
S. I . : 2018 INDIA INTL. CONGRESS ON COMPUTATIONAL INTELLIGENCE

Rethinking k-means clustering in the age of massive datasets:
a constant-time approach

P. Olukanmi1 • F. Nelwamondo1,2 • T. Marwala1

Received: 2 July 2019 / Accepted: 6 December 2019 / Published online: 18 December 2019
� Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
We introduce a highly efficient k-means clustering approach. We show that the classical central limit theorem addresses a

special case (k = 1) of the k-means problem and then extend it to the general case. Instead of using the full dataset, our

algorithm named k-means-lite applies the standard k-means to the combination C (size nk) of all sample centroids obtained

from n independent small samples. Unlike ordinary uniform sampling, the approach asymptotically preserves the per-

formance of the original algorithm. In our experiments with a wide range of synthetic and real-world datasets, k-means-lite

matches the performance of k-means when C is constructed using 30 samples of size 40 ? 2k. Although the 30-sample

choice proves to be a generally reliable rule, when the proposed approach is used to scale k-means?? (we call this scaled

version k-means-lite??), k-means??’ performance is matched in several cases, using only five samples. These two new

algorithms are presented to demonstrate the proposed approach, but the approach can be applied to create a constant-time

version of any other k-means clustering algorithm, since it does not modify the internal workings of the base algorithm.

Keywords k-means � Clustering � Efficiency � Scalable � Large datasets

1 Introduction

The emerging Fourth Industrial Revolution [1, 2] is char-

acterized by applications that rely on large datasets and

intelligent analysis [3]. This new ‘data era’ calls for anal-

ysis methods that can handle massive datasets efficiently

and accurately. This paper presents such an algorithm for a

widely studied data analysis problem, namely clustering

[2–4]. Clustering, which involves organizing objects into

natural groups [7], is a fundamental mode of learning,

understanding and intelligence [8]. It is widely studied in

data mining, pattern recognition, machine learning and

other scientific disciplines such as biology [9] and psy-

chology [10]. Jain et al. [8, 11, 12] have presented in-depth

discussion of clustering techniques and challenges. A more

recent survey is that of Wong [13]. This review discusses

extensively classes of clustering techniques, such as par-

titional, hierarchical, density-based, grid-based, correla-

tional, spectral and herd clustering techniques. Li and Ding

[12] presented a survey of nonnegative factorization

methods for clustering.

The k-means approach is, perhaps, the most popular

clustering method [15–17], not just in the clustering

domain, but also in the wider sphere of data mining [18]

and in computational geometry [19]. Applications include

image segmentation [20], document clustering [21], data

compression and quantization [22], market segmentation

[23], sensor networks [24], genetics [25] and remote

sensing [26]. Despite attracting much research attention

over the last half-century, the potentials and limitations of

k-means are still being actively studied to date [10, 19–27].

A rich discussion of k-means-related issues can be found in

[37].

& P. Olukanmi

polukanmi@uj.ac.za

F. Nelwamondo

fnelwamondo@uj.ac.za

T. Marwala

tmarwala@uj.ac.za

1 Institute for Intelligent Systems, University of Johannesburg,

Johannesburg, South Africa

2 Council for Scientific and Industrial Research, Next

Generation Enterprises and Institutions, Johannesburg, South

Africa

123

Neural Computing and Applications (2020) 32:15445–15467
https://doi.org/10.1007/s00521-019-04673-0(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-019-04673-0&domain=pdf
https://doi.org/10.1007/s00521-019-04673-0

The goal of the k-means problem is to group N data

points into k clusters, by finding a set of k centroids which

minimize the sum of squared distances (SSD or SSE)

between each point and its nearest centroid. A centroid is

simply the center (mean) of points grouped together into

one cluster. Thus, a k-means solution is uniquely defined

by the set of k centroids. The standard k-means algorithm

[38], also known as Lloyd’s algorithm, is a heuristic for

approximating the solution to the problem. It starts by

selecting k random points as the cluster centroids (initial-

ization step), and each point is assigned to the nearest of

these centroids. The centroid of each cluster is updated to

be the mean of the points in that cluster (update step), after

which the points are assigned again to the nearest updated

centroid (assignment step). The update and assignment

steps are repeated (iterations) until the assignment does not

change (convergence). Franti and Sieranoja [30] identified

as good reasons for k-means’ popularity, the fact that it is

simple to implement and it is well understood. They

emphasize the importance of simplicity in the choice of an

algorithm. Fahim et al. [4] agree to the fact that k-means’

simplicity makes it widely favored, while also noting that

k-means has been shown to produce good results in many

applications. Other authors, such as [39], agree with these

comments. Nevertheless, the algorithm is not without its

shortcomings. Although k-means is efficient for small

datasets, one major shortcoming is that its running time is

proportional to data size and the number of clusters [4].

This becomes a problem in today’s age of massive datasets.

In this paper, we present an alternative approach to

solving the k-means problem. Our approach scales well

with data size. The approach is based on a generalization of

the classical central limit theorem (CLT) from the single

population case to the mixture distribution case. The

classical CLT is a fundamental result in statistics and

probability theory. It provides a basis for inferring popu-

lation parameters from samples. It also provides a basis for

applying methods meant for the normal distribution to

arbitrary distributions. We discuss details of the theorem’s

extension in Sect. 3. In our work, we observe that the

classical CLT addresses a special case (k = 1) of the k-

means problem, and then generalize it for all cases.

Two algorithms are presented to demonstrate the

approach. In the first algorithm, named k-means-lite,

instead of running k-means on the full dataset, a small

sample is selected, k-means is applied to it and the cen-

troids obtained are stored. This process is repeated a few

(n) times. Finally, all the centroids obtained from all

samples are combined into a new dataset (consisting of

only nk points), to which k-means is now applied to obtain

the final centroids. With sufficient number of samples (say

30 samples of size 40 ?2k), this approach matches the

performance of the standard approach in many cases and

can even improve it in some cases. Additionally, the pro-

posed approach addresses the local minimum problem that

plagues the standard algorithm due to selection of multiple

random samples. Experimental results presented in this

paper also show that the results are also fairly accurate for

this first algorithm, when only five samples are used. The

key advantage, however, is that for a given choice of

number and size of samples (which are easy to fix), the

algorithm runs in constant time with respect to the data

size.

The second algorithm presented in this paper, k-means-

lite??, harnesses the advantage of seeding within our

proposed framework. Specifically, in place of each run of

k-means in k-means-lite, the k-means?? algorithm is used

instead. The k-means?? algorithm uses D2-weighted

sampling to choose initial centroids before running stan-

dard k-means. With this simple modification, the algorithm

has speed that is still comparable to k-means-lite, and with

only five samples, in many cases, it achieves accuracy that

is superior to the standard k-means, matching that of the

standard k-means??.

2 The standard k-means and k-means11
algorithms

To provide background for the rest of the study, we present

brief descriptions of the standard k-means and k-means??

algorithms in this section.

2.1 The k-means algorithm

K-means partitions the data space into Voronoi cells [29].

In other words, given a dataset X in Rd, the goal of the k-

means problem is to partition X into k groups (clusters) Y1,

Y2, …, Yk, such that
Sk

i¼1Yi ¼ X and Yi \ Yj ¼ ; for i = j.

Each cluster Yi is uniquely defined by a center ci:

ci ¼
1

Yij j
X

y2Yi
y:

Thus, a k-means solution is uniquely defined by the set

of k centers C ¼ c1; . . .; ckf g. In optimization terms, the k-

means objective is to find C so as to minimize the within-

cluster variance ;:

/ ¼
X

x2X
min
c2C

x� ck k2:

The above sum-of-squares objective function is also

referred to as distortion [40].

The k-means problem described above is NP-hard. The

most popular heuristic for solving the problem is the

Lloyd’s algorithm [40], popularly referred to, simply, as k-

15446 Neural Computing and Applications (2020) 32:15445–15467

123

means algorithm. In this paper also, the term ‘k-means

algorithm’ refers to this algorithm. The algorithm proceeds

as follows:

1. Initialization: randomly select k data points to be used

as an initial set of cluster centroids.

2. Repeat until assignment does not change:

(a) Assignment: Let each of the k centroids represent

k different clusters, then assign each data point in

the same cluster as its nearest centroid.

(b) Centroid update: For each cluster, update the

centroid as the mean of all the points belonging

to that cluster.

As earlier mentioned in Sect. 1, this algorithm is prac-

tical, effective and simple, but scales poorly, due to run-

ning time per iteration that is proportional to N and

k. Furthermore, since initialization is random, the perfor-

mance can also be arbitrary, a problem which k-means??

handles.

2.2 K-means11

Developed to address the sensitivity of the standard k-

means algorithm to the choice of initial centroids, k-

means?? is based on the intuition that the correct cluster

centroids are well spread out, since they belong to different

clusters. Thus, the k initial centroids are chosen such that

they are far apart from each other. The k-means?? algo-

rithm proceeds as follows [19]:

1. Randomly (uniform) select one data point to be used as

one of the initial centroids.

2. Repeat until k centroids are chosen:

(a) For each data point, compute the distance D2 xð Þ
from the nearest of the already chosen centroids.

(b) Choose the next centroid ci, selecting ci ¼ x 2 X

with probability
D2 xð ÞP
x2X D

2 xð Þ.

3. Proceed with standard k-means, initialized with the

chosen centroids.

In Sect. 3, we highlight different approaches that have

been adopted to improve the efficiency.

3 Related works

The k-means algorithm is dominated by computation of

distances between each of k centroids and each of the

N data points. This is done in every iteration. Thus, it

computes Nk distances per iteration. So, its running time

per iteration is O(Nk). The point is that k-means’ running

time is proportional to N and k; thus, it grows fast with an

increase in these values. Therefore, all solutions that have

been proposed to address the problem are essentially

techniques to reduce the number of distance computations

performed. In this section, we briefly highlight approaches

that have been adopted to achieve this goal.

3.1 Triangle inequality

Elkan [41] proposed a popular accelerated method which

uses triangle inequality and tracking of point-to-centroid

distance lower bounds, to avoid redundant distance com-

putations. The algorithm yields same results as standard k-

means. However, the costs of storing lower bounds may

dominate in applications where k is large. Hamerly [42]

builds on Elkan’s method by introducing a novel lower

bound that allows the algorithm to eliminate k-means’

innermost loop 80% of the time in their reported experi-

ments. Yet another improvement was proposed by Drake

and Hammerly [43]. While Elkan’s method keeps k lower

bounds and Hammerly’s method keeps one lower bound,

this third algorithm employs an adaptive number b of

stored lower bounds, such that 1\ b\ k. The value of b is

computed online. Agustsson et al. [44] proposed the k2-

means algorithm which claims worst-case complexity of

O(Nknd ? k2d) and utilizes seeding and triangle inequality.

3.2 Kd-tree

Some efficient k-means extensions involve organizing the

data into a kd-tree structure. The tree is traversed using a

pruning test to reduce the number of distance calculations.

Efficient kd-tree-based k-means algorithms include those of

Alsabti et al. [45], Kanungo et al. [40] and Pelleg and

Moore [46].

Neural Computing and Applications (2020) 32:15445–15467 15447

123

3.3 Sampling

Sampling is another approach that has been adopted to

reduce k-means computational load. The general idea here

is to reduce the number of distance computations by

reducing the number data points used. Instead of dealing

with the full data, methods in this category deal rather with

samples. Sampling-based approaches include the method

of Capo et al. [47] which partitions the full dataset recur-

sively into a few subsets. It then applies a weighted k-

means over representations of these subsets. Another

notable work in this category is the mini-batch algorithm of

Sculley [48].

3.4 Cluster closure

The method of Wang et al. [49] is based on the observation

that most ‘active’ points that will change clusters are close

to cluster boundaries. Active points are identified by pre-

assembling the data into groups of neighboring points using

multiple random spatial partition trees. The neighborhood

information is used to construct a closure for each point.

Thus, only those points in a centroids cluster closure need

be considered during the k-means assignment step.

3.5 Seeding

In addition to these direct methods for reducing distance

computations, efficiency has also been indirectly achieved

through seeding. Although better efficiency is not always

guaranteed, it has been reported in some studies

[19, 50–52]. The point is that good initial centroids are

likely to lead to faster convergence.

The approach proposed in this paper differs from many

previous works, in that it does not modify the internal

working of the standard algorithm. Rather, it is a ‘light-

weight’ technique that ensures that the standard algorithm

(or any other k-means clustering algorithm) is run on only a

few very small samples. The power is in the fact that the

standard algorithm is fast on small data. The proposed

technique then uses statistical inference to compute the

final solution for the full data from the outcome of these

runs on the samples. We show that it is not only more

wasteful to compute centroids using the full data, but can

also be less accurate in some cases. Since the main focus of

this paper is to address k-means’ scalability problem, one

interesting attribute of our method is that the running time

is not a function of data size, for a given combination of

number and size of samples (which are easy to fix). Two

algorithms are presented to demonstrate our proposed

approach: one based on k-means and the other on k-

means?? [19]. The k-means?? algorithm, widely

considered the state-of-the-art algorithm within the k-

means family, was proposed to solve another k-means

problem: sensitivity to the choice of initial centroids. K-

means’ sensitivity to the choice of initial centroids, which

creates accuracy problems, is addressed by incorporating a

seeding module into the standard algorithm. Instead of

random selection, seeding methods pick initial centroids

systematically. K-mean?? is well-studied and widely

used. It employs the state-of-the-art D2-weighted sampling

proposed independently by Arthur and Vassilvitski [19]

and Ostrovsky et al. [53]. K-means?? has been shown in

[19] to provide accuracy guarantee, being O(log k)-com-

petitive. However, its sequential nature makes it time-

consuming for large datasets [54]. This means the seeding

method of k-means?? also suffers from poor scalability.

Hence, some authors have resorted to approximations such

as the approximate k-means?? method of Bachem et al.

[54] and the related method of [55]. K-means-lite??, our

second algorithm, can be seen as a more scalable version of

k-means??.

In summary, our paper presents a constant-time k-means

clustering approach based on statistical inference of pop-

ulation centroids from the centroids obtained from inde-

pendent samples. In Sect. 4, we show that the classical

central limit theorem addresses a special case (k = 1) of the

k-means problem. Then, we generalize to all cases, leading

to a simple algorithm, named k-means-lite. The approach is

fast, accurate and free from k-means’ local optimum

problem. In Sect. 4, we present analyses related to per-

formance guarantees for k-means-lite. In Sect. 5, we dis-

cuss the k-means-lite?? algorithm, a modification of k-

means-lite, in which we replace every appearance of k-

means in k-means-lite with k-means??. After these,

experimental results are presented comparing the new

algorithms with their traditional counterparts, to establish

the value of the proposed approach.

4 The proposed k-means-lite paradigm

In this section, we describe the proposed clustering

approach. We begin by discussing the theoretical basis and

then describe the proposed k-means-lite algorithm and its

improved version, k-means-lite??.

4.1 The central limit theorem (CLT)
and estimation of population mean

The CLT is widely regarded as one of the most central

results of probability theory. It has a long history and exists

in various forms with diverse proofs. Trotter presented an

elementary proof in [56]. Two proofs are discussed in

Filmus’ work [57]. History and concepts of the CLT are

15448 Neural Computing and Applications (2020) 32:15445–15467

123

extensively discussed by Fischer [58], Mether [59], Le

Cam [60] and Adams [61]. In brief, suppose {x1, x2, …,

x|S|} is a sequence of independently and identically dis-

tributed (i.i.d) random variables having expected value

E x½ � ¼ l and finite variance Var x½ � ¼ r2. The CLT states

that as Sj j; n ! 1, Sj j!d N l; r2= Sj jð Þ,where S :=
x1þ���þx Sj j

Sj j .

In other words, if from an arbitrarily distributed population

that has mean l and variance r2, we select independent

random samples n times and obtain each sample mean

S1; . . .; Sn, for sufficiently large n, the distribution of these

sample means is (approximately) a normal distribution

with mean l and variance r2= Sj j. One application of this

theorem, related to our study, is that the mean of a

sequence of numbers can be accurately estimated without

adopting the traditional approach that involves dealing

exhaustively with all the numbers.

As a toy example to illustrate this application, suppose

we want to find the mean of the set {1, 2, 3, 4, 5}, the

traditional approach yields (1 ? 2 ? 3 ? 4 ? 5)/5 = 3.

Now, let us apply the CLT-based method. With the aid of a

computing software, we select three numbers randomly,

three different times. The first sampling yields the subset

{4, 1, 3}, the second yields {1, 2, 5} and the third {5, 4, 2}.

The means of the samples are 2.6667, 2.6667, and 3.6667,

respectively. The mean of these means is (2.6667 ?

2.6667 ? 3.6667)/3 = 3.0000. A second trial of this

method yields samples, {4, 5, 3} , {1, 3, 4} and {5, 1, 4},

which have means 4.0000, 2.6667 and 3.3333, respectively,

and a final answer (4.0000 ? 2.6667 ? 3.3333)/3 =

3.3333. This is still close to the true mean. Notice the final

answer obtained by taking the mean of samples estimates

the true population mean more accurately than individual

sample means. This shows the advantage of the CLT-based

approach over uniform sampling. We discuss this advan-

tage in more detail in Sect. 5.

We present another example that further reveals the

behavior of this CLT-based method. We want to find the

mean of {1, 2, …,1000} using different combinations of

sample sizes and number of samples. We do not bother to

report the sample means, but only the final results. The

experiment is repeated for each combination 30 times, and

average result over these 30 runs is reported in Table 1.

We note in the given examples that the CLT-based

approach is able to produce good results using a few

samples. Now, if we fix the number and size of sample (to

values that work well for most problems), then the method

takes the same amount of time for all problems, regardless

of data size. In order words, it is highly scalable. Precisely,

it runs in constant time with respect to data size. Another

observation is that although the direct method is faster for

small datasets, the CLT method continues to gain effi-

ciency over the direct method, as data size increases.

4.2 The CLT and k-means clustering, for k = 1

A key observation of our work is that the problem of

finding the mean of a given set of numbers is equivalent to

a special case of the k-means clustering problem, where

k = 1. The goal of the k-means problem for this case is to

find the single centroid (mean) of an entire set of points in

Rd. Three different ways to achieve this are as follows:

1. The direct method: Perform vector addition of all the

data points and divide the result by the number of

points.

2. The standard k-means algorithm (Lloyd’s method):

Select a point at random to be used as the initial

centroid. Then, assign each data point to its nearest

centroid. In this case, all points get assigned to the

single centroid. Finally, compute the mean of all the

points assigned to this centroid. This last step which

obtains the final centroids is identical with the direct

method.

3. CLT-based method (k-means-lite): Select a sample of

size of s, apply the standard k-means to this sample and

store the centroid (mean) of this sample. Repeat this

process until n samples have been selected. Combine

the n centroids into a single set of points and apply

standard k-means to this combination to obtain the final

mean. Note than any mean finding method (such as the

direct method) can replace k-means in the described

framework. The value of this framework will lie in its

ability to ensure that the base method is only applied to

small data (sufficiently small s) and is only run a few

times (sufficiently small n). In this way, when the

dataset is very large, the algorithm’s running time does

not change much. Note also that the samples are i.i.d;

that is, the points selected in a previous sample ‘have

been returned’ back to the original dataset before

another sample is selected. This distinguishes k-means-

lite from mere divide-and-conquer strategy. Indepen-

dence of samples is required for CLT to hold.

Table 1 Performance of the CLT-based method for computing the

mean of a set of numbers

Number of samples Sample size Estimated mean True mean

3 30 497.0430 500.5000

5 30 502.9402 500.5000

30 30 498.8108 500.5000

50 30 501.6171 500.5000

300 30 500.7934 500.5000

500 30 500.8708 500.5000

Neural Computing and Applications (2020) 32:15445–15467 15449

123

The third method explains how k-means-lite works. We

generalize the method to the any k in the next subsection

(Sect. 4.3), to have our k-means-lite algorithm.

4.3 Generalizing the CLT for k-means clustering

The key to generalizing from the k = 1 case to all k lies in

recognizing the dataset as a mixture of k different distri-

butions. Hence, the standard algorithm starts with k cen-

troids, so that the points are clustered into k groups. Our

proposed k-means-lite algorithm remains as described for

the k = 1 case in Sect. 4.3 (method 3). It is the k-means

component that needs to cater for the change in k. In other

words, each time a sample is selected from the dataset, that

sample is partitioned into k clusters and k centroids are

obtained. After all n samples have been selected, there will

be a total of nk centroids forming a new dataset, to which k-

means is again applied to obtain the final k centroids.

Before presenting our extension of the CLT for the general

k-means problem, we establish that (with high probability)

a sufficiently sized sample contains points from all clusters

and for sufficiently large n, the average proportion within

the sample occupied by points belonging to any given

cluster u approaches the expected proportion |u|/N. This

makes it almost impossible for our algorithm to miss a

cluster. This validates our extension to the CLT and also

establishes the reliability of k-means-lite.

Lemma 1 [62] For a cluster A, if the sample size s satisfies

s� fN þ N

Aj j log
1

t

� �

þ N

Aj j

ffi

log
1

t

� �� �2

þ2f uj jlog 1

t

� �s

Then, the probability that the sample contains fewer than

f|A| points belonging to cluster A is less than t; 0� t� 1.

Guha et al. [62] presented the above lemma and con-

cluded based on the inequality that for a sample to contain

at least f|A| points that are from a cluster A with high

probability, the sample should have more than a fraction f

of N. They also observe that the inequality holds for the

minimum-sized cluster Amin, and if smin is the result of

substituting Amin for A in the inequality, the probability that

the number of points selected from any cluster A is fewer

than f|A| has an upper bound of kt.

Lemma 2 provides more insight on s and the probability

of missing a cluster.

Lemma 2 lims!1 Pr A \ S ¼ ;½ � ¼ 0, where S is a random

sample selected from X, A is an arbitrary cluster in X,

s ¼ Sj j and ; is the empty set.

Proof The lemma follows from Lemma 1. If s (the left-

hand side of the inequality) is increased, f is increased as

well. So, as s ! 1, f ! 1. Now,

f ¼ A \ Sj j
Aj j

A \ Sj j ¼ Aj jf :

Clearly, as s ! 1, which causes f ! 1, A \ S ! A 6¼ ;
and lims!1 Pr A \ S ¼ ;½ � goes to 0. h

Practically, Lemma 1 means that if s is sufficiently large

(s � k), it is unlikely that the sample will not contain at

least a few points from every cluster. This fact is a nec-

essary foundation for our extended CLT. We discuss more

about choosing an appropriate value for s in Sect. 5

(Theorem 5).

Lemma 3 limn!1 p ¼ Aj j
N and limn!1 Var p½ � ¼

Aj j
N 1� Aj j

N

� �
where pi is the random variable defined as

pi ¼
A\Sjj j
s ; j 2 1; . . .; nf g.

Proof Let pi be the proportion of points from an arbitrary

cluster u, in the sample Sj : j ¼ 1; . . .; n.The event of

selecting a point from cluster A constitutes a Bernoulli trial.

Given s � N (small sample from a large population), the

selections of each point in a given sample are practically

independent, and the number of successes (picking from

cluster A). Thus, Pr success½ � ¼ Aj j=N. Therefore, mean

number of successes is
s Aj j
N and the variance is

s Aj j
N 1� Aj j

N

� �

yielding mean and variance of proportions of
Aj j
N and

Aj j
N 1� Aj j

N

� �
, respectively. Thus, E p½ � ¼ Aj j=N. This is also

consistent with the law of large numbers. Now,

p ¼ pi þ � � � þ pn
n

E p½ � ¼ E pi½ � þ � � � þ E½pn�
n

¼ nE p½ �
n

E p½ � ¼ lim
n!1

p ¼ E p½ � ¼ Aj j
N

:

Lemma 2 is nothing but a manifestation of the CLT, which

applies not only to distribution of sample means but also to

that of sample proportions. Both are specific cases of

normalized sums of i.i.d. random variables. So, we know

that as n ! 1, pi !
d
N Aj j

N ; 1n
Aj j
N 1� Aj j

N

� �� �
, and the distri-

bution of sample proportions approaches Gaussian with

mean E p½ � (equal to the true population proportion). h

Practically, Lemmas 1 and 2 imply that, provided s

k, for each cluster A, every sample of size s will contain

points from A (with high probability), and the number of

points of a cluster A contained in the sample fluctuates

(approximately normally distributed) around
Aj j
N s with finite

variance
s Aj j
N 1� Aj j

N

� �
. We illustrate the concept further

15450 Neural Computing and Applications (2020) 32:15445–15467

123

with an empirical example. We take the G2-2-20 dataset

[30] which has N = 2048 points and k = 2 clusters. Each

cluster covers 50% of the entire data (1024 points each).

We select random samples of varying sizes

s 2 10; 20; 30; 40; 50; 100f g. For each sample size s, we

perform 1000 trials and record the average proportion of

each cluster in each sample selected.

Proportion pj for cluster j ¼ selected cluster j pointsj j=s

The results in Table 2 validate Lemmas 1 and 2,

showing that the mean of sample proportion for a given

cluster u approaches |u|/N as more samples are used. Fig-

ure 1 shows further detail: the distribution of the sample

proportion over the 1000 trials, for each sample size.

Now, we proceed to generalize the CLT. We note that

the k-means clustering problem is a generalization of the

problem of finding the mean of a single distribution. Pre-

cisely, it can be viewed as the process of simultaneously

finding the mean of each of the k components in a mixture

distribution. We have shown earlier how the classical CLT

provides a scalable method for solving the special case

k = 1. Our goal here is to generalize this CLT-based

method, which becomes a scalable k-means clustering

method.

Theorem 1 (Generalized Central Limit Theorem for

Mixture Distributions) Given Sj ¼ x1; . . .; xsf g; j 2
1; . . .; nf g which is a sequence of independently and

identically distributed (i.i.d) random variables,

8i 2 1; . . .; kf g; l̂i !
d
N li;

r2i
si

� �
, as n; si ! 1, where

bli :¼
P

Sj\Aið Þ
jSj\Aij , si � s is the number of points picked from

Ai the ith component of a mixture of k distributions, with

E Ai½ � ¼ li and Var Ai½ � ¼ r2i .

Proof The theorem follows from Lemmas 1 and 2. Lemma

1 establishes that each sample of sufficient size s � k will

contain points from each cluster (with high probability).

This probability approaches 1 as s increased. Consequently,

each sample Sj of size s selected from a mixture of k dis-

tributions A1; . . .;Ak is itself a mixture having k compo-

nents Sj \ u1; . . .; Sj \ Ak, and the mean l̂i of the i th

component of Sj is given by l̂i :¼
P

Sj\Aið Þ
Sj\Aij j .Since l̂i is the

random variable constructed by taking the mean of

points sampled from Aa, then each pair of l̂i and Ai is

related by the classical CLT. Therefore, as n; si ! 1;

ĉi !
d
N li;

r2i
si

� �
h

4.4 The k-means-lite algorithm

In clustering terms, we recast Theorem 1; thus, given a

dataset X which consists of k clusters having centroids

l1; . . .; lk, if n random samples are taken from P, and each

is partitioned into k clusters, each defined by k centroids,

then the k centroids obtained by partitioning the collection

C of sample centroids into k clusters approach l1; . . .; lk, as
the number of samples and size of samples are increased.

Also, C consists of k clusters that are denser and better

separated (within-cluster variance lowered by a factor of

equal to the sample size) than the clusters in the original

dataset. Our proposed k-means-lite is explained by these

insights. The algorithm is outlined as follows:

Input: dataset X, number of clusters k, sample size s,

number of samples n.

1. Repeat n times:

(a) Select a sample of size s from the dataset.

0.35 0.4 0.45 0.5 0.55 0.6 0.65
0

20

40

60

80

100

120

140

160

180

Fig. 1 Distribution of sample proportions for points belonging to

cluster 1 over 1000 trials (sample size = 100) is bell-shaped, i.e.,

normal, with mean & 0.5 (the proportion the cluster occupies in the

full dataset)

Table 2 G2-2-20 dataset: average proportion of points from each

cluster in 1000 random samples

Cluster 1 Cluster 2

True proportions 0.5000 0.5000

Sample size Cluster 1 Cluster 2

10 0.4971 0.5029

20 0.5043 0.4957

30 0.5072 0.4928

40 0.5014 0.4986

50 0.4996 0.5004

100 0.4993 0.5007

Neural Computing and Applications (2020) 32:15445–15467 15451

123

(b) Run standard k-means algorithm on the sample

and store the centroids.

2. Obtain the optimal centroids by running k-means on

the combination of the stored centroids.

3. Assign each point in X to the nearest centroid in C.

5 Analysis

This section presents some useful analysis of k-means-lite.

Specifically, we focus on time complexity and approxi-

mation bound. The latter establishes theoretical comparison

of the performance of k-means-lite with the full-data ver-

sion, as well as with ordinary uniform sampling.

Throughout this section, the term Q-lite describes the

scaled version of any k-means algorithm Q.

5.1 Complexity

As a key result of this paper, we present Theorem 2,

showing the time complexity is constant in the number of

data points.

Theorem 2 K-means-lite’s running time is O(1) in N.

Proof The algorithm selects n samples each of size s,

clusters each with k-means to obtain a collection of nk

centroids which is clustered, again using k-means, to obtain

the final k centroids. Let t be the number of k-means iter-

ations that a sample will take, and let T be the number of

iterations, if k-means were run on the full dataset. Clus-

tering each sample takes O(skt); that is, in each of the

t iterations, k centroids are compared, to make a total of

O(nskt ? nk2t) or O((ns ? nk)kt). Clearly, the complexity

is not a function of N, unlike k-means’ complexity of

O(NkT). h

The result of the above complexity analysis has the

following implications:

1. As mentioned, k-means-lite’s running time is not a

function of data size.

2. Although k-means-lite will always be fast (less than 1 s

on the average computer for the many well-known

datasets), k-means could be faster when N is small

enough for t &T and (ns ? nk)[N.

3. As N is increased, k-means running time grows

proportionately, while k-means-lite should be able to

maintain roughly the same running time, if s and n are

fixed.

5.2 Performance bound

Here, we are concerned with accuracy guarantees offered

by the proposed approach. We present the well-known

Lemma 4, which is foundational to our analysis

[19, 63, 64].

Lemma 4

/Q Að Þ � /OPT Að Þ ¼ Aj j: l̂QA � l
�
�

�
�

�
�

�
�2

where / Að Þ is the SSE computed by an algorithm on a

cluster A, /OPT Að Þ is the optimal solution and l̂QA and l
are the estimated and optimal centers for A, respectively.

Theorem 3 Given an exact algorithm Q, that is,

DQA ¼ l̂QA � l
�
�

�
� = 0 then, Q-lite is asymptotically exact,

that is, DQlite ¼ l̂Qlite � l
�
�

�
� & 0, for sufficient n and a.

Proof Let DQA ¼ l̂QA � l
�
�

�
� be the deviation of the center

estimate l̂QA produced by Q when applied to the full

cluster. If Q is exact (DQA ¼ 0), then if it is applied to a

sample a instead, by the CLT, the deviation DQa ¼ c� lj j
is given by the random variable:

DQacl ¼
zrA
ffiffiffiffiffiffi
aj j

p

where z * N(0,1). So,

DQacl �
z/rA
ffiffiffiffiffiffi
aj j

p

Intuitively, this means (100 - z/) % of the time, c is

within a distance of z/rAffiffiffiffi
aj j

p from l. We can take z/ ¼ 3

(99.7% confidence) as a reasonable conclusion.

The corresponding deviation DQa produced by Q-lite is:

DQlite ¼ E DQað Þ ¼ E
zrA
ffiffiffiffiffiffi
aj j

p

 !

¼ rA
ffiffiffiffiffiffi
aj j

p E z½ � ¼ 0:

15452 Neural Computing and Applications (2020) 32:15445–15467

123

That is, unlike ordinary sampling, despite Q-lite’s

improvement of Q’s time complexity, it is asymptotically

exact, if Q is exact: the general case in which Q may be

only able to produce an approximate solution.

Theorem 4 Given /Q Að Þ�/OPT Að Þ þ D2
QA Aj j, then

/Qlite Að Þ�/OPT Að Þ þ 1:2� dð Þ2D2
QA Aj j, where d is a

small constant.

Proof Now, we consider the general case, where Q is itself

an approximate clustering algorithm, as is the case with all

practical algorithms.Take Q to be a b-approximation

algorithm: for any cluster A, /Q Að Þ� b/OPT Að Þ. The

deviation of the estimated cluster center comes from two

sources: approximation error and sampling error. By

Lemma 4, /Q Að Þ ¼ /OPT Að Þ þ b� 1ð Þ/OPT Að Þ. Simi-

larly, /Q að Þ ¼ /OPT að Þ þ b� 1ð Þ/OPT að Þ. Thus,

b� 1 ¼
D2
QA Aj j

/OPT Að Þ ¼
D2
Qa aj j

/OPT að Þ

D2
Qa

D2
QA

¼ Aj j/OPT að Þ
aj j/OPT Að Þ ¼

aj j � 1ð Þr2a
aj jr2A

DQa ¼
DQAra
rA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aj j � 1

aj j

s

:

DQa is the deviation of the estimated sample center ca from

the true sample center l̂a. Thus, the total distance from ca
to l is:

DQacl ¼ DQa þ
zrA
ffiffiffiffiffiffi
aj j

p ¼ DQara
rA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aj j � 1

aj j

s

þ zrA
ffiffiffiffiffiffi
aj j

p

DQacl �
DQAra
rA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aj j � 1

aj j

s

þ z/rA
ffiffiffiffiffiffi
aj j

p

Now, if we select several samples and collect the estimated

sample centers, into a single dataset c, then the true center

of c deviates from l by DOPT;�c:

DOPT;c �E DQacl
� 	

¼ E
DQAra
rA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aj j � 1

aj j

s

þ zrA
ffiffiffiffiffiffi
aj j

p

" #

¼ g að ÞDQA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aj j � 1

aj j

s

where

g aj jð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

aj j � 1

s
C aj j

2

� �

C aj j�1

2

� �

¼ 1� 1

4 aj j �
7

32 aj j2
� 19

128 aj j3
þ O aj j�4

� �

where C :ð Þ is the gamma function. The total deviation of

Q-lite’s estimated center from the true cluster center

DQlite ¼ l̂Qlite � l
�
�

�
�

DQlite � g að ÞDQA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aj j � 1

aj j

s

þ DQ �c

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

n

r

:
r�c

rA

where DQc is the worst deviation Q produces on �c. For

sufficient n and a, by the CLT, rc ! rAffiffiffiffi
aj j

p , and �c approaches

normal distribution and is denser than A, which implies

better clusterability. So,
DQ �c

DQA
¼ 1

c\1.

DQlite �
DQA
ffiffiffiffiffiffi
aj j

p g að Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aj j � 1

p
þ 1

c

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

n

r !

DQlite � 1þ �ð ÞDQA;

if we take 1
c ¼ 1; 1þ �ð Þ\1:2. And the theorem follows.h

5.3 Advantage over simple uniform sampling
and repeated sampling

We briefly highlight a few points in our analysis that

establish the advantage of our approach compared to

ordinary uniform sampling. Sampling is perhaps one of the

most effective ways to gain efficiency. But the more the

gain in efficiency (achieved by reducing the sample size),

the worse the performance. One way to improve the per-

formance of sampling is to increase the sample size, but

this defeats the purpose of sampling. If the algorithm could

handle large data fast, there will be no need for sampling in

the first place. K-means-lite provides a more efficient

solution. Since we know E l2a
� 	

¼ l2A, then if we take the

mean of the sample center estimates, we can recover the

true mean with high precision. Notice in the exact case,

where Q produces the true solution, uniform sampling does

not. It can deviate from the true solution as far as

DQacl � z/rAffiffiffiffi
aj j

p and as far as DQacl � DQAra
rA

ffiffiffiffiffiffiffiffi
aj j�1

aj j

q
þ z/rAffiffiffiffi

aj j
p in

the approximate case (such as the k-means algorithms we

seek to improve). Our ‘lite’ approach takes advantage of

the CLT to correct this error by computing the expected

value of each component. The zrAffiffiffiffi
aj j

p component, therefore, is

corrected to zero, while the first component is corrected to

the mean g að ÞDQA

ffiffiffiffiffiffiffiffi
aj j�1
aj j

q
, with a small approximation error

introduced depending on the quality of the algorithm. If

uniform sampling is repeated several times, so that the best

is chosen, with sufficient trials, very good results will be

obtained, with high probability. One disadvantage of such

an approach is that time only saved in computing centroids;

typically (as in the CLARA [65] algorithm which uses

repeated sampling to improve the efficiency of k-medoids),

Neural Computing and Applications (2020) 32:15445–15467 15453

123

each of the centroids set obtained from samples is evalu-

ated over the full dataset. In our approach, these evalua-

tions are unnecessary. Our approach provides better

guarantee, as shown in the analysis. We also show via brief

experiments that the proposed approach produces better

results.

5.4 Brief experiment: comparing single
and repeated uniform sampling
with the proposed approach

We compare the performance of k-means-lite (with 30

samples) and k-means applied to uniform sample. We also

study the effect of applying k-means on multiple (30

samples) and then choosing the solution (centroids) that

yields the lowest cost over the full data. We employ the

same settings to k-means??. Table 3 shows the accuracies

achieved by each method, based on Adjusted Rand Index

(ARI). Table 4 compares accuracy based on k-means cost

(SSE). As Tables 3 and 4 show, there is no single case

among the five cases tested, in which our approach does not

outperform sampling (single or repeated). This is true for

both the k-means and k-means?? versions of these

methods. Moreover, repeated sampling is less efficient

(Table 5). This is due to the computation of distances

between each sample centroid set and the full data, to

evaluate the quality of each solution. This makes the run-

ning time a function of N. Our approach, on the other hand,

does not evaluate each sample centroid set, but only clus-

ters their combination.

5.5 Highlights of advantages of k-means-lite
compared to the conventional approach

Besides comparison with traditional sampling, we note the

following advantages of our proposed approach over the

conventional full-data approach.

1. Since the number and size of samples can be fixed to

values that generally work well, with these fixed

values, the algorithm runs in constant time, with

respect to data size. That is, the running time is not a

function of the data size. This implies that the

algorithm is highly scalable.

2. The algorithm consists of n ? 1 runs of standard k-

means, each on very small data. The last of these n ? 1

runs is typically performed on much smaller and

‘nicely’ clustered data. Since the standard k-means

algorithm is fast for small data, k-means-lite’s speed is

ensured on small and large data.

3. The k-means-lite algorithm can be viewed as a process

of mapping a large dataset to a small derived dataset

(the combination of sample centroids), which can be

used to accurately find the solution without dealing

with the full dataset. Although small in size, this

derived dataset possesses the following properties:

(a) It shares similar cluster structure and cluster

centers, with the full dataset.

(b) Its clusters are (approximately) Gaussian.

(c) Its clusters are denser than those in the original

data.

These properties are ‘nice’ properties for clustering

algorithms, and they lie at the root of k-means-lite’s

effectiveness. Illustrating these properties, Fig. 2b shows

the derived dataset constructed from the G2-2-20 dataset

(Fig. 2a).

4. As an added advantage, k-means-lite addresses k-

means’ problem of local optima, due to the use of

multiple samples, which introduces better

randomization.

(5) Unlike many existing approaches to improving k-

means efficiency, we have made no changes to the k-

means algorithm itself. Rather, k-means-lite is a

framework wrapped around the algorithm, using it to

infer the solution from samples. Thus, the proposed

approach can be used to scale any other k-means

clustering algorithm.

Table 3 Comparing k-means-lite with uniform sampling: ARI (%)

k-
means

k-means-lite

(30 samples)

k-means on

1 sample

k-means 30

sample repeats

k-
means??

k-means-lite??

(30 samples)

k-means?? on

1 sample

k-means?? 30

sample repeats

A1 83.5 78.6 73.0 71.0 89.8 86.5 80.9 79.9

A2 82.8 79.3 68.7 68.3 88.2 86.5 77.0 76.7

A3 81.9 79.4 69.0 68.3 87.5 86.7 76.7 76.5

S1 84.7 82.8 75.1 78.1 90.6 91.7 85.3 87.5

S2 83.0 80.5 73.3 71.3 86.3 86.8 77.8 78.6

C4k1mN 70.9 73.0 77.4 68.9 83.4 85.3 78.6 79.5

15454 Neural Computing and Applications (2020) 32:15445–15467

123

6. Depending on the specific algorithm used in cluster-

ing the samples, it is asymptotically possible to

achieve the true (globally optimal) clustering for any

given problem. This will be achieved if the base

algorithm is sufficiently accurate on the samples and

the number and size of samples are large enough, so

that S að Þ � la\e, where e is the maximum pertur-

bation allowed for la, to retain the true clustering.

5.6 Choosing number and size of samples

There are two questions that arise in the implementation of

k-means-lite. Firstly, how many points should be selected

to make a sample? Secondly, how many samples should be

selected?

Since we have established that, assuming the ‘right’

sample size and number of samples, the sample mean

comes from an (approximately) Gaussian distribution with

mean equal to the true centroid. With this information, if

we were seeking to fit the entire Gaussian distribution, we

will need a high number of large samples, but since the

goal is to locate the population mean (which converges

much faster than the tails), a few small samples should

suffice (Fig. 3).

For the implementation presented in this paper, we go

with convention established for the popular CLARA k-

medoids algorithm, which is also a sampling-based clus-

tering algorithm. Although not in the k-means family, k-

medoids also seeks k centers. CLARA runs k-medoids on

multiple (say 5) samples of 40 ? 2k [65, 66] and chooses

the best k centers (most central data points, not centroids)

evaluated over the full dataset. Since this algorithm is

successful and well known, we reckon that its settings can

be adopted in our approach; especially the sample size. We

further justify this choice of sample size 40 ? 2k by

Theorem 5.

Theorem 5 If s C 2k, then, E[w] C 2, provided clusters

are uniform, where w is the number of points picked from

an arbitrary cluster. For non-uniform clusters, provided

probability of picking a point from that cluster is p� 1=2k,

s C 2k yields E[w] C 1.

Proof Uniform clusters, an assumption of the k-means

formulation, imply p ¼ 1=k.Also, with sample size s � N,

the selection of points to make up a sample is practically

independent. So, expected number of hits E[w] for that

cluster = s/k. Consider three possible cases. One, if s\ k,

then E[w] = 0; two, s = k, then E[w] = exactly 1, requiring

the impractical condition that p be strictly 1/k; lastly, s

C 2k, then E[w] C 2. Clearly, s C 2k should be satisfied.

With this choice, E[w] C 1 still holds, as long as p� 1
2k.

Table 4 Comparing k-means-lite with uniform sampling: SSE

k-means k-means-lite

(30 samples)

k-means on

1 sample

k-means 30

sample repeats

k-
means??

k-means-lite??

(30 samples)

k-means??

on 1 sample

k-means?? 30

sample repeats

A1 1.85E?10 2.26E?10 3.12E?10 3.18E?10 1.57E?10 1.75E?10 2.44E?10 2.54E?10

A2 3.40E?10 3.68E?10 6.40E?10 6.28E?10 2.80E?10 2.98E?10 4.88E?10 4.89E?10

A3 4.98E?10 5.50E?10 8.96E?10 9.44E?10 4.09E?10 4.31E?10 7.29E?10 7.39E?10

S1 1.87E?13 2.11E?13 3.29E?13 3.00E?13 1.43E?13 1.37E?13 2.29E?13 2.07E?13

S2 1.98E?13 2.18E?13 3.16E?13 3.37E?13 1.72E?13 1.71E?13 2.79E?13 2.61E?13

C4k1mN 7.62E?07 8.68E?07 7.57E?07 9.47E?07 4.85E?07 5.07E?07 5.26E?07 5.27E?07

Table 5 Comparing k-means-lite with uniform sampling: running time (s)

k-
means

k-means-lite

(30 samples)

k-means on

1 sample

k-means 30

sample repeats

k-
means??

k-means-lite??

(30 samples)

k-means?? on

1 sample

k-means?? 30

sample repeats

A1 0.03 0.14 0.02 0.21 0.04 0.32 0.02 0.40

A2 0.07 0.15 0.02 0.26 0.08 0.48 0.03 0.58

A3 0.12 0.15 0.02 0.31 0.13 0.65 0.04 0.78

S1 0.02 0.13 0.02 0.21 0.04 0.25 0.02 0.33

S2 0.03 0.14 0.01 0.22 0.05 0.26 0.02 0.34

C4k1mN 14.10 0.22 0.11 3.40 9.51 0.26 0.11 3.36

Neural Computing and Applications (2020) 32:15445–15467 15455

123

15456 Neural Computing and Applications (2020) 32:15445–15467

123

This second part follows from E w½ � ¼ sp� s
2k, and the

second part of the theorem follows. h

The choice of 40 ? 2k points is therefore sound. With

E[w][1, then we expect this setting applied to our algo-

rithms, to give reasonably accurate results, while selecting

up to 30 samples is expected to yield algorithms with

performance very close to the theoretical guarantees.

6 K-means-lite11: the advantage of per-
sample seeding

We identify an opportunity to improve the proposed k-

means-lite algorithm, by employing the D 2-weighting-

based seeding of k-means?? for each k-means-lite sample.

Basically, we replace every k-means run in k-means-lite

with k-means??. With this simple modification, experi-

mental results (in Sect. 7) show that the resulting algo-

rithm, k-means-lite??, is nearly as efficient as k-means-

lite and statistically indistinguishable from the state-of-the-

art algorithm, k-means?? (more accurate than k-means), if

only five samples are used. With 30 samples, k-means-

lite?? even surpasses the accuracy of k-means??.

The accuracy and efficiency of k-means-lite?? can be

explained by two factors. First, high accuracy is expected

bFig. 2 a Original data: g2-2-20 (2048 points). b k-means-lite

illustrated: top left to bottom right: centroids set derived using 1, 2,

3, 4, 5, 20, 30, and 1000 random samples of 40 ? 2 k. Notice how the

derived dataset has neatly separated, dense clusters that are

representative of the original data cluster structure

0 1 2 3 4 5 6 7
3

3.5

4

4.5

5

5.5

6

6.5

0 1 2 3 4 5 6 7 8 9 10
0
1

2

3

4

5

6

7

8

9

10

20 40 60 80 100 120 140 160 180 200 220
40

60

80

100

120

140

160

180

200

220

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10
105 104

104

105 105

105

105104

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

4 4.5 5 5.5 6 6.5 7 7.5 8
2

2.5

3

3.5

4

4.5

Fig. 3 2-D plots of some synthetic datasets studied (one member per group). From top left to bottom right: A1, S1, Dim256, Birch1, Birch 2, Iris,

C5k1mN

Neural Computing and Applications (2020) 32:15445–15467 15457

123

because k-means?? provides better accuracy guarantees

than k-means. Thus, the quality of the derived dataset from

which the final centroids are obtained will be improved if it

was constructed using k-means?? on each sample, in

place of k-means. Second, high efficiency/scalability is

expected because the k-means?? component of our

algorithm is never run on large data throughout. This is

because, typically, k is less than a few hundreds even in

cases that would be considered very large. In many

applications, even when N is large (millions or hundreds of

thousands), k might even be less than 10. So, for our

samples of size 40 ? 2k and the derived dataset C which

has size of 5 k (if 5 samples are used) or 30 k (if 30

samples are used), the poor scalability of k-means??’s

seeding technique pointed out by Bachem et al. [54] is not

an issue.

In summary, the proposed k-means-lite?? algorithm is

outlined as follows (see pseudocode in Algorithm 3):

1. Select n samples, each of size s from the dataset P.

2. Run k-means?? on each sample and store the cluster

centroids in C (size nk).

3. Run k-means?? on C to obtain the final centroids set.

4. Assign each point in P to the nearest medoid in cfinal.

7 Experiments

To evaluate the proposed clustering approach, we com-

pare the speed and accuracy of our algorithms against

those of their traditional counterparts, k–means and k-

means??. Speed is measured by CPU time, while

accuracy is measured by Adjusted Rand Index (ARI). We

note that k-means?? is widely regarded as the state-of-

the-art algorithm. So its inclusion in our experiment and

the exploration of a corresponding version that adopts our

approach instead of the traditional approach are important

for our study. All our experiments were performed on a

computer having 4GB (3.7GB usable) RAM, intel

(R) core (TM) i5 – 3320M CPU @ 2.60 Hz 2.60 Hz,

running the Windows 10 operating system. All code was

implemented in MATLAB. We measure time using the

cputime function, while measured by Adjusted Rand

Index (ARI) [67]. We use the ARI implemented in the

adjrand function provided in the Exploratory Data Anal-

ysis toolbox (http://cda.psych.uiuc.edu/martinez/

edatoolbox).

7.1 Description of datasets

We use benchmark datasets and generate new ones to

reflect properties of interest. The benchmark datasets were

recently presented by Franti and Seinaroja [30]. Echoing

the work of Luxburg et al. [68], they argue against the use

of real-world datasets for studying the statistical proper-

ties of algorithms. They also criticized the use of classi-

fication datasets found in many popular machine learning

repositories, noting that they can be misleading because in

some cases, the dataset might reveal a different clustering

structure than what is suggested by the classification

labels. Following their argument in favor of artificial

datasets specifically designed to reflect properties to be

studied, they present a benchmark set, among which we

have chosen in this work. Ground truth partitioning is

publicly available, for each of these benchmark datasets.

This is required to evaluate accuracy based on ARI. The

ground truth clustering is the one that correctly represents

the original parameters used in generating a given dataset.

Franti et al. [30] pointed out that the ground truth matches

both the SSE optimal clustering for the dataset and human

intuition, unlike real-world datasets in which there may be

more than one correct clustering. Nevertheless, for rigor

and robustness of study, we tested the proposed algo-

rithms on real-life data as well the prescribed benchmark

synthetic datasets. The benchmark datasets are described

as follows.

A set [69]: Three datasets A1, A2 and A3 contain

spherical clusters. K = 20, 35 and 50, respectively, and

N = 3000, 5250 and 7500, respectively, while cluster size

(150), deviation (1402), overlap (20%) and dimensionality

(2) are kept constant.

S set [70]: Four datasets S1, S2, S3 and S4 contain

Gaussian clusters with overlap varied (9%, 22%, 41%,

44%) across the datasets. K = 16 and number of points per

cluster is 64.

Dim set [71]: Five datasets dim032, dim064, dim128,

dim256 and dim512, have dimensionalities 32, 64, 128,

256 and 512. The clusters contain points randomly sampled

15458 Neural Computing and Applications (2020) 32:15445–15467

123

http://cda.psych.uiuc.edu/martinez/edatoolbox
http://cda.psych.uiuc.edu/martinez/edatoolbox

from Gaussian distribution. K (16) and N are constant

across all the datasets.

Unbalance [72]: A dataset with unbalanced clusters of

sizes 100 – 2000. K = 8 and N = 6500.

Birch set [73]: Two large datasets (k = 100,

N = 100,000) Birch1 and Birch2 represent varying cluster

structures. Birch1 has a grid structure while Birch2 has a

sine curve structure. Their overlaps are 52% and 4%,

respectively.

To get much larger datasets than the above benchmark

and to isolate the effect of k and N, we synthesized a new

collection of datasets CX. The CX set consists of new

groups. Both groups are generated via the same process.

The difference is that in the first group, k is the parameter

that is increased while N is kept constant (N = 1 million).

In the second group, the varied parameter is N while k is

kept constant (k = 4). The datasets are generated using a

2D generator designed by Nuno Fachada.1 Each cluster is

generated along straight lines. The data parameters are:

(i) Slope, which defines the base direction of

lines.

(ii) Standard deviation of slope, for obtaining a

Gaussian random variation to be added to the

base slope value, to get the actual slope.

(iii) Number of clusters k, that is, the number of

lines to be generated.

Table 6 Accuracy—Adjusted Rand Index (ARI %)

S/N Dataset k-means k-means-lite s = 5 k-means-lite s = 30 k-means?? k-means-lite?? s = 5 k-means-lite?? s = 30

1 A1 82.1 72.4 80.5 89.6 86.2 88.5

2 A2 82.9 73.7 79.2 88.9 84.7 86.6

3 A3 80.3 74.2 78.2 88.0 84.9 87.7

4 S1 84.5 78.2 81.7 90.3 91.5 90.3

5 S2 83.0 74.5 77.8 86.2 83.2 84.3

6 S3 66.0 56.8 63.0 67.1 59.7 63.9

7 S4 59.7 51.9 55.8 60.3 52.2 56.1

8 Dim032 76.7 76.1 81.5 97.9 99.8 99.3

9 Dim064 78.8 75.1 81.2 99.1 99.8 99.8

10 Dim128 75.1 71.1 78.7 99.8 100.0 100.0

11 Dim256 73.4 64.9 76.0 99.8 100.0 100.0

12 Dim512 70.6 68.8 75.6 99.8 100.0 100.0

13 Dim1024 76.5 60.2 76.4 100.0 100.0 100.0

14 C4k10000N 40.2 41.2 41.7 43.8 46.4 45.7

15 C4k20000N 74.6 70.3 74.1 77.3 84.8 78.9

16 C4k50000N 86.5 60.2 65.2 83.7 80.4 80.7

17 C4k100000N 61.4 58.8 62.9 64.4 68.7 66.1

18 C4k200000N 71.0 73.2 77.9 71.0 76.4 81.7

19 C4k500000N 76.7 73.0 74.2 79.4 94.3 92.1

20 C4k1mN 65.9 70.2 69.5 80.6 84.1 81.8

21 Birch1 84.9 62.4 75.6 87.5 69.1 81.1

22 Birch2 81.0 77.2 81.4 90.5 90.5 91.8

23 C5k1mN 83.2 82.7 80.8 91.6 92.1 93.4

24 C10k1mN 64.6 60.9 69.4 75.6 76.6 78.0

25 C15k1mN 72.8 76.6 80.6 84.5 90.0 90.5

26 C20k1mN 76.8 78.1 77.8 87.8 92.3 93.2

27 C25k1mN 74.4 73.4 75.8 87.2 86.0 86.5

28 C30k1mN 77.3 78.7 80.8 92.0 95.0 95.5

29 C50k1mN 73.1 77.1 79.0 90.4 92.8 92.2

30 C50k1mN 75.5 77.3 80.3 93.2 94.1 94.2

Overall mean 74.3 69.6 74.4 84.9 85.2 86.0

1 Available at https://www.mathworks.com/matlabcentral/fileex

change/37435-generate-data-for-clustering.

Neural Computing and Applications (2020) 32:15445–15467 15459

123

https://www.mathworks.com/matlabcentral/fileexchange/37435-generate-data-for-clustering
https://www.mathworks.com/matlabcentral/fileexchange/37435-generate-data-for-clustering

(iv) X component of average separation of line

centers.

(v) Y component of average separation of line

centers.

(vi) Baseline length.

(vii) Standard deviation of length, for obtaining a

Gaussian random variation to be added to the

base length value to get the actual length.

(viii) Cluster fatness, that is, the standard deviation

of the distance in both x- and y-directions

from each point to the line that defines its

cluster.

(ix) Total number of points N.

In generating these datasets, the above parameters are

set to {1, 0.5, k, 20, 20, 5, 1, 5, N}, respectively.

Description of real datasets

Dataset Description k N D

Gene Gene expression of cancer

patients with different tumor

types

5 801 20,531

Breast Breast Cancer database 2 699 9

Bridge Image—bridge 256 4096 16

Europe Differential coordinates of

Europe map

256 169,308 2

House Image—house 256 34,112 3

Iris Species of the Iris flower 3 150 4

Leaves Sample leaves of hundred plant

species

100 1600 64

Letter Letter recognition dataset 26 20,000 16

Missa Image—Miss America 256 6480 16

Table 7 Synthetic datasets: SSE

S/N Dataset k-means k-means-lite s = 5 k-means-lite s = 30 k-means?? k-means-lite?? s = 5 k-means-lite?? s = 30

1 A1 1.98E?10 2.83E?10 2.18E?10 1.59E?10 1.84E?10 1.66E?10

2 A2 3.31E?10 4.76E?10 3.72E?10 2.79E?10 3.26E?10 2.94E?10

3 A3 5.23E?10 6.82E?10 5.59E?10 4.01E?10 4.79E?10 4.19E?10

4 S1 1.92E?13 2.63E?13 2.17E?13 1.41E?13 1.50E?13 1.50E?13

5 S2 1.94E?13 2.75E?13 2.40E?13 1.71E?13 2.04E?13 1.84E?13

6 S3 1.96E?13 2.70E?13 2.17E?13 1.88E?13 2.46E?13 2.10E?13

7 S4 1.71E?13 2.32E?13 1.94E?13 1.69E?13 2.29E?13 1.92E?13

8 Dim032 1.59E?07 1.77E?07 1.37E?07 1.33E?06 3.87E?05 6.17E?05

9 Dim064 3.09E?07 3.72E?07 2.95E?07 1.45E?06 5.55E?05 5.36E?05

10 Dim128 7.56E?07 8.64E?07 6.38E?07 9.84E?05 3.29E?05 2.85E?05

11 Dim256 1.79E?08 1.99E?08 1.38E?08 1.68E?06 3.17E?05 2.48E?05

12 Dim512 3.79E?08 3.94E?08 2.76E?08 3.26E?06 3.22E?05 3.07E?05

13 Dim1024 6.72E?08 8.89E?08 5.84E?08 2.75E?05 2.91E?05 2.82E?05

14 C4k10000N 4.63E?05 5.08E?05 4.94E?05 4.27E?05 4.54E?05 4.35E?05

15 C4k20000N 9.85E?05 1.27E?06 1.30E?06 9.82E?05 1.08E?06 1.04E?06

16 C4k50000N 2.55E?06 4.24E?06 3.59E?06 2.69E?06 2.93E?06 2.87E?06

17 C4k100000N 4.83E?06 7.39E?06 7.78E?06 4.79E?06 5.20E?06 5.12E?06

18 C4k200000N 9.37E?06 1.17E?07 1.02E?07 9.37E?06 1.06E?07 9.85E?06

19 C4k500000N 3.02E?07 6.32E?07 4.80E?07 3.00E?07 2.98E?07 2.89E?07

20 C4k1mN 1.04E?08 1.10E?08 1.00E?08 4.84E?07 5.14E?07 5.03E?07

21 Birch1 1.10E?14 1.63E?14 1.26E?14 1.07E?14 1.43E?14 1.16E?14

22 Birch2 1.56E?12 2.07E?12 1.61E?12 8.60E?11 9.68E?11 8.34E?11

23 C5k1mN 8.73E?07 1.04E?08 9.91E?07 6.62E?07 7.47E?07 6.83E?07

24 C10k1mN 7.63E?07 1.04E?08 7.28E?07 5.34E?07 5.94E?07 5.76E?07

25 C15k1mN 1.37E?08 1.96E?08 1.27E?08 6.57E?07 6.42E?07 6.07E?07

26 C20k1mN 2.12E?08 2.86E?08 2.91E?08 7.72E?07 7.32E?07 6.56E?07

27 C25k1mN 3.26E?08 3.51E?08 2.57E?08 7.59E?07 8.19E?07 7.10E?07

28 C30k1mN 4.80E?08 5.20E?08 4.19E?08 8.32E?07 8.15E?07 8.64E?07

29 C50k1mN 9.16E?08 7.66E?08 6.55E?08 7.05E?07 8.31E?07 6.93E?07

30 C50k1mN 1.40E?09 1.57E?09 1.33E?09 8.78E?07 1.68E?08 7.40E?07

15460 Neural Computing and Applications (2020) 32:15445–15467

123

Dataset Description k N D

MNIST Handwritten digits database 10 10,000 748

The gene expression and Iris datasets are available at the UCI

machine learning repository: https://archive.ics.uci.edu/ml/datasets/

gene?expression?cancer?RNA-Seq. All others are available at

http://cs.joensuu.fi/sipu/datasets/

7.2 Results

For statistically representative results, on each dataset

tested, each algorithm is run 30 times, and the average ARI

over these 30 runs is recorded for each algorithm per

dataset, in Table 6. As another measure of solution quality,

Table 7 records the cost (SSE) given by the k-means

objective function. For easier comparison of the algo-

rithms’ SSE, we present another table (Table 8) which

shows the ratio of the cost produced by each algorithm to

that of the k-means algorithm. In Table 9, k-means-

lite??’s cost is compared to that of k-means??. At the

bottom of these tables (and others in the rest of the paper),

by means of bold fonts, we have highlighted the ability of

our proposed algorithms to match the accuracy of their full-

data counterparts.

Table 8 Synthetic datasets: ratio of each algorithm’s SSE to k-means’ SSE

S/N Dataset k-means k-means-lite s = 5 k-means-lite s = 30 k-means?? k-means-lite?? s = 5 k-means-lite?? s = 30

1 A1 1.00 1.43 1.10 0.80 0.93 0.84

2 A2 1.00 1.44 1.12 0.84 0.98 0.89

3 A3 1.00 1.30 1.07 0.77 0.92 0.80

4 S1 1.00 1.37 1.13 0.73 0.78 0.78

5 S2 1.00 1.42 1.24 0.88 1.05 0.95

6 S3 1.00 1.38 1.11 0.96 1.26 1.07

7 S4 1.00 1.36 1.14 0.99 1.34 1.12

8 Dim032 1.00 1.12 0.86 0.08 0.02 0.04

9 Dim064 1.00 1.20 0.96 0.05 0.02 0.02

10 Dim128 1.00 1.14 0.84 0.01 0.00 0.00

11 Dim256 1.00 1.11 0.77 0.01 0.00 0.00

12 Dim512 1.00 1.04 0.73 0.01 0.00 0.00

13 Dim1024 1.00 1.32 0.87 0.00 0.00 0.00

14 C4k10000N 1.00 1.10 1.07 0.92 0.98 0.94

15 C4k20000N 1.00 1.29 1.32 1.00 1.10 1.05

16 C4k50000N 1.00 1.66 1.41 1.05 1.15 1.13

17 C4k100000N 1.00 1.53 1.61 0.99 1.08 1.06

18 C4k200000N 1.00 1.24 1.09 1.00 1.13 1.05

19 C4k500000N 1.00 2.10 1.59 0.99 0.99 0.96

20 C4k1mN 1.00 1.06 0.96 0.46 0.49 0.48

21 Birch1 1.00 1.48 1.15 0.97 1.29 1.05

22 Birch2 1.00 1.32 1.03 0.55 0.62 0.53

23 C5k1mN 1.00 1.19 1.14 0.76 0.86 0.78

24 C10k1mN 1.00 1.36 0.96 0.70 0.78 0.76

25 C15k1mN 1.00 1.44 0.93 0.48 0.47 0.44

26 C20k1mN 1.00 1.35 1.38 0.36 0.35 0.31

27 C25k1mN 1.00 1.07 0.79 0.23 0.25 0.22

28 C30k1mN 1.00 1.08 0.87 0.17 0.17 0.18

29 C50k1mN 1.00 0.84 0.72 0.08 0.09 0.08

30 C50k1mN 1.00 1.13 0.95 0.06 0.12 0.05

Mean = 1.00 1.30 1.06 0.56 0.64 0.59

Neural Computing and Applications (2020) 32:15445–15467 15461

123

https://archive.ics.uci.edu/ml/datasets/gene%2bexpression%2bcancer%2bRNA-Seq
https://archive.ics.uci.edu/ml/datasets/gene%2bexpression%2bcancer%2bRNA-Seq
http://cs.joensuu.fi/sipu/datasets/

7.2.1 ARI

Comparing ARI on these wide range of datasets (30 in

number), the average performance of the 30-sample k-

means-lite (74.4%) matches that of k-means (74.3%). The

performance of k-means?? (84.5) is matched by five-

sample k-means-lite?? (85.2%), while the 30-sample k-

means-lite?? (86.0%) outperforms k-means?? slightly.

7.2.2 SSE

From Table 8, for these synthetic datasets, on average, k-

means-lite’s (30 samples) SSE is 1.06 times that of k-

means. K-means?? is matched by five-sample k-

means?? (ratio 1:1), while 30-sample k-means-lite??

performs slightly better (ratio 0.9).

7.2.3 Speed

The average running time for each algorithm on each

dataset is recorded in Table 10. For the largest dataset

(C50k1mN), k-means runs in 101.27 s, while the 30-sam-

ple k-means-lite, which matches k-means’ performance,

takes only 1.32 s. k-means?? correspondingly takes

58.77 s, while five-sample k-means-lite?? which matches

k-means??’ performance takes only 1.33 s.

The 30-sample k-means-lite?? which slightly outper-

forms k-means?? took 2.26 s on this dataset. Across these

30 datasets, k-means’ running time grew by a factor of

8838, k-means?? by 2351, 5-and 30-sample k-means-lite

by 39 and 11, respectively, and 5- and 30-sample k-means-

lite?? by factors of 32 and 15, respectively.

These experimental results are consistent with theoreti-

cal results presented in Theorems 3 and 4: When our

Table 9 Synthetic datasets:

ratio of k-means-lite?? SSE to

k-means?? SSE

S/N Dataset k-means?? k-means-lite??, s = 5 k-means-lite??, s = 30

1 A1 1.00 1.16 1.04

2 A2 1.00 1.17 1.06

3 A3 1.00 1.20 1.05

4 S1 1.00 1.06 1.07

5 S2 1.00 1.19 1.07

6 S3 1.00 1.31 1.11

7 S4 1.00 1.36 1.13

8 Dim032 1.00 0.29 0.46

9 Dim064 1.00 0.38 0.37

10 Dim128 1.00 0.33 0.29

11 Dim256 1.00 0.19 0.15

12 Dim512 1.00 0.10 0.09

13 Dim1024 1.00 1.06 1.02

14 C4k10000N 1.00 1.06 1.02

15 C4k20000N 1.00 1.10 1.06

16 C4k50000N 1.00 1.09 1.07

17 C4k100000N 1.00 1.09 1.07

18 C4k200000N 1.00 1.13 1.05

19 C4k500000N 1.00 1.00 0.96

20 C4k1mN 1.00 1.06 1.04

21 Birch1 1.00 1.34 1.09

22 Birch2 1.00 1.13 0.97

23 C5k1mN 1.00 1.13 1.03

24 C10k1mN 1.00 1.11 1.08

25 C15k1mN 1.00 0.98 0.92

26 C20k1mN 1.00 0.95 0.85

27 C25k1mN 1.00 1.08 0.94

28 C30k1mN 1.00 0.98 1.04

29 C50k1mN 1.00 1.18 0.98

30 C50k1mN 1.00 1.92 0.84

Mean = 1.00 1.00 0.90

15462 Neural Computing and Applications (2020) 32:15445–15467

123

proposed approach is used to scale a k-means algorithm Q,

Q-lite (the scale version) can reproduce (or even slightly

improve) the Q’s performance. Furthermore, regardless of

the specific complexity of Q, the running time of Q-lite is

constant in N. Further validation is found in Tables 9 and

10, which show the results of testing the algorithms on ten

real datasets.

7.2.4 Real datasets

Just as we did for the synthetic datasets, on each real

dataset tested, each algorithm is run 30 times. Table 11

records the cost (SSE) given by the k-means objective

function. For easier comparison of the algorithms’ SSE, we

present another table (Table 12) which shows the ratio of

the cost produced by each algorithm to that of the k-means

algorithm. In Table 13, k-means-lite??’s cost is compared

to that of k-means??. We do not use the ARI metric for

these real datasets because ground truth partitioning is

unavailable for majority of these datasets.

7.2.5 SSE

From Table 12, for these synthetic datasets, on average, k-

means-lite’s (30 samples) SSE is 1.20 times that of k-

means. Although this factor is still fairly close to 1, we

Table 10 Synthetic data: running time (in s)

S/N Dataset k-means k-means-lite s = 5 k-means-lite s = 30 k-means?? k-means-lite?? s = 5 k-means-lite?? s = 30

1 A1 0.03 0.04 0.14 0.04 0.08 0.33

2 A2 0.07 0.04 0.14 0.08 0.10 0.50

3 A3 0.13 0.05 0.18 0.14 0.14 0.68

4 S1 0.03 0.04 0.13 0.04 0.06 0.26

5 S2 0.04 0.04 0.14 0.04 0.06 0.27

6 S3 0.05 0.04 0.15 0.05 0.06 0.29

7 S4 0.07 0.03 0.15 0.07 0.07 0.29

8 Dim032 0.01 0.03 0.13 0.03 0.07 0.29

9 Dim064 0.01 0.04 0.14 0.03 0.06 0.29

10 Dim128 0.02 0.04 0.16 0.03 0.08 0.31

11 Dim256 0.03 0.05 0.19 0.05 0.09 0.36

12 Dim512 0.05 0.06 0.27 0.07 0.09 0.42

13 Dim1024 0.09 0.09 0.44 0.11 0.13 0.58

14 C4k10000N 0.05 0.04 0.12 0.07 0.04 0.15

15 C4k20000N 0.11 0.04 0.13 0.10 0.04 0.15

16 C4k50000N 0.12 0.04 0.14 0.11 0.05 0.15

17 C4k100000N 0.53 0.05 0.15 0.45 0.04 0.17

18 C4k200000N 1.92 0.05 0.13 2.17 0.06 0.17

19 C4k500000N 4.54 0.08 0.17 4.18 0.08 0.20

20 C4k1mN 17.20 0.13 0.20 9.78 0.12 0.24

21 Birch1 10.74 0.17 0.35 8.05 0.36 1.31

22 Birch2 3.10 0.18 0.33 2.66 0.35 1.31

23 C5k1mN 13.85 0.14 0.23 7.94 0.15 0.26

24 C10k1mN 39.88 0.20 0.29 20.03 0.20 0.38

25 C15k1mN 37.09 0.30 0.42 23.59 0.32 0.54

26 C20k1mN 45.20 0.34 0.40 27.24 0.34 0.58

27 C25k1mN 52.43 0.41 0.48 29.05 0.42 0.73

28 C30k1mN 47.36 0.46 0.53 23.41 0.46 0.81

29 C50k1mN 71.15 0.73 0.78 34.91 0.75 1.26

30 C50k1mN 101.27 1.31 1.32 58.77 1.33 2.26

Min 0.01 0.03 0.12 0.03 0.04 0.15

Max 101.27 1.31 1.32 58.77 1.33 2.26

Max/min 8838.14 39.2 10.6 2350.9 31.9 15.1

Neural Computing and Applications (2020) 32:15445–15467 15463

123

Table 11 Real datasets: SSE

S/N Dataset k-means k-means-lite s = 5 k-means-lite s = 30 k-means?? k-means-lite?? s = 5 k-means-lite?? s = 30

1 Gene 1.89E?07 2.14E?07 2.00E?07 1.86E?07 2.10E?07 2.08E?07

2 Breast Cancer 1.97E?04 2.00E?04 1.98E?04 1.97E?04 1.99E?04 1.98E?04

3 Bridge 1.18E?07 1.39E?07 1.21E?07 1.15E?07 1.37E?07 1.21E?07

4 Europe 1.22E?12 5.49E?12 3.47E?12 8.65E?11 4.21E?12 2.02E?12

5 House 1.20E?05 1.39E?05 1.20E?05 1.17E?05 1.34E?05 1.18E?05

6 Iris 1.11E?02 1.02E?02 1.02E?02 8.31E?01 8.16E?01 7.96E?01

7 Leaves 4.56E?08 5.78E?08 4.46E?08 3.49E?08 4.29E?08 3.60E?08

8 Letter 6.19E?11 7.49E?11 6.62E?11 6.20E?11 7.46E?11 6.65E?11

9 Missa 6.07E?05 7.19E?05 6.19E?05 5.68E?05 6.94E?05 5.94E?05

10 MNIST 2.54E?10 2.89E?10 2.69E?10 2.54E?10 2.94E?10 2.73E?10

Table 12 Real datasets: Ratio of each algorithm’s SSE to k-means’ SSE

S/

N

Dataset k-
means

k-means-lite

s = 5

k-means-lite

s = 30

k-
means??

k-means-lite??

s = 5

k-means-lite??

s = 30

1 Gene 1.00 1.13 1.05 0.98 1.11 1.10

2 Breast Cancer 1.00 1.01 1.00 1.00 1.01 1.00

3 Bridge 1.00 1.18 1.02 0.98 1.16 1.02

4 Europe 1.00 4.49 2.84 0.71 3.44 1.65

5 House 1.00 1.16 1.01 0.98 1.12 0.99

6 Iris 1.00 0.92 0.92 0.75 0.73 0.72

7 Leaves 1.00 1.27 0.98 0.76 0.94 0.79

8 Letter 1.00 1.21 1.07 1.00 1.20 1.07

9 Missa 1.00 1.18 1.02 0.94 1.14 0.98

10 MNIST 1.00 1.14 1.06 1.00 1.16 1.07

Mean ratio (all) 1.00 1.47 1.20 0.91 1.30 1.04

Mean ratio (excluding

Europe)

1.00 1.13 1.01 0.93 1.06 0.97

Table 13 Real datasets: ratio of

k-means-lite??’s SSE to k-
means??’s SSE

S/N Dataset k-means?? k-means-lite?? s = 5 k-means-lite?? s = 30

1 Gene 1.00 1.13 1.12

2 Breast Cancer 1.00 1.01 1.00

3 Bridge 1.00 1.19 1.04

4 Europe 1.00 4.87 2.34

5 House 1.00 1.14 1.01

6 Iris 1.00 0.98 0.96

7 Leaves 1.00 1.23 1.03

8 Letter 1.00 1.20 1.07

9 Missa 1.00 1.22 1.05

10 MNIST 1.00 1.16 1.07

Mean ratio (all) 1.00 1.51 1.17

Mean ratio (excluding Europe) 1.00 1.14 1.04

15464 Neural Computing and Applications (2020) 32:15445–15467

123

notice that k-means-lite performs exceptionably bad on the

Europe dataset compared to other datasets. If this dataset is

exempted (outlier), the ratio of k-means-lite’s average

performance to that of k-means becomes 1.01. Over all the

ten datasets, the average SSE’s of the five-sample and

30-sample k-means-lite?? to that of k-means?? are 1.51

and 1.17, respectively. Again, when the Europe dataset is

exempted, the ratios are 1.14 and 1.04.

7.2.6 Speed

The average running time for each algorithm on each

dataset is recorded in Table 14. For the largest dataset

(Europe), k-means takes 237.72 s, while the 30-sample k-

means-lite, which practically matches k-means’ perfor-

mance, takes only 0.70 s. k-means??’s correspondingly

takes 82.56 s, while 30-sample k-means-lite??, which

exhibits performance that is comparable to that of k-

means??, takes 4.14 s. The five-sample k-means-lite??

takes only 1.13 s. Across these 30 datasets, k-means’ run-

ning time grew by a factor of 65,204, k-means?? by a

factor of 6605; the running time of five-sample and

30-sample k-means-lite grew by factors of 24 and 28,

respectively, while five-sample and 30-sample k-means-

lite?? grew by factors of 35 and 37, respectively.

7.3 Conclusion

This work was carried out mainly to improve to the scal-

ability of the standard k-means algorithm, purely algo-

rithmically, that is, without leveraging hardware or special

technologies. We have presented a general approach to

creating constant-time versions of k-means clustering

algorithms. The idea was demonstrated with the two most

popular variants: standard k-means and k-means??.

Perhaps, the easiest way to scale an algorithm is to apply it

to samples instead of the full data. However, the more the

efficiency gained in this way, the further the accuracy will

be from what the full-data version can produce. Repeated

sample trials will yield improved results but can hardly

match the performance of the full-data version. More so,

each solution (sample centroids set) will be evaluated on

the full dataset, making the running time a function of data

size. Inspired by the central limit theorem, which we have

extended from the single population case to the mixture

distribution case, our proposed approach corrects for

sampling error and possesses approximately same perfor-

mance bound as the full-data version. The implementation

is simple: Apply the algorithm to n samples; then, apply the

algorithm again to the combination of all the k centroids

obtained from each of samples. This process yields a high-

speed, constant-time version of the original algorithm.

Experiments have shown that the performance of the

standard k-means algorithm is matched by our scaled ver-

sion, named k-means-lite, if the latter constructs its solution

using 30 samples of size 40 ? 2k each. For k-means-

lite?? (our scaled version of k-means??), the perfor-

mance of the full-data k-means?? is matched when only

five samples are used, in many of the cases tested, though

the use of 30 samples remains the more reliable choice.

Although further efficiency can be realized via scaling

technologies, such as parallelization, MapReduce and

GPU-acceleration, from which our method can easily

benefit, we note that without any of these, our algorithms

exhibited real-time speed on large datasets.

Acknowledgements The first author was supported by the Global

Excellence and Stature Scholarship Fund of the University of

Johannesburg, South Africa.

Table 14 Running time (in s)

S/N Dataset k-means k-means-lite s = 5 k-means-lite s = 30 k-means?? k-means-lite?? s = 5 k-means-lite?? s = 30

1 Gene 1.97 0.70 3.15 2.03 0.72 3.34

2 Breast Cancer 0.01 0.03 0.11 0.01 0.03 0.11

3 Bridge 0.28 0.16 1.24 0.40 0.67 3.81

4 Europe 237.72 0.68 2.23 82.56 1.13 4.14

5 House 0.07 0.11 0.89 0.16 0.63 3.57

6 Iris 0.00 0.03 0.13 0.02 0.05 0.13

7 Leaves 0.11 0.09 0.57 0.13 0.29 1.57

8 Letter 1.26 0.05 0.16 1.10 0.11 0.43

9 Missa 0.73 0.18 1.44 0.83 0.73 4.11

10 MNIST 7.42 0.20 0.43 8.42 0.22 0.55

Min 0.00 0.03 0.11 0.01 0.03 0.11

Max 237.72 0.70 3.15 82.56 1.13 4.14

Max/Min 65,204 24 28 6605 35 37

Neural Computing and Applications (2020) 32:15445–15467 15465

123

Compliance with ethical standards

Conflict of interest The authors do not have any conflict of interest.

References

1. Philbeck T, Davis N (2019) The Fourth Industrial Revolution.

J Int Aff 72(1):17–22

2. Gunal MM (2019) Simulation and the fourth industrial revolu-

tion. In: Simulation for Industry 4.0, Springer, pp 1–17

3. Vassakis K, Petrakis E, Kopanakis I (2018) Big data analytics:

applications, prospects and challenges. In Mobile big data,

Springer, pp 3–20

4. Fahim AM, Salem AM, Torkey FA, Ramadan MA (2006) An

efficient enhanced k-means clustering algorithm. J Zhejiang Univ

Sci A 7(10):1626–1633

5. Xu R, Wunsch D (2005) Survey of clustering algorithms. IEEE

Trans Neural Netw 16(3):645–678

6. Milligan GW (1980) An examination of the effect of six types of

error perturbation on fifteen clustering algorithms. Psychometrika

45(3):325–342

7. Bindra K, Mishra A (2019) Effective data clustering algorithms.

In: Soft computing: theories and applications, Springer,

pp 419–432

8. Jain AK (2010) Data clustering: 50 years beyond K-means.

Pattern Recogn Lett 31(8):651–666

9. Gondeau A, Aouabed Z, Hijri M, Peres-Neto P, Makarenkov V

(2019) Object weighting: a new clustering approach to deal with

outliers and cluster overlap in computational biology. IEEE/ACM

Trans Comput Biol Bioinform. https://doi.org/10.1109/TCBB.

2019.2921577

10. Brusco MJ, Steinley D, Stevens J, Cradit JD (2019) Affinity

propagation: an exemplar-based tool for clustering in psycho-

logical research. Br J Math Stat Psychol 72(1):155–182

11. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review.

ACM Comput Surv CSUR 31(3):264–323

12. Jain AK, Dubes RC (1988) Algorithms for clustering data.

Prentice Hall, Englewood Cliffs

13. Wong K-C (2015) A short survey on data clustering algorithms.

In: 2015 Second international conference on soft computing and

machine intelligence (ISCMI), pp 64–68

14. Li T, Ding C (2018) Nonnegative matrix factorizations for

clustering: a survey. In: Data clustering. Chapman and Hall/CRC,

pp 149–176

15. He Z, Yu C (2019) Clustering stability-based evolutionary

k-means. Soft Comput 23(1):305–321

16. Melnykov V, Michael S (2019) Clustering large datasets by

merging K-means solutions. J Classif. https://doi.org/10.1007/

s00357-019-09314-8

17. Lücke J, Forster D (2019) k-means as a variational EM approx-

imation of Gaussian mixture models. Pattern Recognit Lett

125:349–356

18. Wu X et al (2008) Top 10 algorithms in data mining. Knowl Inf

Syst 14(1):1–37

19. Arthur D, Vassilvitskii S (2007) k-means??: the advantages of

careful seeding. In: Proceedings of the eighteenth annual ACM-

SIAM symposium on Discrete algorithms, pp 1027–1035

20. Mitra P, Shankar BU, Pal SK (2004) Segmentation of multi-

spectral remote sensing images using active support vector

machines. Pattern Recogn Lett 25(9):1067–1074

21. Steinbach M, Karypis G, Kumar V (2000) A comparison of

document clustering techniques. KDD Workshop Text Min

400:525–526

22. Celebi ME (2011) Improving the performance of k-means for

color quantization. Image Vis Comput 29(4):260–271

23. Kuo RJ, Ho LM, Hu CM (2002) Integration of self-organizing

feature map and K-means algorithm for market segmentation.

Comput Oper Res 29(11):1475–1493

24. Wagh S, Prasad R (2014) Power backup density based clustering

algorithm for maximizing lifetime of wireless sensor networks.

In: 2014 4th International conference on wireless communica-

tions, vehicular technology, information theory and aerospace &

electronic systems (VITAE), pp 1–5

25. Le Roch KG et al (2003) Discovery of gene function by

expression profiling of the malaria parasite life cycle. Science

301(5639):1503–1508

26. Ng HP, Ong SH, Foong KWC, Goh PS, Nowinski WL (2006)

Medical image segmentation using k-means clustering and

improved watershed algorithm. In: 2006 IEEE southwest sym-

posium on image analysis and interpretation, pp 61–65

27. Su M-C, Chou C-H (2001) A modified version of the K-means

algorithm with a distance based on cluster symmetry. IEEE Trans

Pattern Anal Mach Intell 23(6):674–680

28. Olukanmi PO, Twala B (2017) Sensitivity analysis of an outlier-

aware k-means clustering algorithm. In: Pattern Recognition

Association of South Africa and Robotics and Mechatronics

(PRASA-RobMech), pp 68–73

29. Olukanmi PO, Twala B (2017) K-means-sharp: modified centroid

update for outlier-robust k-means clustering. In: Pattern Recog-

nition Association of South Africa and Robotics and Mecha-

tronics (PRASA-RobMech), pp 14–19

30. Fränti P, Sieranoja S (2017) K-means properties on six clustering

benchmark datasets. Appl Intell 48:1–17

31. Shrivastava P, Sahoo L, Pandey M, Agrawal S (2018) AKM—

augmentation of K-means clustering algorithm for big data. In:

Intelligent engineering informatics, Springer, pp 103–109

32. Meng Y, Liang J, Cao F, He Y (2018) A new distance with

derivative information for functional k-means clustering algo-

rithm. Information Science

33. Joshi E, Parikh DA (2018) An improved K-means clustering

algorithm

34. Ismkhan H (2018) Ik-means- ? : an iterative clustering algorithm

based on an enhanced version of the k-means. Pattern Recogn

79:402–413

35. Ye S, Huang X, Teng Y, Li Y (2018) K-means clustering algo-

rithm based on improved Cuckoo search algorithm and its

application. In: 2018 IEEE 3rd international conference on big

data analysis (ICBDA), pp 422–426

36. Yu S-S, Chu S-W, Wang C-M, Chan Y-K, Chang T-C (2018)

Two improved k-means algorithms. Appl Soft Comput

68:747–755

37. Steinley D (2006) K-means clustering: a half-century synthesis.

Br J Math Stat Psychol 59(1):1–34

38. Lloyd S (1982) Least squares quantization in PCM. IEEE Trans

Inf Theory 28(2):129–137

39. Bahmani B, Moseley B, Vattani A, Kumar R, Vassilvitskii S

(2012) Scalable k-means??. Proc VLDB Endow 5(7):622–633

40. Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R,

Wu AY (2002) An efficient k-means clustering algorithm: anal-

ysis and implementation. IEEE Trans Pattern Anal Mach Intell

7:881–892

41. Elkan C (2003) Using the triangle inequality to accelerate

k-means. In: Proceedings of the 20th international conference on

machine learning (ICML-03), pp 147–153

42. Hamerly G (2010) Making k-means even faster. In: Proceedings

of the 2010 SIAM international conference on data mining,

pp 130–140

15466 Neural Computing and Applications (2020) 32:15445–15467

123

https://doi.org/10.1109/TCBB.2019.2921577
https://doi.org/10.1109/TCBB.2019.2921577
https://doi.org/10.1007/s00357-019-09314-8
https://doi.org/10.1007/s00357-019-09314-8

43. Drake J, Hamerly G (2012) Accelerated k-means with adaptive

distance bounds. In: 5th NIPS workshop on optimization for

machine learning, pp 42–53

44. Agustsson E, Timofte R, Van Gool L (2017) ‘‘$$ k^ 2$$ k

2-means for fast and accurate large scale clustering. In: Joint

European conference on machine learning and knowledge dis-

covery in databases, pp 775–791

45. Alsabti K, Ranka S, Singh V (1997) An efficient k-means clus-

tering algorithm. Elect Eng Comput Sci 43. https://surface.syr.

edu/eecs/43

46. Pelleg D, Moore A (1999) Accelerating exact k-means algorithms

with geometric reasoning. In: Proceedings of the fifth ACM

SIGKDD international conference on Knowledge discovery and

data mining, pp 277–281

47. Capó M, Pérez A, Lozano JA (2017) An efficient approximation

to the K-means clustering for massive data. Knowl-Based Syst

117:56–69

48. Sculley D (2010) Web-scale k-means clustering. In: Proceedings

of the 19th international conference on World wide Web,

pp 1177–1178

49. Wang J, Wang J, Ke Q, Zeng G, Li S (2015) Fast approximate

K-means via cluster closures. In: Multimedia data mining and

analytics, Springer, pp 373–395

50. Bachem O, Lucic M, Hassani H, Krause A (2016) Fast and

provably good seedings for k-means. In: Advances in neural

information processing systems, pp 55–63

51. Newling J, Fleuret F (2017) K-medoids for k-means seeding. In:

Advances in neural information processing systems,

pp 5195–5203

52. Sherkat E, Velcin J, Milios EE (2018) Fast and simple deter-

ministic seeding of K-means for text document clustering. In:

International conference of the cross-language evaluation forum

for European languages, pp 76–88

53. Ostrovsky R, Rabani Y, Schulman LJ, Swamy C (2012) The

effectiveness of Lloyd-type methods for the k-means problem.

JACM 59(6):28

54. Bachem O, Lucic M, Hassani H, Krause A (2016) Approximate

K-means?? in sublinear time. In: AAAI, pp 1459–1467

55. Bachem O, Lucic M, Hassani H, Krause A (2016) K-mc2:

approximate k-means?? in sublinear time. In: AAAI
56. Trotter HF (1959) An elementary proof of the central limit the-

orem. Arch Math 10(1):226–234

57. Filmus Y (2010) Two proofs of the central limit theorem.

Recuperado de http://www.cs.toronto.edu/yuvalf/CLT.pdf

58. Fischer H (2010) A history of the central limit theorem: from

classical to modern probability theory. Springer, Berlin

59. Mether M (2003) The history of the central limit theorem.

Sovelletun Matematiikan erikoistyöt 2(1):08

60. Le Cam L (1986) The central limit theorem around 1935. Stat Sci

1(1):78–91

61. Adams WJ (2009) The life and times of the central limit theorem,

vol 35. American Mathematical Society, Providence

62. Guha S, Rastogi R, Shim K (1998) CURE: an efficient clustering

algorithm for large databases. ACM Sigmod Record 27:73–84

63. Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R,

Wu AY (2004) A local search approximation algorithm for

k-means clustering. Comput Geom 28(2–3):89–112

64. Har-Peled S, Sadri B (2005) How fast is the k-means method?

Algorithmica 41(3):185–202

65. Kaufman L, Rousseeuw PJ (2008) Clustering large applications

(Program CLARA). In: Finding groups in data: an introduction to

cluster analysis, pp 126–146

66. Ng RT, Han J (2002) CLARANS: a method for clustering objects

for spatial data mining. IEEE Trans Knowl Data Eng

14(5):1003–1016

67. Vinh NX, Epps J, Bailey J (2010) Information theoretic measures

for clusterings comparison: Variants, properties, normalization

and correction for chance. J Mach Learn Res 11:2837–2854

68. Guyon I, Von Luxburg U, Williamson RC (2009) Clustering:

science or art. In: NIPS 2009 workshop on clustering theory,

pp 1–11

69. Kärkkäinen I, Fränti P (2002) Dynamic local search algorithm for

the clustering problem. University of Joensuu, Joensuu

70. Fränti P, Virmajoki O (2006) Iterative shrinking method for

clustering problems. Pattern Recogn 39(5):761–775

71. Franti P, Virmajoki O, Hautamaki V (2006) Fast agglomerative

clustering using a k-nearest neighbor graph. IEEE Trans Pattern

Anal Mach Intell 28(11):1875–1881

72. Rezaei M, Fränti P (2016) Set matching measures for external

cluster validity. IEEE Trans Knowl Data Eng 28(8):2173–2186

73. Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an efficient

data clustering method for very large databases. ACM Sigmod

Record 25:103–114

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2020) 32:15445–15467 15467

123

https://surface.syr.edu/eecs/43
https://surface.syr.edu/eecs/43
http://www.cs.toronto.edu/yuvalf/CLT.pdf

	Rethinking k-means clustering in the age of massive datasets: a constant-time approach
	Abstract
	Introduction
	The standard k-means and k-means++ algorithms
	The k-means algorithm
	K-means++

	Related works
	Triangle inequality
	Kd-tree
	Sampling
	Cluster closure
	Seeding

	The proposed k-means-lite paradigm
	The central limit theorem (CLT) and estimation of population mean
	The CLT and k-means clustering, for kthinsp=thinsp1
	Generalizing the CLT for k-means clustering
	The k-means-lite algorithm

	Analysis
	Complexity
	Performance bound
	Advantage over simple uniform sampling and repeated sampling
	Brief experiment: comparing single and repeated uniform sampling with the proposed approach
	Highlights of advantages of k-means-lite compared to the conventional approach
	Choosing number and size of samples

	K-means-lite++: the advantage of per-sample seeding
	Experiments
	Description of datasets
	Results
	ARI
	SSE
	Speed
	Real datasets
	SSE
	Speed

	Conclusion

	Acknowledgements
	References

