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Abstract
In this paper, we present some novel multi-objective, multi-item and four-dimensional transportation problems in LR-type

intuitionistic fuzzy environment. Here, for the first time, the speed of different vehicles and rate of disturbance of speed due

to the road condition of different routes for the time minimization objective are introduced. Furthermore, three models are

presented under three different conditions. The reduced deterministic models are obtained on implementation of a

defuzzification approach by using the accuracy function. Moreover, a new method for converting multi-objective problem

into single-objective one is proposed and also we use convex combination method. The models are illustrated by some

numerical examples and optimal results are presented.

Keywords Four-dimensional transportation problem � Intuitionistic fuzzy number � LR-type intuitionistic fuzzy number �
Accuracy function

1 Introduction

It is well known that the traditional transportation problem

[1] is an optimization problem, which offers huge potential

in decreasing costs involving two kinds of constraints taken

into consideration, i.e., availability constraint and demand

constraint. Afterward, many researchers have studied this

problem from various viewpoints and acquired some

important results such as [2–5]. However, in real-life sit-

uation, we have to deal with another constraint besides

source constraint and destination constraint, which is

conveyance constraint. To obtain minimum total cost, an

appropriate mode of transportation is to be resolved at each

source. Subsequently, as an extension of the traditional TP,

the TP with the conveyance constraint is known as solid

transportation problem (STP), which was introduced by

Haley [6]. Thereafter, the STP has been taken much into

consideration and numerous models have been investi-

gated. In the real situation, the solid transportation problem

(STP) plays a very important role in global competition for

minimizing solid transportation cost, time, distance, road

condition and providing service. For example, Bhatia [7]

offered an algorithm to solve a STP with indefinite quad-

ratic objective function. Again Pandian et al. [8] presented

a new method applying the principle of zero-point method

to find an optimal solution of the STP. Pandian et al. [9]

also offered a new method named as bound technique to

find cost sensitivity ranges of STP (cf. Pramanik et al.

[10]).

In real-life problems, there may be various routes/paths

to move from a source to a destination. Some of the roads

may be in good condition, whereas others may be in bad

condition. Distance may differ in a wide range. Again if the

transported item in a transportation system is breakable, it

may depend on the type of the vehicle, condition of the

road and the distance of the path. So it is more realistic to

consider the choice of routes along with the vehicles in a

STP. Thus, if along with different vehicles, different routes

are also considered in a TP, then the STP is changed to a
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four-dimensional TP (4DTP) (cf. Bera et al. [11]). As a

result, the distance of different routes from different

sources to different destinations is necessary to be con-

sidered in 4DTPs, which is not considered in traditional

TPs or STPs. In addition, if one has to deal with a time

minimization problem, then it is obvious to consider the

speed of different vehicles as it is not exact for all types of

vehicles. So far, none has considered this fact. If time is to

be minimized, then short route is to be considered. Again it

may happen that the short routes are in bad condition or

may be in traffic jump problem most of the time.

Accordingly, the speed of the vehicle may be disturbed due

to this. Hence, rate of disturbance of speed due to different

routes plays an important role in case of time minimization

problem in TPs. This phenomenon is also not considered

by any researchers till now. Moreover, in a 4DTP, if dif-

ferent types of item are considered, then the TP becomes a

multi-item 4DTP (MI4D-TP). For example, normally a

constraint on a resource, say, capacity for expenditure, is

forced in the model.

Many researchers studied the TP in deterministic envi-

ronment, and the related parameters are considered as

constant numbers. But, in real life, due to the complexity of

the social and economic environment, the relevant

parameters in the STPs are often treated as uncertain

variables to manage the practical situations. In reality, there

exists uncertainty everywhere in practical life problems. As

a result, it is not suitable to describe the relevant parame-

ters as constant numbers. Nowadays, the researchers are in

a rising interest to model and solve the TPs in which all of

the parameters are considered in imprecise environment

such as random environment and fuzzy environment. The

fuzzy programming approach was introduced by Zimmer-

mann [12] for solving linear programming problem with

several objective functions. Numerous works on TP have

been executed in imprecise environment.

In real-life optimization problems, one may suppose that

an object belongs to a set to a certain degree; however, it is

possible that he is not sure regarding this. In other words,

there may be hesitation or uncertainty about the member-

ship degree. The main point is that the parameters’

demands across the problem are uncertain. However, they

are known to fall within a prescribed uncertainty set with

some attributed degree. In fuzzy set theory, there is no

means to incorporate this hesitation in the membership

degree. To incorporate the hesitation in the membership

degree, intuitionistic fuzzy sets (IFSs) proposed by Ata-

nassov in 1986 are an extension of type 1 fuzzy set theory.

For example, Jimanez et al. [13] developed uncertain solid

transportation problems where uncertainty appears in the

problem as interval solid transportation problem and fuzzy

solid transportation problem. A multi-objective STP in

imprecise environments was presented and solved by

Pramanik et al. [14]. Again Pramanik et al. [15] considered

a fixed-charge multi-objective STP in random fuzzy envi-

ronment and got the solution. Pramanik et al.[16] also

developed a multi-objective solid transportation problem in

fuzzy, bi-fuzzy environment via genetic algorithm.

Samanta et al. [17], Jana et al. [18] have made some

contributions in this field.

Nowadays, fuzzy set theory has been broadly developed

and much effort has been given to generalize the ordinary

fuzzy set theory concept. As a result, different general-

izations and modifications have appeared. For example, an

extension of the ordinary fuzzy set theory concept, namely

the intuitionistic fuzzy set theory concept, was introduced

by Atanassov [19]. Such a concept generalizes the idea of

ordinary fuzzy sets by separately considering not only the

degree of membership of the elements to a given set, but

also the degree of nonmembership along with the degree of

hesitation. Thus, the intuitionistic fuzzy set (IFS) concept

offers a richer representation to handle the present uncer-

tainty as compared to the ordinary fuzzy sets concept.

Angelov [20] introduced an application of the IFSs to

optimization problems based on the technique of maxi-

mizing the degree of membership and minimizing the

degree of nonmembership. Several researchers like Yager

[21], Guha et al. [22], Beliakov [23], Hajiagha et al. [24],

Chakraborty et al. [25] worked on IFSs. Using chance

operator, Chakraborty et al. [26] offered a new approach

for solving multi-objective multi-choice, multi-item Ata-

nassova’s intuitionistic fuzzy TP. Again Chakraborty et al.

[27] also developed arithmetic operations on generalized

intuitionistic fuzzy number and applied them to TP.

Chakraborty et al. [28] developed the expected value of

intuitionistic fuzzy number (IFN) using credibility mea-

sures and used this to solve a multi-objective, multi-item,

intuitionistic fuzzy solid transportation problems for dam-

ageable items. Jana [29] developed novel arithmetic oper-

ations on type 2 intuitionistic fuzzy environment and used

them to solve a transportation problem. So far we know,

there is no method in the literature for solving STP in LR-

type intuitionistic fuzzy environments, though Singh et al.

[30] developed and optimized the unrestricted LR-type

intuitionistic fuzzy mathematical programming problems.

Again Kaur et al. [31] solved fully fuzzy linear program-

ming problems in which the relevant parameters are rep-

resented by unrestricted L�R flat fuzzy numbers. Ghanbari

et al. [32] offered a method for characterization and also

presented an approach to solve the fuzzy linear systems

with L�R fuzzy variables.

The main contributions of this paper are summarized as

follows:
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• For the first time, some multi-objective, multi-item

4DTPs in LR-type intuitionistic fuzzy environment are

formulated.

• Also for the first time, the speed of different vehicles

and rate of disturbance of speed due to different routes

for the time minimization objective function are

considered.

• We present three models; the first model is about

transportation of breakable items which depends on

different conveyances along different routes and the

type of the item, the second one is about transportation

of damageable items which depends on only its type,

and the third one considers nonbreakable/damageable

items.

• The reduced deterministic models are obtained on

implementation of a defuzzification approach by using

the accuracy function..

• We propose a new method for converting multi-

objective optimization problem into single-objective

one and also use convex combination method

• The models are illustrated by some numerical exam-

ples, and optimal results are presented in tabular forms.

The rest of the paper is organized as follows.

In Sect. 2, the proposed method for converting multi-

objective optimization problem into single-objective

problem is described. In Sect. 3, notations for the proposed

models are listed. In Sect. 4, we formulate the models

considered in this paper. Equivalent crisp models are

obtained in Sect. 5. The numerical illustration is provided

in Sect. 6, and a set of optimal solutions are shown here. In

Sect. 7, the practical implication has been given. The

concluding remarks are given in Sect. 8. The paper ends

with ‘‘Appendix,’’ which reviews some basic definitions

and theorems related to IFNs and LR-type IFNs and the

convex combination method.

2 Novel method for conversion of multi-
objective into single objective

Preliminary ideas on LR-type TIFN, arithmetic operations

on LR-type TIFN and convex combination method (CCM)

are given in the ‘‘Appendix’’ section.

In this section, a new approach for multi-objective

optimization problem is offered. The proposed approach

has been motivated by Zimmermann [12] concepts and the

CCM.

Let us consider the following multi-objective decision-

making model in Eq. (1) as:

max f iðxÞ; i ¼ 1; 2; . . .;m0

min f jðxÞ; j ¼ m0 þ 1;m0 þ 2; . . .;m

s.t

grðxÞ� cr; r ¼ 1; 2; . . .; n0

grðxÞ� cr; r ¼ n0 þ 1; n0 þ 2; . . .; n

x� 0

8
><

>:

8
>>>>>><

>>>>>>:

ð1Þ

The objective functions fiðxÞ; i ¼ 1; 2; . . .;m0, of model in

Eq. (1) are to be maximized. So for each objective, we

introduce the membership function as

liðfiðxÞÞ ¼

1 for fiðxÞ[Ui

fiðxÞ � Li

Ui � Li
for Li � fiðxÞ�Ui

0 for fiðxÞ\Li

8
>><

>>:

ð2Þ

where Li and Ui are the lower and upper bounds for each

objective. Again some of the objective functions fjðxÞ; j ¼
m0 þ 1;m0 þ 2; . . .;m of model (1) are to be minimized, so

for each objective we introduce the membership function

as

ljðfjÞ ¼

0 for fjðxÞ�U j

U j � fjðxÞ
U j � L j

for L j � fjðxÞ�U j

1 for fj � L j

8
>>><

>>>:

ð3Þ

Currently, our major objective is to increase the level of

satisfaction of the decision maker, i.e., the membership

functions for both the maximizing objective functions and

minimizing objective functions. So problem (1) can be

modeled as:

max ½liðfiðxÞÞ; i ¼ 1; 2; . . .;m�

s.t

grðxÞ� cr; r ¼ 1; 2; . . .; n0

grðxÞ� cr; r ¼ n0 þ 1; n0 þ 2; . . .; n

x� 0

8
><

>:

8
>>><

>>>:

ð4Þ

This model can be reduced to the single-objective problem

as follows:

max
Pm

i¼1

ailiðfiðxÞÞ; where
Pm

i¼1

ai ¼ 1; 0\ai\1; i ¼ 1; 2; . . .;m

s.t

grðxÞ� cr; r ¼ 1; 2; . . .; n0

grðxÞ� cr; r ¼ n0 þ 1; n0 þ 2; . . .; n

x� 0

8
><

>:

8
>>>>><

>>>>>:

ð5Þ

where ai is the weight function of membership function of

the ith objective.

Corresponding x and fiðxÞ of Eq. (5) are the solutions of
the problem in Eq. (1).
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3 Notations

To formulate the multi-objective, multi-item and four-di-

mensional transportation model, the following notations

are used:

(i) m = number of sources.

(ii) n = number of destinations.

(iii) K = number of conveyances, i.e., different

modes of the transportation problem.

(iv) Q = number of routes.

(v) T = number of items.

(vi) ZI
k = the objective functions, where k ¼ 1; 2.

(vii) pIit = the purchasing price of tth item at the ith

origin.

(viii) sIjt = the selling price of tth item at the jth

destination.

(ix) cIijkqt = the unit transportation cost of tth item

from ith source to jth destination by kth

conveyance via qth route per unit distance.

(x) xijkqt = the decision variable which is the

amount of the tth item to be transported from

ith source to jth destination by kth conveyance

via qth route.

(xi) bijkqt = the rate of breakability per unit

distance of the tth item from ith source to jth

destination by kth conveyance via qth route.

(xii) dijq = distance from ith source to jth destina-

tion via qth route.

(xiii) vk = speed of the kth conveyance .

(xiv) dijq = Rate of disturbance of speed due to qth

route from ith source to jth destination.

(xv) cIijkt = loading and unloading time of the tth

item with respect to the transportation activity

from ith source to jth destination by kth

conveyance.

(xvi) aIit = the amount of the tth item available at the

ith origin.

(xvii) bIjt = the demand of the tth item at the jth

destination.

(xviii) eIk = capacity of a single vehicle of kth

conveyance.

4 Model formulation

We assume that there are m origins (or sources) Oi

ði ¼ 1; 2; . . .;mÞ, n destinations(or demands)

Djðj ¼ 1; 2; . . .; nÞ, K conveyances Ekðk ¼ 1; 2; . . .;KÞ; i.e.,
different modes of transport may be trucks, cargo flights,

goods trains, ships, etc., Q routes Gqðq ¼ 1; 2; . . .;QÞ and

T items Ptðt ¼ 1; 2; . . .; TÞ. Moreover, in this model, the

objectives are to maximize the profit incurred by the

transportation activities and also to minimize the total

transportation time. At the present situation, it is not so

simple for anyone to estimate the exact amount of related

parameters. Practically, in application of TP, decision

makers may face different uncertainties such as availability

of raw materials in the sources, demands in the destinations

and unit transportation cost due to various unmanageable

factors. These unmanageable factors in a TP may be as

follows: (1) There exists uncertainty regarding the product

availability at a source due to the time factors, (2) there

exists some sort of vagueness about the total demand of a

newly launched product to the market, (3) there may not be

a decision maker who exactly knows the unit transportation

cost of the first-time transportation operation.

Considering this fact, we take the problem under LR-

type Intuitionistic fuzzy environment, which aims to make

service strategies on the tactical planning level. So, we

formulate the problem assuming that parameters are all LR-

type trapezoidal intuitionistic fuzzy variables.

Furthermore, the transported item is likely to be broken

or damaged during the time of transportation. There are

several causes for this damageability.

• This damageability may depend on different con-

veyances along different routes and the type of the

items. There are some items mainly made of glass such

as ceramics and China clay. These types of items

depend on the above conditions.

• Moreover, there are some items where the damageabil-

ity depends on only its type.

• Again there are a number of items which are not

damageable.

So, keeping all these in mind, here we present three

models. The first model is about transportation of breakable

items which depend on different conveyances along dif-

ferent routes and its type. So here we use bijkqt as the rate of
breakability per unit distance of the tth item from ith source

to jth destination by kth conveyance via qth route. The

second one is about damageable items which depend on

only their type. Here, we use bIt as the rate of breakability

per unit distance of the tth item. And the third one con-

siders nonbreakable/damageable items.

4.1 Model 1: model with breakable items which
depend on conveyances, routes and items

The First objective of the problem is to maximize the total

profit, which is as follows:
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max ZI
1 ¼

Xm

i¼1

Xn

j¼1

XK

k¼1

XQ

q¼1

XT

t¼1
�

ðsIjtð1� bijkqtdijqÞ � pIit � cIijkqtdijqÞ xijkqt

�

The other objective is to minimize the total transportation

time, which is as follows:

min ZI
2 ¼

Xm

i¼1

Xn

j¼1

XK

k¼1

XQ

q¼1

1

vkð1� dijqÞ
dijqyijkq

þ
Xm

i¼1

Xn

j¼1

XK

k¼1

XQ

q¼1

XT

t¼1

cIijktxijkqt

Here, if the items are transported from ith source to jth

destination by kth conveyance via qth route, then only the

transporting time will be taken. So, we introduce a binary

relation as

yijkq ¼
1; if

PT

t¼1

xijkqt [ 0;

0; if
PT

t¼1

xijkqt ¼ 0

8
>>><

>>>:

Now, the constraints are the supply constraints, demand

constraints and capacity constraints. As the quantity of a

item from a source cannot exceed the supply capacity, so

we have

Xn

j¼1

XK

k¼1

XQ

q¼1

xijkqt � aIit; i ¼ 1; 2; 3; . . .;m; t ¼ 1; 2; . . .; T

Again the quantity of a item transported to a destination

should not be less than its demand, that is

Xm

i¼1

XK

k¼1

XQ

q¼1

ð1� bijkqtdijqÞxijkqt � bIjt;

j ¼ 1; 2; 3; . . .; n; t ¼ 1; 2; . . .; T

The third constraint requires the total amount of items

transported from different sources to different destinations

by conveyance k to be not greater than its transportation

capacity. So we have

Xm

i¼1

Xn

j¼1

XQ

q¼1

XT

t¼1

xijkqt � eIk; k ¼ 1; 2; . . .;K

It is usual to have the nonnegativity of decision variable

xijkqt, that is

xijkqt � 0; i ¼ 1; 2; 3; j ¼ 1; 2; 3; . . .; n;

k ¼ 1; 2; . . .;K; q ¼ 1; 2; . . .;Q; t ¼ 1; 2; . . .; T

So, the multi-objective, multi-item and four-dimensional

transportation problem can be written as:

max ZI
1 ¼

Xm

i¼1

Xn

j¼1

XK

k¼1

XQ

q¼1

XT

t¼1
�

ðsIjtð1� bijkqtdijqÞ � pIit � cIijkqtdijqÞ xijkqt

�

ð6Þ

min ZI
2 ¼

Xm

i¼1

Xn

j¼1

XK

k¼1

XQ

q¼1

1

vkð1� dijqÞ
dijqyijkq

þ
Xm

i¼1

Xn

j¼1

XK

k¼1

XQ

q¼1

XT

t¼1

cIijktxijkqt

ð7Þ

where

yijkq ¼
1; if

PT

t¼1

xijkqt [ 0;

0; if
PT

t¼1

xijkqt ¼ 0

8
>>><

>>>:

ð8Þ

subject to

Xn

j¼1

XK

k¼1

XQ

q¼1

xijkqt � aIit; i ¼ 1; 2; 3; . . .;m; t ¼ 1; 2; . . .; T

ð9Þ

Xm

i¼1

XK

k¼1

XQ

q¼1

ð1� bijkqtdijqÞxijkqt � bIjt;

j ¼ 1; 2; 3; . . .; n; t ¼ 1; 2; . . .; T

ð10Þ

Xm

i¼1

Xn

j¼1

XQ

q¼1

XT

t¼1

xijkqt � eIk; k ¼ 1; 2; . . .;K ð11Þ

xijkqt � 0; i ¼ 1; 2; 3. . .;m; j ¼ 1; 2; 3; . . .; n; k ¼ 1; 2; . . .;K;

q ¼ 1; 2; . . .;Q; t ¼ 1; 2; . . .; T

ð12Þ

4.2 Model 2: model with breakable items which
depend on only their type

Now, we formulate a problem where we select some items

where the damageability depends on only its type. So here

we use bt as the rate of breakability per unit distance of the

tth item instead of bijkqt which is taken in the previous

model. So the first objective and the second constraint are

changed. The rest are same as the previous model. As a
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result, the multi-objective, multi-item and four-dimen-

sional transportation problem can be written as:

max ZI
1 ¼

Pm

i¼1

Pn

j¼1

PK

k¼1

PQ

q¼1

PT

t¼1
�

ðsIjtð1� btdijqÞ � pIit � cIijkqtdijqÞ xijkqt

�

with Eqs. (7) and (8)

8
>>>>><

>>>>>:

ð13Þ

subject to

Equations (9), (11), (12) and

Pm

i¼1

PK

k¼1

PQ

q¼1

ð1� btdijqÞxijkqt � bIjt; j ¼ 1; 2; 3; . . .; n; t ¼ 1; 2; . . .; T

8
><

>:

ð14Þ

4.3 Model 3: model with no breakable items

Here, we present a model where we select some items

where no damageability occurs. So, we do not consider any

rate of breakability in this case. The multi-objective, multi-

item and four-dimensional transportation problem

becomes:

max ZI
1 ¼

Pm

i¼1

Pn

j¼1

PK

k¼1

PQ

q¼1

PT

t¼1

�

ðsIjt � pIit � cIijkqtdijqÞ xijkqt

�

with Eqs. (7) and (8)

8
><

>:

ð15Þ

subject to

Equations (9), (11), (12) and

Pm

i¼1

PK

k¼1

PQ

q¼1

xijkqt � bIjt; j ¼ 1; 2; 3; . . .; n; t ¼ 1; 2; . . .;T

8
><

>:

ð16Þ

5 Equivalent crisp problem

The above TP with imprecise market supplies, demands,

capacities, costs and loading and unloading time can be

stated as equivalent deterministic problem by using the

accuracy function, which is given as follows.

5.1 For Model 1

The deterministic form is as follows:

max f ½ZI
1� ¼

Xm

i¼1

Xn

j¼1

XK

k¼1

XQ

q¼1

XT

t¼1
�

f ½sIjt�ð1� bijkqtdijqÞ � f ½pIit� � f ½cIijkqt�dijq
�

xijkqt

ð17Þ

min f ½ZI
2� ¼

Xm

i¼1

Xn

j¼1

XK

k¼1

XQ

q¼1

1

vkð1� dijqÞ
dijqyijkq

þ
Xm

i¼1

Xn

j¼1

XK

k¼1

XQ

q¼1

XT

t¼1

f ½cIijkt�xijkqt

ð18Þ

where

yijkq ¼
1; if

PT

t¼1

xijkqt [ 0;

0; if
PT

t¼1

xijkqt ¼ 0

8
>>><

>>>:

ð19Þ

subject to

Xn

j¼1

XK

k¼1

XQ

q¼1

xijkqt� f ½aIit�; i¼ 1;2;3; . . .;m; t ¼ 1;2; . . .;T

ð20Þ

Xm

i¼1

XK

k¼1

XQ

q¼1

ð1� bijkqtdijqÞxijkqt � f ½bIjt�; j ¼ 1; 2; 3; . . .; n;

t ¼ 1; 2; . . .; T

ð21Þ

Xm

i¼1

Xn

j¼1

XQ

q¼1

XT

t¼1

xijkqt � f ½eIk�; k ¼ 1; 2; . . .;K ð22Þ

xijkqt � 0; i ¼ 1; 2; 3; j ¼ 1; 2; 3; . . .; n; k ¼ 1; 2; . . .;

K; q ¼ 1ðQÞ; t ¼ 1ðTÞ:
ð23Þ

Here, sIjt p
I
it, c

I
ijkqt, c

I
ijkt, a

I
it, b

I
jt and eIk are considered as LR-

type TIFNs; these can be denoted as:

sIjt ¼ ðs1jt; s2jt; sljt; srjt; sl
0
jt; s

r0
jt Þ, pIit ¼ ðp1it; p2it; plit; prit; pl

0
it; p

r0
it Þ,

cIijkqt ¼ ðc1ijkqt; c2ijkqt; clijkqt; crijkqt; cl
0
ijkqt; c

r0
ijkqtÞ, cIijkt ¼ ðc1ijkt; c2ijkt;

clijkt; c
r
ijkt; c

l0
ijkt; c

r0
ijktÞ, aIit ¼ ða1it; a2it; alit; arit; al

0
it; a

r0
it Þ, bIjt ¼ ðb1jt;

b2jt; b
l
jt; b

r
jt; b

l0
jt; b

r0
jt Þ, eIk ¼ ðe1k ; e2k ; elk; erk; el

0
k ; e

r0
k Þ; respectively.

Then, the above model in Eqs. (17)–(23) can be written in

the following form by using Eq. (55):
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max f ½ZI
1� ¼

Xm

i¼1

Xn

j¼1

XK

k¼1

XQ

q¼1

XT

t¼1

�
2s1jt þ 2s2jt �

sljt
2
þ srjt

2
� sl

0
jt

2
þ sr

0
jt

2

4
�
�

1� bijkqtdijq

�

�
2p1it þ 2p2it �

plit
2
þ prit

2
� pl

0
it

2
þ pr

0
it

2

4

�
�
2c1ijkqt þ 2c2ijkqt �

cl
ijkqt

2
þ cr

ijkqt

2
� cl

0
ijkqt

2
þ cr

0
ijkqt

2

4

�

�
�

dijq

��

xijkqt

ð24Þ

min f ½ZI
2� ¼

Xm

i¼1

Xn

j¼1

XK

k¼1

XQ

q¼1

1

vkð1� dijqÞ
dijqyijkq

þ
Xm

i¼1

Xn

j¼1

XK

k¼1

XQ

q¼1

XT

t¼1

2c1ijkt þ 2c2ijkt �
cl
ijkt

2
þ cr

ijkt

2
� cl

0
ijkt

2
þ cr

0
ijkt

2

4
xijkqt

ð25Þ

where

yijkq ¼
1; if

PT

t¼1

xijkqt [ 0;

0; if
PT

t¼1

xijkqt ¼ 0

8
>>><

>>>:

ð26Þ

subject to

Xn

j¼1

XK

k¼1

XQ

q¼1

xijkqt �
2a1it þ 2a2it �

alit
2
þ arit

2
� al

0
it

2
þ ar

0
it

2

4
;

i ¼ 1ðmÞ; t ¼ 1; 2; . . .; T

ð27Þ

Xm

i¼1

XK

k¼1

XQ

q¼1

ð1� bijkqtdijqÞxijkqt

�
2b1jt þ 2b2jt �

bljt
2
þ brjt

2
� bl

0
jt

2
þ br

0
jt

2

4
; j ¼ 1ðnÞ; t ¼ 1ðTÞ

ð28Þ

Xm

i¼1

Xn

j¼1

XQ

q¼1

XT

t¼1

xijkqt �
2e1k þ 2e2k �

el
k

2
þ er

k

2
� el

0
k

2
þ er

0
k

2

4
;

k ¼ 1; 2; . . .;K

ð29Þ

xijkqt � 0; i ¼ 1; 2; 3; j ¼ 1; 2; 3; . . .; n; k ¼ 1; 2; . . .;

K; q ¼ 1; 2; . . .;Q:

ð30Þ

5.2 For Model 2

Here, all the parameters are the same as Model 1 except the

rate of breakability, i.e., bIt . We consider the rate of

breakability as bIt ¼ ðb1t ; b
2
t ; b

l
t; b

r
t ; b

l0

t ; b
r0

t Þ, By using the

accuracy function values as stated in Eq. (55), the deter-

ministic equivalent form of Model 2 can be written as

follows:

max f ½ZI
1� ¼

Xm

i¼1

Xn

j¼1

XK

k¼1

XQ

q¼1

XT

t¼1

��
2s1jt þ 2s2jt �

sljt
2
þ srjt

2
� sl

0
jt

2
þ sr

0
jt

2

4

�

� ð1� btdijqÞ

�
2p1it þ 2p2it �

plit
2
þ prit

2
� pl

0
it

2
þ pr

0
it

2

4

�
�
2c1ijkqt þ 2c2ijkqt �

cl
ijkqt

2
þ cr

ijkqt

2
� cl

0
ijkqt

2
þ cr

0
ijkqt

2

4

�

�
�

dijq

��

xijkqt

ð31Þ

with Eqs. (25) and (26) subject to Eqs. (27), (29), (30) and

Xm

i¼1

XK

k¼1

XQ

q¼1

ð1�btdijqÞxijkqt�
2b1jt þ 2b2jt �

bljt
2
þ brjt

2
� bl

0
jt

2
þ br

0
jt

2

4
;

j¼ 1;2;3; . . .;n; t¼ 1;2; . . .;T

ð32Þ

5.3 For Model 3

Here, the deterministic equivalent form of Model 3 is as

follows:

max f ½ZI
1� ¼

Xm

i¼1

Xn

j¼1

XK

k¼1

XQ

q¼1

XT

t¼1

�
2s1jt þ 2s2jt �

sljt
2
þ srjt

2
� sl

0
jt

2
þ sr

0
jt

2

4

�
2p1it þ 2p2it �

plit
2
þ prit

2
� pl

0
it

2
þ pr

0
it

2

4

�
�
2c1ijkqt þ 2c2ijkqt �

cl
ijkqt

2
þ cr

ijkqt

2
� cl

0
ijkqt

2
þ cr

0
ijkqt

2

4

�

�
�

dijq

��

xijkqt

ð33Þ

with Eqs. (25) and (26) subject to Eqs. (27), (29), (30) and

Xm

i¼1

XK

k¼1

XQ

q¼1

xijkqt �
2b1jt þ 2b2jt �

bljt
2
þ brjt

2
� bl

0
jt

2
þ br

0
jt

2

4
;

j ¼ 1ðnÞ; t ¼ 1ðTÞ:
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6 Numerical experiment

In this segment, the following example of a multi-objec-

tive, multi-item and four-dimensional transportation prob-

lem to illustrate the efficiency and effectiveness of the

proposed approach is considered. The selling prices, pur-

chasing costs of different items, availabilities of these

items in the corresponding origins, demands in the desti-

nations, capacity of each vehicle, unit transportation costs

of different items per unit distance and loading and

unloading time are assumed as LR-type TIFNs, which are

as follows:

6.1 Input data

In this experiment, we assume two origins or sources, two

destinations, two conveyances, two routes from each

source to each destination and two items, i.e., m ¼ 2; n ¼
2; K ¼ 2; Q ¼ 2 and T ¼ 2.

The availabilities of items in the origins, the demands of

items in the destinations and the capacity of conveyances

are given in Tables 1, 2 and 3.

Now, the purchasing price, selling price of different

items and unit transportation cost of different items per unit

distance between different origins and destinations by

different conveyances via different routes are given in

Tables 4, 5 and 6.

Again rate of breakability of different items per unit

distance, distance between different origins and

destinations via different routes, speed of the different

conveyances, rate of disturbance of speed due to different

routes between different origins and destinations are given

in Tables 7, 8, 9 and 10.

On addition, the loading and unloading times with

respect to the transportation activity of two items from

different sources to different destinations by different

conveyances are given in Table 11.

6.2 Optimum results

The generalized reduced gradient method (GRG) technique

is a method for solving NLP and LPP problems for han-

dling equality as well as inequality constraints in an opti-

mization problem. The solution techniques used here are

the generalized reduced gradient (GRG) technique (using

LINGO-14.0 solver).

6.2.1 For Model 1

The deterministic optimization problems of Model 1 given

by Eqs. (24)–(30) are solved for the above data. We have

calculated the values of Ui and Li; i ¼ 1; 2: for each

objective separately. These values are given as follows:

U1 ¼ 23512:71; L1 ¼ 13634:39; U2 ¼ 103:07; L2 ¼ 43:85

As the first objective is to maximize and the second

objective is to minimize, using Eqs. (2) and (3) the mem-

bership functions l1ðZ1ðxÞÞ and l2ðZ2ðxÞÞ are defined as

follows:

Table 1 Availabilities in the sources

i t aIit

1 1 (287, 292; 1, 3; 3, 5)

2 (207, 212; 2, 4; 4, 6)

2 1 (179, 181; 4, 3; 5, 6)

2 (194, 200; 2, 3; 6, 5)

Table 2 Demands in the destinations

j t bIjt

1 1 (78, 85; 1, 3; 3, 5)

2 (48, 52; 2, 2; 4, 4)

2 1 (32, 38; 1, 1; 3, 3)

2 (68, 72; 1, 1; 2, 2)

Table 3 Capacities of the two types for conveyances

eI1 eI2

(345, 350; 1, 3; 4, 6) (363, 366; 2, 2; 4, 8)

Table 4 Purchasing prices for different items

i t pIit

1 1 (6, 12; 1, 1; 3, 4)

2 (5, 10; 2, 3; 3, 6)

2 1 (4, 8; 1, 1; 3, 3)

2 (5, 10; 2, 1; 5, 2)

Table 5 Selling prices for different items

j t sIjt

1 1 (54, 60; 2, 3; 5, 4)

2 (82, 87; 1, 3; 4, 6)

2 1 (80, 83; 2, 2; 4, 8)

2 (70, 75; 3, 1; 5, 3)
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l1ðZ1ðxÞÞ

¼

1 for Z1ðxÞ� 23512:71

Z1ðxÞ � 13634:39

23512:71� 13634:39
for 13634:39�Z1ðxÞ� 23512:71

0 for Z1ðxÞ� 13634:39

8
>><

>>:

l1ðZ2ðxÞÞ

¼

0 for Z2ðxÞ� 103:07

103:07� Z2ðxÞ
103:07� 43:85

for 43:85�Z2ðxÞ� 103:07

1 for Z2ðxÞ� 43:85

8
>><

>>:

Now to get an efficient solution, we compute the following

reduced deterministic single-objective problem with the

constraints in Eqs. (27)–(30).

max a1l1ðZ1ðxÞÞ þ a2l2ðZ2ðxÞÞ; where a1 þ a2 ¼ 1; 0\ai\1

ð34Þ

After solving this, we obtain the solutions for total profit

ðZ1Þ and total transportation time ðZ2Þ of the proposed

Table 6 Unit transportation costs of different items per unit distance

i j k q cIijkq1 cIijkq2

1 1 1 1 (0.13, 0.15; 0.01, 0.02; 0.04, 0.03) (0.22, 0.26; 0.02, 0.01; 0.03, 0.04)

2 (0.12, 0.2; 0.01, 0.02; 0.05, 0.04) (0.17, 0.23; 0.02, 0.02; 0.03, 0.03)

2 1 (0.12, 0.14; 0.03, 0.02; 0.04, 0.05) (0.11, 0.15; 0.01, 0.03; 0.06, 0.04)

2 (0.17, 0.2; 0.03, 0.02; 0.05, 0.06) (0.06, 0.14; 0.03, 0.01; 0.04, 0.06)

2 1 1 (0.09, 0.17; 0.02, 0.03; 0.05, 0.04) (0.08, 0.16; 0.01, 0.02; 0.06, 0.05)

2 (0.1, 0.14; 0.03, 0.01; 0.05, 0.07) (0.15, 0.17; 0.01, 0.02; 0.04, 0.03)

2 1 (0.08, 0.12; 0.02, 0.02; 0.05, 0.05) (0.2, 0.28; 0.01, 0.03; 0.07, 0.05)

2 (0.17, 0.23; 0.02, 0.03; 0.06, 0.05) (0.36, 0.38; 0.02, 0.01; 0.03, 0.04)

2 1 1 1 (0.12, 0.16; 0.03, 0.02; 0.06, 0.07) (0.12, 0.15; 0.02, 0.01; 0.05, 0.06)

2 (0.12, 0.2; 0.01, 0.02; 0.04, 0.03) (0.12, 0.2; 0.03, 0.02; 0.05, 0.06)

2 1 (0.06, 0.14; 0.03, 0.01; 0.04, 0.06) (0.18, 0.22; 0.02, 0.03; 0.05, 0.04)

2 (0.17, 0.19; 0.01, 0.02; 0.04, 0.03) (0.36, 0.4; 0.02, 0.02; 0.05, 0.05)

2 1 1 (0.08, 0.16; 0.02, 0.03; 0.06, 0.05) (0.082, 0.142; 0.02, 0.01; 0.03, 0.04)

2 (0.15, 0.17; 0.03, 0.02; 0.06, 0.07) (0.1, 0.14; 0.02, 0.02; 0.03, 0.03)

2 1 (0.09, 0.12; 0.03, 0.02; 0.04, 0.05) (0.16, 0.24; 0.01, 0.03; 0.06, 0.04)

2 (0.16, 0.24; 0.01, 0.02; 0.04, 0.03) (0.06, 0.14; 0.01, 0.03; 0.07, 0.05)

Table 7 Rate of breakability of different items per unit distance

i j k q bijkq1 bijkq2

1 1 1 1 0.015 0.025

2 0.015 0.016

2 1 0.01 0.011

2 0.25 0.015

2 1 1 0.016 0.026

2 0.025 0.016

2 1 0.015 0.015

2 0.012 0.013

2 1 1 1 0.015 0.025

2 0.025 0.025

2 1 0.02 0.02

2 0.022 0.01

2 1 1 0.013 0.017

2 0.015 0.011

2 1 0.013 0.02

2 0.013 0.012

Table 8 Distance from the sources to the destinations via different

routes

i j dij1 dij2

1 1 30 40

2 42 30

2 1 40 35

2 53 40

Table 9 Speed of the two types of conveyances

v1 ¼ 30 v2 ¼ 20

Table 10 Rate of disturbance of speed due to two routes

i j dIij1 dIij2

1 1 0.0022 0.01

2 0.003 0.002

2 1 0.02 0.005

2 0.001 0.02
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Table 11 Loading and unloading times

i j k cIijk1 cIijk2

1 1 1 (0.08, 0.12; 0.03, 0.01; 0.04, 0.06) (0.17, 0.23; 0.03, 0.02; 0.05, 0.06)

2 (0.24, 0.26; 0.03, 0.01; 0.04, 0.06) (0.13, 0.17; 0.02, 0.03; 0.05, 0.04)

2 1 (0.27, 0.33; 0.01, 0.02; 0.04, 0.03) (0.21, 0.23; 0.02, 0.02; 0.05, 0.05)

2 (0.09, 0.13; 0.01, 0.03; 0.07, 0.05) (0.18, 0.24; 0.02, 0.03; 0.06, 0.05)

2 1 1 (0.31, 0.35; 0.02, 0.03; 0.06, 0.05) (0.47, 0.53; 0.02, 0.01; 0.03, 0.04)

2 (0.19, 0.21; 0.03, 0.02; 0.06, 0.07) (0.78, 0.82; 0.02, 0.02; 0.03, 0.03)

2 1 (0.87, 0.93; 0.03, 0.02; 0.04, 0.05) (0.09, 0.11; 0.02, 0.01; 0.03, 0.04)

2 (0.09, 0.13; 0.01, 0.02; 0.05, 0.04) (0.2, 0.26; 0.01, 0.03; 0.07, 0.05)

Table 12 Optimum results with different values of a1, a2 via proposed method for Model 1

a1 a2 l1 l2 Z1 Z2 xijkqt

0.95 0.05 0.995 0.153 23,461.33 94.03 x11111 ¼ 135:00, x11211 ¼ 1:93, x11212 ¼ 210:00; x12221 ¼ 153:07,
x21111 ¼ 16:00; x22122 ¼ 197:00

0.90 0.10 0.992 0.158 23,435.01 93.73 x11111 ¼ 144:00, x11212 ¼ 210:00, x12221 ¼ 146:00, x21111 ¼ 7:00,
x22122 ¼ 197:00, x22221 ¼ 9:00

0.85 0.15 0.988 0.208 23,398.82 90.76 x11111 ¼ 151, x11212 ¼ 210:00, x12221 ¼ 139:00, x22122 ¼ 197:00,
x22221 ¼ 16:00

0.5 0.5 0.987 0.211 23,387.31 90.57 x11111 ¼ 149:09, x11212 ¼ 210:00, x12221 ¼ 140:91, x22122 ¼ 197:00,
x22221 ¼ 14:09

0.4 0.6 0.951 0.272 23,029.96 86.98 x11111 ¼ 149:09, x11212 ¼ 210:00, x12221 ¼ 140:91, x22122 ¼ 197:00

0.35 0.65 0.126 0.736 14,877.96 59.47 x11111 ¼ 149:09, x11212 ¼ 74:63, x12221 ¼ 140:91, x22122 ¼ 125:00

0.3 0.7 0 0.798 13,634.39 55.81 x11111 ¼ 149:09, x11212 ¼ 74:63, x12221 ¼ 107:62, x22122 ¼ 125:00

Table 13 Optimum results via convex combination method for Model 1

w1 w2 Z1 Z2 xijkqt

0.9 0.1 23, 512.71 103.07 x11111 ¼ 135:00, x11211 ¼ 11:07, x11212 ¼ 210:00, x12221 ¼ 143:93, x22121 ¼ 16:00, x22122 ¼ 197:00

0.1 0.9 23, 461.33 94.03 x11111 ¼ 135:00, x11211 ¼ 1:93, x11212 ¼ 210:00 x12221 ¼ 153:07, x21111 ¼ 16:00, x22122 ¼ 197:00

Table 14 Optimum results with different values of a1, a2 via proposed method for Model 2

a1 a2 l1 l2 Z1 Z2 xijkqt

0.95 0.05 0.994 0.251 36,196.62 146.76 x11111 ¼ 96:47, x11212 ¼ 210:00, x12111 ¼ 54:53, x12211 ¼ 139:00,
x21112 ¼ 101:76, x22112 ¼ 95:24, x22211 ¼ 16:00

0.80 0.20 0.9449195 0.5644063 35,047.92 101.7604 x11111 ¼ 96:47, x11112 ¼ 156:29 , x11212 ¼ 53:71 , x12211 ¼ 193:53 ,

x22112 ¼ 95:24 , x22211 ¼ 117:76

0.60 0.40 0.92 0.61 34,496.27 95.65 x11111 ¼ 96:47, x11112 ¼ 54:53, x11212 ¼ 155:47, x12211 ¼ 193:53,
x22112 ¼ 197:00, x22211 ¼ 16:00

0.4 0.6 0.89 0.63 33,785.75 92.38 x11111 ¼ 151:00 , x11212 ¼ 210:00, x12211 ¼ 139:00, x22112 ¼ 197:00,
x22211 ¼ 16:00

0.35 0.65 0.82 0.67 32,025.30 86.34 x11111 ¼ 151:00 , x11212 ¼ 58:82, x12211 ¼ 139:00, x22112 ¼ 197:00,
x22211 ¼ 167:18

0.30 0.70 0.739 0.710 30,259.91 80.88 x11111 ¼ 96:47 , x11212 ¼ 58:82, x12211 ¼ 193:53, x22112 ¼ 197:00,
x22211 ¼ 112:65

0.1 0.9 0.000000056 1 13,026.18 39.25 x11111 ¼ 96:47 , x11212 ¼ 58:82, x12211 ¼ 44:30, x22112 ¼ 95:24

11946 Neural Computing and Applications (2020) 32:11937–11955

123



Model 1 Eqs. (6)–(12) for the above data. The solutions are

listed in Table 12. We also obtain the solutions for Model 1

after conversion of multi-objective into single objective by

using CCM, which is given in Table 13.

6.2.2 For Model 2

To get the optimum results for this model, we use the

above data except the rate of breakability, i.e., bijkqt. The
corresponding values are b1 ¼ 0:005, b2 ¼ 0:01. With

respect to the deterministic optimization problems of

Model 2 given by Eqs. (25)–(27) and (29)–(32) using these

data, the calculated values of Ui and Li; i ¼ 1; 2: are given

as follows:

U1 ¼ 36331:59; L1 ¼ 13026:18; U2 ¼ 182:76; L2 ¼ 39:25

Consequently, we formulate the membership functions

l1ðZ1Þ and l2ðZ2Þ. Then, after getting the reduced

deterministic single-objective problem, we obtain the

solutions of Model 2 (Eqs. (13) and (14)), which are listed

in Table 14. Again Table 15 contains the solutions of

Model 2 after conversion of multi-objective into single

objective by using CCM.

6.2.3 For Model 3

At last, we get the optimum results for Model 3 by using

the same input data as given in Sect. 6.1 except the rate of

breakability, because in this model we consider non-

breakable/damageable items. In this case, the calculated

values of Ui and Li; i ¼ 1; 2: are given as follows:

U1 ¼ 48250:95; L1 ¼ 13634:39; U2 ¼ 263:50; L2 ¼ 49:99

Here also, we formulate the membership functions l1ðZ1Þ
and l2ðZ2Þ. Then, after getting the reduced deterministic

single-objective problem, we obtain the solutions of Model

Table 15 Optimum results via convex combination method for Model 2

w1 w2 Z1 Z2 xijkqt

0.90 0.10 36,331.59 182.76 x11111 ¼ 62:39, x11211 ¼ 19:02, x11212 ¼ 121:39, x12112 ¼ 88:61, x12211 ¼ 208:59, x21112 ¼ 197:00,
x21211 ¼ 16:00

0.50 0.50 36,320.66 172.17 x11111 ¼ 81:41 , x11212 ¼ 140:41, x12112 ¼ 69:59, x12211 ¼ 208:59, x21112 ¼ 176:56, x21211 ¼ 16:00,
x22112 ¼ 20:44

0.10 0.90 36,196.62 146.76 x11111 ¼ 96:47 , x11212 ¼ 210:00, x12111 ¼ 54:53, x12211 ¼ 139:00, x21112 ¼ 101:76, x22112 ¼ 95:24,
x22211 ¼ 16:00

Table 16 Optimum results with different values of a1, a2 via proposed method for Model 3

a1 a2 l1 l2 Z1 Z2 xijkqt

0.95 0.05 0.995 0.500 48,063.95 156.83 x11111 ¼ 82:00, x11212 ¼ 210:00, x12121 ¼ 69:00, x21112 ¼ 127:00, x22122 ¼ 70:00,
x22211 ¼ 155:00

0.90 0.10 0.981 0.641 47,588.18 126.57 x11111 ¼ 82:00, x11112 ¼ 25:00, x11212 ¼ 185:00, x12121 ¼ 171:00, x22122 ¼ 70:00,
x22211 ¼ 180:00

0.50 0.50 0.925 0.817 45,640.12 88.97 x11111 ¼ 82:00, x11112 ¼ 69:00, x12211 ¼ 185:00, x22122 ¼ 197:00, x22211 ¼ 180:00

0.35 0.65 0.910 0.826 45,143.75 87.07 x11111 ¼ 101:00, x11112 ¼ 50:00, x12211 ¼ 185:00, x22122 ¼ 197:00, x22211 ¼ 180:00

0.30 0.70 0.879 0.833 44,058.75 85.58 x11111 ¼ 151:00, x11212 ¼ 50:00, x12211 ¼ 135:00, x22122 ¼ 197:00, x22211 ¼ 180:00

Table 17 Optimum results via convex combination method for Model 3

w1 w2 Z1 Z2 xijkqt

0.95 0.50 48,250.60 198.42 x11212 ¼ 210:00, x12121 ¼ 126:00, x21112 ¼ 127:00, x21211 ¼ 82:00, ‘x22111 ¼ 25:00, x22122 ¼ 70:00,
x22211 ¼ 73:00

0.60 0.40 48,241.48 181.65 x11212 ¼ 210:00 , x12121 ¼ 151:00, x21112 ¼ 127:00, x21211 ¼ 82:00, x22122 ¼ 70:00, x22211 ¼ 73:00

0.10 0.90 48,063.95 156.83 x11111 ¼ 82:00, x11212 ¼ 210:00, x12121 ¼ 69:00, x21112 ¼ 127:00, x22122 ¼ 70:00, x22211 ¼ 155:00
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3 given by Eqs. (15) and (16), which are listed in Table 16.

Again Table 17 contains the solutions of Model 3 after

conversion of multi-objective into single objective by using

CCM.

6.3 Discussion

Tables 12, 14 and 16 give the optimum results for Model 1,

Model 2 and Model 3, respectively, by our proposed

method of conversion of multi-objective optimization

problem into single-objective optimization problem. Here,

the optimum results are presented for different values of

the weight functions of the membership functions of two

objectives. While we increase the weight function of the

membership function of the first objective, i.e., a1; and

decrease the weight function of the membership function of

the second objective, i.e., a2;, we observe that the profit

increases and the time also increases which is an expected

phenomenon as we have to maximize profit and minimize

time. Also we observe that the membership functions of the

objective functions change as we desire. Again Tables 13,

15 and 17 give the optimum results for Model 1, Model 2

and Model 3, respectively, by CCM.

In Model 1, considering the highest value of a1 and the

lowest value of a2 among all the taken values, the optimum

profit is $23,461.33 and optimum time is 94.03 min. Again

considering the lowest value of a1 and the highest value of

a2 among all the taken values, the optimum profit is

$13,634.39 and optimum time is 55.81 min. However, in

the second model for the highest value of a1 and for the

lowest value of a2 among all the considering values, the

optimum profit is $36,196.62 and optimum time is

146.76 min. Again for the lowest value of a1 and the

highest value of a2 among all the taken values, the opti-

mum profit is $13,026.18 and optimum time is 39.25 min.

In Model 3 for the highest value of a1 and the lowest value

of a2 among all the taken values, the optimum profit is

$48,063.95 and optimum time is 156.83 min. Again for the

lowest value of a1 and the highest value of a2 among all the

considering values, the optimum profit is $44,058.75 and

optimum time is 85.58 min. From these results, we have

observed that for Model 1, we get maximum profit. Again

considering Model 3, we get minimum profit, whereas a

moderate profit is obtained for Model 2, which is expected.

This is because in Model 1, damage of the items occurs and

it depends on different conveyances along different routes

and the type of the item, in Model 2 damage of the items

occurs but it depends on only its type and in Model 3, no

damage occurs.

7 Practical implication

The proposed model is very much helpful in the real-world

business sectors. A retailer, Mr. Parimal Das, has outlets of

different types of glass containers at three different places

Haldia, Kharagpur and Panskura in West Bengal, India. He

collects the products from different manufacturing com-

panies situated in Kolkata, Howrah and Durgapur in West

Bengal, India. The products can be transported from dif-

ferent manufacturing companies to the retailer through

different paths such as NH-4, NH-6 (NH: National High-

way) and other village paths using different conveyances

like lorry, tempo, truck, etc. Since there are different paths

between one manufacturing company and one retailer, the

distances will differ. Moreover, as glass container is a

breakable item, depending on the path and the type of the

conveyance, rate of breakability will be different. On the

other hand, as there are different types of conveyances

between one manufacturing company and one retailer, the

speed of each conveyance is different, which will affect the

time minimization objective. Furthermore, depending on

the path, the speed of each conveyance will vary due to the

road condition. As a result, rate of disturbance of speed

occurs. As customers’ mood is unpredictable, the avail-

abilities at different manufacturing companies vary, dif-

ferent prices, times vary; these parameters can be

represented as uncertain or imprecise quantities by LR-type

TIFNs. Hence, the present investigation will be helpful to

execute the above real-life phenomena.

8 Conclusions

Here, we concentrate on dealing with novel multi-objec-

tive, multi-item 4DTP with the relevant parameters in

L�R-type intuitionistic fuzzy environment. To the best of

our knowledge, this is not done so far. It is more realistic to

consider the choice of routes along with the vehicles in a

TP, as we have done here. As a result, the distance of

different routes from different sources to different desti-

nations is taken into consideration. For the first time, the

speed of different vehicles and rate of disturbance of speed

due to different routes for the time minimization objective

are introduced which are quite realistic. The reduced

deterministic models are obtained on implementation of a

defuzzification approach by using the accuracy function.

We propose a new method for converting multi-objective

problem into single objective one. Here, we present three

models: The first model is about transportation of break-

able items which depends on different conveyances along

different routes and the type of the item, the second one is

about transportation of damageable items which depends
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on only its type, and the third one considers nonbreak-

able/damageable items. The models are illustrated by some

numerical examples, and optimal results are presented in

tabular forms for all the models. In the future, this approach

can be applied for different realistic problems such as

supply chain network design, transportation problems

including space constraints, price discounts on the basis of

amount of transported units. As a direction for future

research, more investigation can be carried out to develop a

multi-choice, multi-objective 4DTP and also to include the

aspects related to the sustainability in the 4DTP as well.
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Appendix

Preliminaries

In this section, we recall some basic definitions and results

which will be used in the next sections of this paper.

Definition 1 An intuitionistic fuzzy set (IFS) is a gener-

alization of the ordinary fuzzy sets, which is characterized

by a membership function and a nonmembership function.

Let X ¼ fx1; x2; . . .; xng be a collection of some objects,

then an intuitionistic fuzzy set AI in X is defined as the form

of an ordered triplet AI ¼ fhxi; lAI ðxiÞ; mAI ðxiÞi=xi 2 Xg,
where lAI ðxiÞ : X ! ½0; 1� is called the membership func-

tion or grade of membership of xi in AI and mAI ðxiÞ : X½0; 1�
is called the nonmembership function or grade of non-

membership of xi in AI satisfying the condition

0� lAI ðxiÞ þ mAI ðxiÞ� 1. pAI ðxÞ ¼ 1� lAI ðxÞ � mAI ðxÞ
represents the degree of hesitation or the degree of inde-

terminacy of xi being in AI in X and 0� pAI � 1.

Definition 2 The a-cut of an IFS AI is denoted as AI
a and is

given by:

AI
a ¼ fx 2 X : lAI ðxÞ� ag; 8a 2 ½0; 1�

Definition 3 The b-cut of an IFS AI is denoted as AI
b and

is given by:

AI
b ¼ fx 2 X : mAI ðxÞ� bg; 8b 2 ½0; 1�

Definition 4 The ða; bÞ-cut of an IFS AI is denoted as AI
a;b

and is given by:

AI
a;b ¼ fx 2 X : lAI ðxÞ� a; mAI ðxÞ� b; aþ b� 1g;
8a; b 2 ½0; 1�

Definition 5 An IFS AI ¼ fhx; lAI ðxÞ; mAI ðxÞi=x 2 Rg is

called an intuitionistic fuzzy number (IFN) if the following

hold

(i) There exists m 2 R such that lAI ðmÞ ¼ 1 and

mAI ðmÞ ¼ 0 (m is called the mean value of AI)

(ii) The membership function lAI and nonmembership

function mAI are piecewise continuous functions

from R to the closed interval [0, 1] and

0� lAI ðxÞ þ mAI ðxÞ� 1; ,8x 2 R. lAI , mAI are of

the following forms:

lAI ðxÞ ¼

f1ðxÞ; for m� l\x\m

1; for x ¼ m

f2ðxÞ; for m\x\mþ r

0; otherwise

8
>>><

>>>:

and

mAI ðxÞ

¼

g1ðxÞ; for m� l0\x\m; 0� f1ðxÞ þ g1ðxÞ� 1

0; for x ¼ m

g2ðxÞ; for m\x\mþ r0; 0� f2ðxÞ þ g2ðxÞ� 1

1; otherwise

8
>>><

>>>:

Here, f1 and f2 are piecewise continuous, strictly increasing

and strictly decreasing functions in ðm� l;mÞ and ðm;mþ
rÞ; respectively. Again g1 and g2 are piecewise continuous,

strictly decreasing and strictly increasing functions in ðm�
l0;mÞ and ðm;mþ r0Þ; respectively. l and r are the left and

right spreads of membership function lAI ; respectively.

Again l0 and r0 are the left and right spreads of nonmem-

bership function mAI ; respectively. The IFN AI is repre-

sented by ðm; l; r; l0; r0Þ.

Definition 6 An IFN AI is called trapezoidal intuitionistic

fuzzy number (TIFN) if its membership function lAI and

nonmembership function mAI are as follows:
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lAI ðxÞ ¼

x� r1

r2 � r1
; for r1 � x� r2

1; for r2 � x� r3
r4 � x

r4 � r3
; for r3 � x� r4

0; otherwise

8
>>>>><

>>>>>:

and

mAI ðxÞ ¼

r2 � x

r2 � r01
; for r01 � x� r2

0; for r2 � x� r3
x� r3

r04 � r3
; for r3 � x� r04

1; otherwise

8
>>>>>><

>>>>>>:

where r01 � r1 � r2 � r3 � r4 � r04. The TIFN AI in R is

represented as ðr1; r2; r3; r4; r01; r2; r3; r04Þ with its member-

ship function lAI and nonmembership function mAI .

Definition 7 A functionf : ½0;1Þ ! ½0; 1� is called a

shape function if the following conditions hold:

(a) f ð0Þ ¼ 1

(b) f is continuous function on ½0;1Þ
(c) f is decreasing on ½0;1Þ and
(d) limx!1 f ðxÞ ¼ 0:

Definition 8 An IFN AI is called LR-type IFN, so that for

membership function lAI ðxÞ and nonmembership function

mAI ðxÞ, 0� lAI ðxÞ þ mAI ðxÞ� 1 holds and is defined as

follows:

lAI ðxÞ ¼
L

m� x

l

� �
; for x�m

R
x� m

r

� �
; for x�m

8
><

>:

and

mAI ðxÞ ¼
1� L

m� x

l0

� �
; for x�m

1� R
x� m

r0

� �
; for x�m

8
><

>:

Definition 9 The LR-type representation of a TIFN AI ¼
ðr1; r2; r3; r4; r01; r2; r3; r04Þ is given by AI ¼ ðr2; r3; r2 �
r1; r4 � r3; r2 � r01; r

0
4 � r3Þ; and its membership function

lAI and nonmembership function mAI are defined by

lAI ðxÞ ¼

L
r2 � x

r2 � r1

� �

; for x� r2

1; for r2 � x� r3

R
x� r3

r4 � r3

� �

; for x� r3

8
>>>>><

>>>>>:

and

mAI ðxÞ ¼

1� L
r2 � x

r2 � r01

� �

; for x� r2

0; for r2 � x� r3

1� R
x� r3

r04 � r3

� �

; for x� r3

8
>>>>><

>>>>>:

where LðxÞ ¼ RðxÞ ¼ maxf0; 1� xg; r2 � r1 and r4 � r3
are the left spread and right spread of the membership

function lAI ; respectively, whereas r2 � r01 and r04 � r3 are

the left spread and right spread of the nonmembership

function mAI ; respectively.

Theorem 1 The a-cut and b-cut of a TIFN AI ¼
ðr1; r2; r3; r4; r01; r2; r3; r04Þ are given by AI

a ¼ ½r1 þ ðr2 �
r1Þa; r4 � ðr4 � r3Þa� and AI

b ¼ ½r2 � ðr2 � r01Þb; r3 þ
ðr04 � r3Þb�, 8a; b 2 ð0; 1��

Proof For a 2 ð0; 1�,

lAI ðxÞ� a ) x� r1

r2 � r1
� a;

r4 � x

r4 � r3
� a

) x� r1 þ ðr2 � r1Þa; x� r4 � ðr4 � r3Þa
) r1 þ ðr2 � r1Þa� x� r4 � ðr4 � r3Þa
) AI

a ¼ ½r1 þ ðr2 � r1Þa; r4 � ðr4 � r3Þa�

Now for b 2 ð0; 1�,

mAI ðxÞ� b ) r2 � x

r2 � r01
� b;

x� r3

r04 � r3
� b

) x� r2 � ðr2 � r01Þb; x� r3 þ ðr04 � r3Þb
) r2 � ðr2 � r01Þb� x� r3 þ ðr04 � r3Þb
) AI

b ¼ ½r2 � ðr2 � r01Þb; r3 þ ðr04 � r3Þb�

Hence, it is proved. h

Theorem 2 The ða; bÞ-cut of a TIFN AI ¼
ðr1; r2; r3; r4; r01; r2; r3; r04Þ is given by AI

a;b ¼ ½r1 þ ðr2 � r1Þ
a; r4 � ðr4 � r3Þa� \ ½r2 � ðr2 � r01Þb; r3 þ ðr04 � r3Þb�, 8a;
b 2 ð0; 1��

Proof For a 2 ð0; 1�, the a-cut of a TIFN AI ¼
ðr1; r2; r3; r4; r01; r2; r3; r04Þ is given by AI

a ¼ ½r1 þ ðr2 � r1Þ
a; r4 � ðr4 � r3Þa�.

For b 2 ð0; 1�, the b-cut of the TIFN AI ¼
ðr1; r2; r3; r4; r01; r2; r3; r04Þ is given by AI

b ¼ ½r2 � ðr2 � r01Þ
b; r3 þ ðr04 � r3Þb�, 8b 2 ð0; 1��.

So by Definition 4, AI
a;b ¼ ½r1þðr2� r1Þa; r4�ðr4� r3Þ

a� \ ½r2�ðr2� r01Þb; r3þðr04� r3Þb�, 8a2 ð0;1�;aþb�1�.
Hence, it is proved. h

Theorem 3 Let AI ¼ ðm; n; l; r; l0; r0Þ be a LR-type TIFN,

where l and r are the left spread and right spread of the

membership function lAI , l0 and r0 are the left spread and
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right spread of the nonmembership function mAI . Then, its

a-cut and b-cut are given by AI
a ¼ ½m� lL�1ðaÞ; nþ

rR�1ðaÞ� and AI
b ¼ ½m� l0L�1ð1� bÞ; nþ rR�1ð1� bÞ�,

8a; b 2 ð0; 1�

Proof For a 2 ð0; 1�,

lAI ðxÞ� a ) L

�
m� x

l

�

� a;R

�
x� n

r

�

� a

) x�m� lL�1ðaÞ; x� nþ rR�1ðaÞ
) m� lL�1ðaÞ� x� nþ rR�1ðaÞ
) AI

a ¼ ½m� lL�1ðaÞ; nþ rR�1ðaÞ�

Now for b 2 ð0; 1�,

mAI ðxÞ� b ) 1� L

�
m� x

l0

�

� b; 1� R

�
x� n

r0

�

� b

) x�m� l0L�1ð1� bÞ; x� nþ r0R�1ð1� bÞ
) m� l0L�1ð1� bÞ� x� nþ r0R�1ð1� bÞ
) AI

b ¼ ½m� l0L�1ð1� bÞ; nþ r0R�1ð1� bÞ�

Hence, it is proved. h

Theorem 4 Let AI ¼ ðm; n; l; r; l0; r0Þ be a LR-type TIFN.

Then, its ða; bÞ-cut is given by AI
a;b ¼ ½m� lL�1ðaÞ; nþ

rR�1ðaÞ� \ ½m� l0L�1ð1� bÞ; nþ r0R�1ð1� bÞ�, 8a; b 2
ð0; 1� and aþ b� 1.

Proof For a 2 ð0; 1�, The a-cut of a LR-type TIFN AI ¼
ðm; n; l; r; l0; r0Þ is given by AI

a ¼ ½m� lL�1ðaÞ; nþ
rR�1ðaÞ� For b 2 ð0; 1�, The b-cut of the LR-type TIFN

AI ¼ ðm; n; l; r; l0; r0Þ is given by AI
b ¼ ½m� l0L�1ð1� bÞ;

nþ rR�1ð1� bÞ�, 8b 2 ð0; 1��.
So by definition, AI

a;b ¼ ½m� lL�1ðaÞ; nþ rR�1ðaÞ� \
½m� l0L�1ð1� bÞ; nþ r0R�1ð1� bÞ�,
8a; b 2 ð0; 1�; aþ b� 1. Hence, it is proved. h

Arithmetic Operations on LR -type TIFN

Proposition 1 (Addition) If A1
I ¼ ðm1; n1; l1; r1; l

0
1; r

0
1Þ

and A2
I ¼ ðm2; n2; l2; r2; l

0
2; r

0
2Þ are two LR-type TIFNs,

then A1
I þ A2

I ¼ ðm1 þ m2; n1 þ n2; l1 þ l2; r1 þ r2; l
0
1 þ

l02; r
0
1 þ r02Þ.

Proof For a 2 ð0; 1� and b 2 ð0; 1�, the a-cut and b-cut of
the LR-type TIFNs A1

I ¼ ðm1; n1; l1; r1; l
0
1; r

0
1Þ and A2

I ¼
ðm2; n2; l2; r2; l

0
2; r

0
2Þ are given by A1

I
a ¼ ½m1 � l1L

�1ðaÞ;
n1 þ r1R

�1ðaÞ�, A2
I
a ¼ ½m2 � l2L

�1ðaÞ; n2 þ r2R
�1ðaÞ� ;

A1
I
b ¼ ½m1 � l01L

�1ð1� bÞ; n1 þ r01R
�1ð1� bÞ�, A2

I
a ¼

½m2 � l02L
�1ð1� bÞ; n2 þ r02R

�1ð1� bÞ�; respectively Now,

ðA1
I þ A2

IÞa ¼ A1
I
a þ A2

I
a

¼ ½m1 � l1L
�1ðaÞ; n1 þ r1R

�1ðaÞ�
þ ½m2 � l2L

�1ðaÞ; n2 þ r2R
�1ðaÞ�

¼ ½ðm1 þ m2Þ � ðl1 þ l2ÞL�1ðaÞ; ðn1 þ n2Þ
þ ðr1 þ r2ÞR�1ðaÞ�

ð35Þ

Since L and R are decreasing functions on ½0;1� with

Lð0Þ ¼ Rð0Þ ¼ 1, 9 some a ¼ a0 2 ð0; 1� such that

L�1ða0Þ ¼ R�1ða0Þ ¼ 1.

Therefore,

ðA1
I þ A2

IÞa0 ¼ ½ðm1 þ m2Þ � ðl1 þ l2Þ; ðn1 þ n2Þ þ ðr1 þ r2Þ�
ð36Þ

Now, by putting a ¼ 1 in Eq. (35), we get the model point

of A1
I þ A2

I , which is given by

ðA1
I þ A2

IÞ1 ¼ ½m1 þ m2; n1 þ n2� ð37Þ

Again

ðA1
I þ A2

IÞb ¼ A1
I
b þ A2

I
b

¼ ½m1 � l01L
�1ð1� bÞ; n1 þ r01R

�1ð1� bÞ�
þ ½m2 � l02L

�1ð1� bÞ; n2 þ r02R
�1ð1� bÞ�

¼ ½ðm1 þ m2Þ � ðl01 þ l02ÞL�1ð1� bÞ; ðn1 þ n2Þ
þ ðr01 þ r02ÞR�1ð1� bÞ�

ð38Þ

Since L and R are decreasing functions on ½0;1� with

Lð0Þ ¼ Rð0Þ ¼ 1, 9 some b ¼ b0 2 ð0; 1� such that

L�1ð1� b0Þ ¼ R�1ð1� b0Þ ¼ 1.

Therefore,

ðA1
I þ A2

IÞb0 ¼ ½ðm1 þ m2Þ � ðl01 þ l02Þ; ðn1 þ n2Þ þ ðr01 þ r02Þ�
ð39Þ

Since A1
I ;A2

I are two LR-type TIFNs, 0� l1 � l01,
0� l2 � l02, 0� r1 � r01 and 0� r2 � r02, so 0� l1 þ l2 � l01 þ
l02 and 0� r1 þ r2 � r01 þ r02

So, from Eqs. (36), (37) and (39), we have A1
I þ A2

I ¼
ðm1 þ m2; n1 þ n2; l1 þ l2; r1 þ r2; l

0
1 þ l02; r

0
1 þ r02Þ.

Hence, it is proved. h

Proposition 2 (Subtraction) If A1
I ¼ ðm1; n1; l1; r1; l

0
1; r

0
1Þ

and A2
I ¼ ðm2; n2; l2; r2; l

0
2; r

0
2Þ are two LR-type TIFNs,

then A1
I � A2

I ¼ ðm1 � n2;n1 �m2; l1 þ r2; r1 þ l2; l
0
1 þ r02;

r01 þ l02Þ.

Proof The a-cut and b-cut of the LR-type TIFNs A1
I ¼

ðm1; n1; l1; r1; l
0
1; r

0
1Þ and A2

I ¼ ðm2; n2; l2; r2; l
0
2; r

0
2Þ are

given by
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A1
I
a ¼ ½m1 � l1L

�1ðaÞ; n1 þ r1R
�1ðaÞ�;

A2
I
a ¼ ½m2 � l2L

�1ðaÞ; n2 þ r2R
�1ðaÞ�;

A1
I
b ¼ ½m1 � l01L

�1ð1� bÞ; n1 þ r
0

1R
�1ð1� bÞ�;

A2
I
a ¼ ½m2 � l02L

�1ð1� bÞ; n2 þ r02R
�1ð1� bÞ�;

respectively. Now,

ðA1
I � A2

IÞa ¼ A1
I
a � A2

I
a

¼ ½m1 � l1L
�1ðaÞ; n1 þ r1R

�1ðaÞ�
� ½m2 � l2L

�1ðaÞ; n2 þ r2R
�1ðaÞ�

¼ ½m1 � n2 � ðl1L�1ðaÞ þ r2R
�1ðaÞÞ; n1

� m2 þ ðr1R�1ðaÞ þ l2L
�1ðaÞÞ�

ð40Þ

Since L and R are decreasing functions on ½0;1� with

Lð0Þ ¼ Rð0Þ ¼ 1, 9 some a ¼ a0 2 ð0; 1� such that

L�1ða0Þ ¼ R�1ða0Þ ¼ 1.

Therefore,

ðA1
I � A2

IÞa0 ¼ ½ðm1 � n2Þ � ðl1 þ r2Þ; ðn1 � m2Þ þ ðr1 þ l2Þ�
ð41Þ

Now, by putting a ¼ 1 in Eq. (40), we get the model point

of A1
I � A2

I , which is given by

ðA1
I � A2

IÞ1 ¼ ½m1 � n2; n1 � m2� ð42Þ

Again

ðA1
I �A2

IÞb ¼A1
I
b�A2

I
b

¼ ½m1� l01L
�1ð1�bÞ;n1þ r01R

�1ð1�bÞ�
� ½m2� l02L

�1ð1�bÞ;n2þ r02R
�1ð1�bÞ�

¼ ½m1�n2�ðl01L�1ð1�bÞþ r02R
�1ð1�bÞÞ;n1

�m2þðr01R�1ð1�bÞþ l02L
�1ð1�bÞÞ�

ð43Þ

Since L and R are decreasing functions on ½0;1� with

Lð0Þ ¼ Rð0Þ ¼ 1, 9 some b ¼ b0 2 ð0; 1� such that

L�1ð1� b0Þ ¼ R�1ð1� b0Þ ¼ 1.

Therefore,

ðA1
I � A2

IÞb0 ¼ ½ðm1 � n2Þ � ðl01 þ r02Þ; ðn1 � m2Þ þ ðr01 þ l02Þ�
ð44Þ

Since A1
I ;A2

I are two LR-type TIFNs, 0� l1 � l01,
0� l2 � l02, 0� r1 � r01 and 0� r2 � r02, so 0� l1 þ r2 � l01 þ
r02 and 0� r1 þ l2 � r01 þ l02.

Therefore, from Eqs. (41), (42) and (44), we have

A1
I � A2

I ¼ ðm1 � n2; n1 � m2; l1 þ r2; r1 þ l2; l
0
1 þ r02; r

0
1 þ l02Þ:

Hence, it is proved.

Proposition 3 (Scalar multiplication) If A1
I ¼

ðm1; n1; l1; r1; l
0
1; r

0
1Þ is a LR-type TIFN and k is any real

number, then kA1
I ¼ ðkm1; kn1; kl1; kr1; kl01; kr

0
1Þ, when

k� 0.

kA1
I ¼ ðkn1; km1;�kr1;�kl1;�kr01;�kl01Þ, when k\0.

Proof The a-cut and b-cut of the LR-type TIFN A1
I ¼

ðm1; n1; l1; r1; l
0
1; r

0
1Þ are given by A1

I
a ¼ ½m1 � l1L

�1ðaÞ;
n1 þ r1R

�1ðaÞ�, A1
I
b ¼ ½m1 � l01L

�1ð1� bÞ; n1 þ r01R
�1

ð1� bÞ�, respectively
Case I k� 0

ðkA1
IÞa ¼ kA1

I
a

¼ k½m1 � l1L
�1ðaÞ; n1 þ r1R

�1ðaÞ�
¼ ½km1 � kl1L

�1ðaÞ; kn1 þ kr1R
�1ðaÞ�

ð45Þ

Since L and R are decreasing functions on ½0;1� with

Lð0Þ ¼ Rð0Þ ¼ 1, 9 some a ¼ a0 2 ð0; 1� such that

L�1ða0Þ ¼ R�1ða0Þ ¼ 1.

Therefore,

ðkA1
IÞ ¼ ½km1 � kl1; kn1 þ kr1� ð46Þ

Now, by putting a ¼ 1 in Eq. (45), we get the model point

of kA1
I , which is given by

ðkA1
IÞ1 ¼ ½km1; kn1� ð47Þ

Again

ðkA1
IÞb ¼ kA1

I
b

¼ ½km1 � kl01L
�1ð1� bÞ; kn1 þ kr01R

�1ð1� bÞ�
ð48Þ

Since L and R are decreasing functions on ½0;1� with

Lð0Þ ¼ Rð0Þ ¼ 1, 9 some b ¼ b0 2 ð0; 1� such that

L�1ð1� b0Þ ¼ R�1ð1� b0Þ ¼ 1.

Therefore,

ðkA1
IÞb0 ¼ ½km1 � kl01; kn1 þ kr01� ð49Þ

Since A1
I are LR-type TIFN and k[ 0, 0� l1 � l01 and

0� r1 � r01. So 0� kl1 � kl01 and 0� kr1 � kr01
So, from Eqs. (46), (47) and (49), we have

kA1
I ¼ ðkm1; kn1; kl1; kr1; kl

0
1; kr

0
1Þ

Hence, it is proved.

Case II k\0

ðkA1
IÞa ¼ kA1

I
a

¼ k½m1 � l1L
�1ðaÞ; n1 þ r1R

�1ðaÞ�
¼ ½kn1 þ kr1R

�1ðaÞ; km1 � kl1L
�1ðaÞ�

ð50Þ

Since L and R are decreasing functions on ½0;1� with

Lð0Þ ¼ Rð0Þ ¼ 1, 9 some a ¼ a0 2 ð0; 1� such that

L�1ða0Þ ¼ R�1ða0Þ ¼ 1.
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Therefore,

ðkA1
IÞ ¼ ½kn1 þ kr1; km1 � kl1� ð51Þ

Now, by putting a ¼ 1 in Eq. 50, we get the model point of

kA1
I , which is given by

ðkA1
IÞ1 ¼ ½kn1; km1� ð52Þ

Again

ðkA1
IÞb ¼ kA1

I
b

¼ ½kn1 þ kr01R
�1ð1� bÞ; km1 � kl01L

�1ð1� bÞ�
ð53Þ

Since L and R are decreasing functions on ½0;1� with

Lð0Þ ¼ Rð0Þ ¼ 1, 9 some b ¼ b0 2 ð0; 1� such that

L�1ð1� b0Þ ¼ R�1ð1� b0Þ ¼ 1.

Therefore

ðkA1
IÞb0 ¼ ½kn1 þ kr01; km1 � kl01� ð54Þ

Since A1
I are LR-type TIFN and k\0, 0� l1 � l01 and

0� r1 � r01. So 0� � kl1 � � kl01 and 0� � kr1 � � kr01
So, from Eqs. (51), (52) and (54), we have

kA1
I ¼ ðkn1; km1;�kr1;�kl1;�kr01;�kl01Þ:

Hence, it is proved. h

Definition 10 [33] Let the ða; bÞ-cut of a LR-type TIFN be

given by

AI
a;b ¼ ½A1ðaÞ;A2ðaÞ� \ ½A0

1ðbÞ;A0
2ðbÞ�; aþ b� 1; 8a;b 2 ½0; 1�;

where A1ðaÞ ¼ m� lL�1ðaÞ, A2ðaÞ ¼ nþ rR�1ðaÞ,
A0

1ðbÞ ¼ m� l0L�1ð1� bÞ and

A0
1ðbÞ ¼ nþ r0R�1ð1� bÞ. Then, by mean of ða; bÞ-cut

method, the representation of membership function is

RlðAIÞ ¼ 1

2

Z 1

0

�

A1ðaÞ þ A2ðaÞ
�

da:

Again by mean of ða; bÞ-cut method, the representation of

nonmembership function is

RmðAIÞ ¼ 1

2

Z 1

0

�

A0
1ðbÞ þ A0

2ðbÞ
�

db:

The accuracy function of AI is denoted by f ðAIÞ and

defined by

f ðAIÞ ¼ RlðAIÞ þ RmðAIÞ
2

;

to defuzzify the given numbers as deterministic one.

Theorem 5 Let AI ¼ ðm; n; l; r; l0; r0Þ be a LR-type TIFN.

Then, its accuracy function is given by

f ðAIÞ ¼ 2mþ2n� l
2
þr

2
�l0

2
þr0

2

4
.

Proof By definition, the accuracy function of AI is defined

by

f ðAIÞ ¼ RlðAIÞ þRmðAIÞ
2

¼
1
2

R 1

0

�

A1ðaÞ þA2ðaÞ
�

daþ 1
2

R 1

0

�

A0
1ðbÞ þA0

2ðbÞ
�

db

2

¼ 1

4

�Z 1

0

�

m� lL�1ðaÞ þ nþ rR�1ðaÞ
	

da

þ

Now, by Definition 9 for a TIFN, LðxÞ ¼ RðxÞ ¼
maxf0; 1� xg; 8x� 0;

Since a 2 ð0; 1�, Lð1� aÞ ¼ a ) L�1ðaÞ ¼ a and Rð1�
aÞ ¼ a ) R�1ðaÞ ¼ a Similarly, LðbÞ ¼ 1� b ) L�1ð1�
bÞ ¼ b and RðbÞ ¼ 1� b ) R�1ð1� bÞ ¼ b

f ðAIÞ ¼ 1

4

� Z 1

0

�

m� lð1� aÞ þ nþ rð1� aÞ
	

da

þ
Z 1

0

�

m� l0bþ nþ r0b

	

db

�

) f ðAIÞ ¼
2mþ 2n� l

2
þ r

2
� l0

2
þ r0

2

4

ð55Þ

Hence, it is proved. h

Theorem 6 Let A1
I ¼ ðm1; n1; l1; r1; l

0
1; r

0
1Þ, A2

I ¼
ðm2; n2; l2; r2; l

0
2; r

0
2Þ be any two LR-type TIFNs and k1 and

k2 be any two real numbers, then

f ðk1A1
I þ k2A2

IÞ ¼ k1f ðA1
IÞ þ k2f ðA2

IÞ

Proof Let k� 0, now by using propositions 2 and 3, kA1
I

þkA2
I ¼ ðk1m1 þ k2m2; k1n1 þ k2n2; k1l1 þ k2l2; k1r1 þ k2

r2; k1l01 þ k2l02; k1r
0
1 þ k2r02Þ Thus, by using Eq. (55),

f ðkA1
I þ kA2

IÞ

¼
2ðk1m1 þ k2m2Þ þ 2ðk1n1 þ k2n2Þ � k1l1þk2l2

2
þ k1r1þk2r2

2
� k1l01þk2l02

2
þ k1r01þk2r02

2

4

ð56Þ
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Again f ðA1
IÞ ¼ 2m1þ2n1�l1

2
þr1

2
�

l0
1
2
þ

r0
1
2

4
and f ðA2

IÞ ¼
2m2þ2n2�l2

2
þr2

2
�

l0
2
2
þ

r0
2
2

4
So,

Thus, from Eqs. (56) and (57), for k1 � 0 and k2 � 0

f ðk1A1
I þ k2A2

IÞ ¼ k1f ðA1
IÞ þ k2f ðA2

IÞ: In the same way,

it can be proved for any value of k1 and k2.
Hence, it is proved. h

Conversion technique for multi-objective
into single objective

In this segment, we will present a discussion about con-

version techniques for multi-objective into single objective.

Now we discuss about convex combination method

Convex combination method (CCM)

We consider the multi-objective optimization problem

together with some constraints as follows:

max ½fiðxÞ; i ¼ 1; 2; . . .;M�
s.t gj � 0; j ¼ 1; 2; . . .;N

x 2 X

8
><

>:
ð57Þ

Subsequently, by the convex combination method (Tanino

et al. [34]), we shift the above problem into the following

form as:

max
PM

i¼1

wifiðxÞ; where
PM

i¼1

wi ¼ 1; 0\wi\1

s.t gj � 0; j ¼ 1; 2; . . .;N

x 2 X

8
>>><

>>>:

ð58Þ

where wi is the weight function of ith objective. Then, the

corresponding x and fiðxÞ are the solutions of the problem

in Eq. (57).
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