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Abstract
Advances in the artificial intelligence-based models can act as robust tools for modeling hydrological processes. Neural

network architectures coupled with learning algorithms are considered as useful modeling tools for groundwater-level

fluctuations. Emotional artificial neural network coupled with genetic algorithm (EANN-GA) is one such novel hybrid

neural network which has been used in the present study for the forecasting of groundwater levels at three sites (Site H3,

Site H4.5, and Site H9) in a coastal aquifer system. This study was conceived to address and investigate the efficiency of

the ensemble model (EANN-GA) for forecasting one-month ahead groundwater level and to compare its performance with

emotional artificial neural network (EANN), generalized regression neural network (GRNN), and the conventional feed-

forward neural network (FFNN). Variations in the rainfall, tidal levels, and groundwater levels are selected as inputs for the

development of EANN-GA, EANN, GRNN, and FFNN models. Suitable goodness-of-fit criteria such as Nash–Sutcliffe

efficiency (NSE), bias, root mean squared error (RMSE), and graphical indicators are used for assessing the efficiency of

the developed models. The improvement in the performance of the EANN-GA model over the developed EANN, GRNN,

and FFNN models in terms of NSE is 0.81, 6.02, and 9.56% at Site H3; 4.35, 5.50, and 22.68% at Site H4.5; and 1.05, 7.18,

and 21.75% at Site H9. Thus, it can be inferred that the EANN-GA model outperforms the developed EANN model,

GRNN model, and FFNN model. Further, this paper examines the predictive capability of extreme events by the EANN-

GA, EANN, GRNN, and FFNN models. The RMSE values of the EANN-GA model at all peak points are found as 0.27,

0.23, and 0.10 m at sites H3, H4.5, and H9, respectively, and the results indicate superior performance of EANN-GA

model. To check the generalization ability of the developed EANN-GA models, they are validated with the data of another

site (Site I2) located in the same coastal aquifer. Superior prediction capability and generalization ability make the EANN-

GA model a better alternative for predicting groundwater levels. Overall, this study demonstrates the effectiveness of

EANN-GA in modeling spatio-temporal fluctuations of groundwater levels. It is also concluded that the EANN-GA model

yields remarkably better predictions of extreme events, and hence, it could be a promising technique for developing alarm

systems for real-world water problems.
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1 Introduction

The wealth of any nation lies in its rich natural resources.

Groundwater is one of our most valuable natural resources,

and in developing countries, it acts as a poverty alleviation

tool by delivering groundwater directly to poor communi-

ties with less cost [1]. Unfortunately, over-usage of

groundwater and growing population together make our

ecosystems unendurable and unstable. Hence, the sustain-

able management of groundwater resources is vital for

satisfying the needs of present and future generations.

Excessive pumping in coastal aquifer exerts more

pressure on groundwater level, and hence, coastal aquifers

are more vulnerable to over-exploitation and groundwater

contamination. Numerous studies on seawater intrusion

[2, 3], groundwater-quality [4, 5], and groundwater-level

fluctuations [6–8] are carried out worldwide in coastal

aquifers. However, differently shaped water-land bound-

aries of coastal aquifers differ significantly in groundwater-

level fluctuations due to tidal response differences. This

necessitates more studies on numerical modeling of coastal

aquifers. Li et al. [9] presented an analytical solution for

tide-induced groundwater-level fluctuations in a coastal

aquifer bounded by L-shaped coastlines. Huang et al. [10]

derived solutions for U-shaped tidal aquifer to characterize

groundwater-level variations induced by rainfall and tidal

waves. These studies show that the data collection and

numerical modeling techniques are tedious for accurate

responses of such aquifers. Moreover, the prediction

accuracy of any chaotic time series is very much dependent

on the model and on the learning algorithm. However, the

uses of such models are restricted due to intensive labor

and data requirement. Under such circumstances, where

data source is limited or scarce, empirical models are

recommended to provide reasonable results.

Artificial neural networks (ANNs) are such empirical

models, which have been widely used in hydrological

applications for the past few decades. ANN has proved to

be suited particularly in dealing with groundwater flow

problems, where the flow is nonlinear and highly dynamic

in nature [11]. Plenty of literature in this field [12–20]

proves the success of ANN models in satisfactory

groundwater flow simulations. ANN is very popular among

the empirical models due to its self-learning, self-adaptive,

and high generalization capability. However, the conven-

tional FFNN has some significant drawbacks, such as high

computational complexity, low training speed, and the

convergence rate that makes it hard to meet the require-

ments of prediction and classification problems [21].

Generalized regression neural network (GRNN) is a special

form of radial basis function network, which provides high

modeling accuracy compared to FFNN models and it

significantly reduces the complexity in computation [22].

The GRNN models have found its application in the field

of water resources engineering [23, 24]. However, GRNN

applications are limited in the field of groundwater-level

forecasting studies.

In the last decade or so, tools such as the coupled use of

conventional neural networks and biologically motivated

learning algorithms in improving the accuracy have

attracted the researchers and scientists in various fields of

engineering. Several researchers have reported in the lit-

erature about the hybrid technique in water resources

engineering as well as in various other fields of engineer-

ing. Hybrid ANN models usually outperform in a majority

of the groundwater flow forecasting problems [25, 26].

Such ensemble models take the strengths of constituent

networks, while their weaknesses are neutralized [27–30].

Nourani et al. [16] compared the performances of three

hybrid neural networks and reported a 15.3% increase on

average in the performance of feedforward neural network

through the application of wavelet transformation. A

hybrid of particle swarm optimization (PSO) with GA is an

effective hybrid optimization strategy, and it is generally

used for determining the radial basis function neural net-

works parameters [31]. The major advantage of using GA

over other optimization techniques is that GA is not sen-

sitive to initial guesses for parameters to be optimized [32].

Several studies with GA-based optimization have been

used in different fields like optimization for the computer

simulation of gas generation and transport in landfills

[33–35].

As the era of the hybrid neural network is progressing,

[36] introduced an interesting and revolutionary brain-in-

spired emotional neural networks. It is a single-layered

feedforward neural network that benefits from the excita-

tory, inhibitory, and expandatory neural connections as

well as the winner-take-all competitions in the human

brain’s nervous system. The main advantage of the EANN

is its ability to model through hormonal glands. From the

biological perspective, the mood and emotions of animals

due to the performance of hormone glands affect the neu-

rophysiological response of the animals. EANN is closer to

the human emotional process and gives accurate results in

learning applications [37]. Lotfi and Akbarzadeh [38]

developed EANN by conjoining emotional concepts for

problems like clustering, pattern recognition, and

prediction.

The review results show that in all likelihood, no studies

have been conducted in groundwater till date except the

breakthrough of EANN applicability in rainfall–runoff

modeling [39]. This study is noted as the first and foremost

work in the hydrological engineering. However, the effi-

ciency of EANN in other fields of engineering is still

unknown, and moreover, the predictive capability of the
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extremities is also not available in the literature. In the

digital era, the application of artificial intelligence (AI) in

different fields of water resources engineering has been

shown to be effective over the past few decades. Any new

concept in AI fascinates the users about the applicability of

the models in water resources engineering. Regarding the

applicability of EANN technique to the field of subsurface

hydrology, several questions may be raised. To address the

scientific curiosity about the applicability of EANN in the

field of subsurface hydrology, two novel architectures,

EANN and EANN-GA, are conceived in this study. A

hybrid approach is followed for forecasting 1-month ahead

groundwater level using EANN and then by integrating

EANN technique with GA (EANN-GA). The results of

these models are compared with the results of generalized

regression neural network (GRNN) and the conventional

feedforward neural network (FFNN) model. In addition, an

attempt has also been made in this study to explore the

usability of such models in predicting extreme events.

Thus, this paper provides a scientifically and technically

sound methodology for the simulation of extreme

groundwater levels using real-world data. This work also

focuses on the generalization ability of the developed

EANN models by testing the model architectures using

another station data of the same coastal aquifer.

2 Literature review of EANN applications

Only a few researchers have enjoyed the credit of working

with EANN models. Among those, [40] proposed brain

emotional learning-based ANN and proved that emotional

stimulus can be processed quicker than any other regular

stimulus. Lotfi et al. [37] used EANN for wind power

forecasting and reported the superiority of EANN over the

conventional ANN in terms of accuracy and stability. Lotfi

and Akbarzadeh [41] used evolutionary technique GA for

fine-tuning of the EANN parameters, which enhanced the

model performance. They conjugated previously developed

emotional ensembled artificial algorithms to develop

EANN-GA models. Apart from the biological parameters,

EANN has a few internal parameters which are emotion-

ally or dynamically interrelated with the internal parame-

ters: an input layer, an output layer, hidden layers, and

weights of the links [39]. No coupling of external param-

eters is found in EANN except a few parameters, which are

dynamically conjugated with inputs, outputs, and linked

weights of ANN model. Babaie et al. [42] compared the

performances of EANN models with MLP and ANFIS in

forecasting a warning system and found a better perfor-

mance of EANN than MLP and ANFIS. Khashman [43]

used EANN model for facial recognition and found an

improvement in the learning and generalization capability

over other conventional neural network models. EANN

models have also performed better in the blood-cell iden-

tification study [44]. Lotfi and Akbarzadeh [41] proved the

universal approximation property of EANN models

through their study. In this study, winner-take-all EANN

model results are compared with other conventional soft

computing techniques and the results revealed superior

performance of the winner-take-all EANN model approach

in curve fitting, pattern recognition, classification, and

prediction techniques. It is apparent from the aforemen-

tioned reviews that emotional neural networks are more

efficient than the conventional types of neural network in

different fields of engineering. Owing to its inherent fea-

tures, the hybrid EANN-GA technique has great potential

in the field of hydrological sciences because most of the

hydrological processes are highly influenced by the

extremities explained as either high or low flows, wet or

dry days, etc. In a recent study on rainfall–runoff modeling

[39], greater efficiency of the EANN model than the FFNN

model has been reported. The results of this study indicated

13% and 34% improvements during training and verifica-

tion, respectively. The reason for higher efficiency of the

EANN model in this study is due to its ability to recognize

and to distinguish the emotional variables of rainfall like

wet and dry days.

3 Overview of ANN models used

The structures of the four ANN models (FFNN, GRNN,

EANN, and EANN-GA) used in this study along with their

features are briefly described in subsequent subsections.

3.1 Feedforward neural network (FFNN)

Feedforward neural network is a commonly used and

effectively applied neural network in the field of water

resources engineering. The network is comprised of inter-

connections of neurons, and it collectively acts as a system.

The network topology includes input nodes (corresponding

to the number of inputs), output nodes (corresponding to

the number of outputs), and hidden nodes (number of nodes

in the hidden layer). Two transfer functions: one at the

hidden layer and the other at output layer, are involved in

the network development. Sigmoid function is selected as

transfer function in the present study. In the FFNN system,

each node in the input layer and the hidden layers is linked

and is given a signal strength called ‘‘weight.’’ Similarly,

nodes in the hidden layer and the output layer are also

connected with links carried with weights. Transfer func-

tion at the hidden layer provides an output that acts as

inputs to the output layer. The output generated from the

output layer is compared with the target. If the error
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generated between the calculated output and the target is

within the permissible range, the model developed can be

adopted as a favorable one. If the error generated is not

acceptable, then errors are back propagated and the weights

of the links are modified and the process is repeated. There

exists no hard rule for the training of the FFNN model to

obtain an optimal neural network. The training algorithm

selected is ‘‘Levenberg–Marquardt Backpropagation (L-M

BP)’’ algorithm. The nodes in the hidden layer are selected

based on the lowest value of root mean squared error

(RMSE) [12].

3.2 Generalized regression neural network
(GRNN)

The GRNN model is first introduced by Specht [45], and it

does not need an iterative training procedure as in the case

of backpropagation method. The GRNN model works on

the basis of the probabilistic functional network. The

GRNN comprises of input layer, pattern (radial) layer,

summation (regression) layer, and output layer. The num-

ber of inputs and outputs decides the number of neurons in

the input layer and output layer. The nodes of the input

layer are linked to each node of the pattern layer with

weighted connections. Each output of the pattern layer is

connected to the two summations units in the summation

layer: numerator units and denominator units. Numerator

units (N) provide the weighted sum of the pattern layer,

and denominator units (D) provide the unweighted sum of

the pattern layer. The output layer determines the output by

dividing the numerator with denominator part of the sum-

mation layer [24]. Higher accuracy is ensured in forecast-

ing since it uses Gaussian functions. The forecasting trials

with the GRNN models were carried out for different

spread parameters, and the performance criteria were cal-

culated for each trial until a best fit is obtained. The

advantages of GRNN are as follows: (1) The training for

the network architecture development is simple and quick;

(2) no prior estimation of hidden layers and nodes in each

hidden layer is required; and (3) high capability of non-

linear mapping and (4) a global convergence of GRNN are

ensured [46]. The mathematical basis for the GRNN model

development is nonlinear regression analysis between the

input and output parameters. The output variable (Y) rela-

tive to the influencing input variables (X) can be calculated

using the following expression [47].

Y ¼
Pn

i¼1 Yi exp �D2
i =2r

2
� �� �

Pn
i¼1 exp �D2

i =2r
2ð Þ½ � ð1Þ

where n represents the number of training data set, r rep-

resents the smoothing parameter, and Di is the Euclidean

distance between X and Xi. The detail description of the

GRNN model development is available in [22, 46].

3.3 Emotional neural network (EANN)

EANN is an improved version of FFNN, where emotions

play a significant role in the model development. The

necessity and concepts of emotions in the field of artificial

intelligence were highlighted by [48]. This concept has

greater advantages than the neuron-centric view. Emotions

create a response in the mind that arises naturally, through

a conscious effort. This emerged as the concept of ‘‘Neu-

romodulation,’’ which is a way to quantify and characterize

emotional dynamics. In engineering applications, any

response simulation is performed by incorporating the

emotions to improve the learning capability of neural

networks. When an input pattern enters the cerebral cortex,

neurons respond to how much ‘‘mood’’ behavior of the

controlled agencies varies. Hence, it is expected to enhance

the information capacity of the model as a result of

implementing these individual responses of the nodes. This

concept is embedded in EANN that makes it different from

the conventional FFNN.

The architecture of EANN model is depicted in Fig. 1.

Solid arrows in this figure show the procedure associated

within the EANN model development, and the dotted lines

indicate hormonal modulatory pathways. The advantage of

EANN is the reversible flow of information from inputs to

outputs and vice versa. The cell of the EANN (I–III) can

not only send information to EANN (IV) but also produce

hormones (VIII). These hormones are shown by global

variables, which sums the hormone output of one-time step

of all cells of the EANN (VII). The overall summation of

hormone value of the EANN is calculated as follows:

Hh ¼
X

i

Hi;h; H ¼ ða; b; cÞ ð2Þ

The hormones in the system (H) act as dynamic coef-

ficients which differ with inputs and target data samples.

Through the training phase, they can impact on weights (I),

net function (II), and activation function (III). The net

response of ith neuron (Yi) is the total of all the weighted

hormonal functions on activation functions. The output of

the ith neuron with three hormonal glands of Ha, Hb, and

Hc is computed using following equation:
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X
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 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
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X

h
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 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
5

ð3Þ

In Eq. (3), Term 1 shows the applied weight to the

activation function (f ()) containing both statistic (constant)

neural weight of ki and dynamic hormonal weight ofP
h ri;hHh. Term 2 stands for applied weight to the net

function (summation), Term 3 indicates applied weight to

the input value of Xi;j coming from the jth neuron of the

previous layer, and Term 4 shows the bias of net function,

which contains the neural and hormonal weights of ai andP
h vi;hHh. Finally, the last term (Term 5) contributes to the

activation function, where neural and hormonal weights are

contributed as di and
P

h qi;hHh, respectively.

The output of the cell is calculated as a factor of the

output of the response function as:

outputi ¼ neuralityi � Yi ð4Þ

All the hormones of Eq. (1) are produced by:

Hi;h ¼ glandityi;h � Yi ð5Þ

where glandityi;h is a parameter representing the production

factory of all hormones in the cell.

The degree in which a cell functions as a neural cell or

as a gland for a given hormone is calculated by weights (V,

VI). Also, Eq. (3) shows that the weights of neural and

hormonal routes have a prominent role in the emotional

neural network. The competitive weights of glandity

should be adjusted to properly find the final output, and this

is updated by the process of training. Emotional back-

propagation algorithm is used as the learning algorithm for

Fig. 1 Architecture of emotional artificial neural network
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the development of EANN model. In the emotional BP

algorithm, emotional parameters like anxiety coefficient

(l) and confidence coefficient (k) are also used along with

the conventional parameters such as learning rate and

momentum rate for reducing the network error. The values

of l and k are varied in the training process to get the

lowest values of anxiety and highest values of confidence

coefficient at the end of training process [36].

3.4 Emotional neural network with genetic
algorithm (EANN-GA)

In the EANN-GA model, genetic algorithm is applied to

optimize network crisp weights of the EANN model [34].

A real-coded GA is used in this study to find the optimum

weights in all the functions of single cell to obtain the best

solution for the problem. The optimized model is trained

by varying population size and generations. Thus, through

global optimization technique, all the data flow component

weights are trained in such a manner that global best

possible values are used for the calibration process in the

algorithm. Another added advantage is that a more reliable

agreement is shown between observed and computed val-

ues of the target can be achieved at a greater pace and

accuracy. The other details are furnished in [38, 39].

3.5 Emotional ANN parameters

The EANN model enjoys a low computational complexity.

EANNs are tremendously impacted by the linkages among

amygdala, orbitofrontal cortex, and thalamus, in which

sensory cortex provides information to neurons in amyg-

dala, the elaborated features from the thalamus by max

operator, and the inhibitory connections from the orbito-

frontal cortex. In EANN-GA model, the hormonal weights

play significant roles which are optimized using a GA

coupled with the model. In the present configuration [(c) in

‘‘Appendix’’], nine thalamal cortex weights, three orbito-

frontal weights, three amygdala weights, and six thalamus–

amygdala weights are optimized using GA. The advantage

of this type of algorithm is inductive learning through

synaptic weight adjustments and deductive learning by the

automatic adaptation of system knowledge of the domain

environment through the modification of network topology.

Such hybrid neural network architectures are proficient in

finding out the weights of each link of different layers, the

processing elements for each layer and the connectivity

between processing elements [21].

3.6 EANN versus FFNN

As discussed in Sect. 3.1, FFNN is generally a three-layer

system, where input layer feed forwards the inputs to the

hidden layer. The hidden nodes present in the hidden layer

enhance the ability of FFNN to model complex relation-

ships and passes the information to the activation function

associated with the output layer. The output layer provides

the model output. When the FFNN is trained by the

backpropagation algorithm, the overtraining issue can be a

serious concern due to the smaller number of learning

samples and a greater number of the calibration

parameters.

On the other hand, the logical ability to think with

emotions makes a remarkable influence in FFNN. In the

EANN model, the hormonal parameters are linked to the

different layers of the network, which aids in distinguishing

different situations of the system during the learning per-

iod. This model has a reactive and deliberative mechanism

to diversify the behavioral patterns of the problems to be

analyzed in the EANN architecture. This architecture has

the ability to generate emotions from the input data

selected during the training process. The emotions may

actuate or repress the specific perceptual and cognitive

schemes that improve (or utmost) the perception and han-

dling of specific stimuli. In this way, emotion-aided mod-

eling improves the decision making process of any systems

[42]. Another feature that differs from FFNN is that apart

from the map information of input layer to output layer, the

elements of feedback system in EANN change the behavior

of the cells based on dynamic hormone levels. The ‘‘out-

function’’ of the FFNN differs from the EANN analog

which is called as ‘‘Hill-function.’’ The ‘‘Hill-function’’ is

strongly influenced by hormones during runtime, but the

‘‘out-function’’ of the FFNN is usually static during run-

time [36].

4 Methodology

4.1 Study area and data

A coastal aquifer located in the Konan groundwater basin

of Japan (Fig. 2) has been selected for demonstrating the

efficiency of the conventional FFNN and hybrid ANN

models. In this basin, groundwater plays a vital role in

ensuring future water supply due to the limited availability

of surface water resources during winters (dry periods), and

hence, groundwater is considered as the sole source of

water supply to cope with the looming freshwater crisis

[49].

The groundwater flow of this basin is from north to

south into the Pacific Ocean. For this study, four sites/

wells were selected in the coastal portion of the basin

which are located close to the Pacific Ocean. These four

sites/wells are named as H3, H4.5, H9, and I2 (Fig. 2). In

this study, the data of sites H3, H4.5, and H9 were used
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for model development and the data of site I2 were used

for the validation of the developed models. Monthly

groundwater-level data for the period April 1998 to

December 2004 were obtained from Kochi Prefectural

Office, Kochi City, Japan. The rainfall data for this period

were obtained from Gomen Meteorological Station, while

the seawater-level data from January 1998 to December

2004 were obtained from www.psmsl.org for Kochi II

Port (latitude: 33.5 and longitude: 133.58, station ID:

1184). The nature of groundwater levels and seawater

levels is shown in Fig. 3a, b.

The clustering of the wells/sites (Fig. 3a) in the light of

groundwater levels demonstrates that wells H4.5 and H9

are grouped in a single cluster and afterward joined to well

I2 and then to well H3. It is a preliminary analysis to show

the nature of groundwater-level variations in different

wells. Figure 3b displays a small decrease in the seawater

level during 2000–2001 as compared to the rise in seawater

level from 2002 onwards. This shows that the region is

significantly experiencing a tidal variation. Furthermore,

Fig. 4 shows the monthly variation of rainfall along with

the monthly variation of groundwater levels at the four

Source: http://web-japan.org/region/pref/kochi.html

Kochi Prefecture

Fig. 2 Location of the groundwater-monitoring sites used in this study
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sites/wells. In the basin, the mean annual rainfall is about

2600 mm. More than 50% of the total annual rainfall

occurs during June to September, and the rainfall events

are usually distributed throughout the year.

4.2 Selection of data length for model training
and testing

4.2.1 Gamma test and M-test

Gamma test and M-tests are efficient data analysis tools,

which help in reducing non-parametric noises present in

the data sets [50]. Gamma test and M-test provide the

adequate length of data set to train a predictive model in a

perfect way. These tests estimate the error variance present

in a given data set [51].

Assume a data set in the form {(xi; yi), 1\i�M}, where

x is the potential input vector and y is the corresponding

output vector. The system can be represented as:

y ¼ f ðx1; x2. . .xmÞ þ r ð6Þ

In Eq. (5), f is a smooth function and r is a random

variable that represents the noise present in the input vec-

tor. The other terms involved are Euclidean distance and

gamma statistic (C). The detailed description of Euclidean

distance and gamma statistics is given in [50]. Gamma

statistic (C) is calculated as follows [52]:

dM kð Þ ¼ 1

M

XM

i¼1

xN i;k½ � � xi
�
�

�
�2 1\i\Mð Þ; 1\k\pð Þ ð7Þ

�M kð Þ ¼
XM

i¼1

yN i;k½ � � yi
�
�

�
�2 ð8Þ

where xN[i,k] = kth nearest neighbor in terms of Euclidean

distance to x[i], |.| = Euclidean distance, dM(k) = delta, and

�M(k) = gamma. A least-square fit regression line between

[dM(k) and �M(k)] is plotted and its intercept on the vertical

axis gives C (dM(k) ? 0, �M(k) ? Var(k)).

Gamma statistic calculates for increasing data sets and is

plotted against the number of data sets. This procedure is

known as M-test. The number of data points that is nec-

essary for C to stabilize is considered as the least number of

Fig. 3 a Dendrogram cluster analysis for wells and b monthly

seawater level for the port Kochi II

Fig. 4 Variation of monthly

rainfall with groundwater level
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data sets for the model development. If the line does not

stabilize for the given data set, then more data are required

for the model development. The major advantage of

gamma test and M-test is that it eliminates the use of trial-

and-error method for the selection of data length required

for model development.

4.3 Development of ANN models

In this study, the model development includes categorizing

the potential input variables from the data collected and

optimizing the neural network for obtaining the best

architecture. Potential input variables are found by corre-

lation analysis using R Studio [53], which leads to the final

selection of nodes in the input layer. In addition, two lead

times of groundwater level (1 month ahead and 2 months

ahead) are tested as possible inputs for predictions. Con-

ventional FFNN, GRNN, and hybrid neural network

models such as EANN and EANN-GA are developed in

this study. For the model development, based on gamma

test and M-test, 80% of the available data set is used for

model training and the remaining 20% for testing. All the

computations necessary for the model development were

performed using MATLAB 2015 software. The model

architectures used for FFNN, GRNN, and EANN-GA are

appended in ‘‘Appendix.’’

4.3.1 FFNN model

In the FFNN model, backpropagation Levenberg–Mar-

quardt training algorithm is used. The data for training and

testing were normalized between 0 and 1 for better model

performances. The activation function used for hidden

layer and output layer is tangent sigmoid function [54].

Only one hidden layer is adopted for this model. The best

architecture for each number of hidden nodes in the hidden

layer was determined through trial-and-error procedure.

Large set of hidden nodes in the hidden layer may overfit

the data and may lead to less generalization capability of

the network and less number may lead to underfitting.

During the training process of the network development,

the hidden nodes are varied. In each step of learn-

ing/training, for each hidden node, connection weights and

the other internal parameters are adjusted and the archi-

tecture is developed. Best architecture (having lowest

RMSE value) is selected among the models developed.

4.3.2 GRNN model

The GRNN models were developed for all selected sites.

The model architectures were generated for different

smoothing parameter values (spread), and the performance

criteria were evaluated for each developed model. The

smoothing parameter varies from 0.01 to 0.5 with a step of

0.01. Best architecture is selected based on lowest RMSE

and highest NSE.

4.3.3 EANN model

In the EANN model, artificial hormones are emitted which

modulates the function of each neuron in the model as

shown in the Fig. 1. As discussed in Sects. 3.3 and 3.4, the

hormones are generated according to the input and output

samples and are modified continuously through different

iterations during the training phase. In this phase, they can

impact on weights, activation function, net function, and all

other components of the neuron. All the input data are

normalized and then used for training and testing.

4.3.4 EANN-GA model

In addition to the above model phase, GA is applied to

optimize the weights of EANN. Training process is repe-

ated with different chromosome numbers and population

sizes. Generally, GA optimizes the cost function to find the

best solution for the problem under study.

4.4 Evaluation of model performance

To evaluate the performance of the developed models,

three goodness-of-fit criteria are used. They are Nash–

Sutcliffe efficiency (NSE), root mean squared error

(RMSE) [55], and bias, which are calculated for each

model using the following equations:

NSE ¼ 1�
PN

i¼1 ðhoi � hciÞ2
PN

i¼1 ðhoi � hoiÞ2
ð9Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

i¼1

ðhoi � hciÞ2
 !v

u
u
t ð10Þ

Bias ¼ 1

N

XN

i¼1

hoi � hcið Þ ð11Þ

where hoi = observed groundwater level, hci = calculated

groundwater level, hoi = mean of the observed groundwa-

ter levels, and N = number of observations.

5 Results and discussion

5.1 Potential inputs and data length

The tentative inputs selected for the analysis are precipi-

tation at t time P(t), precipitation at (t - 1) time P(t - 1),

groundwater level at t time GL(t), and seawater level at
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t time SL(t) for 1-month ahead groundwater response

GL(t ? 1) and 2-month ahead groundwater response

GL(t ? 2). The results of correlation analyses for GL(t ?

1) and GL(t ? 2) are presented in Table 1. This table re-

veals that for GL(t ? 1), a relatively accurate correlation

(i.e., higher values of correlation coefficient) exists for P(t),

SL(t), and GL(t), whereas there exists no potential inputs

for GL(t ? 2) because of weak correlation (i.e., very low

values of correlation coefficient). Hence, this study is

restricted to GL(t ? 1) only and the potential inputs

selected are P(t), SL(t), and GL(t) resulting in three nodes

in the input layer. The data from April 1998 to December

2004 are used for the model development.

Figure 5a shows the results of gamma test for 80 data

sets at Site H-3. The value of gamma statistic for 80 data

sets is found as 0.3876. Similarly, C is calculated for entire

length of data set and C values are plotted against different

data sets as shown in Fig. 5b. Subsequently, gamma test

and M-test were carried out for sites H 4.5 and H-9 and C
values are plotted in Fig. 5b. It is apparent from this

figure that the fluctuations in the gamma statistic decrease

as the length of data set increases. Approximately after

80% of the data length for all the three sites, the gamma

statistic produces less fluctuation, and hence, it is selected

as the optimum length of inputs for the training of the

models.

5.2 Performance of the models

After the development of models for all the three sites, the

performance assessment of the developed models is

inevitable to find out the best model. Using four models,

the monthly groundwater-level forecasting for 1 month

ahead for sites H3, H4.5, and H9 has been quantified. The

number of nodes in the input layer is three and the output

layer is one. Three-layered FFNN architecture is developed

with 3–10–1 network for Site H3, Site H4.5, and Site H9.

The best performance criteria for GRNN models were

obtained for smooth parameter 0.1 for Site H3, 0.08 for Site

H4.4, and 0.12 for Site H9. For the best EANN and EANN-

GA models, the activation function is found as ‘‘tangent

sigmoid function’’ for all the three sites. Apparently,

accurate/reasonable results are found for 80% of training

data set and 20% of testing data set at all the three sites.

After model development, there are nine thalamal cortex

weights, three orbitofrontal weights, three amygdala

weights, six thalamus–amygdala weights, and one bias

weight for each EANN model and EANN-GA model.

Figure 6a–c illustrates the comparison of observed

groundwater levels and the groundwater levels simulated

by the developed FFNN, GRNN, EANN, and EANN-GA

models at the three sites. These figures indicate more or

less satisfactory groundwater-level forecasts for the

1-month lead time by the three models. However, to

evaluate the performance of the three models quantita-

tively, statistical indicators were computed which are

shown in Table 2. It is observed that there is significantly

improved performance of the EANN-GA models as com-

pared to the conventional FFNN model and GRNN model.

An improvement of 9.56%, 22.68%, and 21.75% in terms

of model efficiency (NSE) is apparent for sites H3, H4.5,

and H9, respectively. Unlike the FFNN model, there is only

a marginal improvement in the performance of EANN-GA

over EANN model. The percentage improvement in NSE is

0.81, 4.35, and 1.05 for sites H3, H4.5, and H9,
Fig. 5 Results of (a) gamma statistic for 80 data sets at Site H-3, and

M-test for (b) sites H-3, H-4.5, and H-9

Table 1 Correlation coefficient

values for GL (t ? 1) and GL

(t ? 2) at sites H3, H4.5, and

H9

Sites GL (t ? 1) GL (t ? 2)

P (t - 1) P (t) SL (t) GL (t) P (t - 1) P (t) SL (t) GL (t)

H3 0.46 0.59 0.53 0.76 0.16 0.38 0.13 0.38

H4.5 0.41 0.64 0.5 0.77 0.22 0.39 0.23 0.33

H9 0.37 0.75 0.48 0.57 0.12 0.34 0.12 0.18
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respectively. The improvement of EANN-GA over GRNN

models is 6.02, 5.50, and 7.18 for sites H3, H4.5, and H9,

respectively. The difference in the level of improvement

among the sites could be attributed to the site-specific

variation in the characteristics of groundwater levels due to

aquifer heterogeneity (Figs. 3, 4). Machine learning mod-

els work on the principle of pattern recognition, and hence,

they are usually data/site-specific. Consequently, the per-

formance of such models is most likely to vary from

location to location. The values of the statistical indicator

Fig. 6 Monthly groundwater-level forecasting for 1-month lead time at: a Site H3, b Site H4.5, and c Site H9
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bias for the three sites are shown in Table 3, which reveals

that Site H3 is negatively biased for the FFNN model, sites

H3 and H4.5 are negatively biased for GRNN model, sites

H3 and H9 are negatively biased for EANN model, and

Site H9 is negatively biased for the EANN-GA model.

Here, negative bias indicates over-prediction by the mod-

els. Thus, the three performance indicators indicate that the

EANN-GA models outperform the EANN, GRNN, and

FFNN models in yielding 1-month lead time forecasts at all

the three sites.

Moreover, scatter plots of observed and simulated

groundwater levels along with R2, 95% confidence interval,

and prediction interval were examined for all the models in

order to judge their performance in a comprehensive

manner. The prediction interval represents the quantifica-

tion of the uncertainty of a model. For instance, such

scatter plots for the EANN-GA models of the three sites are

illustrated in Fig. 7a–c. These plots also suggest superior

prediction capability of the EANN-GA models, with R2

values ranging from 0.86 to 0.74 for the 1-month ahead

forecasting of groundwater levels at the three sites.

Another graphical indicator for assessing the model

performance is ‘‘Taylor diagram.’’ Taylor diagrams are

used to graphically summarize the proximity of the results

of model to match with the observed values in terms of

indices like RMSE, correlation coefficient, and standard

deviation. Taylor diagram can generate better conclusions

about model performances. Figure 8a–c shows Taylor

diagrams for sites H3, H4.5, and H9. In Fig. 8a, the EANN-

GA model shows greater correlation coefficient, lesser

RMSE, and standard deviation close to the standard devi-

ation of the observed values. Figure 8b, c also indicates the

similar finding of superior performance of the EANN-GA

models.

Fig. 7 Scatter plots of observed versus simulated groundwater levels

along with R2, 95% confidence interval, and prediction interval for the

EANN-GA model at: a Site H3, b Site H4.5, and c Site H9

Table 2 Performance indicators for the developed models at sites H3, H4.5, and H9

Sites Parameters % improvement in EANN-GA over

EANN

% improvement in EANN-GA over

GRNN

% improvement in EANN-GA over

FFNN

Site H3 NSE 0.81 6.02 9.56

Site

H4.5

NSE 4.34 5.50 22.68

Site H9 NSE 1.06 7.18 21.75

Table 3 Bias values (m) for the developed models at the three sites

Sites FFNN GRNN EANN EANN-GA

H3 - 0.0144 - 0.027 - 0.0189 0.0309

H4.5 0.005 - 0.043 0.0113 0.0264

H9 0.007 0.003 - 0.0221 - 0.0005
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Finally, Fig. 9 shows the results of random walk test for

the results of groundwater-level forecasting by the FFNN,

GRNN, EANN, and EANN-GA models at the three sites.

Random walk test is based on the sign test and is inde-

pendent of distributional assumptions for simulation errors

[56]. In this analysis, the model results of each site can be

compared at every step. In Fig. 9, the upward path move-

ment shows that the EANN-GA model is more skillful else,

FFNN model is more skillful. Thus, the path followed by

the EANN-GA model results is moving in the upward

direction, which indicates that the EANN-GA modeling

approach is more skillful (improved prediction ability) than

the conventional FFNN approach for all the sites under

study. The 95% interval for N number of forecast events is

shown as ± 2HN. The hypothesis of equally skillful

forecasts is rejected when the particle moves out of

± 2HN interval. Figure 9 also depicts the skillful test for

EANN models and GRNN models over FFNN models.

Fig. 8 Taylor diagrams for: a Site H-3, b Site H4.5, and c Site H9. Contour lines represent RMSE values in m

Fig. 9 Results of random walk test for sites H-3, H-4.5, and H-9
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When compared to all developed models, EANN-GA

models are more skillful for all selected sites.

All the analyses discussed above indicate the superior

performance of the EANN-GA model over the EANN

model, GRNN model, and the conventional FFNN model.

In other words, the performance indices also show the

predictive capability of EANN model and GRNN model

over FFNN model. The better performance of EANN-GA

and EANN models attributed better capturing of the

extreme events present in the input neurons. The emotions

may be analogous to stresses in the inputs. Extreme vari-

ations in the input signals are the extreme events of

monthly rainfall as well as high and low fluctuations for

seawater-level inputs.

The superior performance of the EANN-GA model over

EANN is due to the optimization of the internal parameters

by the genetic algorithm. The execution time in the EANN-

GA model has improved compared to other developed

models with higher accuracy. The other major advantages

of EANN models found are as follows: (1) These models

have more hormonal parameters which can interact with

input, output values, and statistical weights than classical

ANN architecture; (2) since each input and output neurons

modulate the hormonal parameters, dynamic transfer of

information is possible in EANN than conventional neural

networks; (3) through training the EANN, all neuron ele-

ments have the hormonal affect; and (4) EANN needs only

single hidden layer for parameter evaluation, whereas

FFNN needs multiple hidden layers for the same and (5)

speedy execution with higher accuracy. However, EANN

architecture cannot model the behavior of changing envi-

ronments on an evolutionary time scale. Further research

could be how these emotions respond rapidly to changing

climate [39].

5.3 Model performance for the prediction
of extreme events

The prediction of extreme events is generally used for

development of alarm systems [42]. The prediction accu-

racy depends on the model and the learning algorithms. It

is evident from the earlier studies that brain emotional

learning has a high generalization property. Babaie et al.

[42] tested the emotional learning interpretations of brain

for forecasting a system designed for warning. The results

showed better predictions, and it was proposed that it could

be useful for developing a warning system in real-time

problem with a large data set. For scientific curiosity, in

this study, the authors have also included an analysis to

explore the capability of the selected models in yielding

prediction accuracy of peak points of groundwater levels.

The prediction accuracy for all the points at positive peak

points and at negative peak points in terms of an error

index (RMSE) is shown in Table 4. It is observed that the

performance of the EANN-GA model in predicting peak

points is better compared to the EANN, GRNN, and FFNN

models as indicated by the least RMSE for the EANN-GA

model according to each group of peak points. Thus, the

EANN-GA model provides much better predictions of

extreme events and hence, it can serve as a useful tool for

predicting peak events.

5.4 Validating EANN-GA models

In order to test the practicality and generalization ability of

the developed EANN-GA models for sites H3, H4.5, and

H9, the models were further validated using the data of Site

I2, which is located in the same aquifer. The validation

results are summarized in Table 5, which indicate that the

developed EANN-GA models are capable of forecasting

the groundwater level of other site with a greater accuracy.

It is evident from the results that the EANN-GA model is a

better alternative than the conventional soft computing

models to accurately predict groundwater-level fluctua-

tions. Interestingly, this research finding implies that the

EANN-GA model can be used as an optional soft com-

puting technique over physically based models when event

forecasting is more important than understanding under-

lying groundwater phenomena.

6 Conclusions

The expedition of artificial intelligence in science is

praiseworthy. Latest in the field of artificial intelligence is

capturing emotions in the input data sets for simulations by

neural networks. In this paper, the applicability and effi-

ciency of the conventional FFNN model, GRNN model,

hybrid EANN, and EANN-GA models are demonstrated

through a case study in a coastal aquifer system. Ground-

water-level data from three sites H3, H4.5, and H9 are used

for monthly groundwater-level forecasts, and the data from

Site I2 (located in the same aquifer) are used for validation

of the developed models. Potential inputs for developing

FFNN, GRNN, EANN, and EANN-GA models at each site

are selected based on the correlation analysis. The length of

data for training and testing of the models is decided using

gamma test and M-test. Suitable statistical indicators and

graphical indicators are used to critically evaluate the

performances of the developed models. Finally, the gen-

eralization ability and the prediction capability of extreme

events of the developed EANN-GA models are examined.

The results of the EANN-GA models are compared with

those of the EANN, GRNN, and conventional FFNN

models. Statistical indicators revealed that the 1-month

ahead groundwater-level forecasts yielded by the EANN-

12750 Neural Computing and Applications (2020) 32:12737–12754

123



GA models are more accurate and reliable at all the three

sites compared to the EANN, GRNN, and FFNN models.

The performance of EANN models presented in this study

also exhibits greater accuracy improvement than that of

GRNN and FFNN models. Improved performance of the

EANN-GA and EANN models could be due to the effec-

tive capture of extreme events in the input variables.

Graphical indicators like visual comparison of simultane-

ous plots of observed and simulated groundwater levels,

scatter plots, Taylor diagram, and random walk test indi-

cated superior performance of the EANN-GA models. The

viability and generalization ability of the developed

EANN-GA models are also found to be satisfactory. Fur-

ther, it was found that the performance of the EANN-GA

models in predicting extreme events is better than EANN

models and much better than the GRNN and FFNN mod-

els. This enhances the application domain of the EANN-

GA technique in the field of hydrology for developing

warning systems.

In short, the extremes of input parameters which con-

tribute significantly to the accuracy of groundwater-level

forecasts are well captured in the hybrid algorithm. The

more complex hydrological processes like groundwater

level can be simulated with a greater accuracy using EANN

and EANN-GA. The successful application of EANN

technique in the field of groundwater hydrology can really

make a renaissance in this field. More and more region-

specific studies under different hydrogeologic and climatic

settings should be carried out for the comprehensive

evaluation of the emerging EANN technique. The poten-

tiality of capturing emotions in the groundwater level

simulation can persuade the researchers of other fields to

explore its capability at a wider level. The sensitivity level

of the emotions on groundwater-level forecasts is another

potential area of future research. The major limitation of

this study is the performance analysis of other optimization

techniques along with EANN architecture.
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Table 4 RMSE for the EANN-GA, EANN, FFNN, and GRNN models in predicting extreme groundwater levels

Learning method RMSE at positive peak points (m MSL) RMSE at negative peak points (m MSL) RMSE at all points (m MSL)

(a) Site H3

EANN-GA 0.22 0.19 0.27

EANN 0.29 0.29 0.28

FFNN 0.32 0.30 0.34

GRNN 0.37 0.29 0.32

(b) Site H4.5

EANN-GA 0.16 0.21 0.23

EANN 0.30 0.31 0.25

FFNN 0.51 0.31 0.31

GRNN 0.42 0.15 0.25

(c) Site H9

EANN-GA 0.13 0.07 0.10

EANN 0.14 0.11 0.10

FFNN 0.18 0.12 0.13

GRNN 0.21 0.10 0.12

Table 5 Validation results of

the EANN-GA models
Validation on EANN-GA models developed for RMSE (m) NSE

Site I2 Site H3 0.13 0.74

Site I2 Site H4.5 0.15 0.67

Site I2 Site H9 0.16 0.63
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Appendix: Model architectures developed

(a) FFNN Model

(b) GRNN Model

(c) EANN-GA Model

Inputs
1.P(t)

2.SL(t)
3.GL(t)

GL(t+1)
∑  =>  f(x)
Activation 

function:tansig

Inputs
1.P(t)
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3.GL(t)

Input layer Pattern layer Output layer

Gaussian Transfer 
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