
ORIGINAL ARTICLE

An enhanced KNN-based twin support vector machine
with stable learning rules

Jalal A. Nasiri1 • Amir M. Mir2

Received: 13 November 2018 / Accepted: 11 January 2020 / Published online: 25 January 2020
� Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
Among the extensions of twin support vector machine (TSVM), some scholars have utilized K-nearest neighbor (KNN)

graph to enhance TSVM’s classification accuracy. However, these KNN-based TSVM classifiers have two major issues

such as high computational cost and overfitting. In order to address these issues, this paper presents an enhanced regu-

larized K-nearest neighbor-based twin support vector machine (RKNN-TSVM). It has three additional advantages: (1)

Weight is given to each sample by considering the distance from its nearest neighbors. This further reduces the effect of

noise and outliers on the output model. (2) An extra stabilizer term was added to each objective function. As a result, the

learning rules of the proposed method are stable. (3) To reduce the computational cost of finding KNNs for all the samples,

location difference of multiple distances-based K-nearest neighbors algorithm (LDMDBA) was embedded into the learning

process of the proposed method. The extensive experimental results on several synthetic and benchmark datasets show the

effectiveness of our proposed RKNN-TSVM in both classification accuracy and computational time. Moreover, the largest

speedup in the proposed method reaches to 14 times.

Keywords Twin support vector machine � K-nearest neighbor � Distance-weighted � Stable learning � Machine learning

1 Introduction

Support vector machine (SVM) proposed by Vapnik et al.

[3] is a state-of-the-art binary classifier. It is on the basis of

statistical learning theory and structural risk minimization

(SRM) [36]. Due to the SVM’s great generalization ability,

it has been applied successfully in a wide variety of

applications, such as arrhythmia detection [22, 31], medical

diagnosis [14], network intrusion [1], and spam detection

[25]. Its main idea is to find an optimal separating hyper-

plane between two classes of samples by solving a complex

Quadratic Programming Problem (QPP) in the dual space.

Researchers have proposed many classifiers on the basis

of SVM [24]. For example, Fung and Mangasrian [18]

proposed proximal support vector machine (PSVM) which

generates two parallel hyperplanes for classifying samples

instead of a single hyperplane. In 2002, Lin and Wang

proposed [16] fuzzy support vector machine (FSVM)

which introduces fuzzy membership of samples to each of

the classes. As a result, the output model of FSVM is less

sensitive to noise and outliers. Later Mangasrian and Wild

[19] proposed generalized eigenvalue proximal SVM

(GEPSVM) on the basis of PSVM. It generates two non-

parallel hyperplanes such that each plane is closest to one

of the two classes and as far as possible from the other

class.

In 2007, Jayadeva et al. [15] proposed twin support

vector machine (TSVM) to reduce the computational

complexity of standard SVM. TSVM does classification by

generating two non-parallel hyperplanes. Each of which is

as close as possible to one of the two classes and as far as

possible from samples of the other class. To obtain two

non-parallel hyperplanes, TSVM solves two smaller-sized

& Jalal A. Nasiri

j.nasiri@irandoc.ac.ir

Amir M. Mir

s.a.m.mir@tudelft.nl

1 Iranian Research Institute for Information Science and

Technology (IranDoc), Tehran, Iran

2 Software Engineering Research Group, Faculty of Computer

Science and Mathematics, Delft University of Technology,

Delft, The Netherlands

123

Neural Computing and Applications (2020) 32:12949–12969
https://doi.org/10.1007/s00521-020-04740-x(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0003-1821-5037
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-04740-x&amp;domain=pdf
https://doi.org/10.1007/s00521-020-04740-x


QPPs. This makes the learning speed of TSVM classifier

four times faster than that of SVM in theory.

Over the past decade, many extensions of TSVM have

been proposed [5, 6, 13]. In 2012, Yi et al. [42] proposed

weighted twin support vector machines with local infor-

mation (WLTSVM). By finding k-nearest neighbors for all

the samples, WLTSVM gives different weights to samples

of each class based on the number of its nearest neighbors.

This approach is better than TSVM in terms of accuracy

and computational complexity. It also considers only one

penalty parameter as opposed to two parameters in TSVM.

In 2014, Nasiri et al. [23] proposed an energy-based least

squares twin support vector machine (ELS-TSVM) by

introducing an energy parameter for each hyperplane. In

ELS-TSVM, different energy parameters are selected

according to prior knowledge to reduce the effect of noise

and outliers.

In 2015, Pan et al. [26] proposed K-nearest neighbor-

based structural twin support vector machine (KNN-

STSVM). Similar to S-TSVM [30], this method incorpo-

rates the data distribution information by using Ward’s

linkage clustering algorithm. However, the KNN method

applied in S-TSVM to give different weight to each sample

and remove redundant constraints. As a result, the classi-

fication accuracy and computational complexity of

S-TSVM were improved.

In 2016, Xu [40] proposed K-nearest neighbor-based

weighted multi-class twin support vector machine (KWM-

TSVM). It embodies inter-class and intra-class information

into the objective function of Twin-KSVC [41]. As a result,

the computational cost and prediction accuracy of the

classifier were improved. Recently, Xu [27] proposed a

safe instance reduction to reduce the computational com-

plexity of KWM-TSVM. This method is safe and deletes a

large portion of samples of two classes. Therefore, the

computational cost will be decreased significantly.

It should be noted that many weighted TSVM methods

were proposed over the past few years. However, this paper

is concerned with KNN-based TSVM methods [26, 40, 42].

Therefore, it addresses the drawbacks of these methods

which are explained as follows:

1. These methods give weight to samples of each class

solely by counting the number of k-nearest neighbors

of each sample. However, they do not consider the

distance between pairs of nearest neighbors. To further

improve the identification of highly dense samples,

weight can be given to a sample with respect to the

distance from its nearest neighbors. In other words, a

sample with closer neighbors is given higher weight

than the one with farther neighbors.

2. Similar to TSVM, these classifiers minimize the

empirical risk in their objective functions, which may

lead to the overfitting problem and reduce the predic-

tion accuracy [33]. To address this issue, the trade-off

between overfitting and generalization can be deter-

mined by adding a stabilizer term to each objective

function.

3. These KNN-based classifiers utilize full search algo-

rithm (FSA) to find k-nearest neighbors of each sample.

The FSA method has a time complexity of Oðn2Þ
which is time-consuming for large-scale datasets.

However, scholars have proposed new KNN methods

which have lower computational cost than that of the

FSA algorithm. For instance, Xia et al. [39] proposed

location difference of multiple distances-based k-

nearest neighbors algorithm (LDMDBA). This method

can be used to reduce the overall computational

complexity of KNN-based TSVM classifiers.

Motivated by the above discussion and studies, we propose

an enhanced regularized K-nearest neighbor-based twin

support vector machine (RKNN-TSVM). Different from

other KNN-based TSVM methods [26, 40, 42], the pro-

posed method gives weight to each sample with respect to

the distance from its nearest neighbors. This further

enhances the identification of highly dense samples, out-

liers and, noisy samples. Moreover, due to the minimiza-

tion of the SRM principle, the optimization problems of the

proposed method are positive definite and stable.

The high computational cost is the main challenge of

our proposed method, especially for large-scale datasets.

So far, many fast KNN algorithms were proposed to

accelerate finding K-nearest neighbors of samples, includ-

ing k-dimensional tree (k-d tree) [8], a lower bound tree

(LB tree) [2], LDMDBA algorithm [39] and so on. The

recently proposed LDMDBA method has a time com-

plexity of Oðlog dn log nÞ which is less than the FSA

algorithm and most of other KNN methods. In addition,

this method does not rely on any tree structure so that it is

efficient for datasets of high dimensionality. In this paper,

the LDMDBA algorithm is introduced into our proposed

method to speed up KNN finding.

The main advantages of our proposed method can be

summarized as follows:

• In comparison with other KNN-based TSVM classifiers

[26, 40, 42], the proposed method gives weight to

samples differently. The weight of each sample was

calculated based on the distance between its nearest

neighbors. This further improves fitting hyperplanes

with highly dense samples. In the proposed method,

samples with closer neighbors are weighted more

heavily than the one with farther neighbors.

• The proposed method has two additional parameters for

determining the trade-off between overfitting and

generalization. As a result, the learning rules of our

12950 Neural Computing and Applications (2020) 32:12949–12969

123



RKNN-TSVM are stable and do not overfit the output

model to all the training samples.

• As previously stated, the KNN finding reduces signif-

icantly the learning speed of our classifier. The

LDMDBA algorithm [39] was employed to further

reduce the overall computational complexity of the

proposed method. This KNN algorithm has lower time

complexity than the FSA algorithm. Moreover, the

LDMDBA algorithm is effective for nonlinear case

where samples are mapped from input space to higher

dimensional feature space.

• Due to the giving weight to samples w.r.t the distance

from their nearest neighbors, the proposed method

gives much less weight to noisy samples and outliers.

Consequently, the output model is less sensitive and

potentially more robust to the outliers and noise.

The rest of this paper is organized as follows. Section 2

presents the notation used in the rest of the paper, briefly

reviews TSVM, WLTSVM, and LDMDBA algorithm.

Section 3 gives the detail of the proposed method,

including linear and nonlinear cases. Algorithm analysis of

RKNN-TSVM is given in Sect. 4. Section 5 discusses the

experimental results on synthetic and benchmark datasets

to investigate the validity and effectiveness of our proposed

method. Finally, the concluding remarks are given in Sect.

6.

2 Backgrounds

This section defines the notation that will be used in the rest

of the paper and includes the brief description of conven-

tional TSVM, WLTSVM, and LDMDBA algorithm.

2.1 Notation

Let T ¼ fðx1; y1Þ; . . .; ðxn; ynÞg be the full training set of n

d-dimensional samples. where xi 2 Rd is a feature vector

and yi 2 f�1; 1g are corresponding labels. Let XðiÞ ¼
½xðiÞ1 ; x

ðiÞ
2 ; . . .; x

ðiÞ
ni �; i ¼ 1; 2 be a matrix consisting of ni

samples that are d dimensional in class i, XðiÞ 2 T ,

XðiÞ 2 Rni�d. For convenience, matrix A in Rn1�d represents

the samples of class 1 and matrix B in Rn2�d represents the

samples of class �1, where n1 þ n2 ¼ n. Table 1 provides a

summary of the notation used in this paper.

2.2 Twin support vector machine

TSVM [15] is binary classifier whose idea is to find two

non-parallel hyperplanes. To explain this classifier, con-

sider a binary classification problem of n1 samples

belonging to class þ1 and n2 samples belonging to class

�1 in the d-dimensional real space Rd. The linear TSVM

[15] seeks a pair of non-parallel hyperplanes as follows:

xTw1 þ b1 ¼ 0 and xTw2 þ b2 ¼ 0 ð1Þ

such that each hyperplane is closest to the samples of one

class and far from the samples of other class, where

w1 2 Rd, w2 2 Rd, b1 2 R and b2 2 R.

To obtain the above hyperplanes (1), TSVM solves two

primal QPPs with objective function corresponding to one

class and constrains corresponding to other class.

min
w1;b1

1

2
Aw1 þ e1b1k k2 þ c1e

T
2n

s.t. � ðBw1 þ e2b1Þ þ n� e2; n� 0

ð2Þ

min
w2;b2

1

2
Bw2 þ e2b2k k2 þ c2e

T
1g

s.t. ðAw2 þ e1b2Þ þ g� e1; g� 0

ð3Þ

where c1 and c2 are positive penalty parameters, n1 and n2

are slack vectors, e1 is the column vectors of ones of n1

dimensions and e2 is the column vectors of ones of n2

dimensions.

By introducing Lagrangian multipliers a 2 Rn2 and

b 2 Rn1 , the Wolfe dual of QPPs (2) and (3) are given by:

min
a

1

2
aTGðHTHÞ�1

GTa� eT2a

s.t. 0e2 � a� c1e2

ð4Þ

min
b

1

2
bTHðGTGÞ�1

HTb� eT1b

s.t. 0e1 � b� c2e1

ð5Þ

Table 1 Summary of notation used throughout the paper

Definition Notation

Number of samples n

Number of input features d

Sample i xi 2 Rd

Label of sample i yi 2 f�1; 1g
Full training set T ¼ fðx1; y1Þ; . . .; ðxn; ynÞg
Samples of class þ1 and �1 A 2 Rn1�d , B 2 Rn2�d

Column vectors of ones e1 2 Rn1�1, e2 2 Rn2�1

Identity matrix I

Slack vectors n, g

Lagrangian multipliers a 2 Rn2 , b 2 Rn1

Norm :k k : Rd 7!R

Weights of hyperplane i wi 2 Rdði ¼ 1; 2Þ
Bias of hyperplane i bi 2 Rði ¼ 1; 2Þ

Neural Computing and Applications (2020) 32:12949–12969 12951

123



where H ¼ ½A e� and G ¼ ½B e�. From the dual problems of

(4) and (5), one can notice that QPPs (4) and (5) have n1

and n2 parameters, respectively, as opposed to n ¼ n1 þ n2

parameters in standard SVM.

After solving the dual QPPs (4) and (5), the two non-

parallel hyperplanes are given by:

w1

b1

" #
¼ �ðHTHÞ�1

GTa ð6Þ

and

w2

b2

" #
¼ ðGTGÞ�1

HTb ð7Þ

In addition to solving dual QPPs (4) and (5), TSVM also

requires inversion of matrices HTH and GTG which are of

size ðd þ 1Þ � ðd þ 1Þ where d � n.

A new testing sample x 2 Rd is assigned to class iði ¼
�1;þ1Þ by

Class i ¼ argmin
j¼1;2

xTwj þ bj
�� ��

wj

�� �� ð8Þ

where |.| denotes the perpendicular distance of sample

x from the hyperplane. TSVM was also extended to handle

nonlinear kernels by using two non-parallel kernel gener-

ated-surfaces [15].

In TSVM, if the number of samples in two classes is

approximately equal to n/2, then its computational com-

plexity is Oð1=4n3Þ. This implies that TSVM is approxi-

mately four times faster than standard SVM in theory [15].

2.3 Weighted twin support vector machine
with local information

One of the issues of TSVM is that it fails to determine the

contribution of each training sample to the output model.

Therefore, its output model becomes sensitive to noise and

outliers. WLTSVM [42] addressed this issue by finding the

KNNs of all training samples. This method constructs

intra-class graph Ws and inter-class graph Wd to embed

weight of each samples into optimization problems of

TSVM. As a result, it fits samples with high-density as

opposed to TSVM whose hyperplane fits all the samples of

its own class. Figure 1 indicates a geometrical comparison

between linear TSVM and linear WLTSVM classifier in

two-dimensional real space R2. As shown in Fig. 1,

WLTSVM is less sensitive to outliers and noisy samples

than TSVM.

WLTSVM solves a pair of smaller sized QPPs as

follows:

min
w1;b1

1

2

Xn1

i¼1

Xn1

j¼1

W
ð1Þ
s;ij ðwT

1 x
ð1Þ
j þ b1Þ2 þ c

Xn2

j¼1

nj

s.t. � f
ð2Þ
j ðwT

1 x
ð2Þ
j þ b1Þ þ nj � f

ð2Þ
j

nj � 0; j ¼ 1; . . .; n2

ð9Þ

and

min
w2;b2

1

2

Xn2

i¼1

Xn2

j¼1

W
ð2Þ
s;ij ðwT

2 x
ð2Þ
j þ b2Þ2 þ c

Xn1

j¼1

gj

s.t. f
ð1Þ
j ðwT

2 x
ð1Þ
j þ b2Þ þ gj � f

ð1Þ
j

gj � 0; j ¼ 1; . . .; n2

ð10Þ

In the optimization problems of WLTSVM (9) and (10),

different weights are given to the samples of each class

according to their KNNs. Unlike TSVM, the optimal

hyperplane should be far from the margin points instead of

all the samples of other class. This further reduces the time

complexity by keeping only margin points in the con-

straints. Moreover, WLTSVM has only one penalty

parameter as opposed to two in TSVM.

To obtain the solution, the dual problems for (9) and

(10) are solved, respectively:

min
a

1

2
aTðFTGÞðHTDHÞ�1ðGTFÞa� eT2Fa

s.t. 0e2 � a� ce2

ð11Þ

min
b

1

2
bTðPTHÞðGTQGÞ�1ðHTPÞb� eT1Pb

s.t. 0e1 � b� ce1

ð12Þ

where D ¼ diagðdð1Þ1 ; d
ð1Þ
2 ; . . .; d

ð1Þ
n1 Þ, Q ¼ diagðdð2Þ1 ; d

ð2Þ
2 ;

. . .; d
ð2Þ
n2 Þ, F ¼ diagðf ð2Þ1 ; f

ð2Þ
2 ; . . .; f

ð2Þ
n2 Þ and P ¼ diagðf ð1Þ1 ;

f
ð1Þ
2 ; . . .; f

ð1Þ
n1 Þ are diagonal matrices, respectively (fj is either

0 or 1.). Both e1 and e2 are vectors of all ones of n1 and n2

dimensions, respectively.

Fig. 1 The geometric comparison of standard TSVM with WLTSVM

classifier

12952 Neural Computing and Applications (2020) 32:12949–12969

123



Similar to TSVM, a new sample is classified as class þ1

or class �1 depends on which of the two hyperplanes it lies

nearest to. Although WLTSVM has clear advantages over

TSVM such as better classification ability and less com-

putational cost, it has the following drawbacks:

1. WLTSVM gives different treatments and weight to

each sample by only counting the number of its nearest

neighbors. For instance, the weight of each sample in

class þ1 can be computed as follows:

d
ð1Þ
j ¼

Xn1

i¼1

Ws;ij; j ¼ 1; 2; . . .; n1 ð13Þ

where d
ð1Þ
j denotes the weight of sample xj. It should

be noted that Ws;ij is either 0 or 1. This implies that

WLTSVM treats the nearest neighbors of each sample

similarly. Therefore, the weight matrix Ws;ij contains

only binary values.

2. In order to deal with matrix singularity, the inverse

matrices ðHTDHÞ�1
and ðGTQGÞ�1

are approximately

replaced by ðHTDH þ eIÞ�1
and ðGTQGþ eIÞ�1

,

respectively, where e is a positive scalar. Hence only

approximate solutions to (11) and (12) are obtained.

3. Although WLTSVM reduces the time complexity by

keeping only margin points in the constraints, it has to

find k-nearest neighbors for all the samples. Conse-

quently, the overall computational complexity of

WLTSVM is about Oð2n3
1 þ n2lognÞ under the

assumption that n1 ¼ n2, where n1; n2 � n. This makes

WLTSVM impractical for large-scale datasets. To

mitigate this problem, fast KNN methods can be

utilized.

The proposed method addresses these aforementioned

issues.

2.4 Location difference of multiple distances-
based nearest neighbors searching
algorithm (LDMDBA)

The LDMDBA algorithm [39] introduced the concept of

location difference among different samples. The central

idea of this method is that the nearest neighbors of each

sample can be found when their distance from some ref-

erence points is known. Due to this idea, the LDMDBA

algorithm avoids computing distance between each pair of

samples.

Consider the KNN finding problem with training set

T (defined in Table 1), a sample xj 2 T and the distance

from reference point O1 to xj is denoted as

Dis1ðxjÞ ¼ xj � O1

�� ��. According to [39], the number of

reference points is taken as log2 d. The values of the first

i dimensions of the ith reference point Oi can be set to �1

and other values are set to 1 (i.e.,

Oi ¼ ð�1;�1; . . .;�1; 1; . . .; 1Þ, where the number of

value �1 is equal to i). The neighbors of the sample xj
found using the ith reference point are denoted by NeaiðxjÞ.

To compute NeaiðxjÞ, the distance from all the reference

points to the sample xi are first computed. After sorting the

distance values, a sorted sequence is obtained. The k-

nearest neighbors of sample xj are mostly located in a

subsequence with the center sample xj in the sequence. The

length of the subsequence can be denoted as 2k 	 e where e
is set to log2 log2 n (more information on how the value e
was determined can be found in [39]). Finally, all the exact

Euclidean distance between samples in the subsequence are

computed. Those samples corresponding to the k-smallest

distances in the subsequence can be considered as the k-

nearest neighbor of the sample xj. For clarity, the

LDMDBA algorithm is explicitly stated.

Algorithm 1 LDMDBA (location difference of multiple

distances-based algorithm) Given a training set T, let k be

the number of nearest neighbors in the algorithm. Starting

with i ¼ 1, the k-nearest neighbors of each sample xj 2 T

can be obtained using the following steps:

1. The ith reference point Oi is set as a vector whose

values of the first i dimensions are equal to �1, and the

other values are set to 1.

2. Compute the distance from ith reference point Oi to

all the samples using DisiðxjÞ ¼ xj � Oi

�� ��; 8i 2
f1; . . .; log2 dg.

3. Sort the samples by the values of Disi and generate a

sorted sequence.

4. For a subsequence of the samples with the fixed range

2k 	 log2 log2 n and center sample xj, compute all the

exact Euclidean distances from the sample xj to the

samples in the subsequence.

5. Sort the distance values obtained in the step 4.

6. The k-smallest Euclidean distances in the sorted

subsequence are k-nearest neighbors of the sample xj.

7. If the neighbors of all the samples using all the

reference points have been computed, terminate;

otherwise, set i ¼ iþ 1, and go to the step 1.

In the Algorithm 1, the time complexity of the step 3 and

the step 5 is determined by the used sorting algorithm

which is Oðn log2 nÞ. Therefore, the overall computational

complexity of the LDMDBA algorithm is Oðlog dn log nÞ.
However, the FSA algorithm has a time complexity of

Oðn2 log2 nÞ as described in the Algorithm 2.

Moreover, LDMDBA algorithm does not rely on any

dimensionality dependent tree structure. As a result, it can

be effectively applied to various high dimensional datasets.

The experimental results of [39] indicate the effectiveness

Neural Computing and Applications (2020) 32:12949–12969 12953

123



of LDMDBA algorithm over the FSA algorithm and other

existing KNN algorithms.

Algorithm 2. Full search algorithm (FSA)
input : T : Full training set

k : Number of nearest neighbors

output: idxKNN: Indices of KNNs for every sample

1 Step 1: Compute the Euclidean distances;
2 distMat : A matrix of size n × n that holds distances;
3 for xi ∈ T do
4 for xj ∈ T do
5 if i �= j then
6 if j > i then
7 distMat[i, j ]

←
√

(xj − xi
j)T (xj − xi

j);

8 else // Distance already computed.
9 distMat[i, j ] ← distMat[j, i ];

10 else // Distance of i-th point from
itself.

11 distMat[i, j ] ← 0;

12 Step 2: Find k-nearest neighbors;
13 for i ← 1 to n do

// Indices of nearest neighbors of ith
sample.

14 tempIdx ← argSort(distMat[i, :]);
// K-nearest-neighbors of i-th sample.

15 tempKNN ← tempIdx[2:k];
16 for l ← 1 to k do
17 idxKNN[i, l ] ← tempKNN[l ];

3 Regularized k-nearest neighbor based
twin support vector machine (RKNN-
TSVM)

In this section, we present our classifier called regularized

k-nearest neighbor-based twin support vector machine

(RKNN-TSVM). It gives weight to each sample with

respect to the distance from its nearest neighbors. Also, the

proposed method avoids overfitting by considering the

SRM principle in each objective function.

3.1 The definition of weight matrices

As discussed in Sect. 1, the existing KNN-based TSVM

classifiers [26, 40, 42] constructs a k-nearest neighbor

graph G to exploit similarity among samples. In these

methods, the weight of G is defined as:

Wij ¼
1; if xi 2 Nea xj

� �
or xj 2 Nea xið Þ;

0; otherwise:

�
ð14Þ

where NeaðxjÞ stands for the set of k-nearest neighbors of

the sample xj which is defined as:

NeaðxjÞ ¼ fxij j if xij is a knn of xj; 1� i� kg ð15Þ

the set NeaðxjÞ is arranged in an increasing order in terms

of Euclidean distance dðxj; xijÞ between xj and xij.

dðxj; xijÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj � xijÞ

Tðxj � xijÞ
q

ð16Þ

However, the value of Wij is either 0 or 1. This implies that

weight of the sample xj is obtained by solely counting the

number of its nearest neighbors. To address this issue,

weight can be given to a sample based on the distance

between its nearest neighbors. Motivated by [7, 10], the

matrix of G is redefined as follows:

Wij ¼
�wij; if xi 2 Nea xj

� �
orxj 2 Nea xið Þ;

0; otherwise:

�
ð17Þ

where �wij is the weight of i-th nearest neighbor of the

sample xj which is given by:

�wij ¼

dðxi; xkj Þ � dðxi; xjÞ
dðxi; xkj Þ � dðxi; x1

j Þ
; if d xi; x

k
j

� 	
6¼ d xi; x

1
j

� 	
;

1; if d xi; x
k
j

� 	
¼ d xi; x

1
j

� 	
:

8>><
>>:

ð18Þ

According to Eq. (18), It can be noted that a neighbor xi
with smaller distance is weighted more heavily than the

one with the greater distance. Therefore, the values of �wij

are scaled linearly to the interval 0; 1½ �.
Similar to (17), the weight matrices for class þ1 and �1

are defined in (19) and (20), respectively.

Ws;ij ¼
�wij; if xi 2 Neas xj

� �
or xj 2 Neas xið Þ;

0; otherwise:

�
ð19Þ

and

Wd;ij ¼
�wij; if xi 2 Nead xj

� �
;

0; otherwise:

�
ð20Þ

where NeasðxjÞ stands for the k-nearest neighbors of the

sample xj in the class þ1 and NeadðxjÞ denotes the k-

nearest neighbors of the sample xj in the class �1.

Specifically,

Neas xj
� �

¼ fxij j lðxijÞ ¼ lðxjÞ; 1� i� kg ð21Þ

and

Nead xj
� �

¼ fxij j lðxijÞ 6¼ lðxjÞ; 1� i� kg ð22Þ

where lðxjÞ denotes the class label of the sample xj. Clearly,

NeasðxjÞ \ NeadðxjÞ ¼ £ and NeasðxjÞ [ NeadðxjÞ ¼
NeaðxjÞ. When Ws;ij 6¼ 0 or Wd;ij 6¼ 0, an undirected

edge between node xi and xj is added the corresponding

graph.

Unlike TSVM, only the support vectors (SVs) instead of

all the samples of the other class are important for optimal

12954 Neural Computing and Applications (2020) 32:12949–12969

123



production of the hyperplane of the corresponding class. To

directly extract possible SVs (margin points) from the

samples in class �1, we redefine the weight matrix Wd as

follows:

fj ¼
1; 9j;Wd;ij 6¼ 0;

0; otherwise:

�
ð23Þ

The procedure of computing weight of samples and

extracting margin points is outlined in the Algorithm 3.

Algorithm 3. The computation of weight ma-
trices
input : X(i) = [x(i)

1 , x
(i)
2 , ..., x

(i)
ni

], i = 1, 2
idxKNN: Indices of KNNs for every sample

output: d
(1)
1 , . . . , d

(1)
n1 : Weight of samples in class

+1
f
(2)
1 , . . . , f

(2)
n2 : Margin points of class −1

1 Ws // Matrix of size n1 × n1 for within-class
graph

2 for xi ∈ X(1) do
3 for xj ∈ X(1) do
4 if (i �= j) and (xi ∈ Neas(xj)) then
5 if d xi, xk

j

) �= d xi, x1
j

)
then

6 Ws,ij ← d(xi,x
k
j
)−d(xi,xj)

d(xi,xk
j
)−d(xi,x1

j
) ;

7 else
8 Ws,ij ← 1;

9 else if i = j then
10 Ws,ij ← 1;
11 else
12 Ws,ij ← 0;

13 Wd // Matrix of size n1 × n2 for between-class
graph

14 for xi ∈ X(1) do
15 for xj ∈ X(2) do
16 if xi ∈ Nead(xj) then

17 Wd,ij ← d(xi,x
k
j
)−d(xi,xj)

d(xi,xk
j
)−d(xi,x1

j
) ;

18 else
19 Wd,ij ← 0;

20 for j ← 1 to n1 do
21 dj ← ∑n1

i=1 W
(1)
s,ij ;

22 for j ← 1 to n2 do
23 if ∃j, Wd,ij �= 0 then
24 fj ← 1;
25 else
26 fj ← 0;

3.2 Linear case

As stated in Sect. 3.1, the distance of a sample from its

nearest neighbors plays an important role in finding highly

dense samples. Following this, the yielded hyperplane is

closer to highly dense samples of its own class. Figure 2

shows the basic thought of our RKNN-TSVM on a toy

dataset. In this toy example, the hyperplanes of the

proposed method are closer to the highly dense samples

than WLTSVM. It can be observed that our RKNN-TSVM

is potentially more robust to the outliers and noisy samples.

After finding the KNNs of all the samples, the weight

matrix of class þ1 (i.e., W
ð1Þ
sij

) and the margin points of

class �1 (i.e., f
ð2Þ
j ) are obtained. The regularized primal

problems of the proposed method are expressed as follows:

min
w1;b1

1

2

Xn1

i¼1

d
ð1Þ
i ðwT

1 x
ð1Þ
i þ b1Þ2 þ c1e

T
2nþ

c2

2
ð w1k k2þb2

1Þ

s.t. � f
ð2Þ
j ðwT

1 x
ð2Þ
j þ b1Þ þ nj � f

ð2Þ
j

nj � 0; j ¼ 1; . . .; n2

ð24Þ

and

min
w2;b2

1

2

Xn2

i¼1

d
ð2Þ
i ðwT

2 x
ð2Þ
i þ b2Þ2 þ c1e

T
1gþ

c3

2
ð w2k k2þb2

2Þ

s.t. f
ð1Þ
j ðwT

2 x
ð1Þ
j þ b2Þ þ gj � f

ð1Þ
j

gj � 0; j ¼ 1; . . .; n1

ð25Þ

where d
ð1Þ
j denotes the weight of the sample x

ð1Þ
j which is

given by

d
ð1Þ
j ¼

Xn1

i¼1

W
ð1Þ
s;ij ; j ¼ 1; 2; . . .; n1 ð26Þ

c1; c2; c3 � 0 are positive parameters. n and g are nonneg-

ative slack variables, both e1 and e2 are column vectors of

ones of n1 and n2 dimensions, respectively.

The difference between the primal problems of the

proposed method and the existing KNN-based TSVM

classifiers [26, 40, 42] is as follows:

1. Unlike WLTSVM, the value of d
ð1Þ
j depends on the

distance of sample x
ð1Þ
j from its k-nearest neighbors.

Therefore, the bigger the value of d
ð1Þ
j , the higher dense

is the sample x
ð1Þ
j .

2. Different from these classifiers, a stabilizer
c2

2
ð w1k k2þb2

1Þ is added to the primal problems of

(24) and (25). This makes the learning rules of our

proposed method stable. In addition, the trade-off

between overfitting and generalization is dependent

upon the parameters c2 and c3.

Moreover, the proposed method also inherits the

advantages of the existing KNN-based TSVM classifiers

which are as follows:

1. The optimization problems (24) and (25) are convex

QPPs which have globally optimal solution.

Neural Computing and Applications (2020) 32:12949–12969 12955

123



2. Similar to these classifiers, the computational com-

plexity of the proposed method was reduced by only

keeping the possible SVs (margin points) in the

constraints.

To solve the optimization problem (24), the Lagrangian

function is given by:

L1ðw1; b1; n; a; cÞ

¼ 1

2

Xn1

i¼1

d
ð1Þ
j ðwT

1 x
ð1Þ
j þ b1Þ2 þ c1e

T
2nþ

c2

2
ð w1k k2þb2

1Þ

�
Xn2

j¼1

ajð�f
ð2Þ
j ðwT

1 x
ð2Þ
j þ b1Þ þ nj � f

ð2Þ
j Þ � cTn

ð27Þ

where a ¼ ða1; a2; . . .; an2
ÞT and c ¼ ðc1; c2; . . .; cn2

ÞT are

the vectors of Lagrangian multipliers. By differentiating

the Lagrangian function L1 (27) with to respect to w1, b1, n,

we can obtain the following the Karush-Kuhn-Tucker

(KKT) conditions:

oL1

ow1

¼
Xn1

i¼1

d
ð1Þ
i x

ð1Þ
i ðwT

1 x
ð1Þ
i þ b1Þ þ c2w1

þ
Xn2

j¼1

ajf
ð2Þ
j x

ð2Þ
j ¼ 0;

ð28Þ

oL1

ob1

¼
Xn1

i¼1

d
ð1Þ
i ðwT

1 x
ð1Þ
i þ b1Þ þ c2b1 þ

Xn2

j¼1

ajf
ð2Þ
j ¼ 0;

ð29Þ
oL1

on
¼ c1e2 � a� c ¼ 0; ð30Þ

a� 0; c� 0: ð31Þ

Arranging Eqs. (28) and (29) in their matrix forms, we get

the following equations:

ATDðAw1 þ e1b1Þ þ c2w1 þ BTFa ¼ 0; ð32Þ

eT1DðAw1 þ e1b1Þ þ c2b1 þ eT2Fa ¼ 0; ð33Þ

where D ¼ diagðdð1Þ1 ; d
ð1Þ
2 ; . . .; d

ð1Þ
n1 Þ (here, d

ð1Þ
j � 0,

j ¼ 1; 2; . . .; n1) and F ¼ diagðf ð2Þ1 ; f
ð2Þ
2 ; . . .; f

ð2Þ
n2 Þ are diag-

onal matrices. Obviously, f
ð2Þ
j (j ¼ 1; 2; . . .; n2) is either 0 or

1. Since c� 0, from (30) we have

0e2 � a� c1e2 ð34Þ

Next, combining (32) and (33) leads to the following

equation

ð½AT eT1 �D½A e1� þ c2IÞ½w1 b1�T þ ½BT eT2 �Fa ¼ 0: ð35Þ

where I is an identity matrix of appropriate dimensions.

Defining H ¼ ½A e1� and G ¼ ½B e2�, Eq.(35) can be

rewritten as

ðHTDH þ c2IÞ
w1

b1

" #
þ GTFa ¼ 0:

i:e:;
w1

b1

" #
¼ �ðHTDH þ c2IÞ�1

GTFa

ð36Þ

Using (27) and the above KKT conditions, the Wolfe dual

of (24) is derived as follows:

max
a

eT2Fa�
1

2
aTðFTGÞðHTDH þ c2IÞ�1ðGTFÞa

s.t. 0e2 � a� c1e2

ð37Þ

One can notice that the parameter c2 in the dual problem

(37) can be replaced by e, e[ 0. However, the parameter e
is a very small positive scalar (e ¼ 1e� 8) for avoiding

matrix singularity, whereas c2 is a hyper-parameter which

determines the trade-off between overfitting and general-

ization [34].

Similarly, the Lagrangian function of the primal prob-

lem (25) is defined as follows:

L2ðw2; b2; g; b; mÞ

¼ 1

2

Xn2

i¼1

d
ð2Þ
j ðwT

2 x
ð2Þ
j þ b2Þ2 þ c1e

T
1gþ

c3

2
ð w2k k2þb2

2Þ

�
Xn1

i¼1

bjðf
ð1Þ
j ðwT

2 x
ð2Þ
j þ b2Þ þ gj � f

ð1Þ
j Þ � mTg

ð38Þ

where b ¼ ðb1; b2; . . .; bn1
ÞT and m ¼ ðm1; m2; . . .; mn1

ÞT are

the vectors of Lagrangian multipliers. After differentiating

Fig. 2 The basic thought of our RKNN-TSVM classifier. The high-

density samples are denoted by green circles

12956 Neural Computing and Applications (2020) 32:12949–12969

123



the Lagrangian function (38) with respect to w2,b2 and g,

the Wolfe dual of (25) is obtained as follows:

max
b

eT1Pb� 1

2
bTðPTHÞðGTQGþ c3IÞ�1ðHTPÞb

s.t. 0e1 � b� c1e1

ð39Þ

where Q ¼ diagðdð2Þ1 ; d
ð2Þ
2 ; . . .; d

ð2Þ
n2 Þ (i.e., the weight matrix

of class �1) and P ¼ diagðf ð1Þ1 ; f
ð1Þ
2 ; . . .; f

ð1Þ
n1 Þ (i.e., the

weight matrix of class þ1) are diagonal matrices. f
ð1Þ
j is

either 0 or 1. Furthermore, it can be observed from the dual

QPPs (37) and (39) that the computational complexity in

the learning phase of the proposed method is affected by

the number of margin points.

Once the dual QPP (39) is solved, we can obtain the

following augmented vector.

w2

b2


 �
¼ ðGTQGþ c3IÞ�1

HTPb ð40Þ

Once the augmented vectors of (36) and (40) are obtained

from the solutions of (37) and (39), a new testing sample

x 2 Rd is assigned to class iði ¼ �1;þ1Þ depending on

which of the two hyperplanes it lies closest to. The decision

function of the proposed method is given by

dðxÞ ¼ þ1; if
xTw1 þ b1j j

w1k k \
xTw2 þ b2j j

w2k k
�1; otherwise:

8<
: ð41Þ

where :j j denotes the absolute value. For the sake of

clearness, we explicitly state our linear RKNN-TSVM

algorithm.

Algorithm 4 Linear RKNN-TSVM classifier Given a

training set T and the number of nearest neighbors k. The

linear RKNN-TSVM can be obtained using the following

steps:

1. To obtain the set NeaðxjÞ, find the k-nearest neighbor of

each sample xj 2 T using either the FSA or LDMDBA

algorithm.

2. Define the weight matrices Ws and Wd for classes þ1

and �1 using (19) and (20).

3. Construct the diagonal matrices D, Q, F and P using

(26) and (23).

4. Construct the input matrices A 2 Rn1�d and B 2 Rn2�d.

Also define H ¼ ½A e1� and G ¼ ½B e2�.
5. Select parameters c1, c2 and c3. These parameters are

usually selected based on validation.

6. Obtain the optimal solutions a and b by solving the

convex QPPs (37) and (39), respectively.

7. Determine the parameters of two non-parallel hyper-

planes using (36) and (40).

8. Calculate the perpendicular distance of a new testing

sample x 2 Rd from the two hyperplanes. Then assign

the test sample x to iði ¼ þ1;�1Þ using (41).

Remark 1 In order to obtain the augmented vectors of (36)

and (40), two matrix inversion ðHTDH þ c2IÞ�1
and

ðGTQGþ c3IÞ�1
of size ðd þ 1Þ � ðd þ 1Þ are required,

where d is much smaller than the total number of samples

in the training set (i.e., d � n).

Remark 2 It should be noted that the matrices ðHTDH þ
c2IÞ and ðGTQG þ c3IÞ are positive definite matrices due to

stabilizer term. Therefore, the proposed method is

stable and avoids the possible ill-conditioning of HTDH

and GTQG.

3.3 Nonlinear case

In the real world, a linear kernel cannot always separate

most of the classification tasks. To make nonlinear types of

problems separable, the samples are mapped to a higher

dimensional feature space. Thus, we extend our RKNN-

TSVM to nonlinear case by considering the following

kernel-generated surfaces:

KðxÞl1 þ b1 ¼ 0; and KðxÞl2 þ b2 ¼ 0 ð42Þ

where

KðxÞ ¼ ½Kðx1; xÞ;Kðx2; xÞ; . . .;Kðxn; xÞ�T ð43Þ

and K(.) stands for an arbitrary kernel function. The primal

optimization problems of nonlinear RKNN-TSVM can be

reformulated as follows:

min
l1;b1

1

2

Xn1

i¼1

d
ð1Þ
i ðlT1Kðx

ð1Þ
i Þ þ b1Þ2 þ c1e

T
2n

þ c2

2
ð l1k k2þb2

1Þ

s.t. � f
ð2Þ
j ðlT1Kðx

ð2Þ
j Þ þ b1Þ þ nj � f

ð2Þ
j

nj � 0; j ¼ 1; . . .; n2

ð44Þ

and

min
l2;b2

1

2

Xn2

i¼1

d
ð2Þ
i ðlT2Kðx

ð2Þ
i Þ þ b2Þ2 þ c1e

T
1g

þ c3

2
ð l2k k2þb2

2Þ

s.t. f
ð1Þ
j ðlT2Kðx

ð1Þ
j Þ þ b2Þ þ gj � f

ð1Þ
j

gj � 0; j ¼ 1; . . .; n1

ð45Þ

where c1; c2; c3 are parameters, n and g are the slack vec-

tors, dj and fj are defined as in the linear case. However, the

standard Euclidean metric and the distance are computed as

Neural Computing and Applications (2020) 32:12949–12969 12957

123



the higher dimensional feature space instead of input space

in the linear case.

Similar to the linear case, the Lagrangian function of the

primal optimization problem (44) is defined as follows:

L1ðl1;b1;n;a; cÞ

¼ 1

2

Xn1

i¼1

d
ð1Þ
i ðlT1Kðx

ð1Þ
i Þ þ b1Þ2 þ c1e

T
2nþ

c2

2
ð l1k k2þb2

1Þ

�
Xn2

j¼1

ajð�f
ð2Þ
j ðlT1Kðx

ð2Þ
j Þ þ b1Þ þ nj � f

ð2Þ
j Þ � cTn

ð46Þ

where a¼ ða1;a2; . . .;an2
ÞT and c¼ ðc1; c2; . . .; cn2

ÞT are the

vectors of Lagrangian multipliers. The KKT conditions for

l1, b1, n and a, c are given by

oL1

ol1

¼
Xn1

i¼1

d
ð1Þ
i Kðxð1Þi ÞðlT1Kðx

ð1Þ
i Þ þ b1Þ þ c2l1

þ
Xn2

j¼1

ajf
ð2Þ
j Kðxð2Þj Þ ¼ 0;

ð47Þ

oL1

ob1

¼
Xn1

i¼1

d
ð1Þ
i ðlT1Kðx

ð1Þ
i Þ þ b1Þ þ c2b1

þ
Xn2

j¼1

ajf
ð2Þ
j ¼ 0;

ð48Þ

oL1

on
¼ c1e2 � a� c ¼ 0; ð49Þ

a� 0; c� 0: ð50Þ

Arranging Eqs. (47) and (48) in their matrix forms, we

obtain

KðAÞTDðKðAÞl1 þ e1b1Þ þ c2l1 þ KðBÞTFa ¼ 0; ð51Þ

eT1DðKðAÞl1 þ e1b1Þ þ c2b1 þ eT2Fa ¼ 0; ð52Þ

where K(A) and K(B) are the kernel matrices of sizes n1 �
n and n2 � n, respectively (n ¼ n1 þ n2). Since c� 0, from

(50) we have

0e2 � a� c1e2 ð53Þ

Similarly, combining (51) and (52) leads to

ð½KðAÞT eT1 �D½KðAÞ e1� þ c2IÞ½l1 b1�T þ ½KðBÞT eT2 �Fa¼ 0:

ð54Þ

Let R¼ ½KðAÞe1� and S¼ ½KðBÞ e2�, Eq.(54) can be

rewritten as

l1

b1


 �
¼ �ðRTDRþ c2IÞ�1

STFa ð55Þ

Then we obtain the Wolfe dual of (44)

max
a

eT2Fa�
1

2
aTðFTSÞðRTDRþ c2IÞ�1ðSTFÞa

s.t. 0e2 � a� c1e2

ð56Þ

In a similar manner, we can obtain the Wolfe dual of the

primal optimization problem (45) by reversing the roles of

K(A) and K(B) in (56):

max
b

eT1Pb� 1

2
bTðPTRÞðSTQSþ c3IÞ�1ðRTPÞb

s.t. 0e1 � b� c1e1

ð57Þ

Once the dual QPP (57) is solved, we will obtain

l2

b2


 �
¼ ðSTQSþ c3IÞ�1

RTPb ð58Þ

Here, the specifications of the matrices D, F, P and Q are

analogous to the linear case. In the nonlinear case, a new

testing sample x is assigned to class iði ¼ �1;þ1Þ
depending on which of the two hypersurfaces it lies closest

to. The decision function of nonlinear RKNN-TSVM is as

follows

dðxÞ ¼ þ1; if
KðxÞl1 þ b1j j

l1k k \
KðxÞl2 þ b2j j

l2k k
�1; otherwise:

8<
:

ð59Þ

We now state explicitly our nonlinear RKNN-TSVM

algorithm.

Algorithm 5 Nonlinear RKNN-TSVM classifier

Given a training set T and the number of nearest

neighbors k. The nonlinear RKNN-TSVM can be obtained

using the following steps:

1. Choose a kernel function K.

2. In the high dimensional feature space, find the k-

nearest neighbor of each sample xj 2 T using either the

FSA or LDMDBA algorithm.

3. Define the weight matrices Ws and Wd for classes þ1

and �1 using (19) and (20).

4. Construct the diagonal matrices D, Q, F and P using

(26) and (23).

5. Construct the input matrices A 2 Rn1�d and B 2 Rn2�d.

Also define R ¼ ½KðAÞ e1� and S ¼ ½KðBÞ e2�.
6. Select parameters c1, c2 and c3. These parameters are

usually selected based on validation.

7. Obtain the optimal solutions a and b by solving the

convex QPPs (56) and (57), respectively.

8. Determine the parameters of two hypersurfaces using

(55) and (58).

9. Calculate the perpendicular distance of a new testing

sample x 2 Rd from the two hypersurfaces. Then

assign the test sample x to iði ¼ þ1;�1Þ using (59).

12958 Neural Computing and Applications (2020) 32:12949–12969

123



Remark 3 It can be noted that our nonlinear RKNN-

TSVM requires inversion of matrix of size ðn� 1Þ � ðn�
1Þ twice. In order to reduce the computational cost, two

approaches can be applied to our nonlinear RKNN-TSVM:

1. The rectangular kernel technique [18] can be used to

reduce the dimensionality.

2. The Sherman–Morisson–Woodbury (SMW) formula

[9] can be utilized to compute the matrix inverses of

smaller dimension than ðn� 1Þ � ðn� 1Þ.

4 Analysis of algorithm and a fast iterative
algorithm clipDCD

4.1 The framework of RKNN-TSVM

Similar to other KNN-based TSVM classifiers, the output

model of the proposed method is created by performing 3

steps. However, each step in the framework of our RKNN-

TSVM was improved. These steps are explained as

follows:

1. In the first step, the KNNs of all the training samples

are computed. Nonetheless, the LDMDBA algorithm

was employed to accelerate the process of KNN

finding.

2. After KNN computation, the intra-class matrix Ws;ij

and inter-class matrix Wd;ij are obtained. Using Ws

matrix, weight is given to each sample with respect to

the distance from its nearest neighbors. Finally, margin

points are determined using inter-class Wd matrix.

3. In order to obtain the output model, two dual

optimization problems and two systems of linear

equations are solved. The third step was improved by

considering the SRM principle in the optimization

problems of the proposed method.

Figure 3 shows the overview of steps performed by the

proposed method.

4.2 Comparison with other related algorithms

In this subsection, we compare our RKNN-TSVM with

other related algorithms.

4.2.1 Comparison with TSVM

Compared with TSVM [15], our RKNN-TSVM gives

weight to the samples of each class by using the KNN

graph. As a result, the hyperplanes of the proposed method

are closer to the samples with greater weight and far from

the margin points of the other class instead of all the

samples. Moreover, the proposed method improves the

computational cost of solving QPPs by only keeping the

margin points in the constraints.

TSVM only considers the empirical risk which may lead

to overfitting problem. However, our RKNN-TSVM

implements the SRM principle by adding a stabilizer term

to objective function. As a result, the proposed method

achieves better classification accuracy and generalization.

4.2.2 Comparison with WLTSVM

Unlike WLTSVM [42], our RKNN-TSVM gives weight to

each sample with respect to the distance from its nearest

neighbors. As a result, the neighbors with smaller distance

were weighted more heavily than the one with greater

distance. Moreover, the proposed method finds KNNs of all

the samples by utilizing fast KNN method such as

LDMDBA [39] algorithm. This makes the learning speed

of our RKNN-TSVM faster than that of WL-TSVM.

Different from WLTSVM, the optimization problems of

the proposed method are regularized and stable. Hence two

parameters c2 and c3 can be adjusted to determine trade-off

between overfitting and generalization. This makes our

RKNN-TSVM better in terms of classification accuracy.

4.2.3 Comparison with KNN-STSVM

Similar to WLTSVM, KNN-STSVM [26] gives weight to

each sample by only counting the number of its nearest

neighbors. Also, it does not consider the SRM principle

which makes the classifier stable. Moreover, KNN-STSVM

extracts the data distribution information in the objective

functions by using the Ward’s linkage clustering method.

In summary, KNN-STSVM consists of three steps: (1)

Getting proper clusters. (2) KNN finding. (3) Solving two

smaller-sized QPPs. The overall computational complexity of

this classifier is around Oð1=4n3 þ dðn2
1 þ n2

2Þ þ n2 log nÞ.
Therefore, it cannot handle large-scale datasets.

4.3 The computational complexity of RKNN-
TSVM

The major computation in our RKNN-TSVM involves two

steps:

1. To obtain the output model, the proposed method

needs to solve two smaller-sized dual QPPs. However,

the size of dual problems is affected by the number of

extracted margin points. After all, the optimization

problems of RKNN-TSVM costs around Oðn3Þ.
2. To compute the weight matrices, RKNN-TSVM has to

find k-nearest neighbors for all n training samples. By

using the FSA algorithm, the KNN step costs about

Oðn2 log nÞ. To reduce the computational cost of the

Neural Computing and Applications (2020) 32:12949–12969 12959

123



KNN step, the proposed method employs a fast KNN

method, the LDMDBA algorithm which has computa-

tional complexity of Oðlog dn log nÞ.
Thus, the overall computational complexity of RKNN-

TSVM is about Oð1=4n3 þ log dn log nÞ. For the sake of

comparison, the computational complexity of the proposed

method and other similar methods are shown in Table 2.

From Table 2, it can be observed that the computational

complexity of RKNN-TSVM with LDMDBA algorithm is

better than that of WLTSVM and KNN-STSVM. Because

WLTSVM method employs the FSA algorithm, which is

significantly slower than the LDMDBA algorithm. As

described in Sect. 4.2.3, KNN-STSVM method consists of

three major computational steps. However, the proposed

method has two major computational steps. Finally, TSVM

is the fastest method among other methods in Table 2. It

only solves two smaller-sized QPPs and does not compute

the KNN graph.

4.4 The limitation of our RKNN-TSVM

We should acknowledge that our RKNN-TSVM has the

following limitations:

1. Because of solving two systems of linear equations, the

matrix inverse operation is unavoidable in our RKNN-

TSVM. The computational complexity of the matrix

inverse is Oðn3Þ. This implies that the computational

cost rapidly increases with the increase of matrix order.

2. For large-scale datasets, the memory consumption of

the proposed method is very high. Because two nearest

neighbor graphs need to be stored.

3. Even though the SRM principle boosts the classifica-

tion accuracy of our RKNN-TSVM, it comes at the

cost of tuning two additional parameters. In total, there

are four parameters c1, c2, c3, k in our RKNN-TSVM

which need to be adjusted. Therefore, the parameter

selection of the proposed method is computationally

expensive. In the experiments, we set c2 ¼ c3 to reduce

the computational cost of parameter selection.

4.5 The scalability of RKNN-TSVM

Similar to WLTSVM, our RKNN-TSVM introduces the

selection vector fj to the constraint of the optimization

problems. As a result, it considers only the margin points

instead of all the samples for obtaining the output model.

This further reduces the time complexity of solving dual

problems. However, the proposed method has a better

scalability in comparison with WLTSVM. It utilizes

LDMDBA algorithm to find KNNs of all the samples. This

algorithm decreases the computational cost of KNN finding

and makes our RKNN-TSVM more suitable for large-scale

datasets.

4.6 The clipDCD algorithm

In our RKNN-TSVM, there are four strictly convex dual

QPPs to be solved: (37), (39), (56) and (57). These opti-

mization problems can be rewritten in the following unified

form:

min
a

f ðaÞ ¼ 1

2
aTQa� eTa;

s.t. 0� a� c:
ð60Þ

where Q 2 Rn�n is positive definite. For example, the

matrix Q in (60) can be substituted by

ðFTSÞðRTDRþ c2IÞ�1ðSTFÞ:

To solve the dual QPP problem (60), a solver algorithm is

required. So far, many fast training algorithms were

Training
samples

Find KNNs of
all the training
samples using

LDMDBA algorithm.

k

Compute the weights
of samples and ex-
tract margin points.

Train the RKNN-
TSVM classifier.

c1, c2, c3

The output model.
xT w1 + b1 = 0
xT w2 + b2 = 0

Fig. 3 Overview of steps

performed by the proposed

method

Table 2 The comparison of computational complexity between the

proposed method and other similar methods

Methods Complexity

RKNN-TSVM(LDMDBA) Oð1=4n3 þ log dn log nÞ
RKNN-TSVM(FSA) Oð1=4n3 þ n2lognÞ
WLTSVM Oð1=4n3 þ n2lognÞ
KNN-STSVM Oð1=4n3 þ dðn2

1 þ n2
2Þ þ n2 log nÞ

TSVM Oð1=4n3Þ

12960 Neural Computing and Applications (2020) 32:12949–12969

123



proposed which may include but not limited to, interior-

points methods [35], successive overrelaxation (SOR)

technique [17] and dual coordinate descent (DCD) algo-

rithm [12]. On the basis of DCD algorithm, Peng et al.

proposed the clipping dual coordinate descent (clipDCD)

algorithm [29].

In this paper, we employed the clipDCD algorithm [29]

to speed up the learning process of our RKNN-TSVM. The

main characteristics of this algorithm are fast learning

speed and easy implementation. The clipDCD is a kind of

the gradient descent method. Its main idea is to orderly

select and update a variable which is based on the maximal

possibility-decrease strategy [29].

Unlike the DCD algorithm, this method does not con-

sider any outer and inner iteration. That is, only one

component of a is updated at each iteration, denoted

aL ! aL þ k, L 2 f1; . . .; ng is the index. Then the objec-

tive function is defined as follows:

f ðkÞ ¼ f ð0Þ þ 1

2
k2QLL � kðeL � aTQ:;LÞ: ð61Þ

where Q:;L is the Lth column of the Q matrix. Setting the

derivation of k

df ðkÞ
dk

¼ 0 ) k ¼ ðeL � aTQ:;LÞ
QLL

ð62Þ

The largest decrease on the objective value can be derived

by choosing the L index as:

L ¼ arg max
i2S

n ðei � aTQ:;iÞ2

Qii

o
; ð63Þ

where the index set S is

S ¼
n
i : ai [ 0 if

ei � aTQ:;i

Qii

\0

or ai\c if
ei � aTQ:;i

Qii

[ 0
o
:

ð64Þ

The stopping criteria of the clipDCD algorithm is defined

as follows:

ðeL � aTQ:;LÞ2

QLL

\�; �[ 0 ð65Þ

where the tolerance parameter � is a positive small number.

We set � ¼ 10�5 in our experiments. The whole process of

solving convex dual QPPs using clipDCD solver is sum-

marized in the Algorithm 6. More information on the

convergence of this algorithm and other theoretical proofs

can be found in [29].

Algorithm 6. The clipDCD solver
Input : Q ∈ R

n×n, c
Output: The best set of Lagrange multipliers α

1 Initialize α ← 0;
2 t ← 0 ; /* Iteration counter */

3 e ← [1, 1 . . . , 1]Tn×1;
4 Index set S = {1, 2, . . . , n};
5 while α is not optimal do
6 for i ∈ S do

7 if not (αi < c or ei−αT Q.,i

Qii
> 0) then

8 S ← S − {i};
// Choose L index

9 L = arg max
i∈S

{
(ei−αT Q.,i)2

Qii

}
;

// Compute λ

10 λ = (eL−αT Q.,L)
QLL

;
// Update alpha value

11 αnew
L ← αL + max{0, min{λ, c}};

// Check the stopping criteria

12 if (eL−αT Q.,L)2

QLL
< ε then

13 break;

5 Numerical experiments

In this section, we conduct extensive experiments on sev-

eral synthetic and benchmark datasets to investigate the

classification accuracy and the computational cost of our

RKNN-TSVM. In each subsection, the experimental results

and the corresponding analysis are given.

5.1 Experimental setup and implementation
details

For experiments with TSVM, we used LightTwinSVM1

program [20] which is an open source and fast imple-

mentation of standard TSVM classifier. All other classifiers

were implemented in Python2 3.5 programming language.

NumPy [38] package was used for linear algebra operations

such as matrix multiplication and inverse. Moreover, SciPy

[37] package was used for distance calculation and statis-

tical functions. For model selection and cross-validation,

Scikit-learn [28] package was employed. To solve dual

QPPs, the C?? implementation of clipDCD optimizer

within LightTwinSVM’s code was used. The LDMDBA

algorithm was implemented in C?? with GNU Compiler

Collection3 5.4 (GCC). Pybind 114 was employed to create

Python binding of C?? code. All the experiments were

1 https://github.com/mir-am/LightTwinSVM.
2 https://www.python.org.
3 https://gcc.gnu.org.
4 https://pybind11.readthedocs.io/en/stable/intro.html.

Neural Computing and Applications (2020) 32:12949–12969 12961

123

https://github.com/mir-am/LightTwinSVM
https://www.python.org
https://gcc.gnu.org
https://pybind11.readthedocs.io/en/stable/intro.html


carried out on Ubuntu 16.04 LTS with an Intel Core i7

6700K CPU (4.2 GHz) and 32.0 GB of RAM.

5.2 Parameters selection

The classification performance of TSVM-based classifiers

depends heavily on the choice of parameters. In our

experiments, the grid search method is employed to find

the optimal parameters. In the case of nonlinear kernel, the

Gaussian kernel function Kðxi; xjÞ ¼ expð� xi�xjk k
2r2 Þ is used

as it is often employed and yields great generalization

performance. The optimal value of the Gaussian kernel

parameter r was selected over the range

f2i j i ¼ �10;�9; . . .; 2g. The optimal value of the

parameters c1, c2, c3 was selected from the set

f2i j i ¼ �8;�7; . . .; 2g. To reduce the computational cost

of the parameter selection, we set c1 ¼ c2; c3 ¼ c4 in

TBSVM and c2 ¼ c3 for RKNN-TSVM. In addition, the

optimal value for k in RKNN-TSVM and WLTSVM was

chosen from the set f2; 3; . . .; 15g.

5.3 Experimental results and discussion

In this subsection, we analyze the results of the proposed

method on several synthetic and benchmark datasets from

the perspective of the prediction accuracy and computa-

tional efficiency.

5.3.1 Synthetic datasets

To demonstrate graphically the effectiveness of our

RKNN-TSVM over WLTSVM, we conducted experiments

on two artificially generated synthetic datasets. For

experiments with these datasets, 70% of samples are ran-

domly chosen as the training samples.

In the first example, we consider the two dimensional

Ripley’s synthetic dataset [32] which includes 250 sam-

ples. Figure 4 shows the performance and graphical rep-

resentation of WLTSVM and RKNN-TSVM on Ripley’s

dataset with linear kernel. By inspecting Fig. 4, one can

observe that our linear RKNN-TSVM obtains better clas-

sification performance and its hyperplanes are proximal to

the highly dense samples. This is because the proposed

method gives weight to each sample with respect to the

distance from its nearest neighbors.

The second example is a two-dimensional checkerboard

dataset [11] which includes 1000 samples. Figure 5 visu-

ally displays the performance of WLTSVM and RKNN-

TSVM on checkerboard dataset with Gaussian kernel. As

shown in Fig. 5, the accuracy of our nonlinear is better than

that of nonlinear WLTSVM. Because our RKNN-TSVM

considers the SRM principle which improves the

generalization ability. Moreover, as mentioned earlier, the

proposed method gives weight based on the distance

between a sample and its nearest neighbors.

5.3.2 Benchmark datasets

To further validate the efficiency of the proposed method,

we compare the performance of our RKNN-TSVM with

TSVM, TBSVM and WLTSVM on benchmark datasets

from the UCI machine learning repository5. It should be

noted that all the datasets were normalized such that the

feature values locate in the range 0; 1½ �. The characteristics

of these datasets are shown in Table 3.

Experiments were performed using 5-fold cross-valida-

tion in order to evaluate the performance of these algo-

rithms and tune parameters. More specifically, the dataset

is split randomly into 5 subsets, and one of those sets is

reserved as a test set. This procedure is repeated 5 times,

and the average of 5 testing results is used as the perfor-

mance measure.

The classification accuracy and running time of TSVM,

TBSVM, WLTSVM and RKNN-TSVM are summarized in

Table 4. Here, ‘‘Accuracy’’ denotes the mean value of the

testing results (in %) and the corresponding standard

deviation. ‘‘Time’’ denotes the mean value of training time.

From the perspective of classification accuracy, our

proposed RKNN-TSVM outperforms other classifiers, i.e.,

TSVM and WLTSVM on most datasets. This is due to the

characteristics of our RKNN-TSVM which are explained

as follows:

1. The proposed method gives weight to each sample with

respect to the distance from its nearest neighbors. As a

result, noisy samples and outliers are ignored in the

production of the output model. This improved the

prediction accuracy of our RKNN-TSVM. On the other

hand, WLTSVM gives weight to each sample by only

counting the numbers of its nearest neighbors. This

approach still ignores noise and outliers. However, it is

not as effective as the proposed method.

2. Similar to TBSVM [34], an extra stabilizer term was

added to the optimization problems of our RKNN-

TSVM. Therefore, two additional parameters c2 and c3

in RKNN-TSVM can be adjusted which improves the

classification accuracy significantly. However, these

parameters are small fixed positive scalar in TSVM and

WLTSVM.

From Table 4, it can be seen that not only our RKNN-

TSVM with the LDMDBA algorithm outperforms TSVM,

5 http://archive.ics.uci.edu/ml/datasets.html.

12962 Neural Computing and Applications (2020) 32:12949–12969

123

http://archive.ics.uci.edu/ml/datasets.html


TBSVM, and WLTSVM but also it has better prediction

accuracy than the RKNN-TSVM with FSA algorithm. This

further validates that using a different KNN method such as

the LDMDBA algorithm may improve the classification

performance of our RKNN-TSVM.

From the training time comparison of the classifiers,

TSVM is faster than WLTSVM and RKNN-TSVM.

Because the major computation in TSVM involves solving

two smaller-sized QPPs. However, the proposed method

and WLTSVM have to find KNNs for all the training

samples as well as solving two smaller-sized QPPs. In

order to reduce the overall computational cost, the

LDMDBA algorithm was employed. Section 5.3.2 inves-

tigates the effectiveness of RKNN-TSVM with LDMDBA

algorithm for large-scale datasets.

Figure 6 shows the influence of k on training time of

RKNN-TSVM with the FSA and LDMDBA algorithm on

Table 3 The characteristics of benchmark datasets

Datasets #Samples #Positive #Negative #Features

Australian 690 307 383 14

Heart-Statlog 270 120 150 13

Bupa-Liver 345 145 200 6

WPBC 198 47 151 33

WDBC 569 212 357 30

Hepatitis 155 32 123 19

Ionosphere 351 225 126 34

Haberman 306 225 81 3

Pima-Indian 768 268 500 8

Fertility 100 88 12 9

Votes 435 267 168 16

Fig. 4 The performance and graphical representation of WLTSVM and RKNN-TSVM on Ripley’s dataset with linear kernel

Fig. 5 The performance and graphical representation of WLTSVM and RKNN-TSVM on checkerboard dataset with Gaussian kernel

Neural Computing and Applications (2020) 32:12949–12969 12963

123



Ta
bl
e
4

P
er

fo
rm

an
ce

co
m

p
ar

is
o

n
o

f
T

S
V

M
,

T
B

S
V

M
,

W
L

T
S

V
M

an
d

,
R

K
N

N
-T

S
V

M
o

n
b

en
ch

m
ar

k
d

at
as

et
s

w
it

h
G

au
ss

ia
n

k
er

n
el

D
at

as
et

s
T

S
V

M
T

B
S

V
M

W
L

T
S

V
M

R
K

N
N

-T
S

V
M

(F
S

A
)

R
K

N
N

-T
S

V
M

(L
D

M
D

B
A

)

(n
�
d

)
A

cc
u

ra
cy

(%
)

T
im

e
(s

)
A

cc
u

ra
cy

(%
)

T
im

e
(s

)
A

cc
u

ra
cy

(%
)

T
im

e
(s

)
A

cc
u

ra
cy

(%
)

T
im

e
(s

)
A

cc
u

ra
cy

(%
)

T
im

e
(s

)

ðc
1
;c

2
;r
Þ

ðc
1
;c

3
;r
Þ

ðc
;r
;k
Þ

ðc
1
;c

2
;r
;k
Þ

ðc
1
;c

2
;r
;k
Þ

A
u

st
ra

li
an

8
7

.1
0
±

3
.0

9
0

.0
6

6
8

7
.3

9
±

3
.3

9
0

.0
6

2
8

6
.5

2
±

3
.5

3
0

.1
4

4
8

7
.5

4
±

3
.6

5
0

.1
4

7
8
7
.9
7
–
3
.8
5

0
.2

2
6

(6
9

0
�

1
4

)
(2

�
4
;2

�
5
;2

�
7
)

(2
�

5
;2

2
;2

�
6
)

(2
2
;2

�
8
;1

4
)

(2
1
;2

�
3
;2

�
9
;2

)
(2

�
4
;2

�
3
;2

�
6
;5

)

H
ea

rt
-S

ta
tl

o
g

8
4

.8
1
±

2
.7

2
0

.0
1

0
8
5
.9
3
–
2
.5
1

0
.0

1
3

8
3

.7
0
±

1
.3

9
0

.0
2

3
8
5
.9
3
–
3
.0
1

0
.0

2
3

8
5

.5
6
±

2
.1

6
0

.0
2

8

(2
7

0
�

1
3

)
(2

0
;2

�
1
;2

�
1
0
)

(2
0
;2

�
3
;2

�
1
0
)

(2
0
;2

�
7
;1

2
)

(2
2
;2

�
1
;2

�
1
0
;4

)
(2

1
;2

�
5
;2

�
1
0
;5

)

B
u

p
a-

L
iv

er
7
4
.7
8
–
2
.3
5

0
.0

1
6

7
3

.6
2
±

2
.1

3
0

.0
2

9
7

3
.9

1
±

2
.0

5
0

.0
4

9
7

3
.9

1
±

4
.3

0
0

.0
3

6
7

3
.9

1
±

4
.5

8
0

.0
6

6

(3
4

5
�

6
)

(2
1
;2

1
;2

�
7
)

(2
�

2
;2

�
7
;2

�
5
)

(2
0
;2

�
6
;1

0
)

(2
2
;2

�
2
;2

�
5
;1

0
)

(2
2
;2

�
3
;2

�
5
;7

)

W
P

B
C

7
9

.2
7
±

5
.4

8
0

.0
1

7
7

8
.8

1
±

7
.4

7
0

.0
1

2
7

8
.8

2
±

8
.0

5
0

.0
1

6
8

0
.2

9
±

3
.7

8
0

.0
1

3
8
0
.3
2
–
3
.9
8

0
.0

2
8

(1
9

8
�

3
3

)
(2

�
2
;2

�
5
;2

�
6
)

(2
0
;2

�
5
;2

�
9
)

(2
�

3
;2

�
7
;7

)
(2

�
1
;2

�
2
;2

�
5
;1

1
)

(2
�

2
;2

�
5
;2

�
6
;1

0
)

W
D

B
C

9
8

.2
4
±

1
.3

6
0

.0
7

2
9

8
.2

4
±

0
.7

8
0

.0
5

5
9

7
.5

4
±

1
.0

2
0

.0
9

0
9
8
.5
9
–
0
.7
0

0
.1

2
3

9
8
.5
9
–
0
.7
0

0
.1

5
7

(5
6

9
�

3
0

)
(2

�
4
;2

�
2
;2

�
9
)

(2
�

5
;2

�
7
;2

�
8
)

(2
1
;2

�
7
;8

)
(2

�
3
;2

�
4
;2

�
6
;6

)
(2

0
;2

�
3
;2

�
7
;8

)

H
ep

at
it

is
8

5
.8

1
±

7
.8

0
0

.0
0

4
8

7
.1

0
±

5
.7

7
0

.0
0

4
8

5
.1

6
±

5
.9

8
0

.0
1

2
8

7
.7

4
±

7
.1

8
0

.0
1

7
8
8
.3
9
–
6
.9
5

0
.0

1
5

(1
5

5
�

1
9

)
(2

�
4
;2

�
5
;2

�
9
)

(2
�

5
;2

0
;2

�
5
)

(2
�

5
;2

�
7
;1

1
)

(2
�

4
;2

�
3
;2

�
6
;7

)
(2

�
4
;2

�
3
;2

�
6
;3

)

Io
n

o
sp

h
er

e
9

0
.8

9
±

4
.0

7
0

.0
3

1
9

2
.0

2
±

4
.9

1
0

.0
1

5
9

2
.6

0
±

3
.9

7
0

.0
5

7
9
3
.7
3
–
3
.4
5

0
.0

4
7

9
3

.1
7
±

3
.8

7
0

.0
6

6

(3
5

1
�

3
4

)
(2

�
2
;2

�
4
;2

�
5
)

(2
�

8
;2

�
5
;2

0
)

(2
�

5
;2

1
;1

0
)

(2
�

3
;2

1
;2

0
;5

)
(2

�
5
;2

2
;2

0
;1

2
)

H
ab

er
m

an
7

5
.4

6
±

5
.0

6
0

.0
1

5
7

5
.8

2
±

3
.1

7
0

.0
1

2
7

6
.1

1
±

7
.3

6
0

.0
2

7
7

6
.7

7
±

5
.3

0
0

.0
3

1
7
6
.7
9
–
3
.9
7

0
.0

4
9

(3
0

6
�

3
)

(2
�

2
;2

0
;2

�
3
)

(2
�

3
;2

�
4
;2

�
3
)

(2
0
;2

�
6
;1

1
)

(2
0
;2

�
2
;2

�
3
;3

)
(2

0
;2

2
;2

�
2
;3

)

P
im

a-
In

d
ia

n
7

8
.6

5
±

4
.1

1
0

.0
8

9
7

8
.2

6
±

3
.5

2
0

.0
5

9
7

7
.2

2
±

3
.9

0
0

.1
9

3
7

8
.7

8
±

3
.3

6
0

.1
9

1
7
8
.9
1
–
2
.4
5

0
.2

4
8

(7
6

8
�

8
)

(2
�

2
;2

�
2
;2

�
2
)

(2
�

1
;2

�
6
;2

�
2
)

(2
2
;2

�
3
;1

0
)

(2
1
;2

�
3
;2

�
1
;4

)
(2

2
;2

�
2
;2

�
1
;7

)

F
er

ti
li

ty
8

8
.0

0
±

8
.1

2
0

.0
0

3
8

9
.0

0
±

1
0

.6
8

0
.0

0
2

8
8

.0
0
±

6
.7

8
0

.0
0

5
9

0
.0

0
±

7
.0

7
0

.0
0

5
9
1
.0
0
–
3
.7
4

0
.0

1
7

(1
0

0
�

9
)

(2
�

8
;2

�
3
;2

�
2
)

(2
�

8
;2

2
;2

1
)

(2
�

5
;2

1
;2

)
(2

�
3
;2

�
1
;2

1
;2

)
(2

�
8
;2

�
3
;2

�
1
;3

)

V
o

te
s

9
6

.5
5
±

2
.4

1
0

.0
4

7
9
7
.0
1
–
2
.0
0

0
.0

2
1

9
6

.5
5
±

2
.9

1
0

.0
4

2
9
7
.0
1
–
1
.3
8

0
.0

4
0

9
7
.0
1
–
1
.5
6

0
.0

9
2

(4
3

5
�

1
6

)
(2

�
5
;2

�
1
;2

�
8
)

(2
1
;2

�
2
;2

�
7
)

(2
1
;2

�
1
0
;1

5
)

(2
2
;2

0
;2

�
7
;1

0
)

(2
2
;2

�
5
;2

�
9
;1

1
)

W
in
/d
ra
w
/l
o
ss

R
K

N
N

-T
S

V
M

(L
D

M
D

B
A

)
1

0
/0

/1
9

/1
/1

1
0

/1
/0

6
/3

/2

M
ea

n
ac

cu
ra

cy
8

5
.4

1
8

5
.7

5
8

5
.1

0
8

6
.3

9
8
6
.5
1

B
o

ld
v

al
u

e
d

en
o

te
s

th
e

b
es

t
re

su
lt

12964 Neural Computing and Applications (2020) 32:12949–12969

123



Pima-Indian dataset. As shown in Fig. 6, the training time

of RKNN-TSVM increases with the growth of k. However,

RKNN-TSVM with LDMDBA algorithm is significantly

faster than RKNN-TSVM with the FSA algorithm for each

value of k. This also confirms our claim that the LDMDBA

algorithm reduces the computational cost of the proposed

method significantly.

5.3.3 Statistical tests

Since differences in accuracy between classifiers are not

very large, nonparametric statistical tests can be used to

investigate whether significant differences exist among

classifiers. Hence we use Friedman test with corresponding

post hoc tests as it was suggested in Demsar [4]. This test is

proved to be simple, nonparametric and safe. To run the

test, average ranks of five algorithms on accuracy for all

datasets were calculated and listed in Table 5. Under the

null-hypothesis that all the classifiers are equivalent, the

Friedman test is computed according to (66):

v2
F ¼ 12N

kðk þ 1Þ


X
j

R2
j �

kðk þ 1Þ2

4

�
; ð66Þ

where Rj ¼ 1
N

P
i r

j
i , and R

j
i denotes rank of the j-th of

k algorithms on the i-th of N datasets. Friedman’s v2
F is

undesirably conservative and derives a better statistic

FF ¼ ðN � 1Þv2
F

Nðk � 1Þ � v2
F

ð67Þ

which is distributed according to the F-distribution with

k � 1 and ðk � 1ÞðN � 1Þ degrees of freedom.

We can obtain v2
F ¼ 24:636 and FF ¼ 12:723 according

to (66) and (67). With five classifiers and eleven datasets,

FF is distributed according to F-distribution with k � 1 and

ðk � 1ÞðN � 1Þ ¼ ð4; 40Þ degrees of freedom. The critical

value of F(4, 40) is 1.40 for the level of significance

a ¼ 0:25; similarly, it is 2.09 for a ¼ 0:1 and 2.61 for

a ¼ 0:05. Since the value of FF is much larger than the

critical value, the null hypothesis is rejected. It means that

there is a significant difference among five classifiers. From

Table 5, it can be seen that the average rank of RKNN-

TSVM with the LDMDBA algorithm is far lower than the

other classifiers.

To further analyze the performance of five classifiers

statistically, we used another statistical analysis which is

Win/Draw/Loss (WDL) record. The number of datasets

was counted for which the proposed method with the

LDMDBA algorithm performs better, equally well or

worse than other four classifiers. The results are shown at

the end of Table 4. It can be found that our RKNN-TSVM

with LDMDBA algorithm is significantly better than other

four classifiers.

Fig. 6 The influence of k on training time of RKNN-TSVM with FSA

and LDMDBA algorithm on Pima-Indian dataset

Table 5 Average rank on

classification accuracy of five

algorithms

Datasets TSVM TBSVM WLTSVM RKNN-TSVM(FSA) RKNN-TSVM(LDMDBA)

Australian 4 3 5 2 1

Heart-Statlog 4 1.5 5 1.5 3

Bupa-Liver 1 5 3 3 3

WPBC 3 5 4 2 1

WDBC 3.5 3.5 5 1.5 1.5

Hepatitis 4 3 5 2 1

Ionosphere 5 4 3 1 2

Haberman 5 4 3 2 1

Pima-Indian 3 4 5 2 1

Fertility 4.5 3 4.5 2 1

Votes 4.5 2 4.5 2 2

Average rank 3.77 3.45 4.27 1.91 1.59

Bold value denotes the best rank

Neural Computing and Applications (2020) 32:12949–12969 12965

123



5.3.4 Parameter sensitivity

In order to achieve a better classification accuracy, it is

essential to appropriately choose parameters of our RKNN-

TSVM. Hence we conducted experiments on Australian

and Hepatitis datasets to analyze the sensitivity of the

proposed method to parameters c1, c2 and k.

For each dataset, c1, c2 and k can take 17 different

values, resulting in 289 combinations of ðc1; c2Þ and ðc1; kÞ.
Figure 7 shows the performance of linear RKNN-TSVM on

parameters c1 and c2 for two benchmark datasets. As can

be seen from Fig. 7, the values of parameter c2 can improve

the classification accuracy of the proposed method. Note

that the parameter c2 was introduced by adding a stabilizer

term to objective function. This further shows that the SRM

principle improves the prediction accuracy of our RKNN-

TSVM.

Figure 8 shows the performance of linear RKNN-TSVM

on parameters c1 and k for two benchmark datasets. From

Fig. 8, it can be observed that the classification accuracy of

our RKNN-TSVM also depends on the value of k. As

shown in Fig. 8b, the classification accuracy improves for

Hepatitis dataset as the value of k increases. This is because

a large value of k in the KNN graph reduces the effect of

noisy samples and outliers on classification accuracy.

From these figures, it is clear that the prediction accu-

racy of RKNN-TSVM is affected by the choices of the

mentioned parameters. Therefore, an appropriate selection

of the mentioned parameters is crucial.

5.3.5 Experiments on NDC datasets

In order to analyze the computational efficiency of our

RKNN-TSVM on large-scale datasets, we conducted

Fig. 7 The performance of linear RKNN-TSVM on parameters c1 and c2 for two benchmark datasets

Fig. 8 The performance of linear RKNN-TSVM on parameters c1 and k for two benchmark datasets

12966 Neural Computing and Applications (2020) 32:12949–12969

123



experiments on NDC datasets which were generated using

David Musicant’s NDC Data Generator [21]. The detailed

description of NDC datasets is given in Table 6. For

experiments with NDC datasets, the penalty parameters of

all classifiers were fixed to be one (i.e., c1 ¼ 1, c2 ¼ 1,

c3 ¼ 1). The Gaussian kernel with r ¼ 2�15 was used for

all experiments with nonlinear kernel. The neighborhood

size k is also 5 for all datasets.

Table 7 shows the comparison of training time for

TSVM, WLTSVM and our RKNN-TSVM with linear

kernel. Similar to TSVM, TBSVM solves two smaller-

sized QPPs. Therefore, training time of TBSVM is not

included. The last column shows the speedup of LDMDBA

algorithm which is defined as:

Speedup ¼ The training time of RKNN-TSVM(FSA)

The training time of RKNN-TSVM(LDMDBA)

From Table 7, it can be seen that the LDMDBA algorithm

makes our RKNN-TSVM obtain much faster learning

speed. It can be found that when the size of training set

increases, RKNN-TSVM with the LDMDBA algorithm

becomes much faster than WLTSVM and RKNN-TSVM

with the FSA algorithm. For instance, the proposed method

with the LDMDBA algorithm is 3.25 times faster than the

proposed method with the FSA algorithm on NDC-25K

dataset. Moreover, our linear RKNN-TSVM with the

LDMDBA algorithm is almost as fast as linear TSVM

which is evident from Table 7.

Table 8 shows the comparison of training time for

TSVM, WLTSVM and our RKNN-TSVM with RBF ker-

nel. The results indicate that our RKNN-TSVM with the

LDMDBA algorithm performed several orders of magni-

tude faster than WLTSVM and RKNN-TSVM with the

FSA algorithm. As shown in Table 8, the largest speedup is

Table 6 The description of NDC datasets

Datasets #Training data #Test data #Features

NDC-1K 1000 100 32

NDC-2K 2000 200 32

NDC-3K 3000 300 32

NDC-4K 4000 400 32

NDC-5K 5000 500 32

NDC-10K 10,000 1000 32

NDC-25K 25,000 2500 32

NDC-50K 50,000 5000 32

Table 7 Comparison on NDC

datasets with linear kernel
Datasets TSVM WLTSVM RKNN-TSVM(FSA) RKNN-TSVM(LDMDBA)

Time (s) Time (s) Time (s) Time (s) Speedup

NDC-1K 0.064 0.092 0.079 0.052 1.52

NDC-2K 0.12 0.36 0.292 0.19 1.54

NDC-3K 0.26 0.84 0.662 0.295 2.24

NDC-4K 0.422 1.476 1.192 0.562 2.12

NDC-5K 0.693 2.397 1.884 0.828 2.28

NDC-10K 2.556 9.872 7.628 2.727 2.8

NDC-25K 17.606 68.893 52.867 16.25 3.25

NDC-50K 70.1 a a 64.433 –

aExperiments ran out of memory

Table 8 Comparison on NDC

datasets with RBF kernel
Datasets TSVM WLTSVM RKNN-TSVM(FSA) RKNN-TSVM(LDMDBA)

Time (s) Time (s) Time (s) Time (s) Speedup

NDC-1K 0.203 0.803 0.807 0.555 1.45

NDC-2K 0.983 5.731 5.729 2.442 2.35

NDC-3K 2.74 18.225 18.599 6.465 2.88

NDC-4K 5.896 42.234 41.784 12.485 3.35

NDC-5K 10.328 84.188 82.507 21.14 3.9

NDC-10Kb 4.605 67.626 64.721 8.606 7.52

NDC-25Kb 31.459 983.678 963.341 67.485 14.27

NDC-50Kb 186.761 a a 357.942 –

aWe terminated the algorithm as computing time was very high
bA rectangular kernel with ratio of 10% was used

Neural Computing and Applications (2020) 32:12949–12969 12967

123



almost 14 times. However, TSVM is almost 2 times faster

than RKNN-TSVM (LDMDBA) with reduced kernel. This

is because even with the reduced kernel of dimension

ðn� �nÞ, RKNN-TSVM with the LDMDBA algorithm still

requires solving two dual QPPs as well as finding KNNs

for all the samples.

The experimental results of NDC datasets with RBF

kernel confirmed our claim that the LDMDBA algorithm is

efficient for high dimensional feature space. In summary,

our RKNN-TSVM with the LDMDBA algorithm is much

better than WLTSVM in terms of computational time.

6 Conclusion

In this paper, we proposed a new classifier, i.e., an

enhanced regularized K-nearest neighbor-based twin sup-

port vector machine (RKNN-TSVM). The proposed

method has three clear advantages over KNN-based TSVM

classifier such as WLTSVM: (1) It gives weight to each

sample with respect to the distance from its nearest

neighbors. This improves fitting hyperplanes with highly

dense samples and makes our classifier potentially more

robust to outliers. (2) Our RKNN-TSVM avoids overfitting

problem by adding a stabilizer term to each primal opti-

mization problem. Hence two parameters c2 and c3 were

introduced which are the trade-off between overfitting and

generalization. This further improved the classification

ability of our proposed method. (3) The proposed method

utilizes a fast KNN method, the LDMDBA algorithm. Not

only this algorithm makes the learning speed of our

RKNN-TSVM faster than that of WLTSVM but also

improves the prediction accuracy of our proposed method.

The comprehensive experimental results on several

synthetic and benchmark datasets indicate the validity and

effectiveness of our proposed method. Moreover, the

results on NDC datasets reveal that our RKNN-TSVM is

much better than WLTSVM for handling large-scale

datasets. For example, the largest speed up in our RKNN-

TSVM with the LDMDBA algorithm reaches to 14 times.

There are 4 parameters in our RKNN-TSVM which

increases the computational cost of parameter selection.

This limitation can be addressed in the future. The high

memory consumption of the proposed method is also main

topic of future research.

Acknowledgements Amir M. Mir: Work was done while the author

was a master student at the Islamic Azad University (North Tehran

Branch). Submitted with approval from Jalal A. Nasiri.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Aslahi-Shahri B, Rahmani R, Chizari M, Maralani A, Eslami M,

Golkar M, Ebrahimi A (2016) A hybrid method consisting of GA

and SVM for intrusion detection system. Neural Comput Appl

27(6):1669–1676

2. Chen YS, Hung YP, Yen TF, Fuh CS (2007) Fast and versatile

algorithm for nearest neighbor search based on a lower bound

tree. Pattern Recognit 40(2):360–375

3. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn

20(3):273–297

4. Demšar J (2006) Statistical comparisons of classifiers over mul-

tiple data sets. J Mach Learn Res 7:1–30

5. Ding S, Yu J, Qi B, Huang H (2014) An overview on twin support

vector machines. Artif Intell Rev 42(2):245–252

6. Ding S, Zhang N, Zhang X, Wu F (2017) Twin support vector

machine: theory, algorithm and applications. Neural Comput

Appl 28(11):3119–3130

7. Dudani SA (1976) The distance-weighted k-nearest-neighbor

rule. IEEE Trans Syst Man Cybern 4:325–327

8. Friedman JH, Bentley JL, Finkel RA (1977) An algorithm for

finding best matches in logarithmic expected time. ACM Trans

Math Softw (TOMS) 3(3):209–226

9. Golub GH, Van Loan CF (2012) Matrix computations, vol 3. JHU

Press, Baltimore

10. Gou J, Du L, Zhang Y, Xiong T et al (2012) A new distance-

weighted k-nearest neighbor classifier. J Inf Comput Sci

9(6):1429–1436

11. Ho T, Kleinberg E (1996) Checkerboard dataset

12. Hsieh CJ, Chang KW, Lin CJ, Keerthi SS, Sundararajan S (2008)

A dual coordinate descent method for large-scale linear SVM. In:

Proceedings of the 25th international conference on Machine

learning. ACM, pp 408–415

13. Huang H, Wei X, Zhou Y (2018) Twin support vector machines:

a survey. Neurocomputing 300:34–43

14. Ibrahim HT, Mazher WJ, Ucan ON, Bayat O (2018) A

grasshopper optimizer approach for feature selection and opti-

mizing SVM parameters utilizing real biomedical data sets.

Neural Comput Appl. https://doi.org/10.1007/s00521-018-3414-4

15. Jayadeva Khemchandani R, Chandra S (2007) Twin support

vector machines for pattern classification. IEEE Trans Pattern

Anal Mach Intell 29(5):905

16. Lin CF, Wang SD (2002) Fuzzy support vector machines. IEEE

Trans Neural Netw 13(2):464–471

17. Mangasarian OL, Musicant DR (1999) Successive overrelaxation

for support vector machines. IEEE Trans Neural Netw

10(5):1032–1037

18. Mangasarian OL, Wild EW (2001) Proximal support vector

machine classifiers. In: Proceedings KDD-2001: knowledge dis-

covery and data mining, Citeseer

19. Mangasarian OL, Wild EW (2006) Multisurface proximal clas-

sification via generalized eigenvalues. IEEE Trans Pattern Anal

Mach Intell 28(1):69–74

20. Mir AM, Nasiri JA (2019) Lighttwinsvm: a simple and fast

implementation of standard twin support vector machine classi-

fier. J Open Source Softw 4:1252

21. Musicant D (1998) Ndc: normally distributed clustered datasets.

Computer Sciences Department, University of Wisconsin,

Madison

22. Nasiri JA, Naghibzadeh M, Yazdi HS, Naghibzadeh B (2009)

Ecg arrhythmia classification with support vector machines and

genetic algorithm. In: Third UKSim European symposium on

computer modeling and simulation, (2009) EMS’09. IEEE,

pp 187–192

12968 Neural Computing and Applications (2020) 32:12949–12969

123

https://doi.org/10.1007/s00521-018-3414-4


23. Nasiri JA, Charkari NM, Mozafari K (2014) Energy-based model

of least squares twin support vector machines for human action

recognition. Signal Process 104:248–257

24. Nayak J, Naik B, Behera H (2015) A comprehensive survey on

support vector machine in data mining tasks: applications &

challenges. Int J Database Theory Appl 8(1):169–186

25. Olatunji SO (2017) Improved email spam detection model based

on support vector machines. Neural Comput Appl. https://doi.org/

10.1007/s00521-017-3100-y

26. Pan X, Luo Y, Xu Y (2015) K-nearest neighbor based structural

twin support vector machine. Knowl Based Syst 88:34–44

27. Pang X, Xu C, Xu Y (2018) Scaling knn multi-class twin support

vector machine via safe instance reduction. Knowl Based Syst

148:17–30

28. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B,

Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al

(2011) Scikit-learn: machine learning in python. J Mach Learn

Res 12:2825–2830

29. Peng X, Chen D, Kong L (2014) A clipping dual coordinate

descent algorithm for solving support vector machines. Knowl

Based Syst 71:266–278

30. Qi Z, Tian Y, Shi Y (2013) Structural twin support vector

machine for classification. Knowl Based Syst 43:74–81

31. Refahi MS, Nasiri JA, Ahadi S (2018) ECG arrhythmia classifi-

cation using least squares twin support vector machines. In: Ira-

nian conference on electrical engineering (ICEE). IEEE,

pp 1619–1623

32. Ripley BD (2007) Pattern recognition and neural networks.

Cambridge University Press, Cambridge

33. Shalev-Shwartz S, Ben-David S (2014) Understanding machine

learning: from theory to algorithms. Cambridge University Press,

Cambridge

34. Shao YH, Zhang CH, Wang XB, Deng NY (2011) Improvements

on twin support vector machines. IEEE Trans Neural Netw

22(6):962–968

35. Sra S, Nowozin S, Wright SJ (2012) Optimization for machine

learning. MIT Press, Cambridge

36. Vapnik VN (1999) An overview of statistical learning theory.

IEEE Trans Neural Netw 10(5):988–999

37. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T,

Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J

et al. (2019) SciPy 1.0–fundamental algorithms for scientific

computing in Python. arXiv:1907.10121

38. Walt Svd, Colbert SC, Varoquaux G (2011) The numpy array: a

structure for efficient numerical computation. Comput Sci Eng

13(2):22–30

39. Xia S, Xiong Z, Luo Y, Dong L, Zhang G (2015) Location dif-

ference of multiple distances based k-nearest neighbors algo-

rithm. Knowl Based Syst 90:99–110

40. Xu Y (2016) K-nearest neighbor-based weighted multi-class twin

support vector machine. Neurocomputing 205:430–438

41. Xu Y, Guo R, Wang L (2013) A twin multi-class classification

support vector machine. Cogn Comput 5(4):580–588

42. Ye Q, Zhao C, Gao S, Zheng H (2012) Weighted twin support

vector machines with local information and its application.

Neural Netw 35:31–39

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2020) 32:12949–12969 12969

123

https://doi.org/10.1007/s00521-017-3100-y
https://doi.org/10.1007/s00521-017-3100-y
https://arxiv.org/abs/1907.10121

	An enhanced KNN-based twin support vector machine with stable learning rules
	Abstract
	Introduction
	Backgrounds
	Notation
	Twin support vector machine
	Weighted twin support vector machine with local information
	Location difference of multiple distances-based nearest neighbors searching algorithm (LDMDBA)

	Regularized k-nearest neighbor based twin support vector machine (RKNN-TSVM)
	The definition of weight matrices
	Linear case
	Nonlinear case

	Analysis of algorithm and a fast iterative algorithm clipDCD
	The framework of RKNN-TSVM
	Comparison with other related algorithms
	Comparison with TSVM
	Comparison with WLTSVM
	Comparison with KNN-STSVM

	The computational complexity of RKNN-TSVM
	The limitation of our RKNN-TSVM
	The scalability of RKNN-TSVM
	The clipDCD algorithm

	Numerical experiments
	Experimental setup and implementation details
	Parameters selection
	Experimental results and discussion
	Synthetic datasets
	Benchmark datasets
	Statistical tests
	Parameter sensitivity
	Experiments on NDC datasets


	Conclusion
	Acknowledgements
	References




