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Abstract
The motivations induced due to the presence of scale-free characteristics of neural systems governed by the well-known

power-law distribution of neuronal activities have led to its convergence with the Internet of things (IoT) framework. The

IoT is one such framework, where the self-organization of the connected devices is a momentous aspect. The devices

involved in these networks inherently relate to the collection of several consolidated devices like the sensory devices,

consumer appliances, wearables, and other associated applications, which facilitate a ubiquitous connectivity among the

devices. This is one of the most significant prerequisites of IoT systems as several interconnected devices need to be

included in the convolution for the uninterrupted execution of the services. Thus, in order to understand the scalability and

the heterogeneity of these interconnected devices, the exponent of power-law plays a significant role. In this paper, an

analytical framework to illustrate the ubiquitous power-law behavior of the IoT devices is derived. An emphasis regarding

the mathematical insights for the characterization of the dynamic behavior of these devices is conceptualized. The

observations made in this direction are illustrated through simulation results. Further, the traits of the wireless sensor

networks, in context with the contemporary scale-free architecture, are discussed.
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1 Introduction

The Internet of things (IoT) is experiencing momentous

growth in recent years, to administer the requirements of

several applications worldwide by providing a platform for

the interconnection of physical world devices. The con-

vergences of the IoT and its associated services have evi-

denced the expansion in several sectors like health care,

academia, and business industries to name a few [1–4].

However, in order to achieve an entirely functional model

for the IoT ecosystem, several crucial performance

benchmarks are to be considered such as heterogeneity of

the devices and interconnection network, topological con-

straints, efficient management of resources, interoperability

among the devices, and optimizing the power consumption

[5–9]. These factors are extensively dependent on the

density of the network and the diverse collection of devices

involved in the network.

Several real-world systems have evidenced the presence

of complex topological structures arising from the hetero-

geneity observed in their underlying traits. These systems

typically encompass the devices, which possess diverse

computational and technological capabilities. In relation to

mathematical notions, these complex structures or net-

works were conceptualized in terms of graph-theoretic

models with explicitly higher degrees of connectivity and

randomness in their topological structures. The inherent

dynamics of these large-scale complex networks still

lacked in the requirements of its design principles and

anatomy. The studies made in [10–13] provide more

admissible principles for the conceptualization of these

networks.

At present, several networks (like complex networks)

are portraying an extensive degree of heterogeneity in

nodes. Some popular examples where these patterns can be

distinctively observed include the World Wide Web

(WWW), the Internet, and social networks, and aircraft

networks. There have been several studies on complex

networks, which reveal that in the course of progression in

the topological support of network, certain types of ema-

nating networks, referred to as the scale-free networks,

have emerged. These networks encompass several pecu-

liarities in their coherent traits and parameters by dis-

playing intrinsic heterogeneity in their behavior. This

heterogeneous behavior is observed due to the preferential

attachment, which enables the nodes to establish several

connections with the set of nodes initially present in the

network [10, 14–16]. The degree of the nodes evidently

exhibit heterogeneity in their degree distribution, such that

the network’s degree follows the power-law distribution.

The nodes involved in these networks have relatively short

distance of interconnectivity, which complies with the

small-world property. These systems are very robust

toward node failures, due to the densely interconnected

network of nodes.

In this paper, we report a scale-free WSN framework for

large-scale IoT systems. A brief summary of some of the

evolving dynamic network technologies is discussed. We

then provide an insight to the basic terminologies relevant

to our study like the random graph theory concepts, the

small-world concept, and the scale-free networks. The

convergence of these technologies with IoT is discussed,

and we conceptualize the scale-free traits of IoT. The

proposed IoT-based framework for handling dynamic net-

works is provided. These networks are observed to provide

more befitting solutions as compared to the conventional

theories for achieving robustness in highly complex com-

munication networks. We simulate the proposed frame-

work to show the scale-free behavior of wireless sensor

networks. The power-law distribution, which characterizes

the simulated data, is provided. The estimation procedure

for the parameters involved in the proposed model, which

characterize the simulated data, is reported. The proposed

system is believed to work well for networks with high

levels of disorder. The presence of the power-law exponent

and the scale-free characteristics is evident of the relia-

bility, scalability, and fault tolerance of the system.

The remainder of this paper is as follows: Sect. 2 deals

with some of the studies made in the direction of random

graph theory, and the scale-free and small-world scenarios

along with the applicabilities of the power-law distribution.

In Sect. 3, we provide some basic concepts relevant to our

problem of interest. The proposed framework is introduced

in Sect. 4. The corresponding IoT-based framework for

depicting the role of the power-law distribution in char-

acterizing the scale-free behavior of IoT systems is pro-

vided in Sect. 5. In Sect. 6, we provide the simulation

results obtained for generating the scale-free WSNs along

with some insights toward estimating the parameters for

the least square curve fitted with the simulated data.

Finally, Sect. 7 provides the conclusive remarks and future

scopes on the evolving IoT frameworks and the role of the

power-law exponent in handling the high degrees of dis-

order observed in the IoT systems.

2 Background

Most of the physical world objects, irrespective of their

capabilities, can be efficiently converged into a single

functional unit by utilizing the networking abilities of IoT.

In 1960, Erdös and Rênyi [17] proposed the random graph

model for large-scale networks, which was designed by

combining the conventional approaches of the graph-the-

oretic concepts and the notion of statistical physics. In [18],
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Watts and Strogatz studied the importance of the small-

world networks for some dynamical systems. They exten-

ded the regular graph model by introducing some irregu-

larities to its structure, to better study the versatility of

dynamical systems. Their model showed properties anal-

ogous to the random graphs, in terms of path lengths.

Several studies have been conducted in the direction of

analyzing the dynamic behavior of neuronal networks in

context to small-world scenarios. Perotti et al. [19] intro-

duced a neurogenesis algorithm for characterization of

neural network activities. The framework defined a power-

law distribution among the connectivity of the neural net-

works, which portray scale-free and small-world charac-

teristics for the addition of new neuron links to the existing

ones. Faqeeh et al. [20] addressed the critical factors

associated with systems replicating the neuronal dynamics

like optimal transmission of information and network sta-

bility. They studied the presence of power-law behavior for

neuronal avalanches in context to structural heterogeneity.

Barábasi et al. [21] studied the complex network behavior

for scientific collaborations. Further, the role of the links in

defining the scale-free property of the network was

explored.

Barábasi and Albert [15] studied the scale-free proper-

ties of large-scale networks. They put forward two generic

rules: (i) The new vertices associated with a network fol-

lowed preferential attachment; and (ii) the network topol-

ogy displayed continuous expansion with the inclusion of

new vertices. These features gave rise to the concept of the

scale-free distributions in large networks. This model

illustrates the self-organizing properties of the vertices

involved in a network, which resembles the fundamental

properties of real WSNs. The applications of several

probabilistic models can be observed in the studies

[22–25]. These systems worked well under the influence of

growing uncertainties in the system. Barrat et al. [26]

studied a network model, which considered the edge

weights of each connected node. These weight parameters

enable the addition of several essential functionalities

associated with a network. Some of them include the

variations in the connection strength, factors affecting the

connection, and intensity of the connection. This type of

network is most suitable for evaluating the performance of

the WSNs involved in the IoT.

3 Basic concepts

In this section, some of the primary concepts associated

with the evolution of the scale-free networks are discussed.

A brief account on the evolution and applicabilities of the

random graphs is provided, which resulted in the invention

of various evolving technologies. We start with the

elementary concepts of the random graphs and then quickly

upsurge to the unfolding traits of the scale-free networks.

3.1 Random networks

The evolution of the random graphs has been an elemental

revelation to many developing technologies. Over the

years, several patterns in nature as well as complex systems

have evolved around this theory. In [17], Erdös and Rényi

were the first to bring into focus the concept of random

graphs. Random graphs have evolved as a consequence of

the irregularities observed in the topological arrangements

of the regular graphs [14, 17, 27, 28]. The emergence of

random graphs has induced a rich set of concepts associ-

ated with the degree distribution of the graphs and has

favored the growth of several associated perceptions. The

complexity of arrangements observed specifically in the

random networks and the uncertainty of their organization

have made their study prominent while dealing with

complex networks. The random graph theory has several

applications in modeling complex networks [29].

3.2 Small-world networks

The small-world systems are mostly observed to be highly

clustered, which is quite similar to the behavior portrayed

by regular lattices [15]. This phenomenon can be observed

in several research applications like the spread of conta-

gious diseases, social networks, and the Internet

[10, 30–32]. A peculiar example of the small-world net-

works can be observed in the electricity grid distribution

lines, as the distribution lines need to be highly resilient

toward the occurrence of any failures in the transmission

grid. The small-world networks show an increasingly

growing amount of disorder in the network topology,

which makes it suitable for modeling the behavior of

dynamical systems [33].

3.3 Scale-free networks

In 1999, Barábasi and Albert [15, 34] initially studied the

evolution of scale-free networks, which were based on the

behavior of real-world networks. A large number of real-

world networks display the scale-free property. The scale-

free networks are initially constituted of a fixed number of

nodes in the network, which shows continuous growth with

the addition of randomly incoming nodes. These newly

added nodes require to be connected to the existing net-

work, without interfering with the existing topology of the

nodes.

Figure 1 shows the topology of the scale-free network,

where the newly added nodes are connected to the central

node. The large scale-free networks may be constituted of
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several central nodes. These central nodes usually have a

higher number of connections as compared to the other

nodes present in the network.

There are two important features of the scale-free

network:

– Topological growth As the new incoming nodes are

continuously added to the network, the network scales

up. A system constituting of an initial number of nodes

(say m0) is considered. If we consider a random set of

incoming nodes (say Rm), such that the new node m (for

m 2 Rm) with em edges, such that em B m0.

– Preferential attachment of nodes While selecting from

the existing set of nodes with which the newly added

nodes can be connected, a probability-based attachment

principle is used [14, 15], which enables the new node

to connect to the existing set of nodes (say N)

depending upon the degree (say ji) of the node N nodes.

4 Proposed work

In this section, we introduce the proposed scale-free WSN

architecture for IoT systems. We also discuss the compli-

ance of the proposed model with some of the conventional

network theories.

4.1 Motivations

The ubiquitously growing applications of IoT have gained

popularity in some of the most crucial areas like manage-

ment of transportation services, health care, public safety,

and defense systems. To facilitate these capabilities, a

highly reliable network is required, which can handle the

complexity of the growing network topology with the

inclusion of newly added sensory devices. Thus, we pro-

pose a scale-free architecture for the IoT systems, which

can dynamically handle the increasing network topology of

the interconnected devices. We exploit the power-law

exponent to study the scalability and reliability aspects of

the proposed model. The evolved IoT network is believed

to perform well against random sensor node failures and

complexity of the interconnection links.

4.2 Convergence with IoT

In this section, we conceptualize the existence of the

power-law behavior observed in the topological arrange-

ment of dynamic WSNs and its relevance for characteriz-

ing the increased amount of uncertainty observed in the

degree distributions of large heterogeneously spread IoT

networks. These networks are exclusively tolerant toward

the changes caused by the addition of new incoming sensor

nodes in the network and are also more reliable in terms of

the occurrence of node failures.

4.3 Conceptualizing the small-world scenario
for WSNs

Wireless sensor networks (WSNs) have enormously

developed in their potentiality and configurations over the

years. In order to perceive the continually changing events,

a densely deployed WSN is required for obtaining the

factual and cumulative data of the environment. This

involves the association of a huge number of coupled

sensor nodes over a large area for sensing the data coming

from heterogeneous sources. The WSNs usually are por-

trayed as self-organizing systems, which efficiently cus-

tomize the network topology of the sensor nodes, for the

dynamic management of the network activities. These

traits distinguish the WSNs from most static, wired, and

constrained systems, by making them more adaptable to

faults, distance of communication, and power constraints.

Due to its capabilities of being versatile, and ubiquitously

clustered, the WSNs display high degree of disorder in

their organization.

In recent times, the interest in the study of the small-

world properties of different scenarios is expanding hugely.

Several researchers have explored alternating fields of the

real world and have observed intriguing outcomes, which

obey the small-world property. Unlike the properties of the

regular lattices, the networks that obey the small-world

property have relatively higher connectivity among the

nodes, show considerable variations in their degree distri-

butions, and have reduced path lengths between the nodes.

In [11, 35–37], the authors have extensively addressed the

issues in genomic sequencing in terms of the small-world

network. Further, the studies in [38–40] have revealed that

Fig. 1 A topological representation of the scale-free network with the

newly added nodes
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the functionalities of the human brain network follow the

small-world property in response to external stimuli.

The topology of the WSNs is said to follow the small-

world property characterized by the densely clustered sensor

nodes possessing diverse sensing capabilities. Previously,

several issues in the WSNs prevented their extensive use in a

multitude of fields. Some of the drawbacks in the static net-

work topology of the WSNs are as follows:

– Inaccuracy in the signal Due to the increase in the

distance between the two communicating nodes, the

propagated signal usually lacks accuracy at the receiv-

ing end. These inaccuracies are induced from several

conflicting situations like presence of huge obstacles in

the ray of sight (ROS) of the signal, delays caused due

to excessive path lengths.

– Node failure The sensor nodes and microcontrollers

involved in a WSN have usually limited power

resources. While accomplishing the exchange of infor-

mation between far off nodes, these nodes usually lose

their efficiency due to the constrained power supply.

Hence, the network may suffer from node failures, their

by minimizing the reliability of the WSN.

– Energy wastage In static WSNs, there is no source for

regulating the activation and the deactivation of the

sensor nodes. All the nodes in the network work

uniformly at the same level. This sometimes results in

the wastage of energy resources of the sensor nodes as in

a network of sensor nodes not all the sensors need to be

employed concurrently for accomplishing a certain task.

– Network topology The topology of the static WSNs is

similar to that of the regular lattice. This topology may

not be satisfying for dynamically changing require-

ments. Therefore, it may be unsuitable for real-world

applications.

Hence, it can be said that the regular WSNs may fail to

efficiently handle the increase in the number of sensor

nodes and the growing interconnection network topology.

Thus, bringing about the need for a more robust WSN

topology, this can adaptively handle the increase in the

amount of uncertainty in the network. This brings in the

approach for a large network constituted of heterogeneous

sensor nodes with distinct sensing capabilities. These nodes

need to be organized in a highly coupled interconnection

network such that they provide an accurate exchange of

data. Further, this network organization is much desired as

it reduces the delay in transmission caused due to lengthy

communication paths, and works well against node fail-

ures, in an integrative way. These systems are ideal espe-

cially in healthcare sectors, and the defense, as they

facilitate an uninterrupted flow of data throughout the

system, without causing any bifurcations in the perceived

data. Thus, the notion of the small-world properties of the

WSN emerges, which can be appropriately advantaged as a

working model for providing an integrated characterization

of the dynamic WSNs. By conceptualizing the small-world

properties of the WSNs, we can achieve befitting results in

terms of the robustness of the network, functionality,

reduced propagation delays, and improved signal quality.

4.4 Conceptualizing the scale-free networks
for IoT

In this section, we extend our study toward the application

of the scale-free properties of IoT. From the studies made

in [26, 41], it is evident that the scale-free networks provide

a better understanding of the frequently changing networks

and for networks, which have varying flow of information

throughout the system. The most fundamental functional

modules of the IoT are constituted of the sensor nodes,

which are used for the inception of multiple events. In

order to infer the data from a wider area, a huge WSN is

desired with immensely high-performance constraints.

Large WSNs usually require to be dynamic in order to

efficiently utilize the resources involved. The WSNs with

dynamic properties show a high rate of clustering with the

cluster head (or, the central node) being connected to a

larger number of sensor nodes.

Thus, the cluster heads are rich in the number of links

they establish with each sensor node in the cluster and are

therefore said to have a higher degree distribution.

In densely clustered networks like the one desired for

modeling the IoT with a heterogeneous set of sensor nodes

[15, 34, 41], a huge number of links between the sensor

nodes exist. This makes the network more resilient toward

link failures and can therefore be used for dynamic sys-

tems. When the number of sensor nodes in the IoT archi-

tecture scales up continually, the system becomes more

vulnerable to failures. Thus, the dynamic capabilities of the

scale-free networks make it suitable to model the IoT with

huge number of nodes.

Figure 2 shows a scenario for the deployment of several

sensor nodes in a city with each central node connected to

the sink or, the gateways. This particular case is quite

similar to the study in [41], with the gateways acting as the

central nodes for several other central nodes (cluster heads)

present in the cluster of the sensor nodes. These gateways

have a higher degree of connection as observed in [26, 41].

5 The IoT framework

In this section, we present two holistic frameworks based on

the conventional small-world phenomena and the scale-free

networks [14, 15, 26]. The applicability of these two scenarios

has been previously discussed in Sect. 4.2. It was observed
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that large network structures like the IoT, which are charac-

teristically constituted of a relatively heterogeneous set of

sensor nodes, converge with the dynamical systems with

temporally changing configurations. Thus, by accomplishing

a scale-free model for the IoT, the resources can be better

utilized (like power supply and memory constraints), which

consequently provide a system with enhanced capabilities. It

is observed that the degree distribution of the WSNs, under

the influence of uncertainties in the dynamic network, follows

a power-law distribution. Some other applications of the

power-law distribution can be found in [42, 43].

5.1 The small-world scenario

If we consider a WSN to have node set, v = {v1, v2,…, vm}

where m = |v| denotes the total number of nodes in the

WSN. In the random or small-world WSN topology, the

connection probability p at ith node having ji degrees

follows binomial distribution with parameters m and p, i.e.,

ji �Bðm; pÞ: ð1Þ

So,

Fðji ¼ jÞ ¼ Cm�1pj 1� pð Þm�1�j: ð2Þ

The probability of the ith node connected to j existing

nodes is pj; similarly, the probability that the ith node will

not connect to the network is given as (1 - p)m-1-j. Let

Xj be any random variable, representing the number of

nodes in the WSN with degree j. Hence, the expectation

value for the number of nodes with degree j can be

obtained from Eq. (2) as follows,

E Xjð Þ ¼ mFðji ¼ jÞ ¼ aj; ð3Þ

where

aj ¼ mCm�1pj 1� pð Þm�1�j: ð4Þ

When m � 0, and p is very small, the Eq. (2) can be

rewritten as,

p jð Þ ¼ lim
m!1

m� 1ð Þ m� 2ð Þ. . . m� 2� jð Þ m� 1� jð Þ!
j! m� 1� jð Þ!

� aj
m

� �j
1� aj

m

� �m�1�j
ð5Þ

p jð Þ ¼ lim
m!1

m� 1

m� 1
� m� 2

m� 1
� m� 3

m� 1
� � �m� 1� 1þ jð Þ

m� 1

� ajj
j!

� �
1� aj

m

� �m�1

1� aj
m

� ��j
ð6Þ

Fig. 2 Deployment scenario for various IoT devices
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Thus,

lim
m!1

1� aj
m

� �m�1

¼ e�aj ð7Þ

Hence, the degree distribution of small-world WSNs is

given by,

F Xj ¼ jð Þ ¼ e�ajajj
j!

¼ e� jh i jh ij

j!
ð8Þ

where jh i is the average degree of the random networks or

small-world WSN topologies. Therefore, from Eq. (8), it is

evident that for large number of nodes, the degree distri-

bution of the random or small-world WSN topology fol-

lows Poisson distribution.

In Fig. 3, we present the Poisson distribution in compli-

ance with the degree distribution of the simulated data with

1000 nodes and an average degree distribution of javg-
= 10.0368. We have fitted the conventional Poisson distri-

bution over the simulated data on the basis of the parameters

estimated using the maximum likelihood estimate.

5.2 The scale-free scenario

The scaling up of the WSN in the support of the IoT infras-

tructure falls into the category of random networks. The

dynamical changes of the ad hoc sensor nodes to the existing

WSNs satisfy the scale-free network properties, and the degree

distribution of sensor nodes follows a power-law behavior. If

we initially consider a network ofm0 sensor nodes, such thatm

represents the cumulative set of sensor nodes after each time

step t, and ji represents the degree corresponding to the ith

sensor nodes. Finally, this procedure leads to the generation of

N set of sensor nodes depicting the scale-free scenario. In

Algorithm 1, a procedure for generating a random collection of

sensor nodes is provided, which is in line with [14]. The algo-

rithm generates a random set of sensor nodes based on the

probability of the degree distribution of the sensor nodes given

as,
Y

jið Þ ¼ jiP
j jj

ð9Þ

where
P

j jj denotes the cumulative degree of nodes pre-

sent in the network up to stage i.

Fig. 3 Representation of the degree distribution with parameters

N = 1000, and javg = 10.0368 for a random network
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Following Barabasi and Albert [14], the degree distri-

bution can be modeled as,

oji
ot

¼ m
Y

jið Þ ¼ njiPn
j¼1 jj

ð10Þ

After t time steps, the WSN creates m = t ? m0 nodes

and mt edges. Here, m0 is the number of initial nodes in the

WSN. At each time step, a new node is added to the

existing WSN and is connected to nodes present in the

network, where m B m0. The denominator sum is calcu-

lated as,X
j

jj ¼ 2mt � m ð11Þ

Using Eqs. (10) and (11), we get,

oji
ot

¼ j
2t

ð12Þ

The above equation can be solved under initial condition

at the ith node, ji (ti) = m is,

ji tð Þ ¼ m

ffiffiffi
t

ti

r
ð13Þ

The probability that a node having ji (ti) degree less

than j degree.

F ji tð Þ\kð Þ ¼ F ti [
m

j

� �2

t

� �
ð14Þ

The probability density function (PDF) for the time step

ti is given by,

p tið Þ ¼ 1

no þ t
ð15Þ

F ti [
m

j

� �2

t

� �
¼ 1� F ti � t

m

j

� �2
� �

ð16Þ

¼ 1� t
m

j

� �2 1

n0 þ t
ð17Þ

The probability density function can be obtained as,

f jð Þ ¼ oF ki tð Þ\kð Þ
ok

¼ 2m2t

m0 þ t

1

j3
ð18Þ

For very large value of t, i.e., t � 0,

f jð Þ� 2m2j�3 ð19Þ

From Eq. (19), we obtain the degree distribution for a

dynamic network of wireless sensor nodes. This behavior is

typically portrayed by systems, which are resilient to high

degrees of disorder. Thus, by providing a power-law degree

distribution for the WSNs, we intend to add more relia-

bility to the network. This can provide a futuristic frame-

work for building the IoT applications.

6 Results and discussions

In this section, we provide the simulation results obtained

using MATLAB for illustrating the power-law behavior

portrayed by the WSNs [15, 44]. We first generate a scale-

free WSN for some specific node values; we then exploit

the power-law properties inherently observed in the degree

distribution of the sensor nodes.

6.1 Generation of scale-free WSN

We have considered three specific cases for which we

generate the scale-free sensor networks. In the first case,

we have considered a network, which is constituted of

N = 100 sensor nodes, with the average degree distribution

of the nodes as jh i ¼ 4, and the interconnection probability

of the sensor nodes is p = 0.5, which gives rise to 400 links

(or edges, E). In [14], it is said that with the increase in the

probability of the interconnection link p, the amount of

uncertainty of the network increases up to 1. Figure 4

shows the simulated sensor network with the above

parameters. In the second case, we consider a WSN with 50

sensor nodes, and the total number of links obtained is 200,

with the average degree distribution as 4 and the inter-

connection probability as 0.6. This network architecture

can be observed in Fig. 5. In the third case, we consider a

WSN with 20 nodes, and the degree distribution of the

nodes is considered as 4 with an interconnection proba-

bility of 0.4 giving rise to 120 links, which can be observed

in Fig. 6. These networks favor the dynamic behavior of

the IoT, by augmenting the performance of the system in

terms of reliability, ubiquity, and robustness. Table 1

Fig. 4 Generation of the scale-free WSN with 400 edges for the

inputs N = 100, p = 0.5, jh i ¼ 4
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provides a comprehensive account of the specific simula-

tion parameters used for generating the three scale-free

WSNs.

6.2 Simulation results

In this section, we provide the simulation results obtained

in compliance with the methods used in [44]. We build the

simulation environment by initially considering m0-

= m = 5 and m0 = m = 7 heterogeneous sensor nodes

giving rise to two separate WSNs. Here, the heterogeneity

of the sensor nodes is independent of the network topology

and is only concerned with the coherent properties of the

sensor nodes and the type of data perceived. The two

simulated networks considered in this study are constituted

of a total of 5000 and 7000 sensor nodes, obtained by

incrementally making addition of new sensor nodes to the

network. At every step function, a new node is added to the

existing m sensor nodes in the WSN. The equation for the

line, which entails the simulated data, is obtained in

Eq. (20). The line coefficients a and b obtained in Eq. (20)

can be estimated using Eqs. (21) and (22), and the corre-

sponding value for each estimated coefficient for the two

simulated WSNs is provided in Tables 2 and 3. Further, the

confidence intervals of the line coefficients a and b are

obtained using Eqs. (25) and (26) corresponding to each set

of simulated scale-free WSNs. A detailed account of all the

simulation parameters and the fitting parameters are listed

in Tables 2 and 3.

The initial connection seed matrices corresponding to

Figs. 8 and 9 for generating the simulated scale-free WSN

(having N = 5000 and N = 7000 nodes) are given as,

Fig. 5 Generation of the scale-free WSN with 200 edges for the

inputs N = 50, p = 0.6, jh i ¼ 4

Fig. 6 Generation of the scale-free WSN with 120 edges for the

inputs N = 20, p = 0.6, jh i ¼ 6

Table 1 Parameters for generation of random nodes for the scale-free

IoT framework

Nodes (N) Probability (p) Node degree (j) Edges (E)

100 0.4 4 400

50 0.6 4 200

20 0.4 6 120

Table 2 Simulation parameters used for Fig. 8

Parameters Values

N 5000

m0 5

m 5

Dimension of seed matrix (M1) 5 9 5

Coefficients a = 9.3557e?04

b = - 2.606

Confidence interval of a (8.651e?04, 1.006e?05)

Confidence interval of b (- 2.649, - 2.564)
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M1 ¼

0 1 1 0 1

1 0 1 1 0

0 1 0 1 0

0 1 1 0 0

1 0 1 1 1

0
BBBBBB@

1
CCCCCCA
; and

M2 ¼

0 1 1 0 1 1 1

1 0 1 1 0 1 1

0 1 0 1 0 1 1

0 1 1 0 0 1 1

1 0 1 1 1 1 1

0 1 1 0 1 1 1

0 1 1 0 1 1 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

The line that depicts the scale-free behavior of WSNs is

given by

y ¼ aþ bx ð20Þ

Applying the minimum least square method, the coef-

ficient of the fitted line can be estimated as:

â ¼
Xn
i¼0

ðxi � �xÞðyi � �yÞ
" # Xn

i¼0

ðxi � �xÞ2
" #�1

ð21Þ

and

b̂ ¼ �y� â�x2 ð22Þ

The estimated variances of the parameters a and b from

the simulated data can be computed as,

r2a ¼ r2
Xn
i¼0

ðxi � �xÞ2
" #�1

ð23Þ

and

r2b ¼
r2

n
1þ n�x2

Xn
i¼0

ðxi � �xÞ2
" #�1

2
4

3
5 ð24Þ

If we use sample variance S2 in place of population

variance r2 in Eqs. (23) and (24) using Student t

distribution with (n - 2) degrees of freedom under the

significance level 100 9 (1 - a), the confidence interval

for the coefficients a and b is given by,

â� tn�2;a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

Xn
i¼0

ðxi � �xÞ2
" #vuut

2
4

3
5
�1

ð25Þ

and

b̂� tn�2;a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

n
1þ n�x2

Xn
i¼0

ðxi � �xÞ2
" #�1

2
4

3
5

vuuut ð26Þ

In Fig. 7, we provide an account of the theoretical dis-

tributions [obtained in Eq. (19)] observed for different

values of m0, considered in the logarithmic scale. It is

observed that the degree distribution of the simulated scale-

free WSNs comes under the generic family of power-law

distributions. From Figs. 8 and 9, it is observed that the

simulated results provide good agreement with the least

square fitted curve for the parameters listed in Tables 2 and

3. Thus, the results provided in this paper mimic the var-

ious scale-free real-world networks ranging from bacterial

dynamics to large-scale complex networks like the WWW.

So, it can be inferred that the hypothesis of the scale-free

networks can be governed by exploiting the scalability and

the scale-free property of WSNs, which leads to their

applicability in massive futuristic sensor-enabled environ-

ments and complex IoT networks.

7 Conclusion and future works

The rapid evolution of the Internet of things (IoT) and its

functionalities have led to the concurrence of a more

intricate and interconnected network of devices. These

devices specifically relate to a generic set of devices like

the sensory devices, smart appliances, smart hubs, and

other associated objects, which permissively provide a

ubiquitous connectivity among the devices. Thus, it is

inevitable for the IoT devices to obtain heterogeneity. This

gives rise to certain amount of disorder in the network,

which the conventional network topologies may not effi-

ciently characterize. Thus, a more dynamic alternative

approach has been provided in this paper to befit the

requirements of the IoT ecosystem, by adding more relia-

bility to the system, and thereby improving the overall

performance of the system. The complexities involved due

to the addition of extensively large number of devices to

the static WSNs have been discussed. Thus, in order to

understand the scalability and the heterogeneity of these

interconnected devices, the power-law exponent is an

important measure. In this paper, we have provided an

Table 3 Simulation parameters used for Fig. 9

Parameters Values

N 7000

m0 7

m 7

Dimension of seed matrix (M2) 7 9 7

Coefficients a = 2.211e?05

b = - 2.723

Confidence interval of a (2.07e?05, 2.395e?05)

Confidence interval of b (- 2.762, - 2.684)
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Fig. 7 Representation of the theoretical degree distribution for m0 = 1, m0 = 3, m0 = 5, m0 = 7, and b(slope) = - 3

Fig. 8 Degree distribution of the empirical data with power-law distribution for N = 5000, m0 = m = 5, a = 9.3557e?04, and b(slope)
= - 2.606 corresponding to the seed matrix M1

Fig. 9 Degree distribution of the empirical data with power-law distribution for N = 7000, m0 = m = 7, a = 2.211e?05, and b(slope) = - 2.723

corresponding to the seed matrix M2
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analytical framework to illustrate the ubiquitous power-law

behavior observed in the devices connected to the Internet.

We have also provided the mathematical insights to char-

acterize the dynamic behavior of the devices connected to

the IoT by emphasizing on the small-world traits of the

wireless sensor networks (WSNs). Finally, we have pro-

vided an analysis of the theoretical and simulation results

obtained for the proposed model. It is observed from the

simulation results that the degree distribution of the WSNs,

which are a crucial element for IoT systems, follows a

power-law distribution, and the evolved network is con-

sidered to be highly scale-free and reliable.

The study of scale-free networks and the small-world

phenomena has led to the evolution of several constituent

theories whether it may be in the characterization of the

human brain cell interactions or the aircraft systems. Its

applicability in new spheres of science and technology is

still evolving and gaining popularity.
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17. Erd}os P, Rényi A (1960) On the evolution of random graphs. Publ

Math Inst Hung Acad Sci 5(1):17–60

18. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-

world’ networks. Nature 393(6684):440

19. Perotti JI, Tamarit FA, Cannas SA (2006) A scale-free neural

network for modelling neurogenesis. Phys A 371(1):71–75

20. Faqeeh A, Osat S, Radicchi F, Gleeson JP (2019) Emergence of

power laws in noncritical neuronal systems. Phys Rev E

100(1):010401
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