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Abstract
The decomposition-based evolutionary algorithms have shown great potential in multi-objective optimization and many-

objective optimization. However, their performance strongly depends on the Pareto front shapes. This may result from the

fixed reference vectors, which will waste computing resources when handling irregular Pareto fronts. Inspired by this issue,

an enhanced reference vectors-based multi-objective evolutionary algorithm with neighborhood-based adaptive adjustment

(MOEA-NAA) is proposed. Firstly, a few individuals of the population are used to search the solution space to accelerate

the convergence speed until enough non-dominated solutions are found. Then, a multi-criteria environment selection

mechanism is implemented to achieve the balance between convergence and diversity, which makes a fusion between

dominance-based method and reference vector-based method. Finally, according to the neighborhood information, a small-

scale reference vectors adaptive fine-tuning strategy is introduced to enhance the adaptability of different Pareto fronts. To

validate the efficiency of MOEA-NAA, experiments are conducted to compare it with four state-of-the-art evolutionary

algorithms. The simulation results have shown that the proposed algorithm outperforms the compared algorithms for

overall performance.

Keywords Evolutionary computation � Multi-objective optimization � Many-objective optimization � Reference vector �
Adaptive adjustment

1 Introduction

Over the past two decades, multi-objective evolutionary

algorithms (MOEAs) have been widely accepted as a major

approach for solving multi-objective optimization prob-

lems (MOPs), which are able to approximate the whole

Pareto front (PF) in a single run. According to the different

selection mechanism adopted by the algorithm, the current

MOEAs are roughly classified into three major categories,

i.e., Pareto-based, decomposition-based and indicator-

based algorithms.

Pareto dominance-based MOEAs generally adopt non-

dominated sorting method to achieve convergence. The

diversity maintenance strategy used in this type often

serves as a secondary selection of solutions. Remarkable

MOEAs based on Pareto dominance include PESA-II [11],

NSGA-II [14] and SPEA2 [45]. In decomposition-based

MOEAs, a set of decomposition vectors are either used for

aggregating objectives or improving diversity and conver-

gence. For example, the multi-objective evolutionary

algorithm based on decomposition (MOEA/D) [42]

decomposes a MOP into a number of scalar single-objec-

tive optimization subproblems by weight vectors. The

indicator-based approaches adopt a certain metric of the

performance indicator to guide the search process. The

indicator values used in this type of MOEAs can evaluate

the convergence and diversity performances of solutions,

such as the fast hypervolume-based evolutionary algorithm

(HypE) [2] and the enhanced inverted generational distance

(IGD) indicator-based evolutionary algorithm [35].

The above-mentioned algorithms have achieved great

success in handling the optimization problems with no

more than three objectives. However, many real-world

applications involve more than three objectives, such as

land use management problems [9] and airfoil designing
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problem [38]. Generally, the MOPs with more than three

objectives are regarded as many-objective optimization

problems (MaOPs). Unfortunately, recent studies have

suggested that the conventional Pareto-based MOEAs are

faced with difficulties when tackling MaOPs [27]. They

may encounter severe deterioration of selection pressure,

because the number of non-dominated solutions increases

exponentially with the number of objectives increasing.

This phenomenon result in the efficiency of Pareto-based

approaches decreasing significantly in tackling MaOPs. To

overcome this challenge and enhance the performance of

MOEAs to tackle MaOPs effectively, a variety of approa-

ches have been proposed.

The most direct way is to relax the dominance rela-

tionship making solutions further distinguished form each

other, so as to further enhance the selection pressure toward

PFs, such as preference order ranking [15], e-dominance

[19] and L-optimality [46]. The second approach is indi-

cator-based approaches, since they do not suffer from the

selection pressure problem. However, this method is

always time-consuming especially in high-dimensional

objective space. Notably, decomposition-based methods

have gained a lot of research and have been proved to be a

promising method to deal with MaOPs.

Generally, a predefined set of uniformly distributed

reference vectors (it is worth noting that reference vectors

are also called weight vectors or direction vectors in some

other literatures, such as [28, 36, 39, 42], and in this work,

we use the term of reference vectors as a substitution to

others for simplicity) is employed in decomposition-based

MOEAs. However, it is difficult to ensure a uniform dis-

tribution of candidate solutions on the PF when solving

MaOPs. As stated in [23], the shape of the PF has a huge

impact on the performance of the decomposition-based

MOEAs. If the PF is irregular, such as PFs with disparate

scales, discontinuous segments or other complex shapes,

the predefined fixed reference vectors may lead to poor

performance of the decomposition algorithm. The reason

for this phenomenon is that the distribution of the reference

vectors is not suitable for the PF shape. In other words,

fixed reference vectors may not be able to match the true

PF and therefore cannot provide the correct direction of

guidance.

In recent years, researchers have focused on adaptively

adjusting reference vectors to make them more compliant

with PF shape to improve the performance of the algo-

rithm. In general, most adaptive adjustment of reference

vector methods follows the add-and-delete procedure

[1, 3, 8, 28, 31]. To some extent, this approach can increase

the diversity of population. However, it is undoubted that

computational complexity of the algorithm will increase

because the algorithm frequently determines where to add

or remove reference vectors. Different from the above

methods, a hybrid weighting strategy is proposed in [24],

which optimizes both random reference vectors and fixed

reference vectors. However, randomly generated reference

vectors increase the uncertainty of the search direction.

Recently, Zhao [43] presented a method to adjust the ref-

erence vectors in-time, which always maintain a good

approximation to the current PF. But what needs to be

considered is whether the computational cost of the cum-

bersome steps in the strategy is worthwhile.

In addition to adaptively adjusting the reference vector,

the selection mechanism is also a key component of the

decomposition. In MOEAs, the selection is of great

importance to the algorithm’s performance. In general, it is

desirable to strike a balance between convergence and

diversity to obtain a good approximation of the candidate

solutions. Both MOPs and MaOPs demand a delicate bal-

ance between the convergence and diversity. Nevertheless,

how to balance the two abilities is not an easy task, espe-

cially in the high-dimensional space.

Recently, some proposed MOEAs show competitive

performance in maintaining a good balance between con-

vergence and diversity. For instance, NSGA-III [13] adopts

a reference point-based strategy as diversity maintenance

operator instead of crowding distance based in NSGA-II to

solve MaOPs effectively. Additionally, a two-layer weight

vector generation method is introduced to generate a set of

evenly distributed weight vectors in high-dimensional

space. MaOEA_IT [34] addresses convergence and diver-

sity in two independent and sequential stages. A non-

dominated dynamic weight aggregation method is arranged

to find the Pareto-optimal solutions, which is employed to

learn the Pareto-optimal subspace for convergence. Then,

the diversity is guaranteed by reference lines within the

learned Pareto-optimal subspace. Luo et al. [30] proposed

an indicator-based MOEA/D (IBMOEA/D), which is based

on decomposition and preference information. A decom-

position-based strategy is used to divide the search space,

then a binary quality indicator-based selection is utilized

for maintaining the external population, and the two

strategies complement each other.

Some latest studies are devoted to balance convergence

and diversity [4, 5, 29, 33, 41]. These algorithms can deal

with the balance of convergence and diversity to a certain

extent. However, the strategies of them to enhance con-

vergence and diversity are separate, which may weaken the

communication of the information. In other words, they

always give priority to convergence and then consider

diversity alone, or vice versa. Convergence and diversity

are treated separately with different strategies, which

makes it difficult to make full use of current population

information to achieve a balance of them.

Aiming at dealing with the above problems, an

enhanced reference vectors-based multi-objective
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evolutionary algorithm with neighborhood-based adaptive

adjustment (MOEA-NAA) is presented. Different from

existing approaches, decomposition in this paper does not

depend on predefined fixed reference vectors. The contri-

butions of this approach are summarized as follows:

• A pioneer dynamic population strategy is introduced. In

the initial stage of the algorithm, fewer individuals are

used to search the solution space. When enough non-

dominated solutions are found, the environment selec-

tion operation is performed. The purpose of the

arrangement is to accelerate the convergence speed

and improve the performance of the algorithm.

• Multiple methods are adopted in the environmental

selection mechanism to increase selection pressure. It

refines the information of each generation and makes a

proper combination of convergence methods and

diversity methods. In other words, it combines the

dominance-based method and the reference vectors-

based method to achieve the balance of convergence

and diversity.

• A reference vector adaptive adjustment strategy based

on neighborhood information is proposed. The large-

scale adjustment of the reference vector may be

excessive computation, and result in the increasement

of computational complexity. So, the adjustment of the

reference vector in MOEA-NAA is a small-scale

reference vector adaptive fine-tuning strategy, which

assigns computing resources to potential search areas. If

the current search area is sparse or discrete, its

computing resource is assigned to neighboring areas

to enhance the adaptability to PF, especially for

irregular PF.

The rest of this paper is organized as follows: Sect. 2

introduces related work in adaptive reference vector-based

algorithms. The challenge of designing a new algorithm is

also analyzed in Sect. 2. In Sect. 3, the details of the pro-

posed algorithm MOEA-NAA are described and empirical

results of MOEA-NAA compared with a number of exist-

ing MOEAs are presented in Sect. 4. Finally, conclusion

and future work are discussed in Sect. 5.

2 Related work

In this section, several reference vector adaptive adjust-

ment strategies of the existing reference vectors-based

MOEAs and their limitations are detailed, which introduces

the main motivation of this paper.

Reference vectors should be carefully specified based on

the shape and the size of the PF [23]. Therefore, a proper

adaptation mechanism is required in reference vectors-

based MOEAs. To address MOPs or MaOPs with irregular

PFs, several related works have already been proposed on

reference vector adaptive adjustment strategies.

Qi et al. [31] recommended dynamically adjusting the

reference points during the optimization (MOEA/D-AWA).

Specifically, in the late stage of the algorithm, the periodic

adaptive adjustment of the reference vectors is employed

during the evolution process. An external population is

maintained to estimate the density of solutions for each

reference vector. The vicinity distance is adopted to

determine the sparse region. Then, the reference vectors in

the most crowded regions are removed, while new refer-

ence vectors are added in sparse regions. However, MOEA/

D-AWA needs to perform the non-dominated sorting

strategy and store the non-dominated solutions in an

external archive. In addition, it is necessary to evaluate the

sparsity and density of each solution in the population.

Both of the above two operations are known to be com-

putational expensive, especially in handling MaOPs.

In RVEA [8], there are two different reference vector

adaptations to solve badly scaled PFs and irregular fronts.

The reference vectors located in empty subspaces are

deleted. Meanwhile, the minimum and maximum objective

values are calculated from the current candidate solutions

to construct a hyperspace. Then, the new reference vectors

are randomly generated inside the hyperspace. The main

feature of RVEA is that the new reference vectors are

produced globally and randomly, which may increase the

uncertainty of the algorithm search directions and result in

the decline of the local solution density.

A MaOEA based on decomposition with two types of

adjustments for the reference vectors (MaOEA/D-2ADV)

is proposed in [3]. The number and the position of refer-

ence vectors are adjusted, respectively. First of all, M ex-

treme vectors are used to find the boundary of PF. When

the convergence rate of the population tends to be stable,

that is, the convergence of the population is no longer

significantly improved, and then, the number of reference

vectors is adjusted. Then, the validity of the reference

vector is detected by associating the current solutions with

the reference vectors. Reference vectors associated with

less than one solution are considered invalid. These inef-

fective reference vectors will be obsoleted, and new ref-

erence vectors will be inserted between two valid reference

vectors. Unfortunately, if extreme reference vectors are

associated with no solution, it may cause a missing of

boundary solutions.

Similarly, Li et al. [28] proposed an algorithm (AdaW)

to adapt the reference vectors during the evolutionary

process. Reference vectors are updated periodically based

on the information produced by the evolving population,

and then, the adjusted vectors in turn guide population

evolution. The undeveloped and promising search direc-

tions or areas are found out by contrasting the evolutionary
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population with the archive set, and then, reference vectors

are added in these areas. Afterward, the existing

unpromising reference vectors or the reference vectors

associated with the crowded solutions in the population are

removed. Similar to MOEA/D-AWA, AdaW also uses an

external archive set to adjust the reference vectors.

The above adaptive reference vectors adjustment fol-

lows the add-and-delete procedure, which is the most

commonly used adjustment strategy. In recent years, ref-

erence point design methods using inherent models have

been proposed. Gu and Cheung [18] developed a reference

point design method based on a self-organizing map

(SOM) for decomposition-based MOEAs. It trains a SOM

network periodically with N neurons by using the objective

vectors of the recent population, and then, the weights of

the neurons are employed as the reference vectors. Besides,

the design of the weight vectors in MOEA-SOM has no

constraints on the setting of the number of reference vec-

tors. In [39], a learning-to-decompose (LTD) paradigm is

developed to set reference vectors adaptively. Specifically,

in the learning module, the current non-dominated solu-

tions are considered as the training data, and Gaussian

process (GP) regression is adopted to learn an analytical

model. During the optimization module, the characteristics

are extracted to adjust reference vectors. Similarly, a

Gaussian process was utilized in [7]. Cheng et al. proposed

a multi-objective evolutionary algorithm using Gaussian

process-based inverse modeling (IM-MOEA), in which

maps are built from candidate solutions in the objective

space to the decision space during the optimization.

However, this method is only suitable for MOPs with a

continuous and uniform PF, thus an adaptive reference

vector generation strategy for IM-MOEA to deal with a

non-uniform or disconnected PF in [6]. One of the draw-

backs is the expensive computational costs since the

training of a model requires a large data set.

As the number of objectives increases, the distribution

of reference vectors and their corresponding solutions in

the objective space may become sparse, which is likely to

cause insufficient search of the integral Pareto front. Thus,

the idea of using two sets of reference vectors is developed.

Sato et al. advocated to introduce supplemental reference

vectors and solutions in the conventional MOEA/D algo-

rithm framework [32] (abbreviated as MOEA/D-SW in this

paper). The supplemental reference vectors and solutions

are treated as additional variable information resource to

enlarge the solution search. Experimental results prove the

effectiveness of this method in dealing with many-objec-

tive knapsack problems, but this method may be difficult to

solve irregular PFs. In order to improve the performance of

irregular PFs, a ‘‘generalized’’ version of the decomposi-

tion-based evolutionary algorithm (g-DBEA) is proposed

for periodic adaptation of the reference vectors [1]. With

the evolution of the population, it records the information

of the solutions and their preferred reference vectors to

determine whether this reference vector is ‘‘active’’ or not.

Based on the information, the inactive reference vectors are

moved to the inactive set W rather than deleted altogether.

Then, new reference vectors will be generated and added to

the active set. Two reference vector sets simultaneously

guide the search direction of the solution.

However, the method of two reference vector sets adds

extra computation. In [37], Wang et al. proposed a pref-

erence-inspired co-evolutionary algorithm using weights

(PICEA-w). The candidate solutions and the reference

vectors are co-evolved simultaneously during the search

process. The new reference vectors are generated randomly

in each generation by the highest contributions to non-

dominated solutions. In [36], the distribution of the refer-

ence points is adaptively adjusted, in terms of the contri-

bution (IGD-NS) of candidate solutions into an external

archive. In [20], it is unnecessary to pre-define extra ref-

erence vectors set, because the candidate solutions them-

selves are considered as reference vectors. These co-

evolutionary methods are capable to guide candidate

solutions toward the Pareto-optimal front effectively.

Nevertheless, it can hardly maintain evenly distributed

solutions toward the whole PF to a certain extent if there

are sparse areas in the population.

Overall, the main limitations of the algorithms men-

tioned above are summarized to make a better readability,

as shown in Table 1. Even though adaptive approaches

have significant effect on obtaining a desirable distribution

of solutions, they impose non-negligible cost, in terms of

convergence [17]. Therefore, in the research of adaptive

adjustment strategy, reducing computation and enhancing

convergence are two major challenges.

3 The proposed algorithm

In this section, an enhanced reference vectors-based multi-

objective evolutionary algorithm with neighborhood-based

adaptive adjustment (i.e., MOEA-NAA) is presented. To be

specific, the general framework of MOEA-NAA is outlined

in Algorithm 1. Then, the details of the main steps are

described step by step.
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3.1 Framework of MOEA-NAA

The pseudo-code of the general framework of the proposed

MOEA-NAA is provided in Algorithm 1, where the pop-

ulation size N, the number of objectives M, and the max-

imum fitness evaluation (FEmax) are entered. First of all,

the initial population (POP) is randomly sampled with

0.2N individuals from the decision space, where 0.2N is

attributed to the pioneer dynamic population strategy (refer

to Sect. 3.2). N reference vectors are generated from a

uniform distribution in objective space, and the nearest

M neighbors vectors are determined by Euclidean distance

for each reference vector.

As used in most algorithms, reference vectors are

obtained by a systematic approach developed from Das and

Dennis’s method [12]. Reference vectors are sampled from

a unit simplex in this approach, and N ¼ H þM � 1

M � 1

� �
,

where H[ 0 is the number of divisions along each

objective coordinate. But in high-dimensional objective

space, there are a large number of reference vectors which

obviously aggravate the computational burden of the

algorithm. Therefore, a two-layer reference vectors gener-

ation method [13, 25, 26] is adopted when M� 7. As

depicted in Fig. 1, reference vectors consist of two differ-

ent layers: boundary layer (denoted as

Table 1 Summary of notable recent works in terms of reference vectors-based MOEAs

References Algorithm Limitations Categories

[31] MOEA/D-AWA There are many parameters in the adaptive strategy, and all

optimization problems are considered as discontinuous

problems, which leads to expensive computational costs

Add-and-delete reference

vectors

[8] RVEA The new reference vectors are produced globally and

randomly, which may increase the uncertainty of the

algorithm search directions and result in the decline of the

local solution density

[3] MaOEA/D-2ADV If extreme reference vectors are associated with no solution, it

may cause a missing of boundary solutions

[28] AdaW It uses an external archive set to adjust the reference vectors,

which increases space complexity

[18] MOEA/D-SOM The expensive computational costs since the training of a

model requires a large data set

Utilize inherent models

[39] MOEA/D-LTD

[7] IM-MOEA

[6] A-IM-MOEA

[32] MOEA/D-SW It is effective in dealing with many-objective knapsack

problems, but may be difficult when dealing with irregular

PFs

Two sets of reference

vectors

[1] g-DBEA Two sets of reference vectors are used at the same time, adding

an extra calculation method

[37] PICEA-w It is difficult to search for sparse areas and may not maintain

the uniform distribution of populations in PF

Co-evolutionary methods

[36] AR-MOEA

[20] DDEA
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B ¼ fb1; b2; . . .; bN1g) and inside layer (denoted as

I ¼ fi1; i2; . . .; iN2g), where N1 þ N2 ¼ N. In this work,

reference vectors are initialized by using the generation

method suggested in [25] when M� 7. At first, reference

vectors in boundary layer and inside layer are generated

according to Das and Dennis’s method, with different H

settings. Then, the reference vectors of the inside layer are

shrunk by a coordinate transformation. For each reference

vector ir ¼ ðir1; . . .; irMÞ, r 2 f1; 2; . . .;N2g, its jth compo-

nent is shrunken by the following formula:

irj ¼
s� 1

m
þ s� irj ð1Þ

where j 2 1; 2; . . .;M, s is a shrinkage factor, generally set

to 0.5.

After the initialization is completed, the main while-

loop updates the population in each iteration. In each

generation G, a standard differential evolution operation is

implemented to generate an offspring set Q. Each element

yik of ith offspring is generated as follows:

yik ¼
xki þ F � xkr1 � xkr2

� �
if rand\CR

xki otherwise.

8<
: ð2Þ

where y 2 Q and k ¼ 1; 2; . . .;D, CR and F are two control

parameters. r1 and r2 are two indexes randomly selected

from P:

P ¼
BðiÞ; if rand\n

1; 2; . . .;N otherwise.

�
ð3Þ

Then, the polynomial mutation (PM) is performed on Q

with probability pm in the following way:

qik ¼
yki þ rk � bk � ak

� �
if rand\pm

yki otherwise.

(
ð4Þ

with

rk ¼
ð2� randÞ

1
gþ1 � 1 if rand\0:5

1� ð2� 2� randÞ
1

gþ1 otherwise.

(
ð5Þ

where ak and bk are the lower and upper bounds of the kth

decision variable. The distribution index g and the muta-

tion rate pm are two control parameters in PM.

Then, the ideal point is updated by the fitness values of

Q. In the early stage of MOEA-NAA, the selection oper-

ation adheres to the criterion of convergence first. The non-

dominated solutions in two consecutive generations of

populations are chosen as the parent for the next genera-

tion. Subsequently, when the population size reaches N, the

adaptive environmental selection is executed to select N

solutions for the next generation (refer to Sect. 3.3). In this

model, convergence and diversity are equally crucial and

interdependent. At the end of a loop, a reference vector

adaptive adjustment strategy is performed every Tp gen-

erations (Tp ¼ 60) for a more appropriate selection to

improve the distribution over PF (refer to Sect. 3.4).

3.2 Pioneer dynamic population strategy

In [37], it has been demonstrated that adapting reference

vectors during the search may affect the convergence

performance of a MOEA, especially in high-dimensional

objective space. Furthermore, only after the population has

converged to a certain extent, reference vector adaptive

adjustment will be activated [31]. To be specific, in the

early stage of the algorithm, there are many dominant

solutions in the population. If the diversity maintenance

mechanism is introduced prematurely, it is likely to result

in insufficient convergence of the population. As stated in

[16], the number of non-dominated solutions reflects the

degree of an algorithm to some extent. Thus, a pioneer

dynamic population strategy is introduced in MOEA-NAA.

At the beginning, only 0.2N solutions are initialized to

search the objective space. As the update of the population,

the number of non-dominated solutions gradually increa-

ses. During this process, candidate solutions are selected

only by using non-dominated sorting of the merged pop-

ulation, so that they can fast converge to approximate PF.

The diversity maintenance mechanism is activated until the

population size reaches N. Two benefits can be acquired

from pioneer dynamic population strategy: Computing

resources are economized and the convergence of the

population is more adequate, attributed to the use of fewer

excellent solutions to guide the algorithm process in the

initial stage.

Two examples are given in Fig. 2, which represent two

different situations. The IGD trend and HV trend of WFG7

and WFG8 are recorded, where IGDN and HVN represent

the performance of MOEA-NAA without pioneer dynamic

population strategy, while IGD and HV represent the per-

formance of MOEA-NAA with pioneer dynamic popula-

tion strategy. In the first case, there is no significant

Fig. 1 Example of two-layer reference vector
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difference in the final performance of the two algorithms

(IGD and IGDN, HV and HVN), i.e., Fig. 2a. It can be

observed that the algorithm with the pioneer dynamic

population strategy can converge quickly to a certain pre-

cision range. In another case, the difference in the final

performance of the two algorithms is significant, i.e.,

Fig. 2b. Although the algorithm with the pioneer dynamic

population strategy is more tortuous during the conver-

gence process, compared to MOEA-NAA without the

pioneer dynamic population strategy, it can obtain a better

final performance. More discussion of the effectiveness of

this strategy will be given in Sect. 4.3.4.

Therefore, it can be determined that the introduction of

the pioneer dynamic population strategy can accelerate the

convergence speed of the algorithm or improve the per-

formance of the algorithm.

3.3 Selection mechanism

In the proposed MOEA-NAA, environment selection

operation is based on a fusion of reference vector-based

and dominance-based methods to enhance the communi-

cation of information and make a balance of convergence

and diversity. The detailed procedures of environment

selection operation are presented in Algorithm 2 as fol-

lows:

• Associated operation (lines 1–6 in Algorithm 2)

First, calculate the angle between each solution and

each reference vector according to Eq. (6).

angle ¼ arccos\
x � k

jxj � jkj [ ð6Þ

where x and k are both vectors in the objective space.

For an arbitrary solution (e.g., xi) in the merged popu-

lation, xi is associated with kR only when the angle

between xi and kR is the smallest one compared to other

reference vectors. pðkÞ records the number of solutions

in the merged population which is associated with kk.
• Environmental selection 1 (lines 7–18 in Algorithm 2)

For an arbitrary reference vector ki, if there is only one
solution xk in the population associated with it, xk directly

survives. Otherwise, if more than one solution is associated

with it, then the convergence measure is considered as the

second criterion. The solutionwhich is the closest one to the

ideal point (z�) is selected. Itmeans that only one solution is

retained among these solutions with regard to ki. If a

solution (e.g., XL) is selected and it is associated with ki,
then flag(L) and age(i) plus one, respectively. Repeat the

above steps until all reference vectors are traversed.

• Environmental selection 2 (lines 19–22 in Algorithm 2)

After the environment selection 1, environmental

selection 2 is initiated to select (N � jSj) solutions in

0 1 2 3 4

×104

0

0.2

0.4

0.6

HVN
HV
IGDN
IGD

(a) WFG7

0 1 2 3 4

×104

0.1

0.2

0.3

0.4

0.5

0.6

HVN
HV
IGDN
IGD

(b) WFG8

Fig. 2 IGD and HV trend of WFG7 and WFG8, with parameters:

N ¼ 100, M ¼ 2, maximum iteration ¼ 400
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case if the number of population is less than N. Put

unselected individuals from the merged population into

selPOP. The filter operation is detailed in Algorithm 3.

At first, non-dominated sorting is executed on selPOP,

and then, the candidate solutions are preserved layer by

layer according to the non-dominated level. Where the

last layer of candidate solutions is found, a new round

of selection mechanism needs to be enabled. On the last

front, choose (N � S) solutions which have the greatest

difference from the retained population S. Step 1:

Calculate the angle between each solution in the last

front and each solution in S. Step 2: Calculate the sum

of the angle between each candidate solution and the

solutions in S. Then, the candidate solution which

possesses the largest difference (the largest angle) with

S is selected and added in S. Meanwhile, it is removed

from the last front. Step 3: Repeat step 1 and step 2 until

the condition jSj ¼ N is met.

In MOEA-NAA, the environmental selection mechanism

adopts multiple methods to increase selection pressure. It

refines the information of each generation and makes a

deep fusion of convergence methods and diversity meth-

ods. Therefore, this kind of environmental selection

mechanism can achieve equilibrium between convergence

and diversity.

3.4 Reference vector adaptive adjustment

Fixed reference vectors is poorly adaptable to different

PFs, especially irregular PFs. On the other hand, large-

scale adjustment of the reference vectors during the process

of the algorithm may result in excessive computation and

increasing unnecessary computational complexity. Hence,

neighborhood-based reference vector adaptive adjustment

is provided in MOEA-NAA, which is a small-scale refer-

ence vector adaptive fine-tuning strategy. The steps of

neighborhood-based reference vector adaptive adjustment

are shown in Algorithm 4.

Firstly, M extreme reference vectors (i.e., the reference

vector located on each axis) are marked as consistent ones.

The reason is that extreme reference vectors are special and

important, which can be used to preserve the extreme

solutions in the population during the optimization process.

Afterward, the position of other reference vectors is

adaptively adjusted based on neighbor information. For the

reference vectors that have no solution associated with

them in successive Tp generations, find out the information

of their M neighbors (the information here refers to the

number of candidate solutions associated with the corre-

sponding reference vector). For each reference vector to be

adjusted ki, two scenarios are considered in its neighbors.

The first case is that only one neighbor vector possesses

associated solution in the population. Then, the position of

ki is moved to the location of this neighbor (lines 5–7 in

Algorithm 4). Another situation is that more than one

neighbor vector possesses associated solutions in the pop-

ulation. The position of ki is moved to the adjacent location

of the neighbor who has the largest angle to ki (lines 8–10
in Algorithm 4). Notably, if no neighbor vector possesses

an associated solution in the population for ki, the position
of ki is not adjusted.

Figure 3 is depicted to better understand the reference

vector adaptive adjustment procedure. In Fig. 3, ki is the

reference vector which is prepared to adjust, and its

neighbors are ki�1 and kiþ1. In case 1, there are two

solutions associated with ki�1; the blue dot survived, while

the red star one is removed in the environment selection

operation. The area where the red star is located is a sparse

11774 Neural Computing and Applications (2020) 32:11767–11789

123



area, so ki moves to k0i to strengthen search for sparse areas.

Similarly, in case 2, ki moves to k0i to avoid over-searching

for crowded areas.

The main idea of this strategy is to assign computing

resources to the objective space where optimal solutions

may exist but not yet searched. If a reference vector has no

associated solution during Tp successive generations, a

conclusion is made that this reference vector is invalid.

This means that the search area is sparse or discrete; thus,

its computing resource is assigned to neighboring areas to

enhance the adaptability to PF. More details of the sensi-

tivity of parameter of Tp can be found in Sect. 4.3.3.

3.5 Computational complexity analysis

As introduced in Sect. 3.1, three main parts determine the

computational complexity of MOEA-NAA in one genera-

tion, i.e., offspring reproduction (line 9 in Algorithm 1),

environmental selection (lines 13–14, line 16 in Algorithm

1) and reference vector adaptive adjustment (lines 17–20 in

Algorithm 1).

For the first part, the reproduction procedure requires

O(DN) times, where D is the number of decision variables.

The second part is environmental selection. When the

population size is less than N, the time complexity is less

than Oð2N2Þ to sort the non-dominated solutions (line 13 in

Algorithm 1). When the population size is greater than N,

the details of environmental selection are given in Algo-

rithm 2 and Algorithm 3. First of all, it takes Oð2N2Þ to

calculate the angle between each solution and each refer-

ence vector (line 1, Algorithm 2). Then, it costs O(N) to

select one associated solution for each reference vector

(lines 8–18, Algorithm 2). For those reference vectors that

have no solution associated, the non-dominated sort pro-

cess determines the computational complexity (line 21 in

Algorithm 2, i.e., Algorithm 3), which requires a time

complexity less than Oð2N2Þ. The last part is reference

vector adaptive adjustment (Algorithm 4). This program

will trigger in case that a reference vector has no associated

solution during 60 consecutive generations, so its time

complexity is OðTmax

Tp
� NÞ, where Tmax is the maximum

number of iterations.

Considering the above computational complexity anal-

ysis of all the procedures, the overall worst time com-

plexity in one generation of MOEA-NAA is approximated

to OðmN2 þ Tmax

Tp
� NÞ ¼ OðmN2Þ. The magnitude of the

proposed algorithm is similar to most of the state-of-the-art

many-objective algorithms, such as references [4, 40].

4 Experimental study

In order to examine the performance of the proposed

MOEA-NAA algorithm in solving MOPs and MaOPs, a

series of experiments are performed against peer com-

petitors. First of all, NSGA-II [14] and MOEA/D [42] are

selected on account of they are two basic and representa-

tive multi-objective optimization algorithms, so they are

used as comparison when analyzing the performance on 2-,

3-objective test problems. Additionally, NSGA-III [13] is

selected because it is typically used as a baseline in han-

dling MaOPs. RVEA [8] is also chosen as a comparison

algorithm due to it is a well-regarded algorithm when

solving MaOPs. Furthermore, in order to demonstrate the

effectiveness of the neighborhood-based reference vector

adaptive adjustment strategy, MOEA-NAA0 is considered

as a comparison algorithm, which is a variation of MOEA-

NAA with fixed reference vectors. Above all, the bench-

mark test problems utilized in the comparisons and the

parameter settings used in all the algorithms considered are

enumerated in Sect. 4.1. Next, the chosen performance

metrics are introduced in Sect. 4.2. Then, experimental

(a) (b)

Fig. 3 Reference vector

adaptive adjustment
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results measured by the performance metric are presented

and analyzed in Sect. 4.3.

4.1 Test problems and parameter settings

The well-known test suites Walking Fish Group (WFG1–

WFG9) [22] are used in this study, in which attributes of

convex or concave, separability or non-separability, unbi-

ased or biased parameters, and unimodality or multi-

modality geometries are all covered. The detailed

characteristics of PF shapes of all test suites are listed in

Table 2. In this paper, the number of objectives (M) is set

to 2, 3 and 4, 7, which tests the effectiveness of the algo-

rithm in dealing with MOPs and MaOPs, respectively.

The standard toolkits are employed to implement the

peer algorithms and follow the suggestions in their original

study to set algorithmic parameters. The parameter settings

of the comparison algorithm are presented in Table 3. In

NSGA-II and NSGA-III, the simulated binary crossover

(SBX) and the polynomial mutation are adopted to gener-

ate offspring solutions. The crossover probability pc and

the mutation probability pm are set to 0.9 and 1 / D,

respectively. The distribution index gc of SBX operator and

the distribution index gm of mutation operator are set to 20

[13, 21, 42].

General parameter settings of all algorithms are enu-

merated in Table 4. The population size (N) is set to 100,

210, 286, 294 for 2-objective, 3-objective, 4-objective and

7-objective problems, respectively. For WFG test instan-

ces, according to [37], the number of position related

variables k ¼ 18 and the number of distance related vari-

ables l ¼ 14, and the number of decision variables is set as

D ¼ k þ l ¼ 32. For each test instance, each algorithm will

be run 30 times independently. The maximum number of

generations is set to 1000, and the maximum number of

function evaluations is N � 1000 for all the test instances.

4.2 Performance metric

Two widely used performance metrics, i.e., inverted gen-

erational distance (IGD) [10] and hypervolume (HV) [44],

are adopted to quantitatively evaluate the quality of the

resulted solutions of all compared algorithms. They are

able to concurrently measure the convergence and diversity

of the tested algorithms.

Inverted generational distance (IGD) It measures the

average distance from a set of evenly distributed points P�

on the PF to the approximation set P. It can be formulated

as follows:

IGDðP;P�Þ ¼
P

v2P� dðv;PÞ
P�j j ð7Þ

where d(v, P) is the Euclidean distance from point v 2 P�

to its nearest point in P, and jP�j is the cardinality of P�. In
this paper, the number of sampling points from the true PF

is taken as 10,000 in the computational experiments. It can

be analyzed that the smaller the IGD, the better the quality

of P for approximating the whole PF.

Hypervolume (HV) Let R ¼ ðR1; . . .;RMÞT be a reference

point in the objective space which is dominated by any

point of Pareto-optimal solutions. The HV metric measures

the size of the region that is dominated by the obtained

non-dominated solutions S and dominates R. Pareto solu-

tion set with higher HV value indicates better convergence

and diversity. Hypervolume metric is computed as follows:

HVðSÞ ¼ Leb [x2S½f1ðxÞ;R1� � � � � � ½fMðxÞ;RM�ð Þ ð8Þ

where Leb(S) is the Lebesgue measure of S. The selection

of the reference point is an important issue. In this exper-

iment, R is set to ð3; 5; . . .; 2M þ 1ÞT for M-objective test

instance, as recommended by [37].

4.3 Experimental results and analysis

To ensure clarity in the result comparisons, the results for

WFG benchmark with 4 different dimensions are presented

in Tables 5 and 6. The mean and standard deviation of HV

and IGD metric value are recorded. The Wilcoxon rank

sum test with a significance level of 0.05 is adopted to

perform statistical analysis on the experimental results, and

the symbols ‘?’ and ‘=’ in Tables 5 and 6 indicate that the

result by MOEA-NAA is significantly better and statisti-

cally similar to that obtained by another MOEA,

respectively.

Table 2 Characteristics of PF shapes

Problem Characteristics of PF shapes

WFG1 Biased, mixed, unimodal

WFG2 Convex, discontinuous, non-separable

WFG3 Linear, degenerate, non-separable, unimodal

WFG4 Concave, multi-modal

WFG5 Concave, deceptive

WFG6 Concave, non-separable, unimodal

WFG7 Concave, biased, unimodal

WFG8 Concave, non-separable, unimodal

WFG9 Concave, deceptive, biased, multi-modal
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4.3.1 Performance comparisons on multi-objective test
problems

In this experiment, WFG with 2- and 3-objective are

adopted to verify the performance of algorithms in han-

dling MOPs. For the 2-objective MOPs, as evidenced by

statistical results of the IGD values summarized in Table 5,

MOEA-NAA has shown the most competitive performance

on WFG2, WFG3, WFG6, WFG8 and WFG9, while

MOEA/D and NSGA-III have achieved the best perfor-

mance on WFG7, WFG1 and WFG4, respectively. By

contrast, the performance of NSGA-II on the WFG test

functions is poor. The situation of the 3-objective is similar

to that in bi-objective MOPs. In the following, some dis-

cussions on the experimental results will be presented.

WFG1 is designed with flat bias and a mixed structure of

the PF containing both convex and concave segments. And

it is used to assess whether MOEAs are capable of dealing

with PF with complicated mixed geometries. As can be

seen from Fig. 6, the obtained PF of MOEA-NAA on

WFG1 is not smooth. Poor performance of MOEA-NAA

on WFG1 indicates that MOEA-NAA may be not suit-

able for handling such complicated mixed geometries. But

compared to MOEA/D, MOEA-NAA can search for more

areas and get a more complete PF, which reflects the good

search ability of MOEA-NAA. WFG2 is a test problem

which has a disconnected PF. In Figs. 4 and 5, it can be

observed that although the IGD and HV values obtained by

each algorithm vary on this test problem, the overall per-

formance is generally very good. The performance gradu-

ally improves as the number of iterations increases, which

indicates the potential of MOEA-NAA in dealing with

discrete problems. In addition, Figs. 4 and 5 present a

tortuous process, which may be caused by the discreteness

of PF. In the case of three objectives, MOEA-NAA gains

worse IGD value in Fig. 7 but presents a good distribution

compared to NSGA-II and MOEA/D on WFG2 in Fig. 9.

WFG3 is a difficult problem where the PF is degenerate

and the decision variables are non-separable. MOEA-NAA

achieves comparable lower IGD values and higher HV

values than other five algorithms on WFG3. In Figs. 4 and

5, IGD and HV values obtained by MOEA-NAA show a

faster convergence and more accurate results. The obtained

results of 2-objective PF are displayed in Fig. 6. It can be

seen that MOEA-NAA receives more uniform distribution

toward the whole PF on WFG3. Nevertheless, as depicted

in Fig. 9, all compared algorithms have not reached the

true degenerate PF.

WFG4–WFG9 are designed with different difficulties in

the decision space, e.g., multimodality for WFG4, land-

scape deception for WFG5, non-separability for WFG6,

WFG8, and WFG9, and biased for WFG7, but the true PFs

of these problems are same convex structure. On 2-objec-

tive and 3-objective WFG4, MOEA-NAA is worse than

NSGA-III and RVEA in terms of IGD values. On 2-ob-

jective WFG7, MOEA-NAA achieves comparable lower

IGD values than RVEA and MOEA/D, but has been out-

performed by the other four algorithms. On 3-objective

WFG4, MOEA-NAA is worse than NSGA-III and RVEA

in terms of HV values. In addition to the above mentioned,

MOEA-NAA has reached the optimal value on other test

functions of WGF4–WFG9. Figures 4, 5, 7 and 8 exhibit

some of variation of metric value, and Figs. 6 and 9 depict

the approximate front of the partial function. As can be

Table 3 Parameter settings of

compared algorithms
Algorithm Parameter settings

NSGA-II pc ¼ 0:9, pm ¼ 1=D, gc ¼ 20, gm ¼ 20

MOEA/D F ¼ 0:5, CR ¼ 1:0, pm ¼ 1=D, gm ¼ 20, T ¼ 20, d ¼ 0:9, nr ¼ 0:2

NSGA-III pc ¼ 0:9, pm ¼ 1=n, gc ¼ 20, gm ¼ 20

RVEA The index of penalty function a ¼ 2, the frequency: fr ¼ 0:1

Table 4 Parameter settings of all algorithms

Number of objectives (M) Population size (N) Parameter Dimension (D) D ¼ k þ l Number of divisions (H)

k l

2 100 18 14 32 99

3 210 19

4 286 10

7 294 H1 ¼ 4, H2 ¼ 3
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seen from these figures, the convergence speed, the dis-

tribution and diversity of MOEA-NAA are significantly

outperformed by other compared algorithms.

Notably, the algorithm with fixed reference vectors of

MOEA-NAA, which recorded as MOEA-NAA0, is still

significantly worse than MOEA-NAA even though they are

similar in many test functions.

4.3.2 Performance comparisons on many-objective test
problems

WFG test problems with 4-objective and 7-objective are

also adopted to verify the performance of algorithms in

handling MaOPs. As can be observed in Tables 5 and 6,

MOEA-NAA shows the most competitive overall perfor-

mance on these problems. More specifically, MOEA-NAA

is significantly superior to NSGA-II, MOEA/D, while it has

achieved the comparable performance to NSGA-III and

RVEA in IGD and HV values. On the 4- and 7-objective

WFG1, NSGA-III gains best performance just like that on

2- and 3-objective WFG1. For the 4-objective WFG2,

WFG3, WFG5, WFG8 and WFG9, MOEA-NAA reaches

the best HV values. For the 7-objective WFG4, WFG5 and

WFG9, MOEA-NAA gains the best IGD values.

Figures 10, 11, 12, 13, 14 and 15 show the trend of IGD

and HV values and the approximate front of some func-

tions. The lines of different colors represent the different

approximate solutions in Figs. 12 and 15. As the number of

objectives increases, the difficulty of finding the true PF of

WFG2 increases dramatically. The IGD metric value

hardly converges, especially when dealing with 7-objective

problems, so IGD value shows an increasing trend with the

increase in the evaluations except for NSGA-II. This phe-

nomenon reflects the weakness of reference vector-based or

decomposition-based algorithms when handling discrete

problems.

Besides, as can be observed from Figs. 12 and 15,

MOEA-NAA gets a better distribution which means a good

diversity is obtained.

4.3.3 Sensitivity of performance to the parameter Tp

As described earlier, the parameter Tp is an important

factor for reference vector adaptive adjustment. In this part,

the sensitivity of parameter Tp is investigated to verify the

performance of MOEA-NAA.

If Tp is too large, the convergence gets affected for

MOPs or MaOPs with irregular PF. If it is too small, it may

undesirably make certain reference vectors invalid.

Therefore, a suitable range is necessary for reference vector

adaptive adjustment strategy to be effective for problems

with different PF.

In order to study the sensitivity of performance the

parameter Tp, different types of problems have be taken in

account including mixed (WFG1), discontinuous (WFG2),

degenerate (WFG3) and concave (WFG6). The experiment

are executed with different Tp values (i.e., Tp = 20, 40, 60,

80, 100), and the mean IGD and HV of 20 independent

runs are calculated. In order to intuitively observe the

impact of Tp on the performance of the algorithm, Fig. 16
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shows the mean IGD obtained using different values of Tp
for WFG1–WFG3. Besides, Fig. 17 depicts the mean HV

values for WFG1, WFG2 and WFG6.

One phenomenon can be seen that Tp has negligible

effect for a problem having biased, mixed PF, i.e., WFG1

(Figs. 16a, 17a). For WFG2, there is a clear gap at Tp ¼ 60

with regard to IGD value. As shown in Fig. 16b, the per-

formance reaches the best IGD value at Tp ¼ 60 when

M ¼ 2; 3; 7. It seems very competitive when Tp ¼ 100;

nevertheless, there is a performance drop whenM ¼ 2 both

in IGD and HV value. For degenerate problem WFG3

(Fig. 16c), the performance is relatively stable when

M ¼ 2; 3; 4, whereas there is a significant fluctuation when

M ¼ 7. Ultimately, the optimal IGD value falls at Tp ¼ 60.

It can be observed from Fig. 17c that HV value tends to be

stable at Tp ¼ 20; 40; 60; 100 when M ¼ 2; 3; 4; 7, but the
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line of M ¼ 7 shows slight fluctuations. The optimal HV

value of WFG6 is obtained at Tp ¼ 100, while the subop-

timal value is achieved at Tp ¼ 60.

Based on our experiments, Tp ¼ 60 gives satisfactory

results, regardless of the shape of the PF. In particular, for

discontinuous fronts, more reasonable adaptive adjustment

is required. Finally, a sufficient number of directional

adjustments should be guaranteed to achieve the preferred

distribution toward the PF, and the solution has sufficient

generations to converge to the direction of the adjusted

reference vector.

4.3.4 Effectiveness of the pioneer dynamic population
strategy

As described earlier in Sect. 3.2, the pioneer dynamic

population strategy can accelerate the convergence speed

of the algorithm or improve the performance of the
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algorithm. In this subsection, the effectiveness of this

strategy is assessed by implementing more detailed

experimental analysis. Consistent with the experimental

method used in Sect. 3.2, the effectiveness of the strategy

is demonstrated by comparing the performance of the

algorithm with the fixed population size N and the pioneer

dynamic population strategy. Figures 18, 19, 20 and 21

record IGD and HV trend of several problems when M ¼
2; 3; 4 and 7, respectively. It is worth noting that IGDN and

HVN represent the performance of MOEA-NAA with fixed

population size N, while IGD and HV represent the per-

formance of MOEA-NAA with the pioneer dynamic pop-

ulation strategy in these figures.

From these figures, three observations can be gained.

Firstly, the proposed pioneer dynamic population strategy

performs much better than the compared method on

accelerating the convergence speed in terms of IGD and

HV trend. For example, in 2-objective WFG1 (Fig. 18a),

3-objective WFG1 (Fig. 19a), 4-objective WFG6

(Fig. 20b) and 7-objective WFG5 (Fig. 21b), the final

indicator value is similar, whereas the convergence speed

of the algorithm with the pioneer dynamic population

strategy is faster than that of the algorithm with fixed

population size. Secondly, the proposed strategy also

shows competitive performance on improving the final

performance of the algorithm. It can be observed from

2-objective WFG7 (Fig. 18b), 3-objective WFG6

(Fig. 19b), 4-objective WFG3 (Fig. 20a) and 7-objective

WFG9 (Fig. 21c). For the two comparison algorithms, the

algorithm with pioneer dynamic population strategy has no

significant improvement in convergence in the early stage,

but it is worth noting that the final performance of the

algorithm has been significantly improved. Thirdly, as

depicted in the figures, i.e., 2-objective WFG9 (Fig. 18c),

3-objective WFG9 (Fig. 19c), 4-objective WFG9

(Fig. 20c) and 7-objective WFG2 (Fig. 21a), the overall

performance of the algorithm adopting this strategy is

significantly better than the compared algorithm in both

convergence speed and final performance.

On the basis of the empirical observations above, it can

be conclude that the proposed pioneer dynamic population

strategy performs well in convergence speed or final per-

formance, regardless of the process of algorithm.

4.3.5 Overall performance analysis

As evidenced by Tables 5 and 6, MOEA-NAA shows the

most competitive overall performance on WFG problems

by achieving the best results on 16 of 36 instances IGD

values, and 20 out of 36 instances of HV values. By con-

trast, NSGA-II shows high effectiveness on some 2-ob-

jective and 3-objective instances, and NSGA-III shows

promising performance on most 7-objective instances.

In Table 7, the comparison summary of MOEA-NAA

and five methods on the WFG test problems is exhibited.

The first two lines in the table indicate that comparison

algorithm is better than, similar to, and worse than MOEA-

NAA during the overall test function. The data of the last

two rows indicate the number of optimal values obtained

by each algorithm. It can be concluded that the
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performance of MOEA-NAA is better than all comparison

algorithms and the most optimal value is received. There-

fore, MOEA-NAA has promising versatility in the opti-

mization of MOPs and MaOPs with various Pareto fronts.

5 Conclusions and future work

To handle MOPs and MaOPs with various types of Pareto

fronts, an enhanced reference vectors-based multi-objec-

tive evolutionary algorithm with neighborhood-based

adaptive adjustment is presented, termed MOEA-NAA. It

contains three main improvements, i.e., pioneer dynamic
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population strategy, multi-criteria environment selection

mechanism and reference vector adaptive adjustment

strategy based on neighborhood information. Pioneer

dynamic population strategy improves the convergence. In

the proposed adaptation method, the reference points are

adapted on the basis of a predefined reference point set to

approximate more accurate PFs. Due to allocate computing

resources in discrete areas to potential areas, the waste of

computing resources is reduced as much as possible.

Moreover, multi-criteria selection mechanism guarantees

the effectiveness of the algorithm on MaOPs. MOEA-NAA

is compared with four classical algorithms, i.e., two clas-

sical MOEAs and two MaOEAs. Empirical results have

demonstrated that the proposed MOEA-NAA outperforms
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other representative MOEAs on overall 36 test problems.

Therefore, MOEA-NAA is a promising and versatile

algorithm which can obtain the good performance of con-

vergence and diversity.

It is worthy mentioning that the proposed MOEA-NAA

is a promising algorithm for solving MOPs and MaOPs.

Nevertheless, it is a hindrance when dealing with PFs with

complicated mixed geometries (e.g., WFG1). Future work

will focus on dealing with problems with more complex PF

shapes or more than seven objectives.
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