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Abstract
Retinopathy of prematurity (ROP) is a sight threatening disorder that primarily affects preterm infants. It is the major

reason for lifelong vision impairment and childhood blindness. Digital fundus images of preterm infants obtained from a

Retcam Ophthalmic Imaging Device are typically used for ROP screening. ROP is often accompanied by Plus disease that

is characterized by high levels of arteriolar tortuosity and venous dilation. The recent diagnostic procedures view the

prevalence of Plus disease as a factor of prognostic significance in determining its stage, progress and severity. Our aim is

to develop a diagnostic method, which can distinguish images of retinas with ROP from healthy ones and that can be

interpreted by medical experts. We investigate the quantification of retinal blood vessel tortuosity via a novel U-COSFIRE

(Combination Of Shifted Filter Responses) filter and propose a computer-aided diagnosis tool for automated ROP

detection. The proposed methodology involves segmentation of retinal blood vessels using a set of B-COSFIRE filters with

different scales followed by the detection of tortuous vessels in the obtained vessel map by means of U-COSFIRE filters.

We also compare our proposed technique with an angle-based diagnostic method that utilizes the magnitude and orien-

tation responses of the multi-scale B-COSFIRE filters. We carried out experiments on a new data set of 289 infant retinal

images (89 with ROP and 200 healthy) that we collected from the programme in India called KIDROP (Karnataka Internet

Assisted Diagnosis of Retinopathy of Prematurity). We used 10 images (5 with ROP and 5 healthy) for learning the

parameters of our methodology and the remaining 279 images (84 with ROP and 195 healthy) for performance evaluation.

We achieved sensitivity and specificity equal to 0.98 and 0.97, respectively, computed on the 279 test images. The obtained

results and its explainable character demonstrate the effectiveness of the proposed approach to assist medical experts.
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1 Introduction

Retinopathy of prematurity (ROP) is a retinal disorder that

causes visual impairment in premature low-weight babies

who are born afore 31 weeks of gestation [6]. It causes

abnormal blood vessels to grow in the inner regions of the

eyes, leading to the detachment of the retina and possibly

blindness. Statistics from the World Health Organization

indicate that ROP is not only the leading cause of child-

hood blindness but also a great challenge in view of its

treatment and management due to high inter-expert diag-

nosis variability [15]. The Committee for International

Classification of Retinopathy of Prematurity (ICROP) [13]

established that the treatment of the ROP should be initi-

ated once the Plus disease is diagnosed. The disorder is

characterized by high levels of tortuosity and dilation of the

& Nicola Strisciuglio

n.strisciuglio@utwente.nl

George Azzopardi

g.azzopardi@rug.nl

1 Department of Electronics and Communication Engineering,

College of Engineering Trivandrum, Thiruvananthapuram,

Kerala 695016, India

2 Faculty of Electrical Engineering, Mathematics and

Computer Science, University of Twente, Enschede, The

Netherlands

3 Department of Pediatric and Tele-ROP services, Narayana

Nethralaya Eye Hospital, Bangalore 560 099, India

4 Department of Biomedical Engineering, Indian Institute of

Technology Hyderabad, Sangareddy, Telangana 500007,

India

5 Bernoulli Institute for Mathematics, Computer Science and

Artificial Intelligence, University of Groningen, Groningen,

The Netherlands

123

Neural Computing and Applications (2020) 32:12453–12468
https://doi.org/10.1007/s00521-019-04697-6(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-7478-3509
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-019-04697-6&amp;domain=pdf
https://doi.org/10.1007/s00521-019-04697-6


retinal blood vessels, as shown in Fig. 1b. The most

common approach for ROP screening involves visual tor-

tuosity quantification by a retinal expert.

The recent medical advancements in neonatal care have

improved the survival rates of low birth weight infants,

especially in the developing countries. For instance, out of

26 million annual new born babies in India, approximately

two millions are born with low birth weight and are at risk

of developing ROP [41]. The screening programme con-

ducted in the rural areas generates large amounts of image

data for ROP screening. The manual labelling is often

difficult and time consuming. So there arise the need for an

automatic system which can effectively handle huge image

data and can accurately diagnose the pathology. In this

paper, we focus on developing the backbone of such a

diagnostic system with a novel algorithm for the automatic

detection of ROP in retinal fundus images of infants.

The computerized analysis of retinal images for the

automatic detection of certain pathologies, such as diabetic

retinopathy, age-related macular degeneration, ROP and

glaucoma, among others, is of wide interest for the image

processing and artificial intelligence research communities.

Although deep learning approaches are obtaining very

good results, often quantitatively overcoming the perfor-

mance of human observers, their predictions are not easily

interpretable. This limits the use of such systems in real

diagnostic scenarios, where clear explanation of the deci-

sions has to be provided.

To this concern, we design a novel pipeline for auto-

mated and explainable ROP diagnosis, which we con-

structed under the guidance of ROP-expert

ophthalmologists. It consists of two main steps, namely

blood vessel segmentation followed by the detection and

evaluation of tortuous vessels. The process to detect ROP

in retinal images is based on a decision scheme that

implements, to some extent, the diagnostic process per-

formed by medical doctors who evaluate the number and

severity of tortuous vessels in the retinal images. We

propose U-COSFIRE filters for tortuous vessel detection.

In contrast to existing methods, which we discuss in

Sect. 2, the U-COSFIRE filters do not require explicit

modelling of the geometrical properties of the vessel-cur-

vature points. Instead, they are configured in an automatic

process by presenting a single example of interest. This is

an advantage as, in the operating phase of a diagnostic

system, medical operators can automatically configure ad-

ditional tortuous vessel detectors for particular cases. This

contributes to the flexibility and scalability of the proposed

pipeline. The response maps of the U-COSFIRE filters can

be interpreted directly by medical doctors as they highlight

the points of high-curvature of vessels.

To the best of our knowledge, there are no public data

sets available for benchmarking methods for ROP diag-

nosis in retinal images. We thus validate the proposed

method on a new data set of 289 images, which we

acquired from KIDROP, that is the world largest tele-

medicine network for ROP screening and assistance [19].

Furthermore, we implemented an existing method for

vessel tortuosity quantification [33], the performance of

which we compare with those achieved by the proposed

pipeline based on U-COSFIRE filters. We summarize the

contributions of this work as follows:

– novel U-COSFIRE filters for the detection of high-

curvature vessel points, and an approach for the

quantification of tortuosity level from their magnitude

response maps;

– extension of the B-COSFIRE filters with an explicit

multi-scale framework for the segmentation of retinal

blood vessels with varying thickness;

– a pipeline for automated diagnosis of ROP from retinal

images, whose outputs are explainable, and that

employs the proposed U-COSFIRE and multi-scale

B-COSFIRE filters.

The paper is organized as follows. In Sect. 2, we give an

account of the state-of-the-art approaches for vessel

delineation, tortuosity estimation and ROP diagnosis. In

Sect. 3, we describe the proposed methods and their use for

the design of an automated ROP diagnosis system, while in

Sect. 4, we present our data set that we collected and the

results that we achieved. We also provide a comparison

with other methods and a discussion of the results in

Sect. 5. Finally, we draw conclusions in Sect. 6.

2 Related works

Existing works on retinal vessel segmentation as well as

evaluation of tortuosity were surveyed in [1, 10, 49].

Retinal blood vessel delineation approaches are based on

either supervised or unsupervised learning techniques.

Supervised methods use manually segmented data for

training a classifier, and their performance, essentially,

depends on the set of features derived from the training

Fig. 1 Retinal fundus images of preterm infants. a Examples of

healthy and b with Plus disease
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samples. The classification model learns from the feature

vectors and distinguishes vessel pixels from non-vessel

ones. Unsupervised vessel segmentation methods rely on

the responses obtained from vessel-selective filters fol-

lowed by thresholding operations.

In [34], the authors introduced a supervised classifica-

tion technique that depends on feature vectors derived from

the properties of Gabor filters with a Gaussian mixture

model (GMM) and a discriminative support vector

machine (SVM) as classifiers. Another supervised classi-

fication method proposed in [42] relies on a constructed

feature space of pixel intensity values and Gabor wavelet

responses combined with the GMM classifier. In [40], a

SVM-based supervised classification using feature vectors

derived from the responses of a line detector and target

pixel grey levels was proposed.

The unsupervised methods proposed in [2, 7, 8, 17] used

the matched filter as the prime filtering element followed

by thresholding operations. The multi-scale filtering

approach proposed in [25] used the responses of the mat-

ched filter in three different scales for segmentation and

width estimation of retinal blood vessels. The literature

also contains a reasonable amount of work that uses Gabor

filters for the vessel segmentation process. The research

carried out in [20, 38, 39] are a few examples in this area.

Gabor filters have been widely accepted as computational

models of simple cells of visual cortex. The recently

introduced Combination of Receptive Fields (CORF)

computational model [5], however, outperforms Gabor

filters by exhibiting more qualities of the real biological

simple cells. This enables a better contour detection, an

important biological functionality of simple cells. The

latter method and the trainable filters for visual pattern

recognition [3] inspired the B-COSFIRE blood vessel

delineation operator [4, 43], first proposed as an unsuper-

vised approach and later wrapped in a supervised method

[44]. Besides blood vessel segmentation, B-COSFIRE fil-

ters were effectively employed to detect other elongated

patterns [45, 48]. The delineation performance of the

B-COSFIRE filters was substantially improved by the

addition of an inhibitory component, based on the push-

pull inhibition phenomenon known to happen in area V1 of

the visual system of the brain, which resulted in a new

operator for delineation of elongated patterns named

RUSTICO [46].

A substantial amount of work has also been reported on

the estimation of tortuosity of blood vessels. Most of these

approaches consider length-to-chord (LTC) [27] measure

as a major parameter for tortuosity evaluation. LTC is

expressed as the ratio of the actual length of the curved

segment of a given blood vessel to the length of the shortest

line (chord) connecting its terminal points. A couple of

studies [12, 28] have considered different parameters of the

vessel axis, such as curvature and directional changes, for

tortuosity evaluation. A semi-automatic tortuosity evalua-

tion method based on grouping vessel segments with

constant sign-curvature was proposed in [14]. In [33], an

angle-based method was applied on the orientation

response maps of Gabor filters for detecting tortuous vessel

segments.

3 Proposed pipeline

The pipeline for ROP diagnosis that we propose consists of

seven steps, namely pre-processing, blood vessel segmen-

tation with multi-scale B-COSFIRE filters, vessel-map

binarization, thinning of the vessel tree map, U-COSFIRE

filtering for detection of high-curvature points, analysis of

connected components of the high-curvature locations, and

a diagnostic decision based on the number of connected

components. Figure 2 shows a schematic view of the pro-

posed pipeline. In the following, we elaborate on each of

these steps.

3.1 Pre-processing

We resize the given RGB fundus images to 800� 600

pixels and process only the green channel of the images as

it contains the highest contrast between the blood vessels

and the background [30].

3.2 Multi-scale B-COSFIRE vessel segmentation

We employ the trainable B-COSFIRE filters for vessel

segmentation, originally proposed in [4]. A B-COSFIRE

filter can be configured by presenting a single pattern of

interest to a configuration algorithm. Effective delineation

is achieved by combining the responses of a symmetric and

an asymmetric B-COSFIRE filters, configured on a vessel-

and a vessel-ending-like pattern, respectively. Formally,

their responses are combined as:

C/;r̂;~rðx; yÞ ¼ jS/;q̂;r̂;r̂0;âðx; yÞ

þmax A/;~q;~r;~r0;~aðx; yÞ;A/þp;~q;~r;~r0;~aðx; yÞ
� �

jt
ð1Þ

where S/;q̂;r̂;r̂0;âðx; yÞ and A/;~q;~r;~r0;~aðx; yÞ are the responses

of a vessel- and a vessel-ending-selective filters, respec-

tively. The parameter r is a scale parameter (i.e. the

standard deviation of the outer Gaussian of a Difference-

of-Gaussians used as contributing filter to the B-COSFIRE

filter) that regulates the selectivity of the B-COSFIRE fil-

ters to vessels of a certain thickness. The parameter /
indicates the orientation preference of the filter, while q̂
and ~q are the radii of the concerned filter supports. The

pairs of parameters ðr̂0; âÞ and ð~r0; ~aÞ control the tolerance
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degree for the detection of deformed patterns with respect

to that used for the configuration. Tolerance to curvilinear

vessels increases with increasing values of these parame-

ters, up to some extent. The symbol j:jt represents the

thresholding operation of the combined filter responses by

a factor t, which is a fraction of the obtained maximum

response. The symmetric and asymmetric filters have dif-

ferent parameter values since they are selective for dif-

ferent parts of the vessels. In order to delineate vessels with

different orientations, a rotation-tolerant response map R is

constructed by superimposing the responses C/;r̂;~rðx; yÞ
obtained for different values of /, as:

Rr̂;~rðx; yÞ ¼ max
/2f0; p

12
;...;11p

12
g

�
C/;r̂;~rðx; yÞ

�
ð2Þ

Here, we consider a set of 12 preferred orientations with

angle spacing of p=12 radians. The configuration of a B-

COSFIRE filter relies on two parameters, namely r and q.
The parameter r determines the selectivity of the filter to

curvilinear patterns of a given thickness: given a line pat-

tern of interest of thickness w pixels, we compute r ¼
1:92w [36]. The parameter q regulates the size in pixels of

the support region of the filter. For more technical details

about the B-COSFIRE filters, we refer the reader to [4].

High tortuosity levels of blood vessels influence the

thickness variability across the retina. This causes difficulty

in tracking the vessels using a single-scale filtering. In [47],

robustness to scale was achieved by forming pixel-wise

feature vectors derived from a bank of B-COSFIRE filters

tuned to vessels of various thicknesses. Using these vec-

tors, a classifier was trained to differentiate the vessel

pixels from the background.

In this work, we extend the B-COSFIRE filters to multi-

scale and obtain both scale- and rotation-tolerant responses

at every pixel location. We replace the r parameter of the

B-COSFIRE filter with a vector r of preferred scales,

which constitutes a scale space in which the B-COSFIRE

response map is computed. For a B-COSFIRE filter S with

preferred orientation /, we formally define the scale-tol-

erant response SM as:

SM;ðr;/Þðx; yÞ ¼ max
ri2r

S/;q̂;ri;r̂0;âðx; yÞji ¼ 1; . . .;Ns

� �
ð3Þ

where Ns is the number of considered scales. Subsequently,

we compute the response map of a multi-scale rotation-

tolerant B-COSFIRE filter as the superposition of the

multi-scale response maps computed for each preferred

orientation. In this work, we employ multi-scale symmetric

and asymmetric B-COSFIRE filters, and define their

ROP
assessment

(a) (b) (c) (d)

(e)(f)(g)(h)

Fig. 2 Schematic outline of the proposed pipeline. a Input image,

b pre-processing, c vessel segmentation using multi-scale B-COS-

FIRE filter, d binarization, e thinning of the vessel tree map,

f curvature-points detection, b connected components analysis, and

h assessment of ROP. Images (c), (d), (e), and (g) are inverted for

better visualization
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combined response map RM;ðr̂;~rÞðx; yÞ for multi-scale vessel

segmentation as:

RM;ðr̂;~rÞðx; yÞ ¼ max
/2f0; p

12
;...;11p

12
g

�
CM;ð/;r̂;~rÞðx; yÞ

�
ð4Þ

where CM;ð/;r̂;~rÞðx; yÞ is the combined multi-scale sym-

metric and asymmetric B-COSFIRE filter response com-

puted for a given orientation /, which we formally define

as:

CM;ð/;r̂;~rÞðx; yÞ ¼ SM;ðr̂;/Þðx; yÞ
��

þmax AM;ð~r;/Þðx; yÞ;AM;ð~r;/þpÞðx; yÞ
n o���

t

ð5Þ

3.3 Vessel-tree binarization and thinning

We threshold the B-COSFIRE magnitude response map

RM;ðr̂;~rÞðx; yÞ by using the Otsu’s method [35]. When

applied to the B-COSFIRE magnitude response map, this

method first identifies a grey level which separates the

region containing the blood vessels from the background.

An illustration of this first thresholding is provided in

Fig. 3a, b, showing the B-COSFIRE response and binary

maps, respectively. Subsequently, we apply the Otsu’s

method for a second time on the pixels that fall within the

white area determined by the first thresholding operation,

Fig. 3c.

From the resulting binary map, we then extract the

thinned vessels by means of morphological thinning

operation. The thinned vessels often have unwanted short

spurs. We carry out pruning with 10 iterations to remove

those short spurs which are formed as a result of small

irregularities present in the boundary of the original vessel

maps. Finally, we consider the remaining thinned vessel

segments for the analysis of tortuosity.

3.4 U-COSFIRE filters for high-curvature point
detection

The proposed methodology has its basis on the trainable

B-COSFIRE filter for blood vessel delineation that was

proposed in [4]. We configure new COSFIRE filters to be

selective to tortuous patterns, which resemble ‘U’-shapes

in geometry. The COSFIRE filters that we propose take as

input a set of responses of a DoG filter, whose relative

locations are found in an automatic configuration process

carried out on a prototypical U-shape pattern as shown in

Fig. 4a. The DoG function which we denote by DoGrðx; yÞ,
is defined as:

DoGrðx; yÞ ¼
1

2pr2
exp

�
� x2 þ y2

2r2

�

� 1

2pð0:5rÞ2
exp

�
� x2 þ y2

2ð0:5rÞ2
� ð6Þ

The configuration process involves the determination of

key points along a set of concentric circles around the

centre of the given prototype.

For the configuration of a U-COSFIRE filter, we first

convolve the input prototype pattern I with a DoG function

of standard deviation r:

grðx; yÞ¼
defjIHDoGrjþ ð7Þ

where the operation j:jþ suppresses negative values. It is

usually referred to as half-wave rectification or rectification

linear unit (ReLU). Figure 4b shows the thresholded DoG

response map computed for the prototype input image

shown in Fig. 4a. The proposed filter structure is deter-

mined from the DoG responses obtained through the

automatic configuration process which results in a set U of

3-tuples that describe the geometric properties of the pro-

totype pattern:

U ¼ fðri; qi;/iÞji ¼ 1; . . .; ng ð8Þ

The automatic configuration of the U-COSFIRE filter is

shown in Fig. 5. The centre of the filter is labelled

Fig. 3 Example of the binarization procedure. a The B-COSFIRE filter response map of a given input image, b the result after using Otsu’s

method for global thresholding, and c the binary output with the prominent blood vessels segmented from the background
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as ‘1’, and the DoG responses along a number of concen-

tric circles around the centre point are considered. The

points labelled from ‘2’ to ‘9’ indicate the locations of the

local maxima along the concentric circles. The number of

the local maxima depends on the shape complexity of the

pattern as well as on the number of concentric circles.

Below is the set U of 3-tuples that is determined from the

input pattern shown in Fig. 4a.

U ¼

ðr1 ¼ 0:52; q1 ¼ 0;/1 ¼ 0Þ;

ðr2 ¼ 0:52; q2 ¼ 2;/2 ¼ 0:4887Þ;

ðr3 ¼ 0:52; q3 ¼ 2;/3 ¼ 2:6529Þ;

ðr4 ¼ 0:52; q4 ¼ 4;/4 ¼ 0:5760Þ;

ðr5 ¼ 0:52; q5 ¼ 4;/5 ¼ 2:5482Þ;

ðr6 ¼ 0:52; q6 ¼ 6;/6 ¼ 0:6632Þ;

ðr7 ¼ 0:52; q7 ¼ 6;/7 ¼ 2:4609Þ;

ðr8 ¼ 0:52; q8 ¼ 8;/8 ¼ 0:6807Þ;

ðr9 ¼ 0:52;q9 ¼ 8;/9 ¼ 2:4435Þ

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>;

ð9Þ

Every tuple describes the characteristics of a local maxi-

mum response along the concentric circles, with ri repre-
senting the standard deviation of the DoG function, and

ðqi;/iÞ representing the polar coordinates of its location

with respect to the filter support centre.

The response of a U-COSFIRE filter is obtained with the

same steps described in [4]. The method involves the

computation of intermediate response maps, one for each

tuple in the configured set U, followed by the fusion of

such maps with the weighted geometric mean function. An

intermediate feature map for a tuple i is achieved in four

steps: (1) convolution of the input image with a DoG

function with standard deviation ri, (2) suppression of the

negative values with the ReLU function mentioned above,

(3) blurring of the thresholded DoG response map with a

Gaussian function of standard deviation r̂i that grows lin-
early with the distance qi: r̂i ¼ r0 þ aqi, and (4) shifting of
the blurred DoG responses by the vector ½qi; p� /i�. The
constants r0 and a regulate the tolerance to deformations of

the prototype pattern, and they are determined empirically.

We refer the reader to [4] for all technical details.

We denote by rUðx; yÞ the COSFIRE filter response that

is the weighted geometric mean of all intermediate feature

responses uri;qi;/i
ðx; yÞ:

rUðx; yÞ¼def
���
YjUj

i¼1

ðuri;qi;/i
ðx; yÞÞxi

�1=
PjUj

i¼1
xi
��
t

ð10Þ

where

xi ¼ exp�q2i =2r̂
2 ð11Þ

and

r̂ ¼ 1

3

	
max

i2f1;2;...;jUjg
qi



ð12Þ

The threshold parameter t (0\t\1) is a fraction of the

maximum filter response. The selectivity of a U-COSFIRE

filter for a particular orientation depends upon the orien-

tation of the prototype used while configuring the filter. To

Fig. 4 a Prototype (of size 19� 19 pixels) used for configuring a

U-COSFIRE filter and b the response map obtained after convolving

the prototype pattern with a DoG filter of r ¼ 0:52

′
3

54

1

2

6 7

98

Fig. 5 Example of the U-COSFIRE filter configuration. The filter

centre is labelled as ‘1’ and the points labelled from ‘2’ to ‘9’ are the

locations of local maxima along the considered concentric circles

around the centre point
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achieve selectivity in different orientations, we construct a

bank of U-COSFIRE filters from the one configured above.

For a given orientation preference w; we alter the angular

parameters in the set U to form a new set RwðUÞ:

RwðUÞ¼deffðri; qi;/i þ wÞj8ðri; qi;/iÞ 2 Ug ð13Þ

The multi-orientation response map r̂Uðx; yÞ at any pixel

location is the maximum superposition of the response

maps evaluated with different preferred orientations:

r̂Uðx; yÞ ¼ max
w2W

frRwðUÞðx; yÞg ð14Þ

Here, we set W ¼ f0; p
36
;. . .;35p

36
g so that we have a bank of

36 U-COSFIRE filters tuned for 36 different directions that

vary in intervals of p=36.

3.5 Estimation of vessel tortuosity

We analyse the connected components of the U-COSFIRE

filter response map. For each pixel in the response map, we

determine the components that are eight-connected, by

inspecting the pixels vertically from top to bottom and then

horizontally from left to right. The scanning process results

in an integer map where each object is assigned to a par-

ticular set of pixels. Zero values in the map correspond to

the background pixels. For visualization purposes, we label

each connected component (a group of pixels with the

same label) in the integer map using a pseudo random

colour.

We compute the number of connected components in

the U-COSFIRE response map, which corresponds to the

number of detected high-curvature points, and use it in the

next steps for the automation of ROP diagnosis. We also

explore other approaches to characterize the tortuosity

level from the U-COSFIRE response map, namely number

of nonzero pixels, sparse density, entropy, and the number

of local maxima. We present a comparative analysis of the

results achieved by these approaches in Sect. 4.4.

3.6 ROP diagnosis by the analysis of vessel
tortuosity

One of the main indicators for the diagnosis of ROP is the

detection of Plus disease. Studies from the medical litera-

ture indicate that high tortuosity in at least two quadrants of

a given retinal fundus image is an indication of the pres-

ence of Plus disease [13]. We compute the number of

connected components in the U-COSFIRE response map as

a measure of the vessel tortuosity severity in a given retinal

image.

The recorded count of connected components is checked

for the presence of Plus disease. A high value indicates the

presence of abnormal tortuosity in the image. We designed

the decision rule under the strict supervision of ROP-expert

ophtalmologists, and kept it simple and clear, which makes

it interpretable by humans.

4 Experiments

4.1 Data Set

We assessed the effectiveness of the proposed methodol-

ogy on a new data set of 289 retinal fundus images that we

acquired from KIDROP [19], the largest tele-medicine

network across the globe, which is aimed to eradicate ROP-

based infant blindness. All images belong to the category

of disc-centred retinal images where the optic disc (OD)

lies in the image centre. The images are captured using a

RetCam3TM camera with a resolution of 1600� 1200

pixels. Of the 289 images, 10 images1 are solely used for

the configuration of the parameters and are not used for

performance analysis. The images used for parameter

configuration are randomly selected and contain equal

number of images with healthy and unhealthy retinas. Of

the remaining 279 images (validation set), 84 are labelled

as showing signs of Plus disease while the rest are marked

as healthy (see Table 1 for the data set details). The infant

retinal images were labelled independently by three clinical

experts with experience in ROP detection. A label is

assigned to a given image by majority voting, which we

then considered as the ground truth.

4.2 Evaluation

For the performance evaluation of the proposed pipeline,

we computed the specificity (Sp), sensitivity (Se), precision

(Pr) and F-measure (F):

Sp ¼ TN

TNþ FP
; Se ¼ TP

TPþ FN
; Pr ¼ TP

TPþ FP
;

F ¼ 2
Pr � Se
Prþ Se

where TP, FP, TN, and FN stand for true positives, false

positives, true negatives and false negatives, respectively.

We count a TP when an image labelled with ROP disease is

correctly classified, and a FN when it is incorrectly clas-

sified. We consider an image of a healthy retina as TN if it

is correctly classified and as FP if it is classified as con-

taining signs of ROP.

We also evaluated the overall performance of the pro-

posed pipeline by computing the receiver operating char-

acteristic (ROC) curve and computing its underlying area

1 Image files named T1-T10 of KIDROP data set are used as training

images.
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(AUC). We constructed the ROC curve by varying the

value of the threshold tH on the number of connected

components corresponding to tortuous points that we use

for the evaluation of the presence of Plus disease and

diagnosis of ROP

In addition to the above performance metrics, we also

computed the Matthews correlation coefficient (MCC) and

the Cohen’s kappa coefficient (j), which are suitable to

evaluate the performance of methods for binary classifi-

cation when the classes are unbalanced. The MCC is for-

mally defined as:

MCC ¼ TP� TN� FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þ

p

ð15Þ

Its values range between þ1 and �1, where þ1 indicates a

perfect prediction, 0 indicates a random prediction, and �1

corresponds to completely opposite predictions. The Kappa

coefficient ðjÞ also deals with imbalanced class problems

and is defined as:

j ¼ pobs � pexp

1� pexp
ð16Þ

where pobs is the observed agreement and pexp is the

expected agreement. The j values vary between �1 and

þ1, with values less than or equal to 0 indicating no

agreement, and values greater than 0 indicating the degree

of agreement with a maximum of 1 (perfect agreement)

[9, 29].

4.3 Parameter configuration

The values of the COSFIRE filter parameters are to be set

according to the characteristics of the pattern of interest.

For instance, the parameters r̂ and ~r control the selectivity

to vessels of a certain thickness and have to be tuned

according to the vessels in the images at hand [47]. The

relationship between the thickness s (in pixels) of a line

and the standard deviation r of the outer Gaussian function

of the DoG function that gives the maximum response is

defined as s ¼ 1:92r [24].

In Fig. 6, we show the intermediate responses of several

B-COSFIRE filters to the input image shown in Fig. 2a.

The use of the multi-scale filtering (Fig. 6d) increases the

robustness to noise and contributes to enhanced detection

of vessels with respect to what is detected by single-scale

B-COSFIRE filters (Fig. 6a–c). The effect of noise is

limited in the case of multi-scale filtered image shown in

Fig. 6d. Multi-scale B-COSFIRE filtering improves the

ruggedness of the proposed approach regarding artifacts in

the background, which reduces false detection of blood

vessels.

We consider the vectors r̂ ¼ f1:4; 2:2; 3:4g and

~r ¼ f0:6; 1:4; 2:4g, for the symmetric and asymmetric fil-

ters, respectively. The selection of these parameter values

was determined by visually inspecting the output COS-

FIRE response maps of the training images. In Table 2, we

report the configuration parameters of both symmetric and

asymmetric B-COSFIRE filters for the KIDROP data set.

As to the configuration of the U-COSFIRE filter, we

determine its parameters empirically on the 10 training

images. We use a prototype synthetic U-shape pattern of

size 19� 19 pixels (see Fig. 4) and set r ¼ 0:52 and

q ¼ 8. We experimented with different prototype sizes and

with different configuration parameters. It turned out that a

prototype of 19� 19 pixels in size for the data set at hand

is well suited to achieve satisfactory results. In the right-

most column of Table 2, we report the configuration

parameters of the U-COSFIRE filter that is best suited to

detect the tortuous vessel segments in the images of the

KIDROP data set.

We determined the configuration of the B-COSFIRE

and U-COSFIRE parameters in close collaboration with

ROP experts that helped us evaluating the quality of the

response maps computed in the intermediate steps of the

proposed method. We coupled this knowledge-driven

evaluation with quantitative analysis of the overall per-

formance on the training set of images. In Sect. 5, we

report the sensitivity analysis results of the parameters

involved in our approach.

4.4 Results

In this section, we present the results that we achieved on

the KIDROP data set, and compare them with a state-of-

the-art method for ROP diagnosis proposed by

Oloumi et al. [33], that relies on an angle-based measure of

tortuosity of blood vessels. That method requires a semi-

automatic procedure for the removal of the optic disc,

which is not required by the method that we propose. In

this section, we also provide details about the implemen-

tation and results obtained for the method proposed by

Oloumi et al. [33].

Table 1 The KIDROP data set divided into training and validation

sets

Set Plus cases Normal cases Total

Training set 5 5 10

Validation set 84 195 279
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4.4.1 ROP detection using U-COSFIRE filters.

We achieved sensitivity of 0.98 and specificity of 0.97,

which correspond to an F-score of 0.97, by using the pro-

posed diagnostic method based on counting the connected

components of the U-COSFIRE filter response map for

vessel tortuosity estimation. In Fig. 7, we show examples

of the evaluation performed on two images with and

without Plus disease (Fig. 7a, g, respectively). The number

of the detected connected components in the response map

of the U-COSFIRE tortuosity detector on the retinal image

with ROP (Fig. 7e) is 123, while that in the U-COSFIRE

response map on the healthy image (Fig. 7k) is 10. This

shows how the proposed U-COSFIRE filter is able to

extract valuable information for robustly evaluating the

tortuosity of blood vessels and the presence of Plus disease

for ROP detection in retinal images.

In order to analyse the overall performance of the pro-

posed methodology and construct the ROC curve, we

conduct the following evaluation:

1. set a threshold value t� ¼ 1;

2. classify as positive (i.e. has ROP) the images with the

number of connected components greater than t� and as
negative (i.e. no ROP) the other images;

3. compute the metrics TP, FP, FN, Pr, Se, and F:

4. set tH ¼ tH þ 1 and repeat steps 2 to 4 until tH is equal

to the maximum number of connected components in

the image.

In Fig. 8, we depict the ROC curve that we achieved. The

black dots represent the performance results (Se and Sp)

achieved at each value of the threshold tH, while the solid

black line is their interpolation that we show for visual-

ization purposes. We achieved AUC ¼ 0:9945, which

demonstrates the robustness and effectiveness of the pro-

posed methodology for automatic detection of ROP in

retinal images. For the threshold tH that contributes to the

best F-score, the obtained MCC and j values are 0.95 and

0.94, respectively.

We also investigate the contributions of alternative

measurements computed from the U-COSFIRE response

maps, which could help to discriminate between retinal

images of patients affected by ROP or not. We compute the

number of pixels with nonzero value in the response map

(NZ), sparse density (SD), the number of local maximum

points (LM) and the entropy (E). In Fig. 9, we plot the

values of these features computed on retinal images of

healthy patients (blue lines) and of patients affected by

ROP (red lines). In all cases, we observe that the consid-

ered features are able to provide a suitable separation of

healthy and unhealthy cases, which is also due to the

robustness of the U-COSFIRE processing with respect to

the detection of high-curvature vessel points. Although all

measurements contribute to satisfactory results, we include

the number of local connected component in the proposed

methodology for ROP diagnosis as it guarantees the best

robustness and the highest results. We report and discuss in

Sect. 5 the results that we achieved.

Fig. 6 Example of single- (a–c) and multi-scale (d) B-COSFIRE filter

response maps obtained for the input image shown in Fig. 2a. The

parameters of the single-scale filters are (a) r̂ ¼ 1:4, ~r ¼ 0:6,

b r̂ ¼ 2:2, ~r ¼ 1:4, c r̂ ¼ 3:4, ~r ¼ 2:4, while for the d multi-scale

one are r̂ = {1.4, 2.2, 3.4}, ~r = {0.6,1.4, 2.4}. All images are inverted

for clearer visualization

Table 2 COSFIRE filter

parameter values that we used

for the experiments on the

KIDROP data set

Symmetric B-COSFIRE Asymmetric B-COSFIRE U-COSFIRE filter

r̂ ¼ f1:4; 2:2; 3:4g ~r ¼ f0:6; 1:4; 2:4g r ¼ f0:52g
q̂ ¼ f0; 2; . . .; 8g ~q ¼ f0; 2; . . .; 22g q ¼ f0; 2; . . .; 8g
r̂0 ¼ 0:8 ~r0 ¼ 0:8 r0 ¼ 0:8

â ¼ 0:5 ~a ¼ 0:5 a ¼ 0:5

Neural Computing and Applications (2020) 32:12453–12468 12461

123



4.4.2 ROP detection using Oloumi et al’s [33] angle-based
method

We briefly describe the angle-based vessel tortuosity

evaluation method proposed by Oloumi et al. [33] for the

diagnosis of Plus disease and ROP detection. We imple-

ment this method and evaluate it on top of the vessel map

detected by the B-COSFIRE filter that we employed in this

work, in order to directly compare its performance for

vessel tortuosity estimation with that of the proposed

U-COSFIRE filters.

In addition to the response RM;ðr̂;~rÞðx; yÞ of a rotation-

tolerant multi-scale B-COSFIRE filter for vessel segmen-

tation, we also compute the orientation map OM;ðr̂;~rÞðx; yÞ:

Fig. 7 Responses obtained for two sample input images, N18 and N28

of the KIDROP data set. The top two rows show the responses

obtained for the image N18 with signs of Plus disease, and the bottom

two rows show the output for the healthy image N28. (a, g) Input
images, (b, h) multi-scale B-COSFIRE magnitude response maps

obtained after pre-processing the green channel of the RGB input

images, (c, i) binarized images, (d, j) skeletons obtained from the

binary images, (e, k) U-COSFIRE magnitude response maps, and (f,
l) connected components labelled with different colours superimposed

on the green channel of the input images. The connected components

are encircled for better clarity
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OM;ðr̂;~rÞðx; yÞ ¼ argmax
/2f0; p12;...;11p12 g

�
CM;ð/;r̂;~rÞðx; yÞ

�
ð17Þ

that contains, at each pixel location (x, y), the orientation /
in radians at which the B-COSFIRE filter achieves the

highest response.

The method proposed by Oloumi et al. [33] for vessel

tortuosity quantification requires the removal of the optic

disc (OD), which we perform by cropping an elliptic region

(of size 48� 40 pixels), whose centre point is indicated by

the user. We then apply the thresholding and thinning

operations described in Sect. 3. The pixels surrounded by

three or more neighbours are then extracted from the

skeleton image to identify branching points. These points

are dilated by using morphological dilation operation. The

image with the dilated branching points is XOR-ed with the

original skeleton image so that branches are removed, and

only vessel segments can be used for the evaluation of

tortuosity.

The median absolute deviation (MAD) measurement for

each location along the thinned vessel segments [37] is

used to estimate the linearity of every pixel. The pixel

locations whose MAD value is 0 belong to linear struc-

tures, while the others belong to curved structures. Next,

the locations with nonzero MAD values are used to com-

pute the local tortuosity index (LTI) [32]:

LTIðx;yÞ ¼ 1

2

n
sinðOM;ðr̂;~rÞðx;yÞ�OM;ðr̂;~rÞðx� 1;y� 1ÞÞ
�� ��

þ sinðOM;ðr̂;~rÞðx;yÞ�OM;ðr̂;~rÞðxþ 1;yþ 1ÞÞ
�� ��

o

ð18Þ

Finally, the average tortuosity lsi of every nonlinear seg-

ment si with P pixels is computed as:
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Fig. 8 ROC curve obtained for the connected-component-based ROP

detection method
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lsi ¼
1

P

XP

j¼1

LTIðxj; yjÞ ð19Þ

Based on the average tortuosity lsi measure, each seg-

mented portion is marked as either abnormally tortuous or

normal according to a given threshold. This threshold is

obtained by comparing the tortuosity measures for the

normal and tortuous vessels, given by an ophthalmologist

on the training images (we set the threshold equal to 0.01).

Then, we compute the length of each tortuous segment: for

vertically or horizontally adjacent pixels we add 1, and for

diagonally adjacent pixels we add
ffiffiffi
2

p
[11].

As per recommendations made by the International

Classification of ROP (ICROP), high tortuosity in any of

two quadrants is an indication of Plus disease. The total

length of abnormal tortuous vessel segments in each of the

four quadrants of a retinal image is computed, and based on

the minimum tortuous vessel length thresholds (Lmin)

determined from the training images, Plus disease is

diagnosed if:

– one quadrant has Lmin � 350 pixels or

– any two quadrants have Lmin � 175 pixels.

The method of Oloumi et al. [33] achieved a specificity of

0.93 and a sensitivity of 0.9 (76 Plus cases were detected,

and correct ROP diagnosis was provided). More specifi-

cally, it classified 260 images correctly out of the 279

images in the KIDROP validation set (TP ¼ 76 and

TN ¼ 184). Among the misclassified cases, 11 are FP and 8

are FN. In Fig 10, we show examples of the results

achieved by the method of Oloumi et al. [33] on two

images of patients with and without Plus disease. The total

length of the tortuous vessel segments in the four quadrants

of the image in Fig 10a with signs of Plus disease are 239,

180, 330 and 297 pixels (red segments in Fig. 10c). The

counterpart values in the image of the healthy patient are

45, 2, 61 and 57 pixels.

5 Results comparison and discussion

We compared the results of the proposed U-COSFIRE

filters for vessel tortuosity estimation and diagnosis of ROP

in retinal images with those obtained by the method of

Oloumi et al. [33]. We evaluated the performance of the

algorithms for tortuosity analysis on the same vessel seg-

mentation map, namely the one provided by the B-COS-

FIRE filter that we extended with a multi-scale processing.

Furthermore, we included other approaches for the

quantification of vessel tortuosity in the response map of

the proposed U-COSFIRE filters. Given the response map

of the U-COSFIRE filter, we computed the number of

pixels with nonzero value (NZ), sparse density (SD), the

number of local maximum points (LM) and the entropy

(E).

In Table 3, we report the results of the considered

methods. The method that we propose provides a decision

on the presence of Plus disease that allows the diagnosis of

a patient with ROP based on counting the connected

components of the U-COSFIRE filter response map (U-

COSFIRE?CC), achieved the highest F-score and sensi-

tivity in comparison with the method of Oloumi et al. [33]

on the KIDROP data set. Moreover, we computed the MCC

and j values for a specific value of the threshold tH, the one

which gives the highest average F-score value on the data

set for each of the methods using U-COSFIRE filters. The

obtained MCC and j values are summarized in Table 3.

They confirm the effectiveness of the proposed methodol-

ogy in ROP detection.

The results of the local maxima analysis from the

magnitude response map of the U-COSFIRE filter (U-

COSFIRE ? LM) are comparable with those achieved by

counting the connected components (U-COSFIRE?CC).

Hence, the LM feature can be used as an additional tool for

ROP screening. While the other features, namely NZ, SD

and E, achieve promising results, they fall short of the best

performance we achieved.

It is worth pointing out that the classification errors

made by our method are all false positive detections, which

are caused by the presence of particular artefacts in the

images (Fig. 11). The approach that we propose did not

detect any false negative cases, something which is desir-

able in medical practice as it avoids putting at risk the

health of patients. Among the causes of false positive

detections, we observed that thin choroidal vessels in the

background (Fig. 11a) may also be segmented resulting in

the false detection of blood vessels and the consequent

erroneous estimation of the vascular curvature. Tessella-

tion, which is a condition in retina caused due to reduced

pigmentation of the retinal pigment epithelium, may also

lead to false detection of blood vessels (Fig. 11b). Occlu-

sion of blood vessels (Fig. 11c), termed as small pupil

artefact, is another main cause of misclassification. In this

case, blood vessels are invisible and hence result in poor

segmentation. Finally, the foveal and peri-foveal reflexes

(Fig. 11d) present in the infant fundus images may also

lead to misclassification of images.

We performed sensitivity analysis to study the effect of

each of the parameters r, r0, and a by changing the value

of one parameter at a time while keeping the other two

fixed. The parameters are analysed one at a time by

incrementing or decrementing the optimal values

(r ¼ 0:52, r0 ¼ 0:8, a ¼ 0:5) of the concerned parameters

in steps of 0.1. We computed the average MCC value on
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the training set of 10 images for each experiment. The

threshold t� that we used is the maximum number of

connected components obtained for the normal images in

the training data set with the optimal parameters. In

Table 4, we report the outcomes of the performed

experiments. The sensitivity analysis shows that the

parameter r is the least sensitive followed by r0 and a. The
insensitivity of the parameter r accounts for the fact that

the input to the U-COSFIRE filter is the thinned response

Fig. 10 Response maps obtained for the images shown in Fig. 7; (a,
d) binarized response maps of input images obtained after OD

removal, (b, e) black pixels indicate locations with nonzero MAD

values images are inverted for better clarity), (c, f) colour-coded

tortuous vessel segments; green segments represent linear structures,

and red segments represent curved segments. The top row corre-

sponds to responses obtained for the image N18 with ROP, and the

bottom row for image N28 with healthy retina

Table 3 Results obtained for the

KIDROP data set (195 without

Plus, 84 with Plus)

Method Se Sp F-score MCC j

U-COSFIRE ? conn. comp. (CC) 0.98 0.97 0.97 0.95 0.94

U-COSFIRE ? local maxima (LM) 0.95 0.95 0.93 0.89 0.89

U-COSFIRE ? nonzero pixel values (NZ) 0.94 0.85 0.83 0.75 0.74

U-COSFIRE ? sparse density (SD) 0.95 0.86 0.84 0.77 0.76

U-COSFIRE ? entropy(E) 0.95 0.85 0.83 0.76 0.77

LTI (Oloumi et al. [33]) 0.90 0.93 0.88 0.84 0.84

All methods receive as input the binarized and thinned response maps of the multi-scale B-COSFIRE filter

for vessel segmentation described in Sect. 3.2

Fig. 11 Image regions responsible for misclassification: a dense vessel regions showing retinal and choroidal vessels, b tessellations seen as

white ridges in the background, c occluded vessel regions, and d foveal and peri-foveal reflex in the retina.
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map obtained after multi-scale B-COSFIRE filtering

process.

Notable is the fact that there are no public benchmark

data sets of retinal fundus images for the evaluation of ROP

detection methods. For discussion purposes, however, in

Table 5 we include the results reported in existing works,

which were obtained using different proprietary data sets.

Only the results reported in the last two rows can be

directly compared. In some studies, tortuosity evaluation is

done on manually selected blood vessels restricted to a pre-

defined area around the OD.

Heneghan et al. [16] and Kiely et al. [21] used tortuosity

and width of blood vessels for ROP assessment. They used

the length-to-chord measures for tortuosity evaluation. The

results reported in [12] and [23] were based on tortuosity in

arterioles alone by using an angle-based approach. Wallace

et al. [50] and Oloumi et al. [31] proposed similar

approaches that differ in how they defined tortuosity. The

former used length-to-chord measures, while the latter used

an angle-based approach, which relies on a local tortuosity

index. In Table 5, we include only the works, which

reported the achieved values of sensitivity and specificity

for ROP classification. Although a direct comparison of the

results is not possible, it is worth pointing out that our study

is the largest one so far reported in the literature. Fur-

thermore, all existing methods involve OD removal, often

performed in a semi-automatic way with the manual input

of the user (Fig. 10a, d), which is not required by our

proposed method based on U-COSFIRE filters and

connected component analysis (Fig. 7c, i). The method that

we propose has higher level of automation, in fact it is fully

automatic, and it is more suitable to be employed in a mass

screening programme.

A point of strength of the proposed method is that the

decision process to diagnose the presence of ROP disease

in an image is explainable. This is a direct consequence of

the design that we made in close collaboration with med-

ical doctors and experts in ROP disease, with the aim of

deploying the proposed approach in medical studies on a

large number of patients within the KIDROP programme in

Bangalore. Further optimization of the proposed method

for ROP diagnosis can be directed towards optimization of

its parameters during medical trials and mass screening

operations. Reinforcement learning strategies [26, 51] or

online optimization techniques [18], such as those based on

bandits optimization [22], can be explored to cope with

distribution shifts in the characteristics of the images taken

in different population groups or limiting diagnostic errors

by including medical feedback. In the retinal images of

patients with ROP, one can note large arterial tortuosity

and dilation of veins. Future developments of the present

work could also include categorization of extracted blood

vessels into arteries and veins, which would then allow a

focused analysis of arteriolar vessels to diagnose ROP

more robustly. In addition to tortuosity, it would be worth

to explore the impact of widths of blood vessels in ROP

diagnosis.

Table 4 Sensitivity analysis of

the parameters r;r0 and a of the
proposed U-COSFIRE filter

Offset � 0.4 � 0.3 � 0.2 � 0.1 0 0.1 0.2 0.3 0.4

r MCCr 1 1 1 1 1 1 1 1 1

r0 MCCr0 0.82 0.82 1 1 1 0.66 0.66 0.66 0.66

a MCCa 0 0 0.33 0.33 1 0.82 0.82 0.82 0.5

The parameters are investigated one at a time by offsetting the optimal values in intervals of 0.1. The

average MCC is evaluated on the training images

Table 5 Results reported in

related studies on ROP

detection in retinal images

Study Data set Cases Se Sp

Heneghan et al. [16] Private 12 H, 11 U 0.82 0.75

Gelman et al. [12] Private 21 H, 13 U 0.76 0.76

Kiely et al. [21] Private 92 images 0.91 0.86

Koreen et al. [23] Private 14 H, 6 U 1.00 0.85

Wallace et al. [50] Private 11 H, 5 U 0.82 0.80

Oloumi et al. [31] TROPIC (Pr.) 91 H, 19 U 0.89 0.99

B-COSFIRE ? Oloumi et al. [31, 33] KIDROP (Pr.) 195 H, 84 U 0.90 0.93

B-COSFIRE ? U-COSFIRE KIDROP (Pr.) 195 H, 84 U 0.98 0.97

H and U stand for healthy and unhealthy cases, respectively
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6 Conclusion

We propose a highly effective methodology for ROP

diagnosis of retinal fundus images and achieve very high

results on a new data set that we collected in collaboration

with the KIDROP programme. The method that we put

forward is based on a novel U-COSFIRE filter for the

detection of high tortuosity vessel points in retinal images,

followed by tortuosity quantification by connected com-

ponent analysis. The contributions of this work are three-

fold: (a) a method for the detection of tortuous vessels

based on the novel U-COSFIRE filters, (b) the extension of

the B-COSFIRE filters with a multi-scale processing

framework and (c) a novel fully automated and explainable

pipeline for ROP diagnosis, which is based on vessel

segmentation followed by U-COSFIRE filtering and con-

nected component analysis for the quantification of vessel

tortuosity.

We achieved higher results (Se ¼ 0:98, Sp ¼ 0:97,

F ¼ 0:97) than those obtained by a state-of-the-art tortu-

osity quantification method proposed by Oloumi et al.

[31, 33] (Se ¼ 0:90, Sp ¼ 0:93, F ¼ 0:88) on the KIDROP

data set. The results that we obtained demonstrate the

effectiveness of the proposed methodology, which is now

undergoing medical trial to be employed in large-scale

diagnostics.
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