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Abstract
Drawing-based tests are cost-effective, noninvasive screening methods, popularly employed by psychologists for the early

detection and diagnosis of various neuropsychological disorders. Computerized analysis of such drawings is a complex task

due to the high degree of deformations present in the responses and reliance on extensive clinical manifestations for their

inferences. Traditional rule-based approaches employed in visual analysis-based systems prove insufficient to model all

possible clinical deformations. Meanwhile, procedural analysis-based techniques may contradict with the standard test

conduction and evaluation protocols. Leveraging on the increasing popularity of convolutional neural networks (CNNs),

we propose an effective technique for modeling and classifying dysfunction indicating deformations in drawings without

modifying clinical standards. Contrary to conventional sketch recognition applications where CNNs are trained to diminish

intra-shape class variations, we employ deformation-specific augmentation to enhance the presence of specific deviations

that are defined by clinical practitioners. The performance of our proposed technique is evaluated using Lacks’ scoring of

the Bender-Gestalt test, as a case study. The results of our experimentation substantiate that our proposed approach can

represent domain knowledge sufficiently without extensive heuristics and can effectively identify drawing-based

biomarkers for various neuropsychological disorders.
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1 Introduction

Drawings are one of the earliest known modes of human

communication. To date, drawings are a preferred form of

expression in a variety of situations like procedural flow-

charts, engineering or architectural plans, electronic circuit

diagrams and freehand sketches. In clinical psychology,

drawings give deep insight into the mental state and

behavior of the individuals who made them. This infor-

mation is employed in several neuropsychological screen-

ing tests to detect the early signs of various neurological

disorders both in children and adults. Some of the popular

tests include the clock draw test (CDT) [1], Rey–Osterrieth

complex figure (ROCF) drawing test [2] and Bender-

Gestalt test (BGT) [3], as shown in Fig. 1.

Conventionally, these tests are interpreted by trained

practitioners who visually assess the responses produced by

different subjects. A common practice is to measure the

extent of deviation(s) from the standard template(s) intro-

duced by subjects while drawing. These deviations are

scored based on standard rules, and the presence or absence

of a particular disorder is then determined. For instance,

‘Micrographia’ and ‘Tremor’ are two common Parkinso-

nian conditions that cause irregularity and tightness while
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drawing spirals and loops as shown in Fig. 2a, b,

respectively.

Due to extensive scoring standards, manual scoring and

analysis of neuropsychological drawings are tedious and

time-consuming tasks, even for a trained practitioner.

Furthermore, a scorer’s experience and bias, and a patient’s

profile can introduce undesirable factors like inter-scorer

variability. Computerized analysis of such drawings can

facilitate practitioners in diagnostic decision-making, test

validation and standardization. However, designing a

system that can identify specific deformations in a hand-

drawn shape is a challenging task.

Despite various challenges, the research in computer-

ized analysis of neuropsychological drawings is gaining

rapid popularity. The work done in this area can broadly be

categorized as ‘Visual analysis-based techniques’ and

‘Procedural analysis-based techniques.’ The visual analy-

sis-based techniques mostly employ shape-specific static

features extracted from the offline samples of drawings. On

the contrary, the procedural analysis-based techniques rely

on dynamic features (like kinematics, pen pressure and

stroke sequences) captured during the online drawing

responses. Both strategies tend to determine the most dis-

criminating features by either employing heuristics or

supervised machine learning algorithms. Nonetheless,

effective measurement of clinical deviations is highly

dependent on the translation of domain knowledge into

computable feature space.

Due to the highly unconstrained nature of the hand-

drawn responses of these tests, the rule-based approaches

often prove insufficient to represent all possible scenar-

ios [6]. On the contrary, the supervised machine learning-

based techniques require rich information to discriminate

between the expected and the deformed drawing samples.

This may require modifications in the standard templates

and test conduction protocols [8]. For this reason,

researchers are motivated to explore various interdisci-

plinary solutions, to bridge the gap between modern

research and conventional practices [9].

Fig. 1 Samples of drawing task-

based neuropsychological tests:

a ROCF drawing sample [4],

b CDT drawing sample [5] and

c BGT drawing sample [6]

Fig. 2 Irregularity and tightness of loops and spirals as biomarker for

motor dysfunction [7]
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Recently, deep learning-based methods [10] have

gained immense popularity in the domain of feature rep-

resentation and classification. Convolutional neural net-

works (CNNs) [11–13], a branch of deep learning, have

urged researchers to revisit many popular computer vision

and pattern recognition problems including ‘Sketch

recognition’ [14]. Like the neuropsychological drawings,

sketches are highly deformed variations in a particular

shape class, as shown in Fig. 3. A significant advantage of

employing CNNs for sketch recognition is their ability to

generalize a wide variety of deformations as one shape

class. CNNs achieve this by minimizing the intra-class

variations and by enhancing the inter-class variations.

Nevertheless, despite their success in the conventional

sketch recognition, the applicability of CNNs for analysis

of neuropsychological drawings has been limited due to

several challenges. A key challenge in neuropsychological

drawing analysis is that particular intra-shape class varia-

tions (clinical deformations) need to be enhanced instead of

being minimized, as shown in Fig. 4. However, the varia-

tions within each deformation class must again be gener-

alized. This means that CNNs must be trained to be

deformation-specific instead of being shape-specific. To

the best of our knowledge, this has not been attempted

previously.

In this study, we present a method to employ CNNs for

the computerized analysis of neuropsychological drawings.

Several clinical deformations across multiple shape tem-

plates are generalized and modeled by training a number of

deformation-specific CNNs. Each deformation-specific

CNN will extract features from a drawn shape response.

The extracted features will then be fed to a classifier to

determine its presence or absence. Once all deformations

present in a particular drawing sample are determined, a

quantified score will be generated for the psychologist to

assess the condition of the subject. By applying this

approach, we intend to address the issues of heuristic

insufficiency and feature validity. Furthermore, by

employing the offline samples already collected by the

domain experts, we intend to avoid modifications in the

standard test conduction protocols as well. Practitioners

can use the results of our system to validate their findings

and decide the next step of the treatment.

The key objective of this study is to identify the key

challenges that characterize the computerized analysis of

neuropsychological drawings and then to address those. A

number of significant contributions have been made in this

regard. More specifically, this study intends to:

1. Investigate the potential of CNNs to model clinical

deformations as a replacement to an extensive rule-

based approach. To achieve this, we aim to generalize

a wide range of intra-deformation class deviations by

employing deformation-specific augmentations instead

of shape-specific ones. Consequently, our proposed

technique should be able to:

• Classify the common deformations across multiple

shape classes. (To the best of our knowledge, this

has not been attempted before.)

• Classify multiple deformations independently

within the same shape class. This will enable a

practitioner to validate his/her findings not only at

Fig. 3 Example of deformation

classification in conventional

sketch recognition systems [14]
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the image level but the feature level as well. This

will mitigate the issue of feature validation.

2. Provide a comprehensive empirical study of the impact

of cross-domain transfer learning in the area of

drawing analysis. It is a vital exploratory contribution

for future studies as the lack of sufficient training data

has also been a hindering factor in the applicability of

CNNs in this domain. The results of our experimen-

tation can be employed as a baseline by future

researchers interested in this area.

3. Propose a taxonomy of techniques employed in the

domain of computerized analysis of neuropsycholog-

ical drawings. It is an important contribution from a

research perspective and can facilitate novice research-

ers in this area.

The organization of the rest of the paper is as follows.

Section 2 presents a taxonomy of the work done in the

computerized analysis of neuropsychological drawings and

highlights some open issues. Section 3 describes the design

and the methodology of our proposed solution. The

experimental protocol designed to evaluate the perfor-

mance of our technique is discussed in Sect. 4. The

empirical analysis of our findings is reported in Sect. 5.

Section 6 concludes the paper and discusses some of the

future research directions.

2 State of the art

Over the past few decades, the computerized analysis of

handwriting has been performed for a variety of tasks like

writer identification, writer verification, handwriting

recognition and handwriting interpretation [15]. The recent

literature [8, 9, 16–19] suggests a paradigm shift toward

the use of computerized handwriting analysis as a diag-

nostic tool for screening of various neuropsychological and

neurological disorders like learning disabilities in children

or degenerative diseases (i.e., Parkinson’s, Alzheimer’s and

Dementia) in adults. Several works have been presented in

this direction, which we have generalized into two broad

categories, i.e., Visual Analysis-Based Techniques and

Procedural Analysis-Based Techniques.

2.1 Visual analysis-based techniques

The visual analysis-based techniques primarily rely on

various attributes of the final drawn outcome to distinguish

between a healthy and a patient response. Such techniques

attempt to analyze the quality of the final drawing by

estimating the extent of deviation from the expected tem-

plate. Figure 5 shows two responses of templates drawn by

a healthy subject and a patient suffering from ‘Visuospatial

Neglect (VSN).’ As expected, the samples drawn by the

patient are severely deformed as compared to the ones

drawn by the healthy subject. Although an easy task for a

Fig. 4 Example of deformation classification intended for our proposed system (three deformations scored during manual assessment of a

standard BGT test)
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human expert, it is a significantly difficult one for the

machine to determine the degree of deformation based on

visual analysis. Two common approaches have been

employed in the literature for this purpose, (a) to assess the

deviations at the local level (i.e., stroke or primitive com-

ponent level) and (b) to assess the drawing as a whole by

extracting shape-based global features. Nonetheless, a

common attribute in both approaches is the use of exten-

sive heuristics for the classification purpose. A summary of

some of the prominent studies employing visual analysis-

based approaches is presented in Table 1.

2.1.1 Component-level drawing analysis

A vital preprocessing step in a component-level drawing

analysis is to localize or segment the constituent parts of a

drawing. The basic idea is to assess the quality of the whole

figure by estimating the deformations in its constituent

parts independently. A similar approach is employed

in [21], where spatial features are extracted from the

primitive components of various geometric shapes and are

then compared against the corresponding stimuli to assess

the quality of the entire drawing. Similar techniques have

also been proposed in [22, 23] to score the responses of the

ROCF drawing test (Fig. 1a). According to the defined

clinical standards, there are eighteen scoring sections in a

ROCF drawing. This requires the system to first localize

these sections in the drawing; however, due to the uncon-

strained nature, these drawings, localization and segmen-

tation of individual scoring sections become a highly

challenging task. Authors employ a fuzzy logic-based

heuristic approach to localize a small subset of ROCF

Fig. 5 a Intended templates,

b response samples drawn by a

patient suffering from VSN and

c response samples drawn by a

healthy subject [20]

Table 1 Summary of studies employing visual analysis-based techniques

References Task Samples Analysis Conclusion

Canham

et al. [23]

ROCF 37

Offline

Localization and assessment of scoring

regions using fuzzy logic-based heuristics

78% accuracy on three out of eighteen scoring

sections is reported

Fairhurst

et al. [20]

Two geometric

templates for

assessing VSN

26

Online

A set of task-specific geometric features are

extracted for analysis

Signifies online sample acquisition and analysis;

however, no quantitative score is presented

Bennasar

et al. [24]

CDT 648

Offline

Geometric features for digit quality and

spatial features for organization are

classified using cascaded classifiers

77.78% and 74.38% accuracies for stage three and

stage four dementia diagnosis is achieved

Moetesum

et al. [6]

Nine BGT

drawings

18

Offline

Shape-specific geometric features are

extracted and assessed using a heuristic-

based approach

Six out of eleven clinical deformations are

classified across a small subset of shapes with

accuracy ranging from 63.8 to 94.2%

Pereira

et al. [28]

Archimedean

spiral and

meander

55

Offline

Mean relative tremor (MRT) is computed

and is used to train a number of classifiers

(NB, OPF and SVM)

78.9%, 77.1% and 75.8% accuracies are reported

for NB, OPF and SVM, respectively

Harbi

et al. [26]

CDT 165

Online

CNN-based features for digit recognition

and ontology-based heuristics for

classification are used

99% and 95.7% accuracies are reported while

classifying drawings of controls and dementia

patients, respectively
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scoring sections. Once localized, spatial features are

extracted from the regions which are then assessed to

classify a subset of clinician deformations present in the

drawing. Although the complete scoring of the ROCF

drawing is not achieved due to localization difficulties,

nevertheless, the authors report an accuracy of 78% on a

dataset of 31 drawing samples of children attending a

special school.

2.1.2 Complete drawing analysis

Recently, there have been attempts to analyze and interpret

the samples of CDT drawings (Fig. 1b). CDT is a popular

screening test employed for the indication of cognitive

disorders like dementia [5]. Similar to ROCF, the CDT

drawings have a complex scoring criterion that requires the

deduction of inferences not only from the presence/absence

of essential shape components but also from their organi-

zation (i.e., correct placement of the digits and clock

hands). As a result, an independent assessment of the

individual components cannot aid in the complete inter-

pretation of the CDT drawing. Authors in [24] present a

scheme to classify the offline CDT drawing samples of 648

subjects (healthy and dementia patients) by computing the

spatial variations and placement order of the clock com-

ponents with respect to each other and the clock circum-

ference. A set of spatial and geometric features is extracted

for this purpose. Feature selection is then applied to extract

the most effective features, which are then fed to a network

of cascaded classifiers. The study suggests that the selected

features not only prove effective in discriminating between

the healthy and patient samples but also in classifying

stages of the disease. Classification rates of 77.78% and

74.38% are reported for stage three and stage four

dementia diagnosis, respectively. In another

attempt [25, 26], authors suggest the use of online sample

acquisition methods to facilitate the segmentation and

analysis of individual drawing components. An extensive

ontology-based heuristic technique is then employed for

each component’s quality assessment and to determine the

correlation between different components.

The ‘Archimedean Spiral’ drawing test [27] (Fig. 2a) is

another popular tool among neurologists for the detection

of various Parkinsonian symptoms like tremor. In [28],

authors measure the mean relative tremor from the offline

spiral samples of 55 subjects to identify the patients suf-

fering from Parkinson’s disease (PD). The extracted fea-

tures are fed to three different classifiers including Naive

Bayes (NB), optimum-path forest (OPF) and support vector

machines (SVM) to achieve classification rates of 78.9%,

77.1% and 75.8%, respectively.

In [6], a pilot study is conducted to analyze the nine

shapes of BGT test for visuo-perceptual dysfunctions

indicated by the Lack’s scoring system [29]. By extracting

a set of geometric features from each of the nine BGT

shape classes, a small subset of clinical deformations is

classified using a heuristic-based approach. Although the

promising results are achieved on a limited sample set,

nonetheless, the study concludes that a heuristic-based

approach is insufficient to model all possible deformations

that are commonly observed by clinical practitioners while

analyzing the BGT drawings.

2.2 Procedural analysis-based techniques

With the advent of technology (i.e., digitizer tablets,

electronic pens and wearable sensors), researchers find it

easier to incorporate the assessment of motor and cognitive

skills of a subject, in addition to perceptive ones, while

analyzing their drawings. This led to the idea of procedural

analysis-based systems, where more focus is given to the

way a subject draws, rather than the final outcome itself.

Although effective in discriminating the samples drawn by

a healthy subject and a patient, yet such sys-

tems [8, 17, 30], suggest modifications in the standard test

protocols conventionally practiced by the domain experts.

This causes issues like feature validation and test accept-

ability among clinical practitioners [31]. Nonetheless, it is

important to discuss such systems for the completeness of

the literature review. Table 2 summarizes the literature

survey of studies employing various procedural analysis-

based techniques.

2.2.1 Drawing movement analysis

Kinematic features are one of the most popularly employed

attributes of drawing and handwriting for discriminating

between the samples of healthy subjects and patients of

various cognitive diseases. In a series of related stud-

ies [32, 33], the authors employ several kinematic features

to identify drawings of patients suffering from VSN and

‘Dyspraxia.’ Simple geometric shapes, like the Necker’s

cube [34], are used as templates. For differential analysis,

linear regression and artificial neural networks (ANNs) are

employed. In a similar attempt [35], the acceleration

sequences captured by using a digitizer tablet while per-

forming the ‘Cube Drawing Test’ (Fig. 6) are fed to mul-

tiple classifiers. A graph-based genetic programming

technique is employed to find the best-evolved classifier. A

multi-class ‘Area Under the Curve (AUC)’ score of 0.70 on

both the training and the test data is achieved. A total of

120 drawings from 40 subjects (multiple drawings from

each subject) are used. In another study, Heinik et al.

in [36] extract a combination of kinematic, pressure and

spatiotemporal features from the online CDT samples of 20

healthy individuals and 20 subjects suffering from ‘Major
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Depressive Disorder (MDD)’ and achieve a classification

accuracy of 81.1%.

Kinematic and pressure features have also been explored

for the identification of early signs of Alzheimer’s disease

in a number of studies like [37–40]. However, in most of

these studies, handwritten words and sentences are con-

sidered to be more effective templates for the relevant

kinematic feature acquisition. Online handwriting models

have also been used to assess various learning disabilities

in children and degenerative disorders in the

elderly [16, 41, 42]. It is particularly interesting to observe

that the selection of a template plays a vital role in cap-

turing the most effective dynamic features for the diagnosis

of a specific disorder. This is evident from studies

like [43–48] that attempt to highlight the discriminating

abilities of online features of handwriting in the prediction

and differential diagnosis of PD. According to these stud-

ies, the existing templates (like the Archimedean spiral)

may not be suitable for capturing these new features.

Consequently, template modification is required which

might contradict with the clinical procedures already in

use.

2.2.2 Drawing strategy analysis

The latest trend in the computerized analysis of neu-

ropsychological drawings is to observe the drawing strat-

egy adopted by the subject. Although the idea is not so

recent, it has gained renewed popularity due to the avail-

ability of online data capturing systems. Such analysis

focuses on the behavior and preferred drawing strategy of

the subject while drawing a stimulus. Instead of analyzing

the end product or the hand movement involved in the

drawing action, constructional sequence order and planning

of the constituent parts of the drawing are observed.

Remi et al. propose a similar technique in [49], for the

assessment of hand-drawn samples of children with

learning difficulties. A template consisting of handwritten

sentences and a set of geometrical shapes is used. The

constituent parts of each drawn stimulus are localized using

shape-based clustering and a collection of drawing

sequences. Deformation-based features are then extracted

to determine the signs of learning and writing difficulties.

In a similar attempt, authors in [50] employ syntax analysis

on the online samples of children’s drawings. Selective

patterns of different drawing-based tests are used as

Table 2 Summary of studies employing procedural analysis-based techniques

References Task Samples Analysis Conclusion

Chindaro

et al. [50]

Square and

cross

templates

120

Online

A set of static and dynamic features are extracted to model

stroke sequences and analyzed using HMMs

55.9% and 69.5% classification

accuracies are achieved for square

and cross, respectively

Heinik

et al. [36]

CDT 40

Online

Kinematic, pressure and spatiotemporal features are

extracted and analyzed

81.1% accuracy is achieved while

classifying samples of MDD patients

Tabatabaey

et al. [57]

Polygon shapes 178

Online

Drawing sequences are classified using SVM to find

correlation between preferred drawing strategy and

expected outcome

63.48% accuracy is achieved in

classifying correlation between

drawing strategy and drawn response

Periera

et al. [46]

Archimedean

spiral and

meander

308

Online

Pen-based pressure signals are converted into images and

are classified using CNNs

87.14% accuracy is achieved in

classifying samples of healthy

subjects and PD patients

Mucha

et al. [48]

Archimedean

spiral

35

Online

Fractional derivatives of kinematic features are used to

train RF and SVM classifiers

72.38% accuracy is achieved in

classifying samples of healthy

subjects and PD patients

Fig. 6 Samples of Cube

Drawing Test drawn by subjects

described in [35]
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templates to determine the gender and handwriting ability

of each participant.

A more comprehensive technique of modeling the

sketching gestures of subjects is proposed in [51]. The

drawing order of the shape primitives is observed in

addition to their organizational relation with the neigh-

boring primitives. Based on predefined rules (like specific

angle, sequence and the number of primitives required for

each shape class), the quality of the produced sketch is

evaluated. The system is tested on both hand-drawn sam-

ples and synthetic shapes from HHreco [52] dataset. The

drawing gestures of patients with disabilities are also

analyzed in a series of related studies [53–55], using an

optoelectronic system. In another series of related

works [56, 57], an attempt is made to determine the cor-

relation between the preferred polygon drawing strategy of

school children with their handwriting skill development.

Drawing sequences of 178 school children (ages

6–7 years), captured using a digitizer tablet are employed.

A 63.48% success in correlating the estimated drawing

strategy and the predicted handwriting performance is

achieved using an SVM classifier. A similar approach is

previously reported in [58].

2.3 Key inferences and motivation

After an extensive review of the techniques employed in

the literature, the following inferences can be derived

regarding both approaches.

• Visual analysis-based techniques that determine the

quality of the whole shape by assessing the individual

constituent parts independently are marked by the

challenges of localization and segmentation. In most

cases, localization of the intended part is impossible due

to the highly unconstrained nature of the drawing itself.

On the contrary, visual analysis-based techniques

derive inference from the entire drawing, not only

require to assess the quality of the constituent parts but

their correlation with each other as well. This requires

an extensive rule-based approach that is impractical and

at times insufficient.

• Procedural analysis-based techniques observing the

hand movement or preferred drawing strategy do not

depend on the visual feedback of the final response but

rely on the features that represent the motor and

cognitive functionality. Although it is a promising

approach, nevertheless, it not only requires a sophisti-

cated acquisition equipment but also requires the

modification of the test administration and inference

procedure. As discussed earlier, this raises issues like

test and feature validity and may face resistance from

the target users, i.e., clinical practitioners.

In this study, we attempt to address the aforementioned

gaps in the literature by employing CNN-based deforma-

tion modeling. The basic motivation behind the use of

CNNs is that they can extract discriminating features from

various regions of the complete drawing without localiza-

tion or segmentation. The convolutional filters employed

on the different layers of a deep CNN produce activations

for specific discriminating patterns. CNNs can generalize

features across a wide variety of deviations, and thus, the

need to explicitly define heuristics for each deviation is no

longer necessary. Instead, visual samples (training data) for

each type of deformation are required for modeling. In

case, if the focus has to be given to a particular region in

the drawing, we can employ data augmentation specific to

that deformation while training the classification layer. For

instance, to extract tremor features from the shape edges,

we employ a median residual resultant representation of the

raw image. The median residual resultants are known to

highlight the fine irregularities in the drawing and thus can

be employed for this purpose.

By utilizing the offline samples collected by psycholo-

gists, we resolve the need for any modifications in the

original test conduction protocol. Furthermore, since the

ground truth has also been prepared with the help of the

domain experts, feature validation issues are addressed as

well. The complete methodology and the proposed system

architecture are explained in the upcoming sections.

3 Methodology

In this section, we explain the proposed methodology for

employing CNNs for the identification of clinical defor-

mations present in neuropsychological drawing samples.

The key concepts involved are transfer learning and data

augmentation that are discussed in accordance with our

proposed system. Although our study aims to present a

generic framework for the computerized analysis of neu-

ropsychological drawings, however, for the purpose of

performance evaluation, the proposed framework is cus-

tomized to analyze and score the BGT drawings. The BGT

test and its scoring criteria are also discussed in detail.

3.1 Deep convolutional neural networks
and feature extraction

CNNs (popularly known as ConvNets) are nonlinear

models capable of learning nonlinear features [12]. A

typical deep CNN architecture primarily comprises of a

series of convolutional layers followed by some interme-

diate layers [13]. The connectivity between a pair of con-

secutive layers is designed to facilitate the detection of

distinctive local patterns in an input image. These patterns
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can then be employed for various visual classification-

based tasks including deformation identification. To

effectively employ CNNs for the problem under consid-

eration, we must first understand the processing of the

fundamental constituent layers.

A convolutional layer is designed to take a high-order

tensor (order 3 for an RGB image) as an input. It then

transforms the input tensor into feature maps. A feature

map is obtained by applying convolution with a matrix of

weights (or kernel), followed by the addition of bias. Each

layer has a number of kernels that replicate the process to

generate a set of feature maps as an output. The processing

of a particular convolutional layer l in a deep CNN con-

sisting of L layers can be generalized by Eq. 1, where

l ¼ 1; . . .; L.

X
ðmÞ
l ¼ f

XN

n¼1

W
ðn;mÞ
l � XðnÞ

l�1 þ B
ðmÞ
l

 !
ð1Þ

X
ðnÞ
l�1 represents one of the N input feature maps from the

previous layer, while X
ðmÞ
l represents an output feature map

of the current layer, where m ¼ 1; . . .;M. Each input fea-

ture map is convolved with the kernelsW
ðn;mÞ
l of the layer l,

resulting in a sum of N convolutions denoted by
PN

n¼1 W
ðn;mÞ
l � XðnÞ

l�1. Each spatial position in a feature map

has its own bias which is presented as a matrix B
ðmÞ
l . f

represents an activation function that is applied on the

result. In most cases, the Rectified Linear Unit (ReLU) [59]

(Eq. 2) is the preferred activation function. ReLU activa-

tion preserves all the positive values from the resultant

feature map and eliminates the negative ones by converting

them to zero. This enhances the mapping capability of a

ConvNet for the desired attributes.

f ðxÞ ¼ maxðx; 0Þ ð2Þ

A convolutional layer is parameterized by a large number

of features. In order to reduce the dimensionality of the

resultant feature maps, a subsampling (or pooling) layer is

commonly introduced before the next convolutional layers.

The pooling layer applies an aggregation function on the

input maps to select only the maximal values from the local

subregions.

The convolutional, ReLU and pooling layers together

serve as a feature extraction convolutional base. Deep

CNNs exploit the combined benefits of the regional con-

volutions and a layered hierarchy to learn effective repre-

sentations for specific visual recognition tasks. The depth

of a CNN architecture depends on the level of abstraction

required. The intermediate convolutional layers are

designed to extract distributed representations from the

input data. On the contrary, a fully connected layer

employs all the features extracted by the previous layer in

order to amplify the selected distinctive patterns. There

may exist one or more fully connected layers at the end of a

deep CNN similar to a conventional ‘Multi-layer Percep-

tron (MLP).’

3.2 Transfer learning and pre-trained ConvNets

A forward run in a CNN model is employed for the pre-

diction of probabilities; nevertheless, before a CNN model

is ready to predict, it requires an extensive training. The

training process involves running the CNN network in both

directions, i.e., backward and forward. For instance, let us

consider a training sample xi given as an input to a CNN

model. The model is run in the forward direction, and an

output xL is obtained. xL is then used to compute the loss z,

i.e., the difference between the output and target ground

truth. The loss is then used to update the network param-

eters by employing backward propagation [12]. The

training process is repeated until a minimum value for loss

is achieved.

Training a CNN model relies on the tuning of millions

of parameters, which is only possible in the case of suffi-

ciently large amount of annotated data. The lack of suffi-

cient training samples has been one of the major limiting

factors in the use of CNNs for neuropsychological drawing

analysis. Nevertheless, recent advances in machine learn-

ing have proposed several solutions to overcome this lim-

itation. Transfer learning is one such alternative, which

allows a CNN architecture to transfer learned weights

across different source and target datasets. Leveraging on

the idea that the convolutional base of a CNN model is

more generic or task-independent, transfer learning allows

us to train these initial layers on a different task with a

larger dataset. Once their parameters are optimized using

the source dataset, these weights can be frozen and only the

fully connected layers can now be trained on the task-

specific dataset. This concept is known as fine-tuning, and

it not only enables the use of deep CNNs on the problems

with smaller datasets but also reduces the computational

cost and training time significantly.

The features extracted from a pre-trained convolutional

base can also be used to train a separate classifier. In other

words, rather than tuning the layers of a pre-trained Con-

vNet on the target dataset (by continuing back propaga-

tion), the ConvNet can be employed as a feature extractor

mapping the input patterns to feature vectors using a for-

ward pass only and ignoring the fully connected layers. The

extracted features can then be used to train another clas-

sifier. The CNN-SVM combination, for instance, has been

investigated in a number of studies [60–62], for various

visual recognition tasks. To fully assess the potential of

CNNs in the analysis of neuropsychological drawings, we

design our system to employ pre-trained ConvNets for both
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shape recognition and deformation classification. The

details of both are presented in the subsequent sections.

3.3 Scoring of Bender-Gestalt test: a case study

As discussed earlier, to comprehend the complexity of the

problem and to evaluate the effectiveness of the proposed

technique, we employ the analysis of the BGT test as a case

study. BGT is a popular drawing-based psychometric test

employed by clinical psychologists for the screening and

differential diagnosis of various neurological disor-

ders [63–67]. The test comprises of a set of nine different

templates or gestalts as shown in Fig. 7. The test conduc-

tion protocol requires the subject to copy or recall each

template on a single sheet of paper using a pencil (Fig. 1c).

Since BGT is a visual perception assessment test, focus is

on the outcome rather than the procedural strategy

involved. Several scoring systems [3, 68–71] have been

proposed for the estimation of deformations in BGT

drawings; however, ‘Lacks’ scoring system’ [29] is popu-

larly employed by practitioners and is being considered in

this study as well.

Lacks’ scoring system is based on 11 essential dis-

criminators of brain dysfunction inspired by the Gestalt

psychology [29]. It determines the presence/absence of

some of these errors using all of the nine BGT templates,

while some are determined using a subset. The scored

errors and the templates on which they are applicable are

presented in Table 3. A brief description of the errors is

outlined in Table 4. Figure 8 shows some of the examples

of Lacks’ deformations (errors) in different BGT shapes.

A detailed study of the scoring system under consider-

ation reveals the complexity of the problem at hand. Sev-

eral conditions determine the presence or absence of a

particular deformation in a shape. Deformations are highly

shape dependent and may be measured differently across

different templates. Some conditions may be considered as

an error in one shape while normal in another. Same

characteristics may be considered as one type of error in

one shape while another type of error in a different shape.

Multiple deformations can coexist in a single shape.

3.4 System architecture

This section presents the details of our proposed system for

the analysis of BGT responses. An overall system archi-

tecture is presented in Fig. 9, while details of each module

are discussed in the subsequent sections.

3.4.1 Input acquisition

In order to keep the original test conduction protocol, our

proposed system is designed to take offline scanned images

of the test samples produced by the subjects (healthy/pa-

tient) as raw input. An important consideration at this stage

is to decide whether to give the complete image containing

multiple templates as an input or to provide each template

response separately. As discussed in the Lacks’ scoring

section, deformations can be shape-specific. Due to this

reason, the target shape localization and recognition is an

important preprocessing step. Automated BGT shape seg-

mentation has previously been attempted in [72]. Since

segmentation is not a prime objective of this study, we will

not address it. Furthermore, due to the challenges outlined

in [72], we do not want to affect the performance of our
Fig. 7 Nine Bender-Gestalt shapes

Table 3 Scoring sheet using Lacks’ scoring system

Error BGT shape class

A 1 2 3 4 5 6 7 8

Rotation 4 4 4 4 4 4 4 4 4

Overlap X X X X X X 4 4 X

Simplification 4 4 4 4 4 4 4 4 4

Fragmentation 4 4 4 4 4 4 4 4 4

Retrogression 4 4 4 4 X 4 X 4 4

Perseveration X 4 4 4 X 4 X X X

Collision 4 4 4 4 4 4 4 4 4

Closure 4 X X X 4 X X 4 X

Motor Incoordination 4 4 4 4 4 4 4 4 4

Angulation X X 4 4 X X X X X

Cohesion 4 4 4 4 4 4 4 4 4
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deformation classification module due to incorrect seg-

mentation. Hence, all the constituent shapes (I1; I2; . . .; IN)
of a BGT sample are independently fed to the system one

by one; however, scores from all shapes are accumulated to

give a sample-wise decision.

3.4.2 Shape recognition

Shape recognition is vital as some deformations are not

applicable to all shapes (as discussed in Lacks’ scoring

section). Two pilot studies [6, 73] are previously conducted

that analyze shape context descriptors and CNN-based

Table 4 Brief description of Lacks’ indicators of brain dysfunctions

Errors Description

Rotation To rotate a shape beyond 80� but less than 180� while drawing

Overlap To omit, rework or simplify overlapping portions of a shape

Simplification To simplify a primitive component, to miss fine details or to draw the joining parts of a shape separately. It is marked

differently across shapes

Fragmentation To omit the primitive components of a shape or change their organization in a way to completely alter the original template

Retrogression To substitute an advance component with a primitive one. It is marked differently across templates

Perseveration To repeat a component in the original template beyond its required quantity

Collision To draw two or more templates with in proximity of each other. The drawn shapes can be touching or overlapping in

extreme cases

Closure To show difficulty in drawing closed shapes like circle and polygons

Motor

incoordination

To introduce signs of tremor and jerk while drawing smooth strokes

Angulation To simplify or completely omit the angular parts of a shape

Cohesion To introduce significant size disparity between the components of a shape

Fig. 8 Examples of deformations: a rotation in BGT template 4,

b Overlap difficulty in BGT template 6 and 7, c Simplification error in

BGT template 5 and 1, d Fragmentation in BGT shapes 4 and 5,

e Retrogression in BGT shapes 7 and 8, f Perseveration in BGT

template 2, g Collision of BGT shapes 5 and 4, h Closure difficulty in

BGT shape 4 and A, i motor incoordination in BGT template A and 7,

j angulation in BGT shapes 2 and 3 and k cohesion in BGT template

A and 4
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shape recognizers, respectively, for the classification of the

nine BGT shape classes. As expected, CNN-based features

outperformed handcrafted descriptors; therefore, we

employ a similar architecture as that used in [73]. The

architecture as shown in Fig. 9b consists of a pre-trained

convolutional base as a feature extractor. Each input image

(I1; I2; . . .; IN) given to the feature extractor is resized to

match the input layer of the respective ConvNet employed.

Fig. 9 Proposed system

architecture for deformation

modeling and classification of

BGT shapes: a individual

segmented shapes from each

BGT sample are given as input,

b features extracted from each

shape are fed to a classifier to

determine the shape class,

c recognized image is then fed

to each deformation network to

determine the presence of the

corresponding deformation, and

d decision vectors from each

sample are used to generate the

final score
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The extracted features are then fed to a classifier (e.g.,

SVM, LDA, etc.) as demonstrated in [60–62, 74], which

then predicts the shape class label (L1; L2; . . .; LN). We

conduct an in-depth empirical analysis on the performance

of various pre-trained ConvNets in combination with a

number of classifiers, to determine the best CNN-classifier

combination for the BGT shape recognition task. The

architectural details of the pre-trained ConvNets and the

hyper-parameter specifications of the classifiers employed

are presented in Sect. 4 of the paper.

3.4.3 Deformation modeling and classification

Figure 9c demonstrates the conceptual model of our pro-

posed deformation classification module. In order to model

deformations, we again employ pre-trained CNN archi-

tectures to extract deformation-specific features which are

then used to train a classifier. The outcome of the classifier

is a binary decision regarding the presence/absence of a

particular deformation. The main design issue in this

module was to decide whether to train a generic model for

each deformation, for instance, one network to model the

rotation error across all the shapes or to train individual

shape-based deformation models (i.e., separate rotation

models for each of the nine BGT shapes). However, to

avoid similar customization that is criticized in tailored

rule-based approaches, a generic model for each defor-

mation across all the shapes is designed to provide gener-

ality. Another reason to avoid a shape-specific deformation

modeling approach is the scarcity of training data for a

particular deformation across all templates.

Feature extraction is further enhanced by using aug-

mented data customized specifically to represent a certain

deformation. The details of our deformation-specific aug-

mentation techniques are discussed in the next sec-

tion. Once all the deformation models are trained, we feed

the pre-segmented shapes with shape labels

(ðI1; L1Þ; ðI2; L2Þ; . . .; ðIN ; LNÞ) to our proposed deformation

classification module. The module consists of all the

deformation-specific networks (N1;N2; . . .;NM). Each input

shape is assessed independently by all of the applicable

deformation networks. The decision from each deformation

model is then stored in a decision vector. Each decision

vector consists of the results [error (1)/no error (0)] of all

the deformation models applicable to one BGT shape. The

decision vector also contains a ‘not-applicable’ indicator

for all the deformations that are not applicable to any

particular shape.

3.4.4 Deformation-specific data augmentation

Data augmentation is a common practice to overcome the

data scarcity, overfitting and class imbalance issues. In our

proposed methodology, deformation-specific augmentation

is primarily being performed to provide the maximum

possible deviations of each deformation class. It is men-

tioned in the previous sections that the availability of

shape-wise samples for each deformation is not feasible in

a real-life scenario. Due to this reason, some deformations

classes do not have considerable representation of each

shape-wise data. Although shape-wise deformation mod-

eling is not being performed, nonetheless, to generate some

samples of the missing shape-wise deformations, we

employ deformation-specific transformations on the non-

erroneous shape samples.

Several techniques have been proposed in the literature

to augment images [75]. Some techniques (e.g., Geometric

transformations) augment images in the data space, while

others (e.g., SMOTE [76]) augment data in the feature

space. In a domain-specific problem like clinical defor-

mation classification, the preservation of class labels after

augmentation is a critical concern. Although feature space-

based techniques can provide better post-augmentation

data cleaning, nevertheless, we require the domain expert

to label the augmented data as well. For this purpose, a data

space-based approach is applied, where different transfor-

mations are applied on the existing training samples to

generate similar examples. Our deformation-specific

transformations can be categorized as ‘generic’ and ‘shape-

specific.’

All deformations except ‘Simplification,’ ‘Retrogres-

sion’ and ‘Perseveration’ have common characteristics

across all of the shapes on which they are applicable. Due

to this reason, augmentation techniques for these defor-

mations are relatively generic. A brief description of the

transformations applied for a generic deformation across

all of the shapes is given below:

• To generate data with ‘Rotation’ error, all shapes from

the original training samples are rotated 2� apart to

achieve the rotated copies of the original shape between

80� to 180� or mirror image (Fig. 10a). However,

caution is taken to ensure that no shape with original

rotation error becomes error-free. Also for some BGT

shapes, mirror image produces the same shape as the

original (e.g., BGT shape 1 and 8, etc.). For such

shapes, 180� rotation is not considered. Like rotation,

the generation of angulation examples is achieved by

rotation of the original images of template 2 and 3, at

the angles between 45� and 80�.
• Samples for the organization-based deformations like

‘Overlapping difficulty,’ ‘Collision’ and ‘Closure diffi-

culty’ are generated by employing a controlled trans-

lation of the constituent parts of a shape. For instance,

the Overlapping difficulty error for BGT shapes 6 and 7

is generated by translating and merging the individual
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hand-drawn samples of their constituent parts in a way

to produce an incorrect or missing overlap. Similarly,

translation is also applied to the separately drawn

constituent parts of BGT shape A, 4 and 7, to join them

at the wrong points, to represent the Closure difficulty

as shown in Fig. 10f. In the case of ‘Collision,’

different BGT shape templates are translated within

proximity to each other. For some scenarios, two shapes

are translated as shown in Fig. 10e, while for other

three or more BGT shapes are translated close to each

other.

• Besides rotation and translation, other meaningful

representations of the raw data are also evaluated for

our selective augmentation technique. For instance, the

median residual of the hand-drawn samples of PD

patients has been employed in [9], to detect tremors by

highlighting the fine irregularities present in the shape

contours. A similar technique is employed in our study

to represent ‘Motor Incoordination.’ After selecting

shapes representing the motor incoordination error, we

generate their median residuals. Both representations

(i.e., raw and median residual) of the examples are used

to generate relevant features as training data. For

illustration purposes, Fig. 10g demonstrates the

inverted image of the median residual of a sample of

BGT shape A.

• To produce ‘Fragmentation’ data, a 0:25r � 0:25c sized

window is randomly placed on the original shape image

of size r � c. If the window contains the foreground

pixels, then they are converted into background and the

image is saved. Consequently, several copies of the

original shape image with the missing details are

created. Figure 10c shows an example of automatically

introduced Fragmentation error in BGT shape A.

• Size imbalance of the main constituent parts of a shape

represents the ‘Cohesion’ error. Such shapes whose

parts are already separated or can easily be separated by

erosion are mostly used to generate the examples for

cohesion. Some of the separated constituent parts are

scaled up, while others are scaled down (Fig. 10h) and

merged to generate a shape with disproportionately

sized components.

As mentioned earlier, errors like ‘Simplification,’ ‘Retro-

gression’ and ‘Perseveration’ are marked by different

characteristics across different shapes. Due to this reason,

their data generation is highly shape-specific, as discussed

below:

• To generate the Perseveration examples, extra row(s) or

column(s) of dots or circles in BGT shapes 1, 2 and 3

are added by replicating and merging the constituent

parts of the shapes. In case of replacing circles with dots

in BGT shapes 3 and 5, we apply the morphological

technique of hole filling followed by erosion with a

disk-shaped structuring element of an appropriate size.

Both techniques represent Perseveration data.

• Retrogression error is scored when a constituent part of

a BGT shape is replaced by a primitive shape, i.e., dots

with dashes, circles with loops, triangle, square or

rectangle for a diamond or hexagon. One method to

generate this error is to create synthetic geometric

shapes and merge them accordingly. However,

Fig. 10 Example of the deformation-specific augmentation results for

BGT shape A a mirror image produced by rotation, b Simplification

of sharp angles of diamond into curves using morphological

operations, c Fragmentation introduced by converting part of

foreground image into background, d replacement of constituent

diamond with square to produce Retrogression example, e translation
of BGT shape A and 2 to produce Collision, f significant separation of

circle and diamond for Closure difficulty, g inverted median residual

of original BGT shape A for motor incoordination and h resizing of

diamond to produce cohesion
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synthetic shapes may not represent the imperfections of

a hand-drawn shape. Therefore, to generate a near-

realistic data, we asked some subjects to draw primitive

geometric shapes like triangles, rectangles, squares and

circles on separate sheets of paper. The individual

shapes are then segmented and merged as the deformed

BGT shapes (e.g., Fig. 10d). Same augmentation tech-

nique is applied to all other errors where another shape

replaces the original constituent part.

• Generally, ‘Simplification’ is marked whenever the fine

details of the drawing are distorted. For instance, angles

are curved, overlapping is missed by a great distance,

and fine dots are replaced by tiny circles. For overlap-

ping shapes, we applied the same technique which was

used for the Overlapping difficulty, i.e., the constituent

parts are translated in a manner to allow maximum

separation between them. BGT shapes A, 4, 6 and 8 are

simplified by applying various morphological opera-

tions to convert their sharp angles into smooth curves

(Fig. 10b). For BGT shape 1, where Simplification

means the replacement of dots with circles, we applied

dilation with caution to avoid joining dots together.

Once dilated and enhanced, a boundary extraction

technique is applied to form circles from blobs. We also

used hand-drawn samples of small circles to generate a

row at different distances.

Figure 10 shows examples of deformation-specific aug-

mented data, generated for BGT template ‘A,’ by

employing some of the proposed techniques.

3.5 Scoring and inference

As discussed in the previous sections, the decision vector

for each shape template contains the results of all the

deformations applicable to it. These decision vectors

(V1;V2; . . .;VM) provide useful information to the practi-

tioner regarding the sample drawn by a particular subject.

A practitioner can use the decision vectors to validate his/

her decision or can apply them to draw various statistics

regarding the frequency of a particular deformation as well.

Nevertheless, for this case study, we apply inference rules

outlined in the Lacks’ scoring manual.

According to Lacks’ scoring, the occurrence of an error

is more important than the frequency of the error. As a

result, for all the instances of a particular type of error

across all BGT shapes, a score of one is generated. For

instance, if the rotation error exists in all of the nine BGT

shapes, the score for the rotation error will be considered as

one, irrespective of its frequency of occurrence. The same

will be considered even if only one of the BGT shapes is

rotated between 80� and 180�. Similarly, scores for other

deformations are also generated. The final score of the

sample will be the sum of all the deformations which are

independently scored. The practitioner then decides a

threshold value to determine whether the score lies above

or below it. Any score above the threshold indicates a sign

of brain dysfunction. The flexibility of the threshold value

is due to the demographics of the subjects taking the test.

To automate the generation of a final score, in the same

way, we apply ‘logical OR’ on each of the error decisions

present across all the decision vectors and feed the results

to an accumulator. The system then displays a final score of

the test as practiced by a clinical expert.

4 Experimental protocol

In this section, we describe the experimental protocol

employed in our study. As discussed earlier, the prime

objective of our study is to assess whether the CNN-based

visual features can represent clinician deformations suffi-

ciently to be employed for a high-level domain knowledge

representation problem like the computerized assessment

of neuropsychological drawings. To assess that, we further

evaluate the applicability of the pre-trained CNN models:

• As feature extractors for inter-class shape recognition

even with a high degree of deformations and a limited

amount of training data.

• To enhance intra-class variations and inter-class simi-

larities using selective augmentation for deformation

classification.

In order to assess the performance of our proposed shape

recognition and deformation classification methodologies,

we conduct separate experiments. All experiments are

conducted on a CUDA-enabled NVIDIA GPU with com-

puting capability of 6.0 using Keras and Scikit-Learn

libraries. The ConvNets employed in the experiments have

already been pre-trained on ImageNet [77], and their

training is not a part of this study.

4.1 Sample acquisition and ground truth
labeling

As discussed earlier, we have selected the analysis of BGT

shapes for the evaluation of our proposed system. Nonethe-

less, to the best of our knowledge, there is no publicly

available dataset of BGT drawings. Due to this reason, BGT

drawing samples of 60 (30 control/ 30 patient) participants

were collected with the help of the Institute of Professional

Psychology, Bahria University, Islamabad, Pakistan.

According to Lacks’ scoring criteria, the maximum attainable

score on a BGT test is 11 (not considering the scoring for the

time taken), while the minimum score is zero. The presence

of an error is scored as one point irrespective of its frequency
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of occurrence across the different shape classes. The total

score in a BGT test is the quantification of the different types

of errors present in the complete sample. An accumulated

score of 5 is commonly considered as a cutoff in Lacks’

scoring manual. A higher score is an indication of a possible

brain dysfunction. The same criteria are considered for the

inclusion of the subject population into the control and patient

groups, respectively. The range of the scores obtained in the

control group is [0–5], while that in the patient group is

[6–11]. Table 5 outlines the demographic- and education-

level data of the participant groups along with their mean

BGT test performance scores.

All the participants were already enrolled in an ongoing

research being conducted by the Institute of Professional

Psychology in collaboration with a local school. Although

disease diagnosis is not a part of the study under consid-

eration, nevertheless, the patient group originally consisted

of the children with various levels of learning disabilities.

The evaluation for the learning disabilities was conducted

by employing a test battery consisting of three tests: (a)

Bangor Dyslexia Test (BDT) [78], (b) Wide Range

Achievement Test-4 (WRAT-4) [79] and (c) Bender-Gestalt

Test (BGT). Since our prime concern is the scoring of the

BGT test, only the samples of the BGT test were collected

from the Institute of Professional Psychology after the

approval of the university’s ethic committee. The selected

samples were originally scored by three experts with an

inter-rater reliability of Mr ¼ 0:89, suggesting that all

scorers agreed on 89% overall BGT test scores. However, a

higher variability was observed in the individual shape

error scoring. To normalize this variability, majority voting

was applied while creating the ground truth for this study.

4.2 Training and test distribution for shape
recognition

For shape recognition, the segmented drawing samples of

all 60 subjects are employed, where each sample consists

of the nine BGT shape classes, resulting in a total of 540

shape samples (60 samples for each BGT shape class).

Fivefold cross-validation is employed and in each fold, and

the data are divided into training and test sets accordingly,

with each set containing an equal representation of samples

from the two subject groups (healthy/patient) under study.

For fair evaluation, caution is taken while dividing the data

for training and testing. All the segmented shapes selected

for training belong to the samples originally selected for

training, and the same is done for the testing samples.

4.3 Training and test distribution
for deformation classification

Data distribution for deformation training and testing was

not so straightforward. Despite an equal number of samples

of children from both groups, the individual deformation

examples were highly imbalanced. Figure 11 shows the

percentage of each type of deformation in the original

dataset. Out of the 540 individual shape samples, 299

contained deformations that too was not evenly distributed

across all shapes. This was one of the motivating factors for

training independent deformation networks instead of a

single multi-class one. This enables classification of all

deformation classes independently from each other, thus

reducing the impact of an overall class imbalance. After

separating the classification for each deformation, the data

scarcity issue for some of the classes is overcome by the

data augmentation techniques already discussed in the

previous sections. After sufficient data for each class are

ensured using the deformation-specific augmentation, each

of the deformation class datasets is further divided into

fivefold for cross-validation.

4.4 Pre-trained CNN architectures employed

We investigated a number of pre-trained CNN architec-

tures for shape recognition and deformation classification

tasks. These include AlexNet [13], VGG16 and 19 [80],

SqueezeNet [81], GoogLeNet (Inception v1) [82], Incep-

tion v3 [83], ResNet50 and 101 [84] and Dense-

Net201 [85]. AlexNet, VGG16 and VGG19 architectures

consist of a series of alternating blocks of convolutional

(with ReLU activation) and pooling layers. Each of these

Table 5 Demographic,

education and BGT

performance levels of the

participants

Gender Number Mean age (years) Education level (grade) Mean BGT score

Patient group

Males 15 13.2 ± 2.0 6–10 8.46 ± 1.98

Females 15 12.7 ± 2.2 6–10 8.20 ± 2.01

All 30 12.9 ± 2.1 6–10 8.33 ± 1.99

Control group

Males 15 13.6 ± 2.1 6–10 2.26 ± 1.48

Females 15 12.9 ± 2.5 6–10 2.02 ± 1.40

All 30 13.2 ± 2.3 6–10 2.14 ± 1.44

12924 Neural Computing and Applications (2020) 32:12909–12933

123



has three fully connected layers, out of which, the last layer

is used for the classification purposes. To extract the pre-

trained features from these models, the last fully connected

layer is removed. SqueezeNet is a CNN microarchitecture

with compressed filter sizes. The architecture employs Fire

modules comprising of a squeezed convolutional layer

(with 1x1 filters) feeding into an expanded layer (with a

combination of 1x1 and 3x3 filters). The fire modules allow

network learning with a comparatively lesser number of

parameters.

The series of Inception architectures introduced the

concept of Inception blocks, in which different convolu-

tional filters and pooling layers are concatenated to

enhance learning. ResNet architectures (ResNet50 and

ResNet101) represent the residual networks, where the

layers contain direct, additive connections referred as Skip

connections. The idea of skip connections has been

extended to connect the subsequent blocks of densely

connected layers in DenseNet architectures. The dense

blocks alternately comprise of 1x1 convolutional filters and

max-pooling layers in order to reduce the number of tun-

able parameters. Contrary to the skip connections in the

residual networks, the output of the dense blocks is not

added but instead concatenated.

All the networks employed in our experiments have

been pre-trained on the ImageNet dataset. Features learned

by different CNN layers impact the classification perfor-

mance [86]. Studies like [87] empirically support the

notion that features from the deeper layers are more

effectively transferable on the target dataset. Due to this

reason, we have also employed the features learned from

the deeper layers (mainly the last fully connected layer).

Table 6 enlists the architectural details of the pre-trained

ConvNet models employed in our study; the depth of each

network, the input image size and the layers from which

the learned features have been extracted are mentioned.

Since we employ pre-trained ConvNets as feature extrac-

tors rather than training them from scratch, the hyper-pa-

rameters involved in their training are not mentioned.

4.5 Multi-class and binary classifiers

To assess the potential of CNN-based features in both

scenarios, i.e., shape recognition and deformation classifi-

cation, we have employed a number of popular supervised

learning classifiers. Features extracted from the pre-trained

models are fed to train these classifiers independently to

observe the impact of the classifiers on the performance. It

is worth mentioning that shape recognition is a multi-class

(i.e., nine BGT shapes) classification problem, while

deformation classification is a binary class (i.e., error or no

error) problem. Therefore, each classifier is trained

accordingly. For shape recognition, four classifiers are

employed. These include the support vector machines

(SVM), linear discriminant analysis (LDA), Naive Bayes

(NB) and decision trees (DT). Brief details of the classifiers

and the respective hyper-parameters involved in training

are given below.

• Discriminant analysis is a statistical method that

facilitates decision-making by employing dimensional-

ity reduction on the input data to rely on only the most

Fig. 11 Percentage of examples

of each deformation class in the

original dataset
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discriminant values. A linear discriminant model is

applied on the extracted CNN-based features. An LDA

attempts to minimize the variance between the input

features of a class in such a way that it maximizes the

distance between the means of the distinct classes.

Ranking threshold is an important hyper-parameter

while applying an LDA. It is the value that determines

the inclusion and exclusion of an instance in the feature

space. A threshold value of 0.0001 is selected after an

extensive empirical analysis.

• SVM is a non-probabilistic classifier that models a

hyperplane to separate the labeled classes. A linear,

one-versus-all SVM is trained for the shape recognition

task. The tolerance value is set to 0.0001, and cost

parameter is set to 1.

• NB is a probabilistic classification technique. We

trained a multinomial NB model on the extracted

CNN feature vectors. A Laplacian smoothing prior is

applied to prevent the impact of zero probabilities on

the decision.

• DT is a predictive model that can be used for

classification. An important parameter in a classifica-

tion tree is the number of splits (k) which controls the

depth of the tree. The value selected for the tree splits is

k=50 for shape recognition.

The selection of the hyper-parameter values is carefully

done after an extensive empirical analysis. For the defor-

mation classification task, we employed an LDA classifier

with similar hyper-parameter values.

5 Results and analysis

This section discusses the results of our proposed empirical

analysis for the BGT shape recognition and deformation

classification methodologies presented in this study.

5.1 Shape classification results

To assess the effectiveness of the proposed shape recog-

nition technique, we first evaluate the overall classification

accuracies achieved by the combination of each CNN

architecture employed with the aforementioned classifiers.

As mentioned earlier, a total of 540 shape data (with 60

samples of each shape) are divided into training and testing

using fivefold cross-validation. For each fold, the overall

shape accuracy is computed as
tpþtn

tpþtnþfpþfn
, where tp, tn, fp

and fn represent the total number of true positives, true

negatives, false positives and false negatives, respectively,

achieved by the system for all the classes. Mean classifi-

cation accuracy is then computed from the accuracies

achieved by each of the fivefold. Figure 12 presents the

mean classification accuracies for each (CNN-classifier)

combination.

It is observed that the performance of the features

extracted from each pre-trained ConvNet employed is

comparable with one another when fed to the same clas-

sifier. This supports our initial claim that the pre-trained

CNN architectures can be successfully employed to a

limited shape class dataset, even without augmentation.

Furthermore, it is observed that the highest classification

accuracy (i.e., 98.33%) is achieved by training an LDA

with features extracted from AlexNet, VGG19, ResNet50

and ResNet101, independently. This shows that shape

classification is not significantly affected by the choice of

the CNN architecture employed. However, the choice of

the classifier is important as both LDA and SVM outper-

formed NB and DT, significantly. Both LDA and SVM

reported comparable accuracies across each CNN archi-

tecture, with LDA slightly outperforming in most cases.

To get a deeper insight, the shape-wise classification

results of our proposed technique using AlexNet-LDA

combination are reported as a confusion matrix in Table 7.

From the confusion matrix, it is evident that almost all

Table 6 Summary of pre-trained CNN architectures employed

Model Source dataset Depth Input image size Feature extraction layer Feature dimensions

AlexNet ImageNet 8 (227 9 227) fc7 4096

VGG16 ImageNet 16 (224 9 224) fc7 4096

VGG19 ImageNet 19 (224 9 224) fc7 4096

SqueezeNet ImageNet 18 (227 9 227) pool10 1000

GoogLeNet ImageNet 48 (224 9 224) loss3-classifier 1000

InceptionV3 ImageNet 22 (299 9 299) predictions 1000

ResNet50 ImageNet 50 (224 9 224) fc1000 1000

ResNet101 ImageNet 101 (224 9 224) fc1000 1000

DenseNet201 ImageNet 201 (224 9 224) fc1000 1000
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shape classes are successfully recognized. Few instances of

misclassification between BGT shape 1 and 2, 3 and 5, 7

and 8 and 7 and ‘A’ are observed, which may result due to

the deformations introduced by the subjects while drawing

these shapes.

5.2 Deformation classification results

In this section, we discuss the deformation classification

results. It is important to mention that due to the scarcity of

examples of each deformation across all BGT shapes,

shape-wise comparison is not feasible. Therefore, the

reported results of deformation classification are sample

specific. Table 8 reports the mean classification accuracies

of fivefold for each deformation using the given CNN

architectures in combination with LDA classifier. Several

important observations are made while analyzing the out-

comes reported in Table 8.

• Contrary to their conventional use, CNN-based features

can also be employed to enhance (rather than diminish)

intra-class variations and inter-class similarities.

• Deformation-specific augmentation enables pre-trained

CNN architectures to achieve considerable deformation

classification accuracies despite a limited dataset. It is

evident from the results of ‘Retrogression’ and ‘Rota-

tion’ classification (i.e., 97.61% and 96.19%, respec-

tively). Both these classes obtained one of the best

classification accuracies, whereas both contributed the

least in the original dataset, as shown in Fig. 11.

• Unlike shape recognition, where the depth or the width

of a ConvNet does not have a significant impact on the

classification, in deformation classification, the choice

of a suitable architecture can enhance performance.

• Deeper networks (i.e., VGG19, ResNet101 and Dense-

Net201) appear to outperform wider networks (i.e.,

GoogLeNet and InceptionV3), whereas in general,

ResNet101 outperforms the rest.

For a deeper insight, we further evaluate the performance

of our system by computing the ‘Specificity,’ ‘Sensitivity’

and ‘Precision,’ in addition to accuracy. ‘Sensitivity’

measures the ability of the system to correctly classify the

deformation and is calculated by the ratio
tp

tpþfn
, while

‘Specificity’ measures the ability of the system to correctly

classify the non-erroneous example and is defined as tn
tnþfp

.

‘Precision’ is the true positive relevance rate and is defined

as
tp

tpþfp
, (tp, tn, fp and fn represent the true positives, true

negatives, false positives and false negatives, respectively).

Fig. 12 Overall shape classification accuracies achieved by each CNN architecture in combination with classifiers employed

Table 7 Confusion matrix of shape-wise classification results

obtained by AlexNet-LDA combination

Class 1 2 3 4 5 6 7 8 A

1 60 0 0 0 0 0 0 0 0

2 1 59 0 0 0 0 0 0 0

3 0 1 58 0 1 0 0 0 0

4 0 0 0 60 0 0 0 0 0

5 0 0 1 0 59 0 0 0 0

6 0 0 0 1 0 59 0 0 0

7 0 0 0 0 0 0 60 0 0

8 0 0 0 0 0 0 2 58 0

A 0 0 0 0 0 1 1 0 58
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Table 9 details the sensitivity, specificity and precision

values of the deformation classification module using a

ResNet101-LDA combination.

It is observed that in most cases, our proposed defor-

mation classification scheme achieves the promising results

while considering the sensitivity of the system. However,

in some cases, lower values of sensitivity are also obtained.

For instance, in the case of ‘Collision,’ ‘Perseveration’ and

‘Overlap,’ the sensitivity of the system is below 75.0%. An

interesting observation is that some of the deformation

classification modules, such as ‘Collision,’ that achieved

comparatively lower sensitivity values consisted of suffi-

cient training samples in the original dataset. On the con-

trary, lesser training samples existed for ‘Overlap’ and

required augmentation. Nevertheless, even after sufficient

training, these deformation classes could not be modeled

with much success. This shows that the ability of the sys-

tem to identify deformations greatly depends on the chal-

lenging nature of the deformation itself. For instance,

Fig. 13a shows an example of a correctly drawn BGT

shape 7, while Fig. 13b, c gives examples of the BGT

shape 7 drawn with Overlapping difficulty. Although

Fig. 13b is scored as ‘Overlapping difficulty’ in the ground

truth by trained psychologists, yet it is very similar to

Fig. 13a, our system identified it as ‘Non-Erroneous,’

whereas Fig. 13c is much more deformed and therefore is

correctly identified by the system as ‘Erroneous.’

As mentioned earlier, Lack’s scoring standard empha-

sizes the importance of the occurrence of the error rather

than the frequency of the error; hence, if the system missed

a deformation in one shape template, it was captured in

Table 8 Overall deformation classification accuracies achieved by each CNN architecture in combination with LDA classifier

CNN architecture

Deformation AlexNet

(%)

VGG16

(%)

VGG19

(%)

SqueezeNet

(%)

InceptionV3

(%)

GoogLeNet

(%)

ResNet50

(%)

ResNet101

(%)

DenseNet201

(%)

Rotation 90.47 89.52 92.38 91.66 89.52 86.66 89.52 96.19 95.23

Overlap 70.83 62.5 79.16 58.33 54.16 62.5 66.66 79.16 75.0

Simplification 85.84 81.13 87.73 84.90 86.79 83.01 86.79 90.56 87.73

Fragmentation 78.50 84.11 85.04 83.17 79.43 73.83 81.30 85.98 81.37

Retrogression 94.18 96.51 96.51 95.34 94.18 95.34 94.18 97.61 95.34

Perseveration 79.16 81.25 81.25 79.16 82.05 81.25 79.16 83.33 81.25

Collision 84.25 86.11 85.18 79.62 87.96 85.18 75.92 90.74 89.81

Closure 58.06 67.74 61.29 54.83 58.06 61.29 70.96 80.64 74.19

Motor

incoordination

83.33 80.55 82.40 79.62 85.18 84.54 86.11 87.96 82.40

Angulation 66.66 70.83 75.0 79.16 75.0 62.5 66.66 83.33 70.83

Cohesion 61.45 70.83 73.95 58.06 67.74 64.51 70.96 80.64 75.0

Table 9 Sensitivity, specificity

and precision achieved by

ResNet101-LDA combination

Deformation Metric

Sensitivity (%) Specificity (%) Precision (%)

Rotation 90.0 96.84 90.0

Overlap 73.33 88.88 73.33

Simplification 82.60 92.77 82.60

Fragmentation 80.0 87.35 59.25

Retrogression 75.0 98.75 75.0

Perseveration 72.72 86.48 72.72

Collision 68.18 96.51 83.33

Closure 75.0 84.21 75.0

Motor Incoordination 81.25 89.13 56.52

Angulation 80.0 85.71 80.0

Cohesion 75.0 84.21 75.0
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another. Therefore, the final scoring of test samples is in

coherence with the ground truth.

5.3 Overall comparative analysis of proposed
technique with state of the art

A comparative analysis with the state of the art gives a

better insight into the effectiveness of any proposed tech-

nique. However, despite a rich and extensive literature

review, it is observed that a direct feature-wise comparison

cannot be deduced with any of the studies outlined. The

primary reason is that there is a paradigm shift from visual-

based analysis (offline) to signal-based analysis (online),

due to the lack of better representation of the visual fea-

tures. Due to this reason, neuropsychological tests which

involve the analysis of the handwriting movement or

cognition (Spiral and CDT) are mostly addressed in the

literature. On the contrary, tests like BGT which provide

information about the visual perceptual orientation of a

subject received very little attention from the relevant

pattern recognition community, despite its popularity

among psychologists. In a previously conducted pilot

study [6], the visual analysis of BGT shapes was per-

formed using handcrafted geometric features. However, it

was observed that it required an exhaustive rule-based

approach to estimate all possible deformations across each

BGT shape. Furthermore, it can still prove insufficient on a

bigger sample set. As a result, a small set of BGT drawings

(18 samples) were used to model only six deformations

(Simplification, Overlap, Rotation, Perseveration, Closure

and Cohesion) in [6]. On the contrary, in the present study,

by employing deep CNN-based features, we are able to

classify 11 deformations (Simplification, Fragmentation,

Overlap, Rotation, Perseveration, Closure, Cohesion,

Angulation, Collision, Motor incoordination and Retro-

gression), on a relatively bigger dataset (60 samples) with

the promising results. Nonetheless, from the perspective of

completeness, we attempt to compare the performance of

our proposed drawing analysis system with some of the

recent works in this domain. A comparison summary is

outlined in Table 10. Although, a direct comparison is

difficult due to different study objectives and datasets

employed, nonetheless, it can be seen that our proposed

scheme for the computerized analysis of neuropsycholog-

ical drawings produces the comparative results.

6 Conclusion and future work

This study addresses some of the challenges of computer-

ized analysis of neuropsychological drawings by proposing

a conceptual model of a semiautonomous system. One of

the key challenges addressed is the transfer of domain

knowledge into computational feature space. Contrary to

the conventional approaches which either focus on exten-

sive heuristics or suggest test modifications, the proposed

system employs a top-down approach, where clinician

manifestations are modeled individually and offline

responses of the subjects are assessed against the models to

determine their presence. To effectively represent a wide

variety of clinical deformations without extensive heuris-

tics, pre-trained CNN architectures are employed. Transfer

learning is enhanced by using deformation-specific aug-

mentation. To evaluate the performance of our proposed

technique, the scoring of a popular multi-template BGT

drawing test is considered as a case study. A customized

dataset of 60 subjects (30 healthy/30 patients) is collected

and employed for evaluation purposes. Eleven clinical

indicators (suggested by Lacks’ scoring manual) are

modeled as deformations. The test provides an opportunity

to assess the performance of CNN-based features for both

shape recognition and deformation classification.

By employing pre-trained ConvNets as feature extrac-

tors, we significantly reduce the computations and the time

involved in training a deep CNN architecture from scratch.

Pre-trained ConvNets also overcome the issue of data

scarcity which is commonly observed in health-related

problems like the one under consideration. To assess the

Fig. 13 Three examples of BGT shape 7 assessed by our proposed

system a sample with no Overlapping difficulty, correctly identified

as sample with no Overlapping difficulty, b sample with Overlapping

difficulty, incorrectly identified as sample with no Overlapping

difficulty, and c sample with Overlapping difficulty, correctly

identified as sample with Overlapping difficulty
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discriminating power of the CNN-based features, a number

of popularly employed classifiers are trained indepen-

dently. All experiments are conducted using fivefold cross-

validation. A mean classification accuracy of 98.33% is

achieved using AlexNet-LDA, VGG19-LDA, ResNet50-

LDA and ResNet101-LDA combinations for shape recog-

nition, thus indicating that the depth of the CNN model

does not have a significant impact on shape recognition.

Similarly, to assess the ability of a pre-trained CNN

architecture to model deformations, an identical experi-

mental protocol is adopted. The best results are achieved

by employing the ResNet101-LDA combination for all the

deformations. The mean accuracies ranged from 79.16 to

97.61%. Deformation classification is further evaluated for

parameters like sensitivity, specificity and precision, and it

shows that our proposed system can indeed successfully

model and classify deformations, although for some

deformations (Collision, Perseveration and Overlap) fur-

ther improvements can be made. Overall, the findings of

this study validate our preliminary hypothesis that CNN-

based visual features can represent domain knowledge

sufficiently without an extensive rule-based approach.

The prime objective of this study is to create a bench-

mark for future studies in this direction. For this reason,

pre-trained CNNs are employed as off-the-shelf feature

extractors. In the future extensions of this study, fine-tun-

ing-based transfer learning will be analyzed. Transfer

learning using CNN architectures other than those trained

on ImageNet will also be explored. Impact of a template on

capturing of deformation-specific features is another

interesting direction that must be explored for better rep-

resentation of deformation models. Shape-wise deforma-

tion classification can also be pursued. Observing the

frequency of a particular deformation can also provide an

important insight into the behavior of the subjects with

potential brain dysfunctions. This can provide a very useful

exploratory direction for researchers in clinical psychol-

ogy. Other BGT scoring manuals can also be modeled and

evaluated as a future extension of this work.

The proposed study presents a direction worth exploring

for various interdisciplinary communities working to inte-

grate technological solutions in health sector. Our proposed

conceptual model can provide a solid basis for an end-to-

end system for the analysis of neuropsychological drawings

which can be employed by psychologists for standardiza-

tion, validation of the results and other diagnostic purposes.
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