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Abstract
Evolutionary algorithms are generally a suitable approach for optimization problems, having more than one conflicting

objectives. For many complicated engineering optimization problems, multi-objective formulations are treated as realistic

models. The paper presents and implements a Pareto-optimal image encryption algorithm that uses coupled map lattice

(CML) chaos function and deoxyribonucleic acid (DNA) combination to encrypt an image. The discussed work uses multi-

objective genetic algorithm (MOGA) to get the optimized results. The proposed two-step algorithm uses pseudo-random

number generators, the chaotic method CML and DNA to create an initial population of DNA masks in its initial stage. The

MOGA is applied in the second stage to obtain the best mask for encrypting the given plain image. The focus is on the

generation of Pareto fronts by using the Pareto generation method of multi-objective optimization. The paper evaluates the

performance of the implemented work using standard metrics like key sensitivity, secret key space, number of pixel change

rate, unified average changed intensity, entropy, histogram and correlation coefficient. It also discusses the impact of using

a genetic algorithm that uses more than one fitness function as the objective for encrypting images.
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1 Introduction

Due to fast and new emerging technologies, it is very hard

to keep information secure. The encryption algorithms are

used to protect the information like digital images from the

unauthorized persons or attackers [1, 2]. In the last few

decades, a lot of work has been done and is being carried

out to develop good image encryption methods [3–6].

However, an efficient and secure image encryption method

is still a challenging task.

In recent years, many algorithms have been designed

using chaos theory as scientists established a perfect match

between chaos theory and cryptography. Due to bulk data

capacity and high correlations among pixels in an image,

the conventional techniques like Advanced Encryption

Standard (AES), International Data Encryption Algorithm

(IDEA) are not suitable [2, 7, 8]. Hraoui et al. [9] argue that

chaos theory supersedes AES encryption in terms of

computational time. Also, encryption using AES requires

large computing power as well as high running speed,

limiting its use for good encryption [10]. Considering the

implementation aspects of AES, modern computers show

that the table-lookup S-boxes in AES is vulnerable to the

timing attacks that are based on cache-miss lowdown

behavior. In contrast, chaotic sequences produce a high

degree of confusion and diffusion, thereby improving the

entropy of the encrypted image. To develop a larger key-

space and higher security using chaotic algorithms, vivid

approaches have been proposed in the literature [11–15].

The chaotic system is a nonlinear system having prop-

erties like sensitivity to initial conditions, ergodicity, ran-

domness that makes it more suitable for secure image

encryption [1, 8]. A chaos-based image encryption method

has mainly two stages permutation and diffusion. In per-

mutation, shuffling of the image pixels is done without

changing their values and in diffusion, the value of the

pixels is changed by using chaotic sequences. The
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permutation leads to better encryption, and diffusion

improves the security. Therefore, to have an algorithm with

good encryption and higher security, both permutation and

diffusion are applied together [11, 12, 16, 17]. The litera-

ture also reveals a very important fact that use of only one

chaotic map for encrypting image is less secure and has

very small key space. Hence, many approaches have been

proposed to develop algorithms with larger keyspace and

higher security [11–15].

Aldeman in 1994 performed the first analysis of DNA

computing. It has many features like large storage, very

low power consumption and huge parallelism [18, 19].

Many image encryption schemes using the combination of

DNA encoding and chaotic mapping have been proposed

[1, 5, 12, 19–21]. These algorithms use the few biological

and arithmetic operations of DNA sequences like DNA

addition, subtraction and DNA XOR and all bases rules of

DNA. Recently, Guesmi et al. used secure hash algorithm

(SHA-2) with DNA to develop a chaos-DNA-based hybrid

approach to encrypt images [1].

Evolutionary algorithms (EAs) are another recent

approach that is being used by the researchers to obtain

image encryption algorithms with higher security and

better encryption [2, 22–24]. In [2, 22], two different fit-

ness functions are used as primary fitness functions.

However, in [23], it is clearly shown that using a single

function as the prime objective affects the value of another

objective. The algorithm uses chaos-DNA combination to

generate an initial population of DNA masks and bi-ob-

jective genetic optimization to generate the final cipher

image.

Many real engineering problems are not satisfactorily

characterized by single objective measures and require the

simultaneous optimization of more than one conflicting

objectives at the same time. The systems which have

multiple conflicting objectives are not easily optimized

with the simple optimization process [25]. Image encryp-

tion is also a multi-objective problem. The proposed image

encryption algorithm is an extension to the work done in

[23]. The implemented work uses two-dimensional chaotic

function coupled map lattice (CML) and the GA-based

multi-objective optimization to generate the Pareto-optimal

solution. The work of [23] uses two chaos functions

logistic map (LM) and transformed logistic map (TLM)

with combination of DNA and weighted bi-objective GA.

The proposed work of this paper combines CML with

DNA–GA combination. It evaluates information entropy

and CC with respect to a number of iterations with all three

chaotic functions LM, TLM and CML. Two hundred iter-

ations are taken into consideration to compute the infor-

mation entropy. The results show that the CML–DNA–GA

approach gives the highest entropy and the lowest CC

values. Also, instead of using weighted bi-objective

optimization that requires fixed weights assigned by the

user, it uses Pareto-optimal optimization approach to have

better results. Section 2 discusses the elementary concepts

of CML, DNA and MOGA approach. Section 3 presents

the proposed approach; the experimental results are given

in Sects. 4 and 5 concludes the proposal.

2 Elementary concepts

This section of paper discusses fundamentals of chaotic

function CML, DNA computing and MOGA approach of

optimization.

2.1 Coupled map lattice (CML)

The simplest and the most commonly used chaos map

employed by the researchers to perform image encryption

is logistic map (LM) [2]. It is mathematically expressed as:

Xjþ1 ¼ l � Xj 1� Xj

� �
ð1Þ

where logistic map parameter l [ [0, 4] and X [ [0, 1].

However, recent researchers have proven that the LM

suffers from shortcomings such as uneven distribution of

sequences, stable and blank windows, and a weak key as

shown by Fig. 1.

Coupled map lattice (CML) was introduced and inves-

tigated by Kaneko as a two-dimensional model for spa-

tiotemporal chaos [26, 27]. The CML function has discrete

time and discrete space with continuous state. It is being

used widely for implementing chaotic cryptosystem in the

current research scenario [21, 28–30]. It performs well in

encryption due to its intrinsic properties like large key

space, longer periodicity, more initial parameters and

parallel implementation [21]. There are two profound

advantages of CML. The first is that CML can be effi-

ciently managed numerically as well as analytically [31].

The other and most important merit is that CML incorpo-

rates the crucial features of spatiotemporal chaos. Spa-

tiotemporal chaotic systems produce self-synchronizing

stream cipher, consequently providing a more secure

encryption as compared to both low-dimensional chaotic

systems [32–35] and hyper-chaotic systems [4, 36, 37]. The

spatiotemporal features allow CML to overcome the

weakness of encryption efficiency, security and inability to

resist chosen-plaintext and known-plaintext attacks.

Moreover, the spatiotemporal features also instill high and

positive Lyapunov exponents, superior key space, greater

ergodicity and inaccurate prediction of chaotic sequences,

thereby proving that CML is a better solution for data

protection [38]. The two-dimensional dynamical map of

CML is mathematically expressed as [39, 40]:
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xiþ1 nð Þ ¼ 1� dð Þf xi nð Þð Þ þ df xi n� 1ð Þð Þ ð2Þ

where n is lattice site index and can have maximum value

equal to lattice length L, i.e., n = 1, 2, ……L., xi(n) de-

fines the state variable of nth site at time i., d represents

coupling strength and lies in the unit interval (0,1) and

function f is chaotic logistic map function.

Although a chaos system possesses well-defined prop-

erties for encryption, the computer realization of low-di-

mensional chaos system is a fundamental problem that

persists. Due to the finite precision in computer simulation,

it is difficult to produce a complete chaotic orbit by the

trajectories of that chaotic system [41]. Infinite precision is

required for determinism of long-term chaotic behavior.

The chaotic system produces different initial states due to

its periodicity, and hence, observations cannot be deter-

mined [42]. Precisely, there are mainly two problems that

occur due to this finite precision of computer systems:

transitory time to periodic orbits and average period.

However, CML falls in the category of spatiotemporal

chaotic system which shows chaotic properties in both time

and space [14, 32, 43–45]. Due to multiple chaotic coupled

oscillators present in spatiotemporal systems, CML exhi-

bits a periodicity larger than that of temporal chaotic sys-

tems [46]. Hence, the sufficiently large period of the CML

chaotic orbit is hardly ever reached in practical conditions,

thereby avoiding the concern of periodicity [31].

2.2 Deoxyribonucleic acid (DNA)

Nowadays,DNAcomputing is being used as a popular tool for

developing higher security cryptosystems. DNA-based image

cryptosystems use DNA as a source to carry information and

use DNA computing methods for achieving encryption [19].

DNAhas four nucleic acid bases that are adenine (A), cytosine

(C), guanine (G) and thymine (T) where A is reciprocal of T

andG is reciprocal ofC and vice versa. These relationships are

termed as Watson–Crick complement rule given by the two

scientists. Similar to the conventional binary operations, the

DNA sequences also have addition, subtraction and XOR

operations. Table 1 gives the DNA encoding rules, and

Table 2 shows DNA XOR operation that is used widely for

performing encryption.

2.3 Multi-objective optimization

The objectives in many real-time problems are conflicting

with each other, so optimization using one objective may

provide an unacceptable result with respect to another

objective. Therefore, optimization using more than one

objective, which satisfies the objectives at an accept-

able level, is preferable [25]. A multi-objective optimiza-

tion is formulated as [25, 47, 48]:

Fig. 1 Logistic map bifurcation and blank window

Table 1 DNA encoding rules

Rule R1 R2 R3 R4 R5 R6 R7 R8

00 A A T T C C G G

01 G C G C T A T A

10 C G C G A T A T

11 T T A A G G C C

Table 2 DNA XOR operation
XOR A T C G

A A T C G

T T A G C

C C G A T

G G C T A
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Min or Max q ¼ f pð Þ

¼ f1 pð Þ; f2 pð Þ. . .. . .. . .fn pð Þð Þ
p ¼ p1; p2. . .. . .pnð Þ¤P
q ¼ q1; q2. . .qmð Þ¤Q

����

� �

ð3Þ

where P is the parameter space corresponding to decision

vector p and Q is the objective space corresponding to

objective vector q.

The simultaneous optimization ofmultiple objectives has a

set of alternate solutions that are known as the non-dominated

or Pareto-optimal solutions. For these solutions, one objective

cannot be improved without degrading other objective. The

Pareto sets or non-dominated solutions show different trade-

off or compromises between the objectives [25].

Genetic algorithms can explore for many non-inferior

solutions equally by maintaining a population of solutions,

which makes GAs very interesting for dealing with multi-

objective problems. Genetic algorithm has been success-

fully applied in image encryption algorithms that are pro-

posed in [2, 23, 24]. The algorithms proposed in [2, 24] use

single objective, and algorithm in [23] converts the bi-

objective problem to single objective by using weighted

sum approach [49, 50]. However, weighted sum approach

also requires prior information about the weights to be

assigned to each objective. The proposed approach uses

multi-objective GA that adds the obtained non-dominated

solutions to the population.

3 Proposed method

This section discusses the proposed approach to encrypt the

image. The algorithm mainly consists of six steps.

3.1 Image input and shuffling using CML

The first step converts the two-dimensional gray scale

image into a one-dimensional array. Then, this one-di-

mensional array is shuffled using location map generated

using CML function. The pseudo-code shows how a

shuffled image is obtained using the CML function.

3.2 DNA encoding

The shuffled image of step one is converted into DNA

sequence using DNA encoding rules. The pseudo-code

describes how second step is performed using the input

shuffled image from the first step.

======================================================================
Image Input and Shuffling

======================================================================
declare

input_image[1...M, 1...N] /* input image */
n = M*N /* total number of pixels */
odim[1...n] /* 1-dimentional image */

begin
/* converting 2D image to 1D */
for i = 1 to M
do

vert_index = (i * N) - N 
for j = 1 to N
do

odim[vert_index + j] = input_image[i, j]
end

end
x0 = [0.31456, 0.65321] /* initial seed for cml */
x = CML(n, x0) /* Generating Coupled Map Lattice */
shuffled_image[1...n] /* shuffled image */
/* shuffing image */
for i = 1 to n
do

shuffled_image[i] = odim[i] XOR ((x[i] * 10^16) % 256)
end

end
======================================================================
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3.3 Secret key generation using PRNG function

The third step of the proposed algorithm generates the

secret key using the PRNG function [51]. The function has

been used to increase the security. The initial condition x0

and control parameter a are calculated using 32 digits of

hexadecimal that are of 128 bits. This secret key is divided

into four sections for the calculations of parameter and

initial condition as described in [52–54]. The pseudo-code

shows how this step of proposed approach is performed.

======================================================================
DNA Encoding
======================================================================
declare

rules_on_shuffle[1...n] /* dna encoding rule */
begin

/* generating dna encoding rules */
for i = 1 to n
do

rules_on_shuffle[i] = ((x[i] * shuffled_image[i]) % 8) + 1
end
dna = '' /* empty DNA sequance */
bin[1...8] /* array to store 8bit binary representation */
/* converting shuffled image into DNA sequance using generated 

rules */
for i = 1 to n
do

bin = 8-bits binary representation of shuffled_image[i]
for j = 1 to length(bin) (step 2)
do

dna = dna | dna_symbol(rules_on_shuffle[i], bin[j], 
bin[j+1]) /* | - is concatation operator */

end
end

end
======================================================================

====================================================================
Secret Key Generation using PRNG function
====================================================================
declare

hex[] = an array for 32 hexadecimal digits /* a 32 length integer 
array holding decimal equivalents for each hexadecimal digit */

A = B = C = D = 0 /* variables to hold values for 8 digits of 
hexadecimal taken together */

a = 0 /* control parameter */
x0 = 0 /* initial condition */

begin
/* calculating decimal equivalent for hexadecimals each */
for i = 0 to 7

A = A*16 + h[i]
B = B*16 + h[8+i]
C = C*16 + h[16+i]
D = D*16 + h[24+i]

A = A mod 2^32+1
B = B mod 2^32+1
C = C mod 2^32+1
D = D mod 2^32+1
/* generating parameter and initial conditions */
a = 3.999 + ((A+B) mod 1)*0.001
x0 = (C+D) mod 1

end
======================================================================
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3.4 GA initialization and fitness function
calculation

This step of proposed method initializes the parameters of

GA, and random initial population is generated. The

parameters of evolutionary algorithms, including GA,

depend on the specific problem. Different combinations of

the GA parameters such as population size (e.g., 10, 20,

30), mutation rate and crossover rate have been tested

using multiple runs of the proposed algorithm to evaluate

entropy and CC parameters. The combination with popu-

lation size of 20, mutation rate of 0.06 and crossover rate of

0.6 produced better results. Hence, the said GA parametric

values have been used to obtain the results. The pseudo-

code shows the parameter initialization and population

generation for the GA.

3.5 Pareto-front computation and multi-
objective optimization

The step five of the proposed algorithm computes the

Pareto-front by applying multi-objective optimization. The

two objectives used are entropy and correlation coefficient

(CC). The entropy has been maximized, and the CC has

been minimized simultaneously to obtain the non-domi-

nated set of solutions. Each time the current generated

Pareto solutions are concatenated with the population of

the previous iteration to have the input population for the

next iteration. The pseudo-code gives the detailed

description of the optimization and computation

performed.

======================================================================
GA Parameter Initialization & Initial Population Generation
======================================================================
declare

max_iteration = 1000 /* maximum GA iteration */
population_size = 20 /* population size */
mutation_rate = 0.06 /* mutation rate */
crossover_rate = 0.6 /* crossover rate */
population[1...population_size] /* array to hold current 

population */
population_keys[1...population_size, 1...2] /* array to hold keys 

related to population[i] */
current_seed = seed /* initial seed */

begin
/* generating random population */
for i = 1 to population_size
do

random_mask = generate_random_mask(current_seed, n)
population[i] = random_mask.dna
population_keys[i, 1] = random_mask.keys[1]
population_keys[i, 2] = random_mask.keys[2]
current_seed = random_mask.next_seed

end
end
======================================================================
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3.6 Image fusion and mask

The final step of the proposed approach chooses the solu-

tion with the maximum entropy value. The DNA XOR

operation is used to obtain the encrypted image. The

pseudo-code describes how cipher image is created using

the XOR operation.

4 Simulation and result analysis

The current section discusses the simulation details, input

details and performs analysis of the proposed encryption

algorithm in terms of different parameters. A system with

an i-7 processor, Windows 10 operating system, and the

MATLAB version 2013 has been used for the implemen-

tation. As described in the previous section, an initial

population of size 20 with mutation rate of 0.06 and cross

over rate of 0.6 has been used. A total of 1000 iterations are

used to obtain the simulation results.

4.1 Test set

The proposed algorithm has been tested using three dif-

ferent grayscale images ‘‘Pepper,’’ ‘‘Lena’’ and ‘‘Onion’’ as

shown in Fig. 3. Each testing image is of size 256*256. As

described by the results in the figure, the encrypted images

have no relationship with the source images. Hence, a good

encryption results are shown by the proposed algorithm.

4.2 Key sensitivity analysis

A good encryption is the one that is sensitive to changes in

its keys and makes brute-force attack difficult. There are

two ways to determine key sensitivity as given in [55] that

are: (i) when a same image is encrypted using secret keys

having nominal difference, the resulting encrypted images

must be completely different, and (ii) when an encrypted

image is decrypted using a decryption key slightly different

from the encryption keys, the correct plain image cannot be

obtained.

First, the plain image shown in Fig. 2a is encrypted

using two secret keys having a slight difference, which are

x0 = 0.345687650000123 and x0 = 0.345687650000124.

The resulting two encrypted images are shown in Fig. 2b

and in Fig. 2c, which have a difference of 99.64%. Sec-

ondly, when the plain image encrypted with

x0 = 0.345687650000123 is decrypted using the decryp-

tion key with x0 = 0.345687650000122, the decrypted

image is different from the original image. The resulting

decrypted image is shown in Fig. 2d. Thus, the algorithm

shows high key sensitivity.
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4.3 Key space analysis

This analysis examines the ability to resist the brute-force

attack which depends on the number of keys possible in the

encryption algorithm. This paper uses PRNG to gener-

ate128 bit secret key, which thus makes the keyspace as

large as 2128. This large keyspace satisfies the basic

requirement to resist brute-force attack which says that key

space must have more than 2100 possible keys to resist an

exhaustive attack [54].

4.4 Histogram analysis

A uniform histogram makes it difficult to attack image data

statistically. As shown in Fig. 2, the unencrypted source

image histogram has a number of pixel values concentrated

in some area, while the histogram of the encrypted image is

uniform. The magnitude of uniformity for all three image

data set specifies the efficiency of the proposed image

encryption algorithm.

4.5 Entropy analysis

Entropy analysis defines the magnitude of uncertainty and

randomness. An algorithm with the large information

entropy value is considered to be more secure than the

algorithm with the low entropy value. The entropy, H(s)

given in Eq. (4), of any image is defined as a function of

number of gray levels used in image N and probability of

the occurrence of symbols P(si) [2].

H sð Þ ¼
X2N�1

i¼0

PðsiÞ log2
1

p sið Þ

� �
ð4Þ

The proposed work has evaluated information entropy

using entropy only fitness function of the Pepper image

with respect to a number of iterations with all three chaotic

functions LM, TLM and CML using entropy only fitness

function. Two hundred iterations are taken into consider-

ation to compute the information entropy. Figure 4 shows

that the CML–DNA–GA approach gives the highest

entropy. Also, it converges faster than the LM–DNA–GA

and TLM–DNA–GA combinations.

Table 3 and Fig. 6 show that the entropy value obtained

by the proposed algorithm is closer to eight that is considered

as an ideal value for a good encryption algorithm. It can be

observed from the results of Table 3 that using Entropy and

CC simultaneously as a fitness function gives balance results

with respect to both the fitness functions, whereas using a

single fitness function degrades the performance of the

algorithm with respect to other fitness function.

4.6 Correlation coefficient (CC) analysis

Correlation coefficient (CC) for an efficient and secure

encryption algorithm should have value close to zero. The

correlation coefficient between two adjacent pixels is

computed by using Eqs. (5)–(8).

COV x; yð Þ ¼ 1

N

XN

i¼1

xi�E xð Þð Þðyi � E yð ÞÞ ð5Þ

E xð Þ ¼ 1

N

XN

i¼1

xi ð6Þ

D xð Þ ¼ 1

N

XN

i¼1

ðxi�E xð ÞÞ2 ð7Þ

rxy ¼
cov x; yð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D xð Þ �

ffiffiffiffiffiffiffiffiffiffi
D yð Þ

pq ð8Þ

Fig. 2 a Plain image. b Encrypted image with first secret key.

c Encrypted image with second secret key. d Decrypted image using

decryption key different from encryption key
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where E(x) is expectation or mean, D(x) denotes variance

and cov(x, y) computes the covariance. Also, x and y are

the gray values of two adjacent image pixels.

The proposed work has evaluated CC using CC only

fitness function of the Peppers image with respect to the

number of iterations with all three chaotic functions LM,

TLM and CML. Two hundred iterations are taken into

consideration to compute the CC. Figure 5 shows that the

CML–DNA–GA approaches to zero value faster than the

other two methods and also, has better CC value than the

LM–DNA–GA and TLM–DNA–GA combinations.

Table 3 and Fig. 6 show the CC obtained by the pro-

posed algorithm for the all three image data set. It can be

observed from the results of Table 3 that using Entropy and

CC simultaneously as a fitness function gives balance

results with respect to both the fitness functions, whereas

using a single fitness function degrades the performance of

the algorithm with respect to other fitness function.

Source Image Encrypted Image Histogram of Source Image Histogram of Encrypted Image

Pepper

Onion

Fig. 3 Histogram analysis and encrypted image
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4.7 Analysis of differential parameters

Intruders try to attack the encrypted images by analyzing

how making slight changes in the input can affect the

output. To analyze the effect of one-pixel change, two

parameters number of pixels change rate (NPCR) and

unified average changed intensity (UACI) are commonly

used. NPCR given by Eq. (9) is the pixel change rate with

respect to one-pixel change in the plain image, and UACI

given by Eq. (10) computes the average intensity differ-

ence between the plain and the encrypted image.

NPCR ¼
P

i;j D i; jð Þ
W � H

� 100% ð9Þ

where a D(i, j) is a two-dimensional array having the same

size as the encrypted images

UACI ¼ 1

W � H

X

ij

C1 i; jð Þ � C2 i; jð Þ
255

" #

� 100% ð10Þ

W = width of C1 and C2, H=Height of C1 and C2, where

C1(i, j) and C2 i; jð Þ are corresponding images to the origi-

nal images that have only one-pixel difference. Table 3

shows the NPCR and UACI values evaluated by the pro-

posed image encryption algorithm.

4.8 Comparison with earlier proposed
techniques

This section gives comparison of the proposed approach

with the earlier proposed approaches in [1, 2, 23, 24]. The

proposed algorithm has the better key space as is proposed

in [1]. Undoubtedly, the LM map used in [2] and [23, 24] is

the most commonly used and mathematically simplest to

implement. However, as described in Fig. 1 earlier it suf-

fers from various limitations. Hence, the proposed work

uses CML location map that outperforms the LM location

map used in [2, 23, 24]. It uses multi-objective optimiza-

tion that offers better results than the weighted sum

approach used by the authors of [23]. Also, the proposed

approach opens a new area of multi-objective optimization

of image encryption techniques for future work in the field

of image encryption (Table 4).

5 Conclusion and future work

The authors in [2] proved that CC is a better optimizer than

entropy. However, in their extended work in [24], entropy

is used as fitness function. In [23], weighted sum GA is
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y

No of Itera�ons

Peppers

LM_GA

TLM_GA

CML_GA

Fig. 4 Peppers_entropy

Table 3 Comparison using

different fitness functions
Fitness functions Image Entropy CC NPCR UACI

Entropy only Lena 7.9686 - 0.0682 99.4054 32.0813

Onion 7.9679 - 0.0625 99.5091 30.7565

Pepper 7.9667 - 0.0686 99.4609 31.3851

Average 7.9677 - 0.0664 99.4584 31.4076

CC only Lena 7.9433 - 0.0324 99.4338 31.4629

Onion 7.9451 - 0.0385 99.4494 31.4027

Pepper 7.9513 - 0.0305 99.4559 31.3554

Average 7.9465 - 0.0338 99.4463 31.4070

Entropy and CC Lena 7.9535 - 0.0467 99.4629 31.9421

Onion 7.9461 - 0.0586 99.3652 30.9232

Pepper 7.9563 - 0.0444 99.5361 31.1996

Average 7.9519 - 0.0499 99.4547 31.3549

Neural Computing and Applications (2020) 32:11859–11873 11869

123



used for having balanced results with respect to both

entropy and CC. The prime objective of the implemented

work is image encryption with the aid of DNA and multi-

objective GA optimization. The discussed work computes

the Pareto fronts by using two fitness functions Entropy and

CC simultaneously. The performance of the proposed

algorithm has been tested using standard parameters, and

comparison has been done with some recently proposed

techniques. The work can further be extended by com-

bining more encryption methods with more advanced

multi-objective optimization techniques.

Fig. 6 Pareto front computation
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