are adopted into

learning algorithms through regularization methods or a

penalty term in a model-based function. Compared to

wrapper approaches, embedded approaches are less time-

consuming, but may not perform well in terms of maxi-

mizing the performance of a learning algorithm. In contrast

to wrapper and embedded approaches, filter approaches do

not require a learning algorithm to carry out the selection

process of features. Filter approaches are therefore com-

putationally less intensive and more general than wrapper

and embedded approaches, but may not perform well due

to the independence of learning algorithms. Instead of a

learning algorithm, filter approaches use data intrinsic

measures such as distance, dependency and consistency to

evaluate the quality of the selected subsets [11, 42].

Unfortunately, none of them have been considered as the

standard for filter approaches. In our opinion, this is

because none of these measures are consistently better than

others on all problems, i.e., some metrics works properly in

continuous data, while some metrics are suitable for dis-

crete data. Moreover, they detect different kinds of rela-

tionships between features and output variables.

Rough set (RS) theory [31] is a mathematical tool that

can be used to reduce the dimensionality using intrinsic

information within the data without requiring any addi-

tional information. For the last two decades, RS theory has

gained considerable interest and has been implemented to

many fields [49]. For a given dataset represented through

discrete-valued features, it is possible to select the most

informative features among all available features using RS

theory. In the terminology of feature selection, the infor-

mative features are expected to be the most predictive to

the target. However, RS theory does not consider the

degree of overlapping in the data. To deal with this defi-

ciency, Yao and Zhao [45] introduced probabilistic (PRS)

rough set theory. Even though PRS theory has proven to

perform better than RS theory, PRS theory has still chal-

lenges to measure the dependency of features.

Furthermore, both RS and PRS theories encounter prob-

lems when the values of features are real-valued. Using the

principles of such theories, it is not possible to identify that

two different feature values are similar and to what extend

they are same. For example, two close values may only be

considered as different as a result of noise, but RS theory

considers them as two different values with a different

order of magnitude. Data discretization may be considered

as a solution to this challenge before performing RS-based

and PRS-based reduction approaches; however, it is still

not adequate since information loss in the data cannot be

preventable. In order to alleviate such problems, fuzzy

variants of RS-based criteria concerned with fuzzy rough

set (FRS) theory were introduced.

In order to enhance the performance of RS-based

approaches and its derived criteria, researchers have also

implemented such measures in evolutionary computation

(EC)-based filter approaches due to the search ability of

them to find the global optima. However, there exist only

few works on using EC techniques and FRS-based criteria

for feature selection in the literature. Moreover, to the best

of our knowledge, FRS-based standards have not been

adopted in multi-objective EC framework yet. Another

open issue concerning feature selection is that the works

for filter feature selection concerned with differential

evolution (DE) [37] are not adequate in the literature, even

though DE has been widely treated as one of the most

potent algorithms among a variety of EC techniques.

1.1 Goals

In this paper, we propose new filter approaches using DE

algorithm and FRS theory to improve both the effective-

ness and the efficiency of the classification algorithms. To

achieve this objective, we designed FRS-based objective

functions for single-objective and multi-objective DE

algorithms. Specifically, we aim to investigate:

• the performance of FRS-based approaches versus PRS-

based approaches,

• the performance of FRS-based criteria in single-objec-

tive design versus in multi-objective design.

• the performance of FRS-based approaches versus the

state-of-the-art filter approaches.

1.2 Organization

The remainder of the paper is designed as follows. Sec-

tion 2 presents related work: rough set theory, differential

evolution, multi-objective optimization and rough set the-

ory for feature selection. Section 3 introduces the proposed

approaches: the design of FRS-based criteria and the

integration of the designed FRS-based criteria in single-
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objective and multi-objective frameworks. Section 4 gives

an outline of the experiment design. Section 5 provides

empirical results with analysis. Finally, Sect. 6 draws

conclusions and future work.

2 Background

2.1 Rough set (RS) theory

Proposed by Pawlak [31] in 1982, RS theory is a mathe-

matical tool to deal with uncertainty in an efficient way in

the data using a decision table. Let U be a non-empty finite

set of instances (objects) in the data and A be a non-empty

finite set of features such that a : U�!V a where Va is the

set of values that attribute a can take. The decision table is

shown by I ¼ ðU;AÞ. Moreover, assume that P and Q be

two subsets of A, and X be a subset of U. The fundamental

components of RS theory are given as follows.

1. Indiscernibility (IND(P)) is a relation between two

instances where all values are identical in relation to a

subset of considered features (P), defined by Eq. (1). If

ðx; yÞ 2 INDðPÞ, x and y instances are indiscernible

through feature subset P. The equivalence classes of

the indiscernibility relation of the instance x in subset P

are denoted by ½x�P.
INDðPÞ ¼ fðx; yÞ 2 Uj8a 2 P; aðxÞ ¼ aðyÞg ð1Þ

2. Set approximation is investigated in two categories:

lower approximation and upper approximation. Lower

approximation of X consists of instances which can be

classified with full certainty using feature subset P,

defined by:

PX ¼ fx 2 Uj½x�P � Xg ð2Þ

Upper approximation consists of instances which may

be probably classified using feature subset P, defined

by:

PX ¼ fx 2 Uj½x�P \ X 6¼ ;g ð3Þ

3. Positive region comprises all instances of U that can be

uniquely classified into groups of UnQ through feature

subset P, defined by:

POSPðQÞ ¼
[

X2UnQ
PX ð4Þ

4. Attribute dependency measures the correlation between

features, defined by Eq. (5). The dependency increases

proportionally to the k value. For k ¼ 1, Q is

completely dependent on P. In an optimal feature

subset, features are expected to have the minimum

dependency on each other and maximum correlation on

the target.

k ¼ cPðQÞ ¼
jPOSPðQÞj

jUj ð5Þ

An example: We further provide an example to show how

RS measures are calculated. We provide a dataset in

Table 1. For P ¼ fa; bg, the partition of U created by

IND(P) which is denoted as U/IND(P) is defined as

follows:

U=INDðPÞ ¼ U=INDðfagÞ � U=INDðfbgÞ

¼ ½f0; 3; 4g; f1; 7g; f2; 5; 6g� � ½f0; 2; 4g; f1; 3; 6; 7g; f5g�

¼ ½f0; 4g; f3g; f1; 7g; f2g; f6g; f5g�

Let X be a subset such that X ¼ fX : eðXÞ ¼ 1g, and

P ¼ fa; bg. Accordingly, X ¼ f2; 4; 5; 7g and

INDðPÞ ¼ ½f0; 4g; f1; 7g; f2g; f3g; f5g; f6g�. The lower

and upper approximations of X are defined as follows:

PX ¼ f2; 5g

PX ¼ f0; 4; 1; 7; 2; 5g

For P ¼ fa; bg, the positive region of the class labels e is

determined as follows:

U=INDðfegÞ ¼ ff0g; f2; 4; 5; 7g; f1; 3; 6gg

PX ¼
;;X ¼ fX : eðXÞ ¼ 0g

f2; 5g;X ¼ fX : eðXÞ ¼ 1g
f3; 6g;X ¼ fX : eðXÞ ¼ 2g

8
><

>:

POSa;bðeÞ ¼
[

X2U=e

PX ¼ f2; 3; 5; 6g

The degree of dependency of the class labels e from the

features a, b is calculated as follows:

ca;bðeÞ ¼
jPOSa;bðeÞj

jUj ¼ jf2; 3; 5; 6gj
jf0; 1; 2; 3; 4; 5; 6; 7gj ¼

4

8

Table 1 An example dataset
x 2 U a b c d e

0 1 0 2 2 0

1 0 1 1 1 2

2 2 0 0 1 1

3 1 1 0 2 2

4 1 0 2 0 1

5 2 2 0 1 1

6 2 1 1 1 2

7 0 1 1 0 1

Neural Computing and Applications (2020) 32:2929–2944 2931

123



2.2 Differential evolution (DE)

An evolutionary algorithm developed by Storn and Price

[37], DE carries out searching on the solution space on the

basis of directional information. DE tries to find the global

optima for a given optimization problem by forming a

population with candidate solutions and then evolving new

candidates through mutation and recombination strategies.

In the population, a candidate solution is represented by a

vector such that Xi ¼ fxi1; xi2; :::; xid; . . .; xiDg, where i

denotes the ith individual and D denotes the dimensionality

of the optimization problem. For each Xi solution, DE

randomly selects three different solutions Xr1, Xr2 and Xr3

in the population and then generates a new solution Ui

using the direction of the selected vectors in a probabilistic

manner:

uid ¼
xr1d þ F � ðxr2d � xr3dÞ if randðÞ\CR or d ¼ Irand

xid otherwise

�

ð6Þ

where F is the constant within the range of [0,2] which

controls the rate of mutating solutions; rand() is the ran-

domly distributed number between 0 and 1; Irand is a ran-

domly selected index between 1 and D which guarantee the

evolution of a solution at least one position; CR is the

recombination rate which controls the rate of interacting

between solutions.

The general structure of DE is simple to implement and

easy to understand, i.e., does not include complex com-

ponents. Furthermore, it can be applied to a variety of

problems such as nonlinear, non-differentiable, discrete

and noisy since it does not require assumptions about the

problem to be considered to optimize. On the other hand, it

does not guarantee the global optima like as any other EC

techniques [17, 19].

2.3 Multi-objective optimization

Nowadays we can face with many real-world problems

with multiple objectives instead of a single objective. Since

some objectives are tend to (partially) conflict, the design

of multi-objective problems becomes more complex. The

general definition of a multi-objective problem with k

objectives, n inequalities and l equality constraints is posed

as follows:

min
x

FðxÞ ¼ ½F1ðxÞ;F2ðxÞ; . . .;FkðxÞ�T

subject to:

gjðxÞ� 0; j ¼ 1; 2; . . .;m

hlðxÞ ¼ 0; l ¼ 1; 2; . . .; n

ð7Þ

When we consider a multi-objective problem, there exists

no such a single global solution typically. Therefore, it is

often necessary to find a set of points that all compromise

on a predefined definition for an optimum. The general

concept for defining an optimal point concerns with Pareto-

optimality. A point x	 is Pareto-optimal iff there is no such

another point x that FiðxÞ�Fiðx	Þ for all functions and

FiðxÞ\Fiðx	Þ for at least one function. x	 is also referred

to as a non-dominated solution. Therefore, the non-domi-

nated solution set is called the Pareto-optimal set. For more

information concerning multi-objective optimization,

please see [30].

2.4 Rough set for feature selection

Earlier filter feature selection approaches on the basis of

RS-based criteria generally follow traditional search

strategies such as sequential forward, sequential floating

forward and sequential backward. The most representative

one is the Quickreduct algorithm [7] which starts with an

empty set and adds a feature to this set for each iteration

until reaching the maximum dependency based on the

standard RS-based criterion. Prasad and Rao [32] improved

the Quickreduct algorithm by a sequential reduction strat-

egy. Another approach that uses a sequential backward

elimination strategy was proposed by Gawar [13] by

designing a RS-based relative dependency measure. Yong

et al. [46] introduced an efficient Quickreduct algorithm by

integrating neighborhood RS-based criteria. In summary,

all such traditional approaches showed that RS-based cri-

teria could be used as an alternative filter evaluation metric

for feature selection. However, all of these conventional

approaches tend to converge in local minima points due to

their greedy search mechanisms. Accordingly, EC tech-

niques have gained increasing attention due to their

approved ability to avoid local minima while investigating

the global optima.

Genetic algorithm (GA) [22], the first EC technique in

the literature, was developed using the principles of evo-

lution. Besides a variety of successful GA-based applica-

tions in many fields, GA has also been designed for RS-

based filter approaches. Wroblewski [41] introduced a

simple RS-based filter approach using GA. According to

the empirical studies, this approach obtained better per-

formance than traditional approaches. However, it was

computationally expensive. Bjorvand [3] increased the

effectiveness and efficiency of this approach by applying a

software system (referred to as the Rough Enough) and a

dynamic mutation rate. Jing [24] proposed a hybridized GA

filter approach (HGARSTAR) which uses a RS-based local

search mechanism to fine-tune parameters. HGARSTAR

obtained promising results compared to existing EC-based
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filter approaches based on RS-based criteria; however,

HGARSTAR was not tested on high-dimensional datasets.

Das et al. [8] developed an incremental feature selection

(IFS) approach based on GA and RS theory. From the

results, it can be inferred that IFS performed better than

some representative filter approaches such as ReliefF [26],

Correlated Feature Subset Selection (CFS) [15] and Con-

sistency Feature Subset Selection (CON) [10] in both dis-

crete-valued and real-valued datasets. However, the

datasets used in experiments included at most 36 features,

i.e., it is not possible to make an analysis of IFS on high-

dimensional datasets.

Another important EC technique, particle swarm opti-

mization (PSO) [25] mimics the behaviors of natural spe-

cies which are bird flock or fish school. PSO has also been

used to develop RS-based applications. Wang et al. [39]

introduced a RS-based approach (PSORSFS) using PSO. In

this approach, the dependency between features and the

target, and the ratio of the feature subset size to the total

number of features were tried to be optimized in a weighted

manner. According to the results, PSORSFS obtained great

performance compared to the RS-based approaches on the

basis of greedy search and GA algorithms. However, the

control parameter between the dependency and the feature

subset size in the fitness function is difficult to be deter-

mined. Abdul-Rahman et al. [1] introduced a two-stage

wrapper-filter approach that considers a RS-based reduc-

tion approach using PSO as an earlier step to reduce the

dimensionality, and a wrapper approach as a latter step to

find an optimal feature subset on the reduced dimension-

ality. Cervante el al. [5] developed a RS-based approach

(PSOPRS) using PSO and probabilistic rough set theory

(PRS). The results showed that PRS theory could enhance

the performance of classifiers better than the standard RS

theory. However, like as previous RS-based approaches

using PSO, PSOPRS is dependent on the control parameter

between the dependency and the feature subset size and

cannot be applied to evaluate the dependency of real-val-

ued features without discretization. In order to alleviate the

control parameter, Bing et al. [42] considered the PRS-

based criterion as a multi-objective problem and introduced

a multi-objective PSO filter feature selection approach.

Without discretization, this multi-objective approach also

cannot be applied to measure real-valued features.

Another well-known EC technique is the differential

evolution (DE) algorithm [37], the details of which are

presented in Sect. 2.2. Yan and Li [43] proposed a RS-

based filter approach using an improved version of DE.

However, it is not possible to make a consistent analysis

concerning this approach since it was only tested on two

datasets. Sangeetha and Kalpana [35] introduced a FRS-

based filter approach (FRFSDE) using DE inspired by the

fuzzy version of the Quickreduct algorithm. From the

results, it can be revealed that FRFSDE can perform well

compared to the fuzzy version of Quickreduct. However,

the feature subset size obtained by feature selection

approaches was not considered in experiments. Das et al.

[9] introduced a RS theory and relational algebra-based

filter approach using a multi-objective DE binary algo-

rithm. However, the feature subset size obtained by filter

approaches was not investigated and analyzed in the

experimental study. Besides GA, PSO and DE, recently

developed EC techniques such as artificial bee colony [6],

cuckoo search [2], ant lion optimizer [28] have also been

used to develop RS-based filter approaches.

In summary, it is observed that RS-based criteria can

increase the performance of classification algorithms when

they are incorporation with EC techniques. However, there

are still some open issues that need to be considered. First,

most of the RS-based approaches are based on GA and

PSO. In other words, there are only a few RS-based

approaches based on DE despite its potential to search the

global optimal. Second, most of the RS-based criteria

cannot deal with real-valued datasets due to the deficiency

of them to quantify continuous variables. Third, adopting

FRS-based criteria, fuzzy variants of RS-based criteria, in

EC-based frameworks is not common in the literature, to

the best of our knowledge. Finally and most importantly,

FRS-based criteria have not been modeled as a multi-ob-

jective problem in the literature yet.

3 Proposed approaches

In this section, we first describe the concepts of fuzzy

rough set theory and then give the details of FRS-based

approaches using single-objective and multi-objective DE

algorithms.

3.1 Fuzzy rough set (FRS) theory

In the terminology of RS theory, instances in the data

belong to the lower approximation with certainty or not. In

contrast to RS theory, in the terminology of FRS theory,

instances may belong to the lower approximation with a

membership value in the range of [0, 1]. This means FRS

theory allows flexibility to deal with uncertainty. Let U be

the set of instances (objects) in the data, A be the features

describing instances and P and Q are two subsets of A; the

decision table is defined as I ¼ ðU;AÞ. The degree of

similarity between x and y instances through all features in

subset P is defined by:

lRP
ðx; yÞ ¼ Ta2PflRa

ðx; yÞg ð8Þ

where T denotes the t-norm; and lRa
ðx; yÞ is the degree of
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similarity between x and y instances for feature a, which

can be measured by Eqs. (9) and (10).

:lRa
ðx; yÞ ¼ 1� jaðxÞ � aðyÞj

amax � amin

ð9Þ

where amax and amin denote the maximum and minimum

values for feature a.

lRa
ðx; yÞ ¼ exp �ðaðxÞ � aðyÞÞ2

2r2a

 !
ð10Þ

where r2a denotes the variance of feature a.

Using the degree of similarities within the feature subset

P, fuzzy lower and upper approximations are defined by

Eqs. (11) and (12).

lRPX
ðxÞ ¼ inf

y2U
IðlRP

ðx; yÞ; lXðyÞÞ ð11Þ

where I denotes the fuzzy implicator.

lRPX
ðxÞ ¼ sup

y2U
TðlRP

ðx; yÞ; lXðyÞÞ ð12Þ

The fuzzy positive region is then defined by:

lPOSRðPÞðxÞ ¼ sup
X2U=Q

lRPX
ðxÞ ð13Þ

Based on the fuzzy dependency of Q on P ðc0

PðQÞÞ is

defined by Eq. (14). For more information concerning FRS

theory, please see [23].

c
0

PðQÞ ¼
jlPOSRðPÞðxÞj

jUj ¼
P

x2U lPOSRðPÞðxÞ
jUj

ð14Þ

3.2 Proposed FRS-based approaches

In the terminology of RS theory, the information in the data

is represented by the decision table in classification tasks.

Each instance in the data is considered as an object in RS

theory. The target variable in the data, known as the class

labels, is regarded as the decision feature D, and the fea-

tures building the data are the conditional features C such

that A ¼ C
S
D. All instances (U) in the data can be

divided into different classes U1;U2; . . .;Un, where n is the

total number of classes. The overall aim of a RS-based

approach is to eliminate irrelevant, redundant and noisy

features, so the remaining feature subset P 
 A represents

the information in the data as well as C.

(1) DEFRS approach: As described in Sect. 2.1, an

equivalence relation is an essential notion to determine

lower and upper approximations of the target in standard

RS theory. For the lower approximation, the equivalence

class should be a subset of the target. For the upper

approximation, the equivalence class should have a non-

empty overlap with the target. However, the lack of over-

lapping degrees limits the application domain of rough sets.

To alleviate this deficiency, a number of generalized

approximation operators have been developed. One of the

generalized variants is PRS theory which is based on the

notions of rough membership functions and rough inclu-

sion. Both notions can be interpreted in terms of condi-

tional probabilities or posteriori probabilities. However,

PRS theory also limits the application domain due to the

dependency of crisp binary relations. Thus, researchers

have established fuzzy rough set models where a fuzzy-

based similarity relation can be used instead of an equiv-

alence relation. The main advantage of such models is that

an instance can belong to more than one class with a

membership degree. Based on this fuzzy measure, we

propose a new DE-based single-objective approach

(DEFRS), where Eq. (15) is designed as the fitness func-

tion. DEFRS aims to maximize the dependency of the

feature subset to the target and also aims to minimize the

feature subset size.

Fitfrs ¼ b 	
jlPOSRðPÞðxÞj

jUj

þ ð1� bÞ 	 1�#subsetsize

#totalfeatures

ð15Þ

where b 2 ð0; 1� controls the importance of the dependency

and the importance of the feature subset size. When b ¼ 1,

DEFRS directly evaluates the candidate feature subset

using the FRS model. The pseudocode of DEFRS is pre-

sented in Algorithm 1. The membership values between

features (lRa
ðx; yÞ) are calculated beforehand and then are

considered as the inputs for the evolutionary process. By

this way, it is aimed to decrease the computational com-

plexity of the evolutionary process. If any position of a

candidate solution is greater than 0.5, its corresponding

feature is selected for the feature subset. After the selection

process of the feature subset, the quality of the feature

subset is evaluated using Eq. (15).

After the single-objective evolutionary process, the final

feature subset is evaluated on the testing set with the

training set through a predefined classifier to obtain the

classification performance of the selected feature subset.

Notice that the testing set is transparent to the user during

the evolutionary process.
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(2) MDEFRS approach: DEFRS uses two main objec-

tives in a weighted manner in a single fitness function

through the b control parameter which specifies the weight

degrees of the objectives. However, the b parameter needs

to be predetermined according to the problem, i.e., it is not

possible to assign a general b value for all problems.

Accordingly, we design a FRS-based multi-objective DE

feature selection approach (MDEFRS) to get rid of the b
parameter. In MDEFRS, the two objectives which are to

maximize the dependency of the feature subset to the target

and to minimize the number of features are individually

evaluated without using the b parameter.

Due to its recently proposed successful applications for

feature selection in the literature [16, 18, 20], we use a

simple multi-objective DE variant (MODE) [33] which can

be treated as a specified version of the pure DE algorithm

for multi-objective problems. Except for the selection

scheme which is based on the dominance-based selection

scheme inspired by Lampinen’s criterion [27], MODE

follows the same procedures as in DE. The pseudocode of

MDEFRS is presented in Algorithm 2. As in DEFRS, the

threshold value used to select features for the feature subset

is set to 0.5. After the multi-objective evolutionary process,

the non-dominated solutions in the Pareto-Front are eval-

uated on the testing set with the training set through a

predefined classifier to obtain the classification accuracies.

Notice that the testing set is transparent to the user during

the multi-objective evolutionary process as in the single-

objective evolutionary process.

4 Experimental design

Thirty independent runs are carried out for each proposed

approach to get meaningful results. All approaches are

implemented using Matlab on an Intel Core i7 machine
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with 3.6GHz CPU and 16 GB RAM. To verify the effec-

tiveness of the proposed FRS-based approaches, the

experiments are conducted on two stages. First, we analyze

the performance of the proposed FRS-based approaches by

comparing them with PRS-based approaches on six well-

known categorical datasets from [12], shown in Table 2.

For comparisons, we directly utilize the results of PRS-

based approaches reported in [42]. As in [42], we randomly

divide each categorical dataset as 7/10 of the instances for

training and 3/10 of the instances for testing. For the

evaluation of the selected feature subsets, we choose the

K-nearest neighbors (KNN) and the decision tree (DT)

classification algorithms as in [42], where K is specified as

5 [20].

Second, we analyze the performance of the proposed

single-objective FRS-based approach by comparing it with

a variety of well-known filter approaches, including feature

selection via concave minimization (FSV) [4], local

learning-based clustering (LLC-FS) [48], mutual informa-

tion (MI) [38], Pearson correlation coefficient (PCC) [40],

ReliefF [34], Fisher Score [14] and OFS-Density [50] on

fourteen real-valued benchmarks from popular repositories

[12, 44, 47], shown in Table 3. For comparisons, we

directly utilize the results of filter approaches reported in

[50]. In order to make consistent and reliable analysis, we

follow the same procedure used in [50] such that we apply

tenfold cross-validation on each real-valued dataset to

divide 9/10 of the instances for training and 1/10 of the

instances for testing, and for the evaluation of the selected

feature subsets, we choose the support vector machines

(SVM) and the KNN classification algorithms.

The parameter values of FRS-based approaches are

determined as follows. The population size and the maxi-

mum number of cycles are both set to 50; F and CR are,

respectively, set to 0.8 and 0.7 for single-objective DE

framework, and 0.5 and 0.2 for multi-objective DE

framework as suggested in [20, 29]. Notice that the max-

imum number of evaluations for PRS-based approaches

using PSO was determined as 6000 in [42], but is deter-

mined as only 2500 for FRS-based approaches. It can

therefore be undoubtedly inferred that FRS-based approa-

ches are computationally more efficient than PRS-based

approaches. In single-objective FRS-based approach, three

different b values (1, 0.9 and 0.5) are used to represent the

relative importance of the dependency and the number of

features in Eq. (15) (Table 4).

5 Experimental results

To verify the effectiveness of the proposed FRS-based

approaches, we make comparisons with the PRS-based and

the state-of-the-art filter approaches through single-objec-

tive design and multi-objective design in this section.

5.1 Comparison between DEFRS and PSOPRS

The results of PSOPRS and DEFRS are presented in terms

of the average classification accuracy and the average

number of selected features through 5NN and DT classi-

fiers in Table 4, where the best values are denoted by bold

symbol, and the average number of selected features is

represented by ‘NOF.’ In order to further show the dif-

ference between PSOPRS and DEFRS in terms of the

classification accuracy, the Wilcoxon rank-sum test is

applied with the significance level 0.05. The results of the

Wilcoxon rank-sum test are presented in Table 5, where

‘?’ denotes DEFRS is significantly superior to PSOPRS,

‘-’ denotes DEFRS is worse than PSOPRS, and ‘=’

denotes DEFRS achieves similar results with PSOPRS.

According to Table 4, it can be indicated that DEFRS

obtains higher classification accuracy than PSOPRS in

Table 2 Categorical datasets used in experiments

Dataset Samples Features Classes

Lymph 148 18 4

Spect 267 22 2

Dermatology 366 33 6

Soybean large 307 35 19

Chess 3196 36 2

Waveform 5000 40 3

Table 3 Real-valued datasets used in experiments

Dataset Samples Features Classes

Ionosphere 351 34 2

WBCD 569 30 2

Sonar 208 60 2

Hill 606 100 2

Colon 62 2000 2

Srbct 83 2308 4

Lung2 203 3312 5

Lymphoma 62 4026 3

Glioma 50 4433 4

MLL 72 5848 3

Prostate 102 6033 2

DLBCL 77 6285 2

Leukemia 72 7129 2

Arcene 200 10000 2
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most cases. Especially in the Lymph, Dermatology and

Soybean datasets, the performance of DEFRS is hugely

superior to that of PSOPRS. For instance, the average

classification accuracy obtained by DEFRS over 5NN in

the Dermatology dataset is 94.28%, whereas PSOPRS

obtains only 78.17% in the same dataset. Although DEFRS

sometimes selects the feature subsets with high dimen-

sionality compared to PSOPRS, this condition may not be

considered as a big deal due to the significant classification

performance of the feature subsets selected by DEFRS as

seen in Table 5. Only in the Spect dataset, DEFRS gen-

erally gets worse classification performance than PSOPRS.

In summary, the FRS-based filter approach using DE out-

performs the PRS-based filter approach using PSO in terms

of selecting the most appropriate feature subsets yielding

significantly better classification performance through both

the 5NN and DT classifiers.

5.2 Comparison between MDEFRS and MPSOPRS

In contrast to PSOPRS and DEFRS, multi-objective

approaches (MDEFRS and MPSOPRS) get a set of Pareto-

optimal solutions in each independent run. Accordingly,

there exist the 30 Pareto-optimal sets over 30 independent

runs for each multi-objective approach. In order to analyze

and compare multi-objective filter approaches, we use the

following metrics [21]:

• Best front: The best front is determined by using the

crowding distance metric among the 30 Pareto-optimal

sets. The solution sets are first sorted according to the

Table 4 Results of PSOPRS and DEFRS through 5NN and DT classifiers

Dataset b NOF PSOPRS DEFRS

5NN DT NOF 5NN DT

Lymph 1 1.77 77.55 ? 4.65 72.31 ? 6.82 13.4 86.42 1 1.78 77.38 1 10.38

0.9 5.03 75.31 ? 1.1 66.73 ? 3.3 6 88.09 1 3E216 85.71 1 4E216

0.5 5 75.51 ? 2e-4 67.35 ? 3E-4 4 83.33 1 5E216 85.71 1 4E216

Spect 1 17.5 81.24 1 1.57 80.04 ? 1.96 20.13 78.58 ? 0.97 84.16 1 2.86

0.9 14 83.15 1 39E24 82.02 1 25E24 7.03 80.12 ? 0.5 80 ? 3E-16

0.5 3.1 84.27 1 3E24 74.68 ? 1.53 1 81.25 ? 0 81.25 1 0

Dermatology 1 21 91.89 ? 3.25 86.01 ? 4.76 30.9 97.21 1 0.24 95.23 1 3E216

0.9 8.13 78.17 ? 5.59 74.81 ? 6.92 18.2 94.28 1 0.43 91.68 1 0.42

0.5 6.8 73.33 ? 5.78 72.87 ? 9.48 7.6 89.74 1 2.01 90.92 1 1.34

Soybean 1 21.67 80.70 ? 4.22 80.53 ? 4.33 25.33 84.16 1 2.25 86.92 1 1.33

0.9 9.7 68.44 ? 3.75 72.36 ? 2.87 12.43 77.41 1 2.49 81.79 1 2.67

0.5 7.67 66.95 ? 4.14 72.07 ? 4.24 7.83 70.74 1 2.46 77.85 1 5.18

Chess 1 29.97 93.98 ? 0.62 98.28 ? 0.27 32.86 94.67 1 1.13 99.35 1 6E23

0.9 14.43 89.8 ? 4.41 97.85 ? 0.31 21.93 89.85 1 1.48 99.14 1 0.21

0.5 5.4 71.82 ? 17 93.61 ? 0.82 10.9 93.49 1 1.47 97.39 1 0.65

Waveform 1 24.47 75.23 ? 2.64 74.79 1 1.88 38.66 79.51 1 0.65 73.91 ? 0.44

0.9 8.03 65.43 ? 6.41 68.6 ? 5.62 21.53 76.85 1 1.43 73.80 1 1.27

0.5 7 66.73 ? 6.59 70.21 1 2.24 13.6 70.11 1 2.15 68.48 ? 1.81

Table 5 Results of Wilcoxon

test between PSOPRS and

DEFRS through 5NN and DT

classifiers

Dataset b ¼ 1 5NN DT

b ¼ 0:9 b ¼ 0:5 b ¼ 1 b ¼ 0:9 b ¼ 0:5

Lymph ? ? ? ? ? ?

Spect - - - ? - ?

Dermatology ? ? ? ? ? ?

Soybean ? ? ? ? ? ?

Chess = = ? ? ? ?

Waveform ? ? ? - ? =
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classification accuracies in ascending order, and then

the crowding distance value of a solution is calculated

by averaging the distance of its two neighbors. For the

solutions with the lowest and highest accuracies which

are treated as boundaries, an infinite value is assigned as

a crowding distance value. It should be notified that as

the classification performance may vary according to

the predefined classifier even for the same solution set,

different best fronts may be generated for different

classifiers.

• Average front: The average front is determined by

calculating the average classification accuracy of the 30

Pareto-optimal solution sets having the same number of

features. Notice that if there exists only one solution for

any number of features, the corresponding solution is

also added to the average front.

The results of MDEFRS and MPSOPRS are presented in

terms of the best (denoted as ‘-Best’) and the average

(denoted as ‘-Avg’) fronts in Figs. 1 and 2 through 5NN

and DT, respectively. In charts, the best front is denoted as

‘-Best,’ while the average front is denoted as ‘-Avg.’ In

terms of the best front, MDEFRS generally performs better

than MPSOPRS in four out of six datasets through both

5NN and DT. For the datasets where MDEFRS sometimes

cannot achieve the highest classification accuracy, the

space between the lines representing the best fronts is

illustrated to be very close. In terms of the average front,

MDEFRS outperforms MPSOPRS in all datasets except for

the Chess dataset. It should be notified that the space

between the lines representing the average fronts is very

large. For instance, MDEFRS achieves higher average

classification accuracy than MPSOPRS by 6% for the

solutions including 11 features. Further, MPSOPRS can

only obtain nearly 85% accuracy at most in the Derma-

tology dataset in terms of the average front, while there

exist lots of solutions obtained by MDEFRS achieving

more than 90% classification accuracy in the same dataset.

It can therefore be suggested that the proposed MDEFRS

approach based on MODE and fuzzy rough set theory

produces more consistent and reasonable results without no

doubt, i.e., the proposed MDEFRS approach is stable and

robust compared to MPSOPRS.

5.3 Comparison between DEFRS and MDEFRS

The results of FRS-based approaches are presented through

the 5NN and DT classifiers in Fig. 3, where the b value in

DEFRS is set to 0.9, and ‘-Avg’ and ‘-Best,’ respectively,

denote the average and best fronts, the details of which are

presented in Sect. 5.2. Notice that there may be illustrated

in charts fewer than 30 distinct points for DEFRS over 30

independent runs since DEFRS can find the same feature

subsets in different runs.

According to Fig. 3, MDEFRS has shown to achieve

best classification performance in all datasets except for the

Chess dataset through both 5NN and DT despite the

dimensionality reduction in higher rates. For instance,

MDEFRS can obtain nearly 92% accuracy only using 9

features through DT, while DEFRS can generally get

between 78 and 82% accuracy in spite of using more than 9

features. Not only in terms of the best fronts but also in

terms of the average fronts, a remarkable difference can be

observed between MDEFRS and DEFRS. For instance,

DEFRS can find 81.25% accuracy through 5NN using 7

features in the Spect dataset, MDEFRS can find the same

accuracy using less than 7 features, even using only one

feature. For another example, DEFRS can obtain between
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Fig. 1 Results of MPSOPRS and MDEFRS over 5NN classifier
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93 and 96% accuracy using 17–19 features through 5NN in

the Dermatology dataset, MDEFRS obtains similar per-

formance through 5NN by eliminating more than half of

the features from the Dermatology dataset. In summary,

adopting the principles of fuzzy rough set theory in multi-

objective framework can achieve outstanding performance

compared to in single-objective design.

5.4 Comparison with the state-of-the-art
approaches

The results of DEFRS and the state-of-the-art approaches

are, respectively, presented on fourteen real-valued

benchmark datasets through 5NN and SVM in terms of the

average classification accuracy and the Wilcoxon rank-sum

test in Tables 6 and 7, where the best values are high-

lighted by bold symbol, and b is specified as 0.9 like as

Sect. 5.3. Except for DEFRS, all approaches produce a

unique feature subset and so have a single classification

accuracy. Notice that we could not provide information

concerning the number of features obtained by each

approach since this was not reported in [50]; therefore, we

could not make comparisons through multi-objective

framework. In Tables 6 and 7, ‘?’ (‘-’) denotes that

DEFRS produces significantly better (worse) classification

accuracies than the corresponding filter approach. If there

exists no such a significant difference between the pro-

posed and the corresponding approaches, this case is

denoted via ‘=.’ Besides the Wilcoxon rank-sum test, we

use the Kruskal–Wallis test to illustrate the difference
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Fig. 2 Results of MPSOPRS and MDEFRS over DT classifier
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Fig. 3 Results of DEFRS and MDEFRS over 5NN and DT classifiers
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between feature selection approaches on the classification

accuracy through 5NN and SVM. The box plots obtained

by the Kruskal–Wallis test for each dataset among all

approaches are presented in Fig. 4.

In order to evaluate the general distribution of the

classification performance obtained by all feature selection

approaches on each real-valued dataset using the Kruskal–

Wallis test, we observe from Fig. 4 that feature selection

approaches produce a variety of feature subsets for each

dataset resulting in a wide range of classification accuracies

through 5NN and SVM in all datasets except for the

WBCD and Hill datasets. Especially in the Srbct, Lym-

phoma, Prostate and Leukemia datasets, there exists a huge

difference among approaches.

According to Tables 6 and 7, it can be observed that

DEFRS outperforms MI, Laplacian, LLC-FS and FSV

through both 5NN and SVM in all datasets except for only

one case. When compared with INF, DEFRS also achieves

significantly great classification performance in all datasets

except for the WBCD dataset. In other words, the differ-

ence between DEFRS and these approaches (MI, Lapla-

cian, LLC-FS and FSV) is exceptionally high. For instance,

DEFRS obtains nearly 99% classification accuracy in the

Leukemia dataset, while these approaches receive the

classification accuracy between 47 and 64%. Similar high

differences between DEFRS and these approaches can also

be observed in other datasets. It can therefore be indicated

that the classification performance of such approaches

cannot be treated as adequate on real-valued datasets.

When compared with the remaining approaches, DEFRS

generally performs slightly better or significantly superior

performance in ten out of fourteen datasets through both

Table 6 Results of DEFRS and state-of-the-art approaches through 5NN classifier

Dataset DEFRS OFS Fisher PCC ReliefF MI Laplacian INF LLC-FS FSV

Ionosphere 88.79 ± 3.38 89.43 88 87.43 82.29 79.43 83.43 81.71 85.43 79.43

- ? ? ? ? ? ? ? ?

WBCD 93.74 ± 2.19 93.85 93.32 93.32 89.62 90.16 92.44 93.67 90.86 90.16

= = = ? ? ? = ? ?

Sonar 73 ± 9.05 68.27 71.08 71.08 67.79 54.79 59.55 69.55 66.84 54.79

? = = ? ? ? ? ? ?

Hill 59.5 ± 3 59.5 53.14 53.14 55.7 55.45 49.67 50.33 54.79 55.45

= ? ? ? ? ? ? ? ?

Colon 98.88 ± 4.22 75 73.33 73.33 71.67 51.67 51.67 56.67 61.67 51.67

? ? ? ? ? ? ? ? ?

Srbct 97.91 ± 4.73 88.33 88.33 58.33 86.67 63.33 31.67 26.67 38.33 63.33

? ? ? ? ? ? ? ? ?

Lung2 99.83 ± 0.91 93 79 81.5 80 74.5 76.5 81 79 83.5

? ? ? ? ? ? ? ? ?

Lymphoma 100 ± 0 100 98.33 95 96.67 78.33 93.33 60 95 78.33

= ? ? ? ? ? ? ? ?

Glioma 83.33 ± 5.6e-16 68 64 66 26 56 42 40 48 62

? ? ? ? ? ? ? ? ?

MLL 99.33 ± 2.03 92.86 90 78.57 92.86 64.29 84.29 91.43 87.14 82.86

? ? ? ? ? ? ? ? ?

Prostate 80.66 ± 7.39 93 91 91 91 63 59 48 72 63

- - - - ? ? ? ? ?

DLBCL 90.76 ± 4.23 95 79.25 44.25 81.25 60.5 68.5 73.75 76.25 78.75

- ? ? ? ? ? ? ? ?

Leukemia 99.04 ± 3.62 95.71 87.14 87.14 84.29 60 58.57 47.14 47.14 60

? ? ? ? ? ? ? ? ?

Arcene 90.31 ± 0.86 86 65.5 65.5 67.5 58.5 70 71.5 65.5 69

? ? ? ? ? ? ? ? ?

Avg. accuracy 89.64 85.56 80.10 74.39 76.66 64.99 65.75 63.67 69.13 69.44

Avg. ranks 1.28 1.92 4.85 4.92 6.21 7.5 6.5 7.14 7.35 7.28
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5NN and SVM. In summary, the proposed DEFRS

approach can achieve satisfactory classification perfor-

mance not only in discrete-valued but also in real-valued

datasets.

When evaluating approaches in terms of the computa-

tional cost, the state-of-the-art approaches generally com-

plete the selection process in a shorter time than DEFRS.

This is because most of them are based on deterministic

procedures and follow greedy search mechanism to select

or rank features for the feature subset rather than evaluating

feature combinations. However, due to the dependency of

deterministic procedures and greedy search mechanism,

these approaches cannot deeply evaluate the possible

solution space and so frequently encounter with local-

convergence problems. This case can be also observed in

terms of the classification performance in Tables 6 and 7.

Furthermore, a GPU-paralleled implementation of DEFRS

can be applied to improve the efficiency of DEFRS.

6 Conclusions

In this paper, we aim to propose new filter approaches for

feature selection that can be used not only in discrete-

valued problems but also in real-valued problems. This aim

was achieved by designing filter criteria using fuzzy rough

set theory and then integrating the criteria in single-ob-

jective and multi-objective DE frameworks. While DEFRS

tries to optimize the dependency of the feature subset and

the feature subset size using a control parameter, MDEFRS

optimizes the same objectives without the requirement of a

control parameter. The performance of the proposed

Table 7 Results of DEFRS and state-of-the-art approaches through SVM classifier

Dataset DEFRS OFS Fisher PCC ReliefF MI Laplacian INF LLC-FS FSV

Ionosphere 87.03 81.43 85.71 83.43 69.14 84 69.71 66.86 77.71 84

? ? ? ? ? ? ? ? ?

WBCD 94.09 ± 1.56 96.14 95.26 95.26 92.09 92.44 92.97 95.26 94.37 92.44

- - - ? ? ? - = ?

Sonar 69 ± 5.78 75.04 73.61 73.61 70.08 56.74 61.65 64.56 64.76 56.74

- - - - ? ? ? ? ?

Hill 78.16 ± 9.91 53.39 50.74 50.74 52.07 50.74 50.99 50.58 51.49 50.74

? ? ? ? ? ? ? ? ?

Colon 83.88 ± 6.89 81.67 85 85 86.67 65 70 68.33 71.67 65

? - - - ? ? ? ? ?

Srbct 100 ± 0 80 88.33 66.67 75 68.33 38.33 36.67 30 68.33

? ? ? ? ? ? ? ? ?

Lung2 95.33 ± 1.26 93.5 84.5 84 85 85 82 86.5 86 85

? ? ? ? ? ? ? ? ?

Lymphoma 100 ± 0 98.33 93.33 90 91.67 68.33 90 65 91.67 68.33

? ? ? ? ? ? ? ? ?

Glioma 83.33 ± 5.6e-16 60 58 60 28 60 46 48 42 48

? ? ? ? ? ? ? ? ?

MLL 100 ± 0 92.86 94.29 90 94.29 70 91.43 94.29 88.57 90

? ? ? ? ? ? ? ? ?

Prostate 88.66 ± 5.07 94 92 92 94 59 60 47 73 59

- - - - ? ? ? ? ?

DLBCL 100 ± 0 97.5 86.25 78.75 82.5 69.25 71 68.5 76.25 80

? ? ? ? ? ? ? ? ?

Leukemia 98.57 ± 4.35 94.29 90 90 88.57 61.43 64.29 58.57 60 61.43

? ? ? ? ? ? ? ? ?

Arcene 89.84 ± 5.55 80.5 72.5 62.5 65 57.5 63.5 67 66 72.5

? ? ? ? ? ? ? ? ?

Avg. accuracy 90.56 84.18 82.10 78.71 76.72 67.69 67.99 65.50 69.53 70.10

Avg. ranks 1.5 2.64 4.07 6.35 5.14 6.28 6.92 6.92 7.57 7.57
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approaches is verified by comparing them with existing

approaches on discrete-valued and real-valued datasets.

Notice that in order to prove the effectiveness of the pro-

posed approaches, we directly utilize the results of existing

works [42, 50] in the literature. According to the results on

discrete-valued datasets, the proposed approaches achieved

a much higher classification performance than the existing

PSO-based approaches based on probabilistic rough set
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Fig. 4 Box plots obtained by Kruskal–Wallis test
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theory. Particularly, in many cases, the proposed single-

objective approach achieved more than 10% better classi-

fication performance than the existing single-objective

PSO-based approach. The similar remarkable difference

can also be illustrated between the proposed and the

existing multi-objective approaches. According to the

results on real-valued datasets, the proposed single-objec-

tive approach outperforms a variety of conventional feature

selection approaches. In particular, DEFRS provided more

than 4% better performance than the recently introduced

approach (called OFS) which has second best performance

in terms of the mean classification accuracy obtained by

averaging the classification accuracies in all datasets.

Among the proposed approaches, which one is better? The

results reveal that considering fuzzy rough set theory in

multi-objective design can receive better feature subsets

yielding higher classification accuracy and smaller feature

subset size.

The proposed approaches based on fuzzy rough set

theory sometimes tend to select a large number of features

compared to existing approaches. This may increase the

computational complexity in feature selection tasks. This

issue will be the motivation for our future work.
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