
ORIGINAL ARTICLE

ISA: a hybridization between iterated local search and simulated
annealing for multiple-runway aircraft landing problem

Abdelaziz I. Hammouri1 • Malik Sh. Braik2 • Mohammed Azmi Al-Betar3 • Mohammed A. Awadallah4

Received: 24 April 2019 / Accepted: 3 December 2019 / Published online: 13 December 2019
� Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
This paper presents an efficient method for aircraft landing problem (ALP) based on a mechanism that hybridizes the

iterated local search (ILS) and simulated annealing (SA) algorithms. ALP is handled by scheduling each incoming aircraft

to land on a runway in accordance with a predefined landing time frame. The main objective to address is to find a feasible

aircraft scheduling solution within the range of target time. The proposed hybridization method complements the

advantages of both ILS and SA in a single optimization framework, referred to as iterated simulated annealing (ISA). The

optimization framework of ISA has two main loops: an inner loop and an outer loop. In the inner loop, SA is utilized

through a cooling schedule and a relaxing acceptance strategy to allow ISA to escape the local optima. In the outer loop,

the restart mechanism and perturbation operation of the standard ILS are used to empower ISA to broadly navigate

different search space regions. Extensive evaluation experiments were conducted on thirteen small- and large-sized ALP

instances to assess the effectiveness and solution quality of ISA. The obtained results confirm that the proposed ISA

method considerably performs better than other state-of-the-art methods in which ISA is capable of reaching new best

results in 4 out of 24 large-sized problem instances as well as obtaining the best results in all small-sized instances.

Evaluation on large-sized instances confirms a high degree of performance. As a new line of research, ISA is an effective

method for ALP which can be further investigated for other combinatorial optimization problems.

Keywords Aircraft landing problem � Iterated local search � Simulated annealing � Iterated simulated annealing �
Scheduling optimization problems

1 Introduction

Air transport has definitely established itself as one of the

most important means of transportation. The last two

decades have experienced an immense evolution of air

transport [1] for both passengers and cargo. All types of

aircraft must pass prior to landing at an approaching stage

under the guidance of the air traffic control (ATC) tower,

which has a responsibility for securing the flights. This is a

complex daily task of the ATC towers. The presence of a

limited number of runways at airports is a major obstacle

for the ATC tower, particularly during the rapid increase in

air traffic and rush times of landing and takeoff operations.

& Abdelaziz I. Hammouri

Aziz@bau.edu.jo

Malik Sh. Braik

mbraik@bau.edu.jo

Mohammed Azmi Al-Betar

mohbetar@bau.edu.jo

Mohammed A. Awadallah

ma.awadallah@alaqsa.edu.ps

1 Department of Computer Information Systems, Al-Balqa

Applied University, Al-Salt 19117, Jordan

2 Department of Computer Science, Al-Balqa Applied

University, Al-Salt 19117, Jordan

3 Department of Information Technology, Al-Huson University

College, Al-Balqa Applied University,

P.O. Box 50, Al-Huson, Irbid, Jordan

4 Department of Computer Science, Al-Aqsa University,

P.O. Box 4051, Gaza, Palestine

123

Neural Computing and Applications (2020) 32:11745–11765
https://doi.org/10.1007/s00521-019-04659-y(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-0612-8246
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-019-04659-y&domain=pdf
https://doi.org/10.1007/s00521-019-04659-y

The high demand for more flights beyond the airport’s

capacity leads to congestion at the airport, caused by its

inability to accommodate all progressing flights, and

therefore, airports will not be able to meet future needs.

In optimization context, there are two different opti-

mization problems of aircraft sequencing and scheduling in

the literature: (1) aircraft scheduling problem (ASP) and

(2) aircraft landing problem (ALP) [2]. Both problems are

different in terms of the objective function and also in

terms of the complexity involved in solving the problem.

Furthermore, the optimization methods proposed in the

literature for both are also significantly different. To

elaborate, ASP is a problem concerned with landing

sequences and functional landing times for arrivals aircraft

at the airport. The main constraints of this problem are to:

(1) ensure the safe separation between aircraft arrival, (2)

utilize the obtainable assimilation at the airport and (3)

reduce the airborne delays. Indeed, ASP is a significant

issue in the daily functioning of airports.

ALP, the main concern of this paper, is a combinatorial

optimization problem (COP) which belongs to NP-hard

category in almost all of its variation [3]. ALP is tackled by

assigning a set of aircrafts arriving to runways and landing

times in accordance with a set of hard and soft constraints.

The hard constraints must be compulsorily met to arrive at

a feasible solution for aircraft scheduling. An example of

hard constraint in ALP is time window whereby each air-

craft has earliest and latest time to land. On the other hand,

soft constraint satisfaction is preferred, but not mandatory.

However, the more the soft constraints are met, the better

the quality of the ALP solution will be. An example of soft

constraint is that each aircraft will record its preferred

(target) landing time. Basically, the overall objective is to

build a feasible ALP solution with a high quality [4]. As

the ALP is a combinatorial optimization problem, most of

researchers build their methods by working on feasible

search space regions; therefore, the solution(s) feasibility

will be maintained during the search. In case of violations

occurring during the search, the repair process has to be

invoked. Furthermore, the initial solution(s) must also be

feasible; therefore, a suitable heuristic technique such as

first-come first-serve is used to ensure the feasibility [5].

Several methods have been introduced for ALP. The

earliest were exact (or calculus-based or deterministic)

methods. This type of method is problem-dependent

whereby any optimal solution is reached by constructing it

event by event. However, this type of algorithm is not

efficient for large-scale ALP that has large number of air-

craft, airways and number/kind of constraints to be met.

The large-scale ALP problems can be categorized into NP-

hard class, which cannot be resolved in a polynomial time.

Although these methods cannot effectively find a high-

quality solution for large-scale ALP, they are nowadays

used to handle some real-world problems with small size or

find initial feasible solution for more advanced methods.

The most popular exact methods which resolved ALP were

linear programming [2, 6], dynamic programming [7, 8],

mixed-integer goal programming [9], mixed-integer pro-

gramming [4, 10], linear programming-based tree search

[11], exact polynomial algorithm [12] and two-stage

algorithm with heuristics [13]. To emphasize, deterministic

methods are very powerful in finding exact solution for

small instances. They cannot solve the large-scale instances

in polynomial time. Therefore, approximation methods are

devoted.

Recently, the emergence of metaheuristic-based algo-

rithms for ALP has captured the attention of the scheduling

research community [14]. Metaheuristic-based algorithms

are general optimization templates that can be efficiently

used for several optimization problems. They search for the

optimal solution using their own operators controlled by

some parameters to explore new regions in the problem

search space and exploit the accumulative search [15].

Several studies have categorized these methods into either

natural-based or non-natural-based, population-based or

single-point search, dynamic or static objective function,

memory or memory-less methods, etc. [16]. The common

features of the metaheuristic-based algorithms are the

concepts of exploration and exploitation which are reached

differently from one algorithm to another. Exploration

refers to the ability of the algorithm to explore the unvis-

ited search space regions, whereas exploitation identifies

the ability of the algorithm to deeply exploit the visited

search space areas to reach the local optima on that area.

These two concepts are contradictory and the balance

between them is essential during the search [17].

There are specifically two familiar types of meta-

heuristic-based algorithms that have addressed APL as

optimization problems as outlined below: (1) evolutionary-

based algorithms such as scatter search [5], genetic algo-

rithm [9, 18, 19] and population heuristic [20] and (2)

swarm-based optimizers such as particle swarm optimiza-

tion [3], ant colony optimization [21, 22], artificial bee

colony [23] and gravitational search algorithm [24]. Local

search-based algorithms which are the main concern of the

work presented in this paper begin with a single provisional

solution. At each iteration, that solution undergoes changes

using efficient neighborhood moves until a locally opti-

mized solution, in the same search space region of the

initial one, is reached. Although trajectory-based algo-

rithms are very powerful in finding the local optimal

solution to which they converge, they track through a tra-

jectory in the search space without scanning wider regions;

thus, they are easily stuck in local optima. It has to be noted

that the search space regions of a scheduling problem like

ALP are very rugged and require a very powerful method

11746 Neural Computing and Applications (2020) 32:11745–11765

123

in deepening search rather than shallow search. Therefore,

the research community of the scheduling domain has

recently turned its attention to trajectory-based approaches

rather than other approaches [25].

It is worth mentioning that the attention of the current

research on ALP was turned toward adapting local search-

based methods for several reasons: Local search-based

algorithms are much faster than other methods. They are

also very powerful in deepening search which is very

useful for the scheduling problem. Simulated annealing

(SA) is a very powerful local search-based method can

escape from the trap of local optima using particular

acceptance criterion [26]. SA is successfully adapted for

ALP in [9]. Furthermore, iterated local search (ILS) is

another powerful local search-based method that can also

escape the dilemma of local optima by means of using

multi-start mechanism to try several search space regions

[27]. As traditionally known, ALP is a COP or, in more

specific terms, is a new hybrid local search method that

complements the powerful features of two or more local

search-based algorithms to enable deep search capability as

well as the escape from the local optima. Recently, ILS and

SA have been hybridized in different ways to cope with the

search space of complex optimization problems [28, 29].

For example, Rajalakshmi et al. [29] integrated SA within

the iterated local search algorithm to solve switching cells

to switch in cellular mobile network. Rajalakshmi et al.

used SA to locate the optimal solutions generated by the

iterated local search algorithm. Experimentally, it was

found that the performance of the hybrid algorithm [29] is

better than that of SA and ILS algorithms when imple-

mented individually.

Due to the fact that there is no free lunch (NFL) in

optimization [30], we propose in this paper a hybridization

between the successful features of SA and ILS for ALP

which is called iterated simulated annealing (ISA). The

optimization framework of ISA has two main loops: inner

and outer loops. In the inner loop, SA is utilized by a

cooling schedule and relaxing acceptance strategy to allow

ISA to escape the local optima. In the outer loop, the restart

mechanism and perturbation operation of the original ILS

are utilized to empower ISA to navigate different search

space regions.

To evaluate the performance of the ISA method, we

conducted a test on a dataset consisting of 13 datasets with

49 benchmark instances of different sizes and complexities.

The parameter sensitivity analysis for the proposed ISA is

studied to check their effect on the convergence behavior.

For comparative evaluation, the results obtained by ISA are

compared with six well-regarded methods that produced

the state-of-the-art results. It is worth mentioning that the

results yielded by the proposed method excel those pro-

duced by other comparative methods in 4 out of 49

problem instances. Also, ISA is able to produce the best-

known results in 32 problem instances as achieved by

others. Indeed, the proposed method can be considered a

very efficient addition to the ALP domain, which can be

easily tailored to resolve other similar problems.

The rest of the paper is organized as follows: Sect. 2

provides a detailed description of the mathematical formula

of the ALP. An elaborated illustration of the proposed

approach is introduced in Sect. 3. Section 4 then provides a

brief summary of both ILS and SA algorithms. Section 5

describes and analyzes the computational results and time

efforts of the proposed method along with other state-of-

the-art methods that have addressed ALP, with conclusions

and future work in Sect. 6.

2 Aircraft landing problem: definition
and formulation

To implement a feasible approach for the ALP, all aircraft

arrival times should be known beforehand along with all

other information about each one. Each aircraft has a

preferred landing time, a predefined landing time window

and a set of runways. The main goal is to schedule each

runway to the suitable landing time for each arriving air-

craft with a minimal overall deviation from the preferred

landing time. A penalty cost is assigned to the scheduling

solution subject to the landing time of each aircraft that

lands before or after its preferred landing time. The nec-

essary mathematical notations for the ALP are provided in

Table 1. The mathematical formulation of the ALP model

is introduced in the next constraint formulation based on

the formulation provided in [11].

2.1 Constraints of the ALP model

In order to preserve the feasibility of the ALP solution,

three hard constraints must be fulfilled: time window,

separation time and multiple runways. These constraints

are formalized as follows:

Constraint 1 Time window For aircraft i, the landing

time ti is scheduled to be within its predefined landing

time window, ½Ei; Li�:
Ei � ti � Li; 8i 2 f1; 2; . . .;Ng: ð1Þ

Constraint 2 Separation time Separation time con-

straints are conditioned by the landing order of aircraft

and their assigned runways. The landing order of aircraft

signals that either aircraft i lands before aircraft j which

denotes xij ¼ 1 or aircraft j lands before aircraft i which

denotes xji ¼ 1. This constraint is defined as shown in

Eq. (2).

Neural Computing and Applications (2020) 32:11745–11765 11747

123

xij þ xji ¼ 1 8i; j 2 f1; 2; . . .;Ng ^ j[i ^ xij 2 ð0; 1Þ:
ð2Þ

In some cases, for a particular pair (i, j) of aircraft, it can

be immediately decided whether xij ¼ 1 or xij ¼ 0; for

example, if Li\Ej then xij ¼ 1 and xji ¼ 0. For any pair

of successive landings on the same runway (i, j) of air-

craft, there is a requirement constraint that must be

respected as shown in Eq. (3):

xij � tj � xij � ti þ Sij � zij þ tijð1� zijÞ
8i; j 2 f1; 2; . . .;Ng ^ j[i:

ð3Þ

Let (i, j) be a pair of aircraft such that i\j and assume

that aircraft i and j land on the same runway, i.e., zij ¼ 1

and 1� zij ¼ 0. If aircraft i lands before aircraft j then

xij ¼ 1, then the constraint in Eq. (4) becomes:

tj � ti þ Sij 8i; j 2 f1; 2; . . .;Ng: ð4Þ

Equation (4) asserts that the separation criterion between

aircraft i and j is conformed. This implies that the time

Sij must elapse after the landing of aircraft i at ti before j

can land at tj:

Constraint 3Multiple runways The following constraint

is used to assure that aircraft i must be assigned to only

one runway:

X

r2R
yir ¼ 1 8i 2 f1; 2; . . .;Ng: ð5Þ

There are some constraints formulated in Eqs. (6, 7) that

are needed to guarantee that the runways assigned to

aircraft i and j are indistinguishable when they are set to

land on the same runway. The constraint in Eq. (6) shows

that the matrix zij is symmetric:

zij ¼ zji 8i; j 2 f1; 2; . . .;Ng ^ j[i: ð6Þ

The decision variables yir; yjr and zij are linked together

using Eq. (7).

zij � yir þ yjr � 1 8i; j ¼ ð1; 2; . . .;NÞ^
i 6¼ j 8r ¼ ð1; 2; . . .;RÞ:

ð7Þ

However, if one aircraft i or j lands on runway r and the

other does not; then 0 must be assigned to zij.

2.2 Objective function of the ALP model

The objective function, f, considered here for the ALP is

formulated as shown in Eq. (8), subject to the three con-

straints identified before (i.e., time window, separation

time and multiple runways).

Table 1 Notations used to formulate the ALP

Symbol Description

N Number of aircraft waiting to land

R Number of available runways

Ei Earliest possible landing time for aircraft i when it lands down before its target time

Ti Targeted (preferred) landing time for aircraft i

Li Latest possible landing time for aircraft i when it lands down after its target time

Sij The required separation time between landing aircraft i and j, ðSij [0; j ¼ 1; 2; . . .;N; i 6¼ jÞ, where aircraft i lands before aircraft j on
the same runway

tij The required separation time between aircraft i and aircraft j, ðtij [0; j ¼ 1; 2; . . .;N; i 6¼ jÞ, where aircraft i lands before aircraft j on
different runways

P1i The incurred penalty cost per unit of time for aircraft i when landing before its target time

P2i The incurred penalty cost per unit of time for aircraft i when landing after its target time

ti The scheduled landing time of aircraft i, ti � 0

ai Tardiness of landing when aircraft i is scheduled to land after its target time Ti; ai ¼ maxð0; ti � TiÞ; ai � 0

bi Earliness of landing when aircraft i is scheduled to land before its target time Ti; bi ¼ maxð0;Ti � tiÞ;bi � 0

The decision variables xij, yir and zij for aircraft i, where i 2 f1; 2; . . .;Ng and j, where j 2 f1; 2; . . .;Ng on runway r, where r 2 f1; 2; . . .;Rg,
where i 6¼ j, are defined as follows:

xij ¼
1 if aircraft i is assigned to land before aircraft j

0 otherwise

�

yir ¼
1 if aircraft i is scheduled to land on runway r

0 otherwise

�

zij ¼
1 if aircrafts i and j are scheduled to land on the same runway:
0 otherwise

�

11748 Neural Computing and Applications (2020) 32:11745–11765

123

min f ðXÞ ¼
XN

i¼1

ai � P1i þ bi � P2i: ð8Þ

The expression in the parentheses of Eq. (8) defines total

penalty corresponding to aircraft i. If aircraft i lands at its

target landing time, then both ai and bi are equal to zero

and the cost incurred by its landing is zero. On the other

hand, if aircraft i does not land at Ti, then either ai or bi is
nonzero and there is a strictly positive cost incurred. In

practical terms, this objective function is valuable, which

has the ability to reflect prevailing conditions at an airport.

Note that both ai and bi are constant and their values are

extracted from the dataset used. The values of both ai and
bi are connected with the decision variables in the solution

X as in Eqs. 9–13.

xi ¼ Ti � ai þ bi 8i 2 f1; 2; . . .;Pg ð9Þ

0� ai � Ti � Ei 8i 2 f1; 2; . . .;Pg ð10Þ

ai � Ti � xi 8i 2 f1; 2; . . .;Pg ð11Þ

0� ai � Li � Ti 8i 2 f1; 2; . . .;Pg ð12Þ

ai � xi � Ti 8i 2 f1; 2; . . .;Pg: ð13Þ

3 Research background

In order to build a self-exploratory paper, this section

provides the elementary knowledge about the methods

hybridized here. In the next subsection, basic fundamentals

to the iterated local search (ILS) are illustrated as estab-

lished in the original version [31]. Thereafter, a discussion

about the basic concepts of simulated annealing is provided

in Sect. 3.2.

3.1 Fundamentals of the iterated local search
algorithm

ILS is an advanced extension method for basic local search

method. It attempts to escape the local optima by means of

restarting the local search technique several times starting

with a different initial point at the search space. Normally,

ILS has two important stages: improvement stage and

perturbation stage. In the improvement stage, the simple

local search mechanism is used to find a local optimal

solution Xopt which is passed to the perturbation stage in

order to shuffle its elements for starting a new perturbed

solution X0opt. Finally, a greedy selection between Xopt and

X0opt is used. This process is repeated several times until a

‘‘good enough’’ local optima is obtained.

The perturbation is usually non-deterministic in order to

avoid being cyclic. The perturbation stage is important to

transform the solution from the current local optima to

another point in the search region. The strength of pertur-

bation has a great effect on the efficiency of ILS which

takes control on the force of perturbation. Too small per-

turbation may lead the local search process to return to

previous local optima already found, leading to misuse of

computational resources. Too large perturbation may

dominate the local search method to work as a local search

method with a multi-random initial point. In other words,

large perturbation in the early stages manages the local

search procedure to explore new areas of the search space.

The strength of perturbation is either static or dynamic.

Indeed, static perturbation shuffles the local optima during

the search and remains static from initial search until the

final course of run. In contrast, dynamic perturbation

strength progressively decreases with the advance of the

local search algorithm to focus on exploitation of new areas

of the search space.

The acceptance criterion is the key feature of meta-

heuristic algorithms because it allows for a more compre-

hensive search for optimal solutions. The pseudo-code of

ILS is described in Algorithm 1.

In Algorithm 1, ILS is initiated with a provisional

solution X. The historical point (H) is also initially defined

and assigned by X. ILS consists of two nested loops: im-

provement which is the inner loop (i.e., lines 9–15) and

perturbation which is the outer loop. In the improvement

loop, a simple local search strategy is employed. The

Tweakð. . .Þ function is used as a neighborhood move with a

one-step random improvement method. The output of

improvement stage is a local optima X0 which is used in the

perturbation stage. In the perturbation stage, X0 replaces X,
if better and the historical point (H) is updated. Finally,

Perturb(...) function is used to shuffle H to be used as an

initial point to the improvement loop. This process is

Neural Computing and Applications (2020) 32:11745–11765 11749

123

repeated several times until the ideal solution (i.e.,

f(X) = 0) or the maximum number of iterations is reached.

Note that the ideal solution is the one with zero cost. This

solution is the exact one.

3.2 Simulating annealing

Simulated annealing is another extension to the simple

local search method that simulates a bridge between the

physical process of the metal annealing and the optimiza-

tion process [32]. Similar to any local search method, SA is

initiated with a random solution. Iteratively, this solution

will be updated using neighborhood move associated with

the problem to be solved. The solution update is then

accepted based on two acceptance criteria:

(i) Greedy acceptance rule: in which the updated

solution replaces the current one, if better in terms

of solution quality. Formally, let the current

solution be X ¼ ðX1;X2; . . .;XnÞ and the updated

solution be X0 ¼ ðX0
1;X

0
2; . . .;X

0
nÞ. The greedy selec-

tion rule accepts the updated solution when

f ðXÞ\f ðX0Þ, where f(.) is the quality function.

(ii) Relaxed acceptance rule: In case that the Greedy

acceptance rule does not recognize any improve-

ment in the updated solution, the relaxed accep-

tance rule is checked. The relaxed acceptance rule

can accept the worst updated solution X0 than the

current one X if the following condition becomes

true:

�Uð0; 1Þ\ exp
�ðf ðX0 Þ�f ðXÞÞ

T ;

where �Uð0; 1Þ is a uniform distributed function

that generates a random digit between 0 and 1.

It is worth noting that the temperature T is exponentially

decreased by a fraction a, where Tðt þ 1Þ ¼ a� TðtÞ. In
SA, this is called the cooling schedule process in which the

SA begins with a high temperature value and it gradually

decreases during the search until it almost reaches 0. Note

that, when the value of T is high, the updated solution

replaces the current one, if worse in large margin. This

acceptance mechanism is degraded until a stagnation sit-

uation is reached where only greedy acceptance rule is

used. Conventionally, this is in line with the main principle

of optimization where the exploration is very useful in the

initial search, but not important in the last course of runs.

The procedure of SA is pseudo-coded in Algorithm 2.

As a matter of fact, the performance of SA depends on two

factors: the initial temperature value T and the cooling

schedule. High value of T leads to a heavily use of the

relaxed acceptance rule in the initial search, and the SA

might be required large time to converge. Here, SA

behaves as a random search. In contrast, the lower the

value of T is, the faster the convergence of SA will be.

Here, SA behaves as a simple local search method. In

cooling scheduling, a large value of a may lead to slow

convergence whereby SA will accept the worst solution in

the initial search for large iterations.

4 Iterated simulating annealing (ISA) algo-
rithm for ALP

In this section, the proposed methodology which hybridizes

the ILS with SA is adapted for ALP. Initially, the ALP

solution is represented as a vector X ¼ ðX1;X2; . . .;XNÞ of
length N aircraft. Each decision variable Xi in the ALP

solution can be assigned by a tuple of values of aircraft

index, landing runway and landing time. Table 2 provides

an example of ALP solution representation. In the example,

X1ðaircraft IndexÞ ¼ 2 means the first aircraft to land is

aircraft #2. X1ðLanding RunwayÞ ¼ 3 means the aircraft

number #2 will land in the airway #3 and the

X1ðLanding TimeÞ ¼ 98 means the aircraft number #2 will

land at a time unit #98 and so on. Each solution is evalu-

ated using the objective function formulated in Eq. (1).

The main role of ILS in the proposed method is not only

to avoid local minima since SA has a cooling strategy to

handle this, but also to be used as multi-restart algorithm

that empower the proposed method to try different search

space regions at each iteration and keep their local minima

with assist of SA.

In the proposed method, the relaxed acceptance criterion

of SA is incorporated with ILS optimization framework to

improve its local exploitation. Additionally, by means of

adding the relaxed acceptance criterion in the ISA, another

way of avoiding the local optima is provided to empower

the performance. The cooling schedule of ISA is based on

the same theory of SA where it is initiated with high value

of temperature. It cools down using a structured cooling

schedule based on a predetermined cooling rate until an

equilibrium state (or steady state) is reached.

11750 Neural Computing and Applications (2020) 32:11745–11765

123

The feasibility of the ALP solution is maintained during

the search in which the hard constraints (i.e., time window,

separation time and multiple runways) must be respected. It

is worth mentioning that the proposed method only con-

siders solutions in the feasible search space region.

Therefore, any ALP solution with violation of hard con-

straints must be repaired. If the separation time constraint

is violated between two aircraft (say, aircraft A lands

before B), the proposed approach earlier changes the

landing time of aircraft A with respect to its landing time

window. If such changes keep the violation remaining, the

proposed approach will restart the operation all over again.

The proposed ISA method complements the strength of

both ILS and SA in single optimization algorithm. ISA has

five main steps which will be discussed below. The

flowchart of ISA is provided in Fig. 1, and its pseudo-code

is provided in Algorithm 3.

Step I Initialize the parameters of both ALP and ISA:

Initially, the parameters of ALP are extracted from the

dataset to suitable data structure. These parameters are

the number of arrival aircraft N, number of available

runways R, earliest possible landing Ei, targeted landing

time Ti, latest possible landing time Li, etc. as mathe-

matically formulated in Table 1. Furthermore, the

parameter of ISA required for tackling ALP is also

initialized in this step. These parameters are temperature

(T), cooling rate a and number of iteration (MaxIter).

Step II Generation of initial solution: In ISA, the second

step randomly generates the initial solution X. As

aforementioned, each element in the solution Xi in

initialized by a tuple of values: aircraft index, landing

runway and landing time. In order to construct the initial

solution, all hard constraints discussed in Sect. 2 must be

satisfied in the initial solution to ensure its feasibility.

Indeed, ensuring the feasibility of the initial solution of

ALP is not a trivial task. In the literature, some works

proposed heuristic methods based on greedy rules to

generate the initial solution [27]. Others proposed

heuristic methods based on the first-come first-serve

technique to build the initial solution [6].

In ISA, in order to ensure the feasibility of the initial

solution, a heuristic method based on time window con-

straint is proposed. This heuristic method is pseudo-coded

in Algorithm 4. In the algorithm, �UðEi; LiÞ generates a

random number between Ei and Li and � U(1 , R) is a

function generating a random number between 1 and R. In

the initial loop, each decision variable is randomly

assigned by a group of values. Thereafter, the whole

solution is sorted based on the aircraft landing time. For

example, if the random solution generated after sorting

process becomes X ¼ ðð2; 3; 98Þ; ð3; 2; 106Þ; . . .;
ð1; 2; 258ÞÞ, then the aircraft #2 has a sequence of 1 which

will be landed at time 98s in the landing airway #3. In lines

9–14, the separation time constraint is checked. In case it is

violated, the heuristic method will restart the entire gen-

erating process from scratch.

Table 2 Example of ALP

solution representation
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Aircraft index 2 3 4 6 5 7 8 0 9 1

Landing runway 3 1 0 1 0 3 0 2 1 2

Landing time 98 106 118 126 134 142 150 165 180 258

Neural Computing and Applications (2020) 32:11745–11765 11751

123

Step III Improvement loop In the improvement loop, the

initial solution X is iteratively tweaked using Tweak()

function (see Algorithm 3) to yield

X0 ¼ ðX0
1;X

0
2; . . .;X

0
NÞ. If the objective function value of

X0 turns out to be better than that of X (i.e.,

f ðX0Þ\f ðXÞÞ, the current solution X will be replaced

by the tweaked solution X0. If not, the relaxed acceptance
criteria will be triggered. The relaxed acceptance criteria

might replace the current solution by the tweaked one, if

worse. This process is done based on the value of

temperature (T). When the value of T is large in the

initial search, the percentage of accepting the worst

solution is high. This percentage will be degraded by

decreasing the value of T using the equation in Algo-

rithm 3, line 14, until no further worst solution is

accepted. In TweakðXÞ function, four neighborhood

search methods are proposed for ALP. These neighbor-

hood search methods are found to be very efficient in the

navigation of the ALP search space and also maintain the

feasibility of X during the search. The new solution X0 is
adjusted based on the switching mechanism shown in

Eq. (14). Based upon Eq. (14), r is randomly generated

in the range of r 2 ½0; 1�. Apparently, the selection

probability of each neighborhood search method is in the

same context of 1:2:3 ratio. Each activated neighborhood

method only performs a single random move without

perform checking whether this move leads to a better

solution.

X0 ¼

NB1ðXÞ r� 0:25:

B2ðXÞ 0:25\r� 0:50

NB3ðXÞ 0:5\r� 0:75

NB4ðXÞ otherwise:

8
>>><

>>>:
ð14Þ

The new ALP solution (X0) is randomly adjusted in ISA by

one of the following neighborhood methods:

• NB1 select aircraft, Xi, randomly and then randomly

change its landing time ti 2 ½Ei; Li�, where the index

i denotes to aircraft i. The landing sequence is updated

based on landing times. The runway will not be

changed.

• NB2 select aircraft, Xi, at random and then randomly

change its landing time ti 2 ½Ei; Li� and its landing

runway ri 2 ½1;R�.
• NB3 select randomly two aircraft, Xi and Xj, from the

same runway. Then set randomly the landing times ti
and tj for Xi and Xj, respectively, where i and j represent

aircraft i and j, respectively. Swap the landing times ti
and tj for Xi and Xj. The landing times ti and tj are

restricted within ½Ei; Li� and ½Ej; Lj�, respectively. The
feasibility of X0 must be maintained.

• NB4 randomly select aircraft Xi and Xj from two

different runways ri and rj, where i 6¼ j. Swap landing

times ti and tj for aircraft i and j. The utility of X0 must

be conserved.

As it can be noticed from the objective function formulated

in Eq. (1), separation time is not directly computed and is

related to the aircraft sequence. Therefore, if the sequence

is updated in any movement process, consequently, the

separation time will also be affected. Apparently, the four

movement processes update the sequence in different ways

with respect to the separation time constraints.

At each iteration of ISA, each new solution of X0

replaces the current one of the X using the acceptance rule

of SA: greedy and relaxed. The relaxed acceptance rule

depends on the value of T which is iteratively updated

using cooling rate a.
At the end of the improvement loop, the resulting

solution (i.e., best) is the local optimal solution and that

will be passed on to the perturbation step to reshuffle its

component randomly.

It should be stressed that a heuristic method for gener-

ating the initial feasible solution is used in two places in the

algorithm: to build initial feasible solution and to preserve

the generated solution during the improvement loop. This

method randomly chooses the landing time within the time

window for each aircraft. It then sorts the aircraft based on

their landing time and then generates the landing sequence.

This method is successfully applied on all instances with-

out having problems in generating the initial feasible

Fig. 1 ISA flowchart

11752 Neural Computing and Applications (2020) 32:11745–11765

123

solution. Some works in the literature use the first-come

first-serve (FCFS) method for generating the initial solution

[27]. ISA specifically uses FCFS method with some ran-

dom components to diversify the initial feasible solution.

The same heuristic method is also used to maintain the

feasibility of the generated solutions during the search.

Step IV Perturbation: This is an important step in ISA

to diversify the new resulting solution (i.e.,

best) from the improvement loop. The diver-

sification process is done by means of using

the same neighborhood methods discussed in

the improvement loop, but without guidance

from objective function. It is responsible for

moving the improved solution (obtained by

SA) to a new area in the search space. The

perturbation process ensures that the solution

is moved to a new region in the search space.

The perturbed solution is considered the initial

solution for the upcoming improvement loop

which is repeated again.

Step V Termination criterion: As aforementioned in

Algorithm 3, there are two main loops: the

inner loop which is the improvement loop

based on SA and the outer loop is repeated as

many times as the SA is repeated based on

ILS concepts and conditions. The ISA is

terminated if the best becomes ideal solution

or the maximum number of iterations is

reached.

5 Experimental results and discussion

The proposed ISA is programmed in Java under Microsoft

Windows 10 platform. All experiments are implemented on

Intel Machine with Core i5 CPU with 2.5 GHz and 6 GB of

RAM. The experiments are designed to evaluate the effect

of the hybridization concepts between ILS and SA. Each

experiment is repeated 21 times. The results are recorded in

terms of the percentage gap Dð%Þ, which refers to the

difference between the best-known values (BKVs) in the

literature and the results obtained by the proposed ISA

method. Dð%Þ criterion measure is defined as shown below

[27]:

Dð%Þ ¼ B� BKV

BKV
� 100%; ð15Þ

where B is the best result returned by an algorithm evalu-

ated on a set of runs and the BKV results are taken from

[5]. Note that when the value of Dð%Þ ¼ 0, this means that

the proposed algorithm is able to obtained the BKV results.

When the value of Dð%Þ[0, this means that the proposed

algorithm is obtained a result worse than the BKV results.

When the value of Dð%Þ\0, this means that the proposed

algorithm reaches a result that is superior to the BKV

result.

In this section, the experimental results obtained by the

proposed ISA are summarized in terms of the difference in

BKV as formulated in Eq. (15). The parameter settings

used to run the proposed method are configured as given in

Table 3. These parameters are set after conducting a set of

comprehensive experiments, and the best parameter values

are defined.

Initially, the datasets under consideration are described

in Sect. 5.1. The effect of parameter a on the convergence

behavior of ISA is presented in Sect. 5.2. Thereafter,

comparison between the proposed methods including ISA,

ILS and SA is made in Sect. 5.3. Comparison with other

state-of-the-art methods is provided in Sect. 5.4. To show

the significance test among comparative methods, Fried-

man’s test and post hoc Holm method are utilized as

demonstrated in Sect. 5.5. Finally, the computational time

for each comparative method is presented and elucidated in

Sect. 5.6.

5.1 Dataset used

The performance of the ISA was evaluated using thirteen

ALP groups of datasets, which has 49 different problem

instances. These datasets are introduced in [11] and are

publicly available in OR-library [33].1

The characteristics of datasets used are summarized in

Table 4. These datasets are varied in terms of number of

aircraft and runways. Each dataset has a different number

of runways with the same number of aircraft. The first

column shows the dataset name, while the second column

shows the number of problem instances in each dataset.

The column R in Table 4 refers to the series of runways

used to differentiate between the dataset instances. The

final column refers to the number of aircraft in each dataset

N. These problem instances can be grouped into small

datasets (1 to 25 instances in 1–8 datasets) and large

datasets (26 to 49 instances in 9–13 datasets). The problem

instances are categorized into small and large based on the

number of aircraft N in which the N� 50 is considered as

small, while the N � 100 is considered as large problem

instances [27].

5.2 Effect of a on the convergence rate of ISA

To demonstrate the influence of cooling rate (i.e., a) on the

convergence characteristic behavior of ISA, a series of

experiments with different values of a are conducted.

1 http://people.brunel.ac.uk/*mastjjb/jeb/orlib/airlandinfo.html.

Neural Computing and Applications (2020) 32:11745–11765 11753

123

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/airlandinfo.html

These values are specifically: a ¼ 0:5; a ¼ 0:90; a ¼ 0:97

and a ¼ 0:999. Recall that cooling rate is an important

parameter in ISA and is responsible for managing the speed

of convergence. a with large value close to 1 refers to the

slow decrease in the temperature T from its initial value to

its final value. This means that smooth changes in the value

of T enable ISA to escape the local minimum and therefore

achieve better exploration features. a with small value

close to 0 ISA is returned to a steady-state stage very

quickly, and exploitation behavior is focused. The results

of various values of a are recorded in Table 5. The sta-

tistical results of ALP solution are summarized in terms of

the best (Best), average (Avg.), worst solutions (Worst) and

the standard deviation (STD) among the best results

obtained over ten replicated runs. Best results obtained

among various values of a are emboldened.

It appears that small dataset instances (from instance 1

to 25), ISA with a ¼ 0:999, ISA with a ¼ 0:97 and a ¼
0:90 are able to produce almost the same best results equal

to the BKV. However, ISA with a ¼ 0:5 reveals different

convergence behavior where there are different results

values in favor of the large a values. In conclusion, large

value of cooling rate a close to one is preferable to gain

better outcomes in small instances.

For large dataset instances (from instance 26 to 49),

there are noticeable differences among almost all values of

a. The closer the value of a is to 1, the better the obtained

results are. This can be borne out by the results recorded in

Table 5. In conclusion, larger value of cooling rate a is

much useful for ISA-based ALP method whereby the

search space of ALP can be more touchable and the nav-

igation of ALP search space will be more efficient. Thus,

the value of a ¼ 0:999 will be used in the upcoming

experiments.

5.3 Comparison with the proposed local search
methods

To study the effect of combining the different local search

methods proposed in this paper (i.e., SA, ILS and ISA), we

present here the results of SA, ILS and a combination of

both SA and ILS, or shortened as ISA. The results of each

proposed method are exhibited in Table 6. The results are a

summary of 10 replicated runs and are recorded in terms of

Best, Avg., Worst and STD. The best results are high-

lighted in bold. The starting search points of all used

algorithms are stabilized to ensure fair comparisons for all

replicated runs.

Notably, for small dataset instances of ALP (from

instance 1 to 25), the results of ISA and ILS are almost the

same, while there is a clear difference in comparison with

SA alone. For large instances (from instance 26 to 49), ISA

is able to obtain the best results, followed by SA, followed

by ILS. In conclusion, both local search methods used in

this paper have almost the same performance and share

their powerful features in ISA yield powerful algorithm.

Some of the comparative experimental cases are visualized

as boxplot representation as illustrated in Fig. 2. These

cases are selected according to the relevancy of the infor-

mation. The main aim of using boxplot representation is to

demonstrate the robustness of the proposed ISA algorithm.

In boxplot representation, the lower line in the box repre-

sents the first quartile (Q1), and the line inside the box

represents the median (M), while the upper line is the third

quartile (Q3). The lower wisher is the best solution

obtained, while the upper wisher is the worst solution. The

‘‘?’’ sign indicates the exceptional values. It is clearly

observed that the results obtained by ISA algorithm are

visualized by a compact box, which means that it is a

robust algorithm. This is borne out by the boxes drawn

where a very narrow space between Q1, M and Q3. Fur-

thermore, it can be observed that the behavior of the ISA

algorithm is better than those of both SA and ILS by

obtaining almost the same best results for 10 times of runs.

Figure 3 shows the convergence behavior of ISA, SA

and ILS algorithms against 1500–5000 iterations for four

instances (i.e., 14, 23, 35 and 40). These instances are

selected randomly to cover different sizes and complexities

of the instances. The number of iterations is selected to

clearly visualize the differences between the presented

algorithms. In these convergence plots, x-axis represents

the number of iterations and the y-axis denotes the values

of the objective function. Figure 3 shows that the slop of

the ISA algorithm is better than the slope of the other two

algorithms in all instances. It is observed that the perfor-

mance of SA is the worst compared to ILS and ISA

algorithms on instance 14, while the performance of ILS is

the worst in comparison with the other algorithms on the

remaining instances. This proves that the integration

between SA and ILS is able to balance exploration and

exploitation and thus achieve reasonable optimization

results.

Table 3 Parameter setting of ISA

Parameter name Parameter

value

Temperature (T) 100

Cooling rate ðaÞ 0.999

Maximum iteration for small-

size instances ðMaxiterÞ
100,000

Maximum iteration for large-

size instances ðMaxiterÞ
10,000,000

11754 Neural Computing and Applications (2020) 32:11745–11765

123

5.4 Comparison with previous methods

For comparative evaluation, Table 7 summarizes parameter

setting and abbreviations of the comparative methods along

with the parameter settings used. These comparative

methods are able to produce high-quality results for ALP

using the same problem instances under study. As other

comparative methods, the results of ISA are reported in

regard to Dð%Þ over 21 replicated runs.

The comparative results are summarized in Tables 8 and

9. Results reported in Table 8 show small-sized instances

as indicated by datasets 1–8, and Table 9 shows large-sized

instances as indicated by datasets 9–13. Note that the best-

known value (BKV) is given for each problem instance in

those tables. Other results are those obtained by HPSO,

ILS, SS, BA, SA1 and SA2 methods in terms of the per-

centage gap of BKV. The best results are highlighted in

bold font (lowest is best).

As shown in Table 8, the proposed ISA was able to

obtain the best results for 25 out of 25 small-sized problem

instances as achieved by some comparative methods which

are HPSO, ILS, SS and BA.

The results summarized in Table 9 show that the pro-

posed ISA method was able to outperform the other com-

parative methods in 4 out of the 24 (large-sized) instances

as achieved in [3]. Furthermore, ISA was able to achieve

results similar to BKV for 37, 42, 43 and 49 problem

instances. In some cases, the ISA results were not be able

to outperform those produced by HPSO, ILS, SA1 and SA2

in some instances with single runway (i.e., 26, 30, 35 and

40 problem instances). However, the difference margin to

the corresponding instances of the BKV results is relatively

small. These problem instances are highly complex with a

very rugged search space. Since ISA adopts the random

improvement acceptance strategy in the neighborhood

search, improving the solution in the last course of run will

be very rare. In [27], the best improvement acceptance

strategy in the neighborhood search is adopted which is

very efficient for complex and rugged search space.

From a different perspective, the summarized results

recorded in Tables 8 and 9 prove that the results obtained

by ISA method are considerably better than those produced

by SS, BA, SA1 and SA2 methods. In particular, the

method contributed in [27] has previously gotten best

achievements using the same dataset with some new BKV.

Our ISA was able to achieve excellent results in almost all

problem instances except those produced in HPSO. Note

that the method proposed in [27] is ILS and our ISA and

can be considered as an extended improvement to ILS.

5.5 Statistical analysis

To validate the general efficiency of the proposed ISA

method more strictly, a statistical analysis test using

Friedman’s statistical test [34] with a significance level of

a ¼ 5% was performed. This is to rank the ISA method

long with the competitor methods in accordance with the

obtained results on large-sized instances. Table 10 sum-

marizes the ranking of algorithms that were obtained by

Friedman’s test. From Table 10, HPSO was ranked first

(with an average ranking 2.06), ILS ranked second (with an

average ranking 2.79) and ISA ranked third (with an

average ranking 3.00) followed in order by SA1, SA2, SS

and BA in the last rank.

The p-value computed by Friedman’s test was 0.036E-

11, which is below the significance level a ¼ 5%. This

means that there is a significant difference in the results of

the evaluated algorithms. Thus, we performed a post hoc

procedure (Holm’s method) to confirm that there are sig-

nificant differences in the performance of the control

algorithm (the best performing one—HPSO) and the

remaining methods in the comparison, as well as reject the

Table 4 Characteristics of ALP

datasets
Dataset name No. of runways Instance no. R N Category

Airland1 3 1–3 (1, 2, 3) 10 Small

Airland2 3 4–6 (1, 2, 3) 15

Airland3 3 7–9 (1, 2, 3) 20

Airland4 4 10–13 (1, 2, 3, 4) 20

Airland5 4 14–17 (1, 2, 3, 4) 20

Airland6 3 18–20 (1, 2, 3) 30

Airland7 2 21–22 (1, 2) 44

Airland8 3 23–25 (1, 2, 3) 50

Airland9 4 26–29 (1, 2, 3, 4) 100 Large

Airland10 5 30–34 (1, 2, 3, 4, 5) 150

Airland11 5 35–39 (1, 2, 3, 4, 5) 200

Airland12 5 40–44 (1, 2, 3, 4, 5) 250

Airland13 5 45–49 (1, 2, 3, 4, 5) 500

Neural Computing and Applications (2020) 32:11745–11765 11755

123

Ta
bl
e
5

S
en
si
ti
v
it
y
an
al
y
si
s
fo
r
al
p
h
a
p
ar
am

et
er

in
IS
A

D
at
as
et

n
am

e

In
st
.

n
o
.

N
o
.
o
f

ru
n
w
ay
s

B
K
V

a
=
0
.5

a
=
0
.9

a
=
0
.9
7

a
=
0
.9
9
9

B
es
t

A
v
g
.

S
T
D

B
es
t

A
v
g
.

S
T
D

B
es
t

A
v
g
.

S
T
D

B
es
t

A
v
g
.

S
T
D

A
ir
la
n
d
1

1
1

7
0
0

7
0
0
.0
0

7
1
7

3
3
.0
2

7
0
0
.0
0

7
1
8

3
2
.9
3

7
0
0
.0
0

7
0
6

5
.1
6

7
0
0
.0
0

7
0
0

0

2
2

9
0

9
0
.0
0

9
0

0
9
0
.0
0

9
0

0
9
0
.0
0

9
0

0
9
0
.0
0

9
0

0

3
3

0
0
.0
0

0
0

0
.0
0

0
0

0
.0
0

0
0

0
.0
0

0
0

A
ir
la
n
d
2

4
1

1
4
8
0

1
4
8
0
.0
0

1
5
0
1

2
0
.7
9

1
4
8
0
.0
0

1
4
9
7

1
4
.9
4

1
4
8
0
.0
0

1
5
0
1

1
4
.4
9

1
4
8
0
.0
0

1
4
8
0

0

5
2

2
1
0

2
1
0
.0
0

2
4
6

7
7
.2

2
1
0
.0
0

2
5
5

8
1
.5
5

2
1
0
.0
0

2
4
0

6
9
.2
8

2
1
0
. 0
0

2
1
0

0

6
3

0
0
.0
0

3
6

8
6
.9
5

0
.0
0

0
0

0
.0
0

4
5

1
4
2
.3

0
.0
0

0
0

A
ir
la
n
d
3

7
1

8
2
0

8
2
0
.0
0

8
8
2

6
1
.4
3

8
2
0
.0
0

8
3
4

3
7
.7
7

8
2
0
.0
0

8
3
6

4
4
.0
2

8
2
0
.0
0

8
2
0

0

8
2

6
0

6
0
.0
0

6
8

1
6
.8
7

6
0
.0
0

8
3

2
0
.0
3

6
0
.0
0

7
5

1
9
.5
8

6
0
.0
0

6
0

0

9
3

0
0
.0
0

0
0

0
.0
0

0
0

0
.0
0

6
1
8
.9
7

0
.0
0

0
0

A
ir
la
n
d
4

1
0

1
2
5
2
0

2
5
3
0

2
5
4
1

2
4
.7

2
5
3
0

2
5
5
1

4
2
.0
2

2
5
2
0
.0
0

2
5
8
1

7
2
.0
3

2
5
2
0
.0
0

2
5
2
0

0

1
1

2
6
4
0

6
4
0
.0
0

6
7
8

5
0
.7
3

6
4
0
.0
0

6
8
0

8
8
.9
4

6
4
0
.0
0

6
5
4

1
7
.1
3

6
4
0
.0
0

6
4
0

0

1
2

3
1
3
0

1
3
0
.0
0

1
6
3

2
9
.8
3

1
3
0
.0
0

1
5
4

2
7
.5
7

1
3
0
.0
0

1
6
8

8
1
.8
9

1
3
0
.0
0

1
3
0

0

1
3

4
0

0
.0
0

2
4

4
1
.9
5

0
.0
0

1
8

2
8
.9
8

0
.0
0

2
4

3
0
.9
8

0
.0
0

0
0

A
ir
la
n
d
5

1
4

1
3
1
0
0

3
1
0
0
.0
0

3
1
5
2

9
0
.9

3
1
0
0
.0
0

3
1
5
2

1
6
4
.4
4

3
1
0
0
.0
0

3
2
4
9

2
2
3
.8
8

3
1
0
0
.0
0

3
1
0
0

0

1
5

2
6
5
0

6
5
0
.0
0

7
3
9

6
3
.6
7

6
8
0

7
3
8

4
4
.9
2

6
5
0
.0
0

8
0
4

1
7
6
.9

6
5
0
.0
0

6
5
0

0

1
6

3
1
7
0

1
7
0
.0
0

2
2
2

3
0
.1
1

1
7
0
.0
0

2
2
1

4
0
.1
2

1
7
0
.0
0

2
1
5

3
3
.4
2

1
7
0
.0
0

1
7
0

0

1
7

4
0

0
.0
0

0
0

0
.0
0

0
0

0
.0
0

2
0

5
3
.5
4

0
.0
0

0
0

A
ir
la
n
d
6

1
8

1
2
4
,4
4
2

2
4
,4
4
2
.0
0

2
4
,4
4
2

0
2
4
,4
4
2
.0
0

2
4
,4
4
2

0
2
4
,4
4
2
.0
0

2
4
,4
4
2

0
2
4
,4
4
2
.0
0

2
4
,4
4
2

0

1
9

2
5
5
4

5
5
4
.0
0

5
5
4

0
5
5
4
.0
0

5
5
4

0
5
5
4
.0
0

5
5
4

0
5
5
4
.0
0

5
5
4

0

2
0

3
0

0
.0
0

0
.8

2
.5
3

0
.0
0

0
0

0
.0
0

0
.8

2
.5
3

0
.0
0

0
0

A
ir
la
n
d
7

2
1

1
1
5
5
0

1
5
5
0
.0
0

1
7
0
1

1
7
6
.3
9

1
5
5
0
.0
0

1
6
6
5
.7

1
6
6
.5
2

1
5
5
0
.0
0

1
7
3
6
.3

1
7
8
.1
3

1
5
5
0
.0
0

1
5
5
0

0

2
2

2
0

0
.0
0

0
0

0
.0
0

0
0

0
.0
0

0
0

0
.0
0

0
0

A
ir
la
n
d
8

2
3

1
1
9
5
0

1
9
6
0

2
4
6
2

3
6
8
.0
7

1
9
6
5

2
1
5
1
.5

2
0
9
.4
3

1
9
9
0

2
3
1
2

2
4
4
.3
8

1
9
5
0
.0
0

1
9
8
2
.5

1
9
.3
6

2
4

2
1
3
5

1
3
5
.0
0

2
5
8

1
1
3
.6
8

1
5
5

2
8
1

1
3
0
.7
4

1
3
5
.0
0

2
3
1

7
7
.3
1

1
3
5
.0
0

1
3
5

0

2
5

3
0

0
.0
0

4
0
.5

4
9
.0
2

0
.0
0

7
7

7
4
.4
3

0
.0
0

5
1
.5

5
2
.6
5

0
.0
0

0
0

A
ir
la
n
d
9

2
6

1
5
6
1
1
.7

5
9
0
6
.7
8

6
1
6
4
.1
9

1
6
8
.8
4

5
8
4
7
.5
4

6
0
7
3
.2
7

1
8
9
.9
1

5
8
7
5
.3
2

6
1
0
1
.3
8

1
7
0
.8
9

5
6
8
5
.8
6

5
7
1
1
.6

2
0
.3
3

2
7

2
4
5
2
.9
2

4
5
6
.1
1

5
1
4
.4
1

6
1
.9
7

4
5
2
.4
9

5
3
2
.5
9

1
1
3
.7
8

4
6
8
.2
1

6
0
4
.9
3

9
2
.3
5

4
4
9
.1
1

4
5
1
.5
4

1
.1
8

2
8

3
7
5
.7
5

7
5
.7
5

9
8
.8
5

1
6
.8
3

7
5
.7
5

8
2
.1
6

9
.4

7
5
.7
5

8
4
.6
5

9
.4

7
5
.7
5

7
5
.7
5

0

2
9

4
0

0
.0
0

2
.0
9

5
.0
3

0
.0
0

0
0

0
.0
0

5
.8
5

1
2
.3
3

0
.0
0

0
0

A
ir
la
n
d
1
0

3
0

1
1
2
,3
2
9
.3
1

1
5
,3
9
3
.9
5

1
6
,6
2
6
.5
1

8
4
5
.9
4

1
4
,3
4
6
.2
4

1
6
,6
4
8
.2

1
8
8
0
.4
1

1
5
,0
7
2
.6
7

1
6
,5
3
2
.4
5

1
1
3
6
.9
1

1
2
,5
2
7
.9
5

1
2
,6
2
7
.2
4

7
5
.1
9

3
1

2
1
2
8
8
.7
3

1
2
4
9
.7
7

1
4
0
6
.6
7

1
7
3
.4
3

1
2
7
1
.9
3

1
3
7
7
.5
2

9
4
.2
9

1
2
5
9
.5
1

1
3
7
8
.8
4

8
1
.9
7

1
1
5
4
.1
0

1
1
7
0
.9
7

1
0
.2
2

3
2

3
2
2
0
.7
9

2
0
9
.0
5

2
4
2
.2
8

5
6
.8
5

2
1
3
.5
2

2
3
1
.1
6

1
9
.8
7

2
1
4
.1
6

2
3
6
.3
4

2
0
.3
7

2
0
6
.5
6

2
1
0
.4

3
.1

3
3

4
3
4
.2
2

3
4
.2
2

5
2
.6
4

2
8
.8
4

3
4
.2
2

5
3
.7
3

2
7
.3
6

3
4
.2
2

3
9
.0
1

1
1
.5

3
4
.2
2

3
4
.2
2

0

3
4

5
0

0
.0
0

0
.1
1

0
.3
6

0
.0
0

3
.4
7

1
0
.5
7

0
.0
0

0
0

0
.0
0

0
0

11756 Neural Computing and Applications (2020) 32:11745–11765

123

Ta
bl
e
5
(c
o
n
ti
n
u
ed
)

D
at
as
et

n
am

e

In
st
.

n
o
.

N
o
.
o
f

ru
n
w
ay
s

B
K
V

a
=
0
.5

a
=
0
.9

a
=
0
.9
7

a
=
0
.9
9
9

B
es
t

A
v
g
.

S
T
D

B
es
t

A
v
g
.

S
T
D

B
es
t

A
v
g
.

S
T
D

B
es
t

A
v
g
.

S
T
D

A
ir
la
n
d
1
1

3
5

1
1
2
,4
1
8
.3
2

1
3
,4
5
7
.0
1

1
4
,0
2
4
.9
8

5
3
1
.7
8

1
3
,4
1
9
.1
2

1
4
,0
8
7
.8
2

5
1
9
.4
8

1
3
,3
0
0
.7
5

1
4
,1
9
6
.0
7

5
4
1
.0
4

1
2
,8
7
0
.4
7

1
3
,0
3
8
.4
3

6
0
.5
2

3
6

2
1
5
4
0
.8
4

1
4
8
3
.1
1

1
5
7
6
.5
2

8
3

1
5
0
7
.4
3

1
5
6
5
.4

6
8
.7
1

1
5
0
6
.4
2

1
5
6
6
.2
1

6
0
.9
4

1
3
4
4
.9
6

1
3
6
0
.2
5

6
.7
4

3
7

3
2
8
0
.8
2

2
5
7
.4
4

2
8
2
.8
3

1
6
.6
6

2
5
4
.6
7

2
8
9
.3
3

3
4
.0
6

2
6
8
.2
1

3
2
7
.2
1

4
1
.4

2
5
3
.0
7

2
5
5
.7
3

1
.5
3

3
8

4
5
4
.5
3

5
4
.5
3

5
5
.9
6

4
.5
2

5
4
.5
3

5
4
.5
3

0
5
4
.5
3

6
7
.9
9

4
2
.5
5

5
4
.5
3

5
4
.5
3

0

3
9

5
0

0
.0
0

6
.4
7

2
0
.4
6

0
.0
0

0
.1
7

0
.5
5

0
.0
0

0
0

0
.0
0

0
0

A
ir
la
n
d
1
2

4
0

1
1
6
,2
0
9
.7
8

1
7
,4
5
7
.7
2

1
8
,0
0
8
.0
9

3
9
1
.8
2

1
7
,2
3
7
.2
8

1
8
,4
7
0
.8
8

1
0
7
4
.8
2

1
7
,4
4
2
.4
1

1
7
,9
9
3
.3
8

5
4
8
.4
9

1
6
,6
7
5
.6
4

1
6
,7
4
4
.7
8

4
9
.2
3

4
1

2
1
9
6
1
.3
9

1
9
5
2
.5

1
9
9
0
.0
5

4
2
.9
4

1
9
4
5
.4
5

2
0
2
3
.1
2

1
0
7
.5
5

1
9
4
4
.5
8

2
0
3
2
.0
8

1
1
5
.0
6

1
7
2
3
.2
9

1
7
3
7
.9
7

8
.7
7

4
2

3
2
9
0
.0
4

2
5
9
.3
6

3
1
2
.7
1

6
4
.6
5

2
6
1
.8
1

2
9
8
.6
6

3
5
.1
2

2
3
2
.5
0

3
0
2
.5
8

5
1
.0
6

2
2
1
.9
7

2
2
6
.8
7

2
.9
8

4
3

4
3
.4
9

2
.4
4

2
6
.0
9

5
7
.5
2

2
.4
4

1
1
.1
3

2
4
.1
3

2
.4
4

2
1
.5
4

3
4
.6
1

2
.4
4

2
.4
4

0

4
4

5
0

0
.0
0

0
.2
4

0
.7
7

0
.0
0

0
0

0
.0
0

3
.2
8

1
0
.3
6

0
.0
0

0
0

A
ir
la
n
d
1
3

4
5

1
4
4
,8
3
2
.3
8

4
4
,7
6
3
.6
2

4
4
,8
9
8
.0
6

3
1
9
.4
7

4
4
,6
4
7
.9

4
4
,7
6
8
.5
9

7
0
.6
9

4
4
,5
1
6
.3
2

4
4
,7
5
5
.3
7

8
9
.7
8

3
9
,4
1
9
.1
9

4
0
,0
4
9
.3
2

4
6
4
.6
8

4
6

2
5
5
0
1
.9
6

5
3
0
2
.3
3

5
4
5
3
.8
2

5
9
.4
5

5
3
7
9
.4
3

5
4
5
7
.0
6

4
2
.1
6

5
3
6
6
.7
8

5
4
5
7
.1
1

5
0
.1
1

4
0
5
3
.2
7

4
0
7
7
.3
7

1
9
.2
8

4
7

3
1
1
0
8
.5
1

1
0
6
8
.5
8

1
0
9
4
.6
3

1
4
.0
8

1
0
6
0
.6
5

1
0
8
6
.8
3

1
7
.0
7

1
0
3
6
.1
9

1
0
8
4
.5
1

2
4
.0
4

7
0
7
.9
7

7
2
5
.2
4

1
4
.0
8

4
8

4
1
8
8
.4
6

1
5
0
.8
7

1
8
0
.0
8

1
8
.5
3

1
4
9
.7
7

1
6
9
.1
7

1
1
.5
8

1
3
6
.3
6

1
7
0
.5
6

1
6
.4
6

9
0
.5
6

9
4
.0
9

3
.2
1

4
9

5
7
.3
5

0
.0
0

1
6
.9
3

3
7
.2
2

0
.0
0

7
.4

1
9
.4

0
.0
0

1
.8
9

2
.6
2

0
.0
0

0
0

B
es
t
re
su
lt
s
ar
e
in
d
ic
at
ed

in
b
o
ld

to
d
en
o
te

th
ei
r
si
g
n
ifi
ca
n
ce

an
d
to

ea
se

co
m
p
ar
is
o
n
o
f
re
su
lt
s

Neural Computing and Applications (2020) 32:11745–11765 11757

123

Table 6 A comparison between ISA, ILS and SA computational results

Dataset

name

Inst.

no.

No. of

runways

BKV ISA ILS SA

Best Avg. STD Best Avg. STD Best Avg. STD

Airland1 1 1 700 700.00 700 0 700.00 702 4.22 710 748 120.17

2 2 90 90.00 90 0 90.00 90 0 90.00 99 28.46

3 3 0 0.00 0 0 0.00 0 0 0.00 0 0.00

Airland2 4 1 1480 1480.00 1480 0 1480.00 1501 16.63 1480.00 1514 17.76

5 2 210 210.00 210 0 210.00 216 12.65 210.00 341 174.58

6 3 0 0.00 0 0 0.00 0 0 0.00 45 142.30

Airland3 7 1 820 820.00 820 0 820.00 822 6.32 820.00 882 65.63

8 2 60 60.00 60 0 60.00 64 12.65 60.00 85 27.99

9 3 0 0.00 0 0 0.00 0 0 0.00 6 18.97

Airland4 10 1 2520 2520.00 2520 0 2530 2557 46.2 2530 2625 128.43

11 2 640 640.00 640 0 640.00 651 15.24 640.00 722 81.35

12 3 130 130.00 130 0 130.00 162 64.08 130.00 151 28.46

13 4 0 0.00 0 0 0.00 6 18.97 0.00 12 25.30

Airland5 14 1 3100 3100.00 3100 0 3100.00 3139 87.74 3100.00 3210 227.94

15 2 650 650.00 650 0 680 745 71.38 690 839 125.30

16 3 170 170.00 170 0 170.00 222 30.11 180 249 30.71

17 4 0 0.00 0 0 0.00 3 9.49 0.00 18 37.95

Airland6 18 1 24,442 24,442.00 24,442 0 24,442.00 24,442 0 24,442.00 24,442 0.00

19 2 554 554.00 554 0 554.00 554 0 554.00 554 0.00

20 3 0 0.00 0 0 0.00 0 0 0.00 0 0.00

Airland7 21 1 1550 1550.00 1550 0 1550.00 1816.7 141.49 1903 1903 0.00

22 2 0 0.00 0 0 0.00 0 0 0.00 0 0.00

Airland8 23 1 1950 1950.00 1982.5 19.36 1968 2045 120.35 1990 2593.5 861.95

24 2 135 135.00 135 0 150 232.5 92.14 160 367.5 219.83

25 3 0 0.00 0 0 0.00 20.5 28.91 0.00 72.5 67.67

Airland9 26 1 5611.7 5685.86 5711.6 20.33 5819.08 5999.89 137.75 5901.22 6363.9 410.29

27 2 452.92 449.11 451.54 1.18 450.09 507.4 52.96 488.58 601.79 64.36

28 3 75.75 75.75 75.75 0 75.79 86.65 12.96 75.75 94.47 17.00

29 4 0 0 0 0 0 0.42 1.32 0 4.78 13.35

Airland10 30 1 12,329.31 12,527.95 12,627.24 75.19 14,654.16 15,895.81 723.64 13,608.06 16,257.52 1343.83

31 2 1288.73 1154.10 1170.97 10.22 1280.74 1407.5 114.51 1244.26 1450.31 157.85

32 3 220.79 206.56 210.4 3.1 211.97 271.02 50.01 217.17 286.33 73.32

33 4 34.22 34.22 34.22 0 34.22 40.17 11.93 34.22 55.51 29.00

34 5 0 0.00 0 0 0.00 0 0 0.00 0 0.00

Airland11 35 1 12,418.32 12,870.47 13,038.43 60.52 13,550.24 13,992.44 261.27 13,148.27 14,015.27 838.87

36 2 15,40.84 1344.96 1360.25 6.74 1508.17 1634.5 107.11 1470.21 1648.68 173.46

37 3 280.82 253.07 255.73 1.53 269.51 291.31 28.18 253.59 308.93 48.99

38 4 54.53 54.53 54.53 0 54.53 62.48 17.89 54.53 62.71 15.44

39 5 0 0.00 0 0 0.00 0 0 0.00 0 0.00

Airland12 40 1 16,209.78 16,675.64 16,744.78 49.23 17,796.31 18,077.77 324.74 17,332.99 18,107.26 643.01

41 2 1961.39 1723.29 1737.97 8.77 1901.5 2030.39 118.64 1905.6 2024.4 96.30

42 3 290.04 221.97 226.87 2.98 233.72 309.73 67.65 264.21 337.49 87.22

43 4 3.49 2.44 2.44 0 2.44 12.33 16.38 2.44 6.55 9.44

44 5 0 0.00 0 0 0.00 0 0 0.00 0 0.00

11758 Neural Computing and Applications (2020) 32:11745–11765

123

null hypothesis of equivalent performance between the

evaluated methods.

As shown in Table 11, Holm’s procedure reveals that

the control method (HPSO) is statistically better than SA1,

SA2, SS and BA. On the other hand, there is no significant

difference between the performance of HPSO and both of

ISA and ILS methods. Based on the results obtained from

Holm’s method, we can conclude that the performance of

the proposed ISA method is highly comparable to other

competitors in the literature, and can be considered as a

viable alternative in tackling the ALP.

The results show that ISA presented a high level of

performance as the instance size increased. This reveals

that the ISA is well behaved on large instances. As a result,

these findings confirm that the integration of SA with ILS

contributes effectively to attaining optimal solutions on

both small- and large-sized instances. In short, the results

achieved by ISA assess the benefits of the hybridization of

ILS and SA algorithms to accommodate a high degree of

efficiency in addressing the ALP. This confirms that the

aircraft landing scheduling approach described here is

representative of various lines of research, favorable in

terms of reported performance, and manages a good

statement of progress for intelligent approaches to be

clearly used in processing the ALP.

5.6 Computational time

It is not practical to compare the computational resources

of ISA with other ALP-based methods as no standard tests

exist and it is difficult to quantitatively compare time

efforts among different scheduling approaches that use

different machine specifications. In addition, a direct

comparison is problematic because specific information

related to software requirements is often not given.

Moreover, details such as operating system, programming

language, professionalism and the programming skills of

the programmer, the compiler and number of iterations are

often not specified. However, the computational time

required to execute each problem instance using ISA is

reported in Table 12 in comparison with that obtained by

comparative methods available to the authors.

Table 12 shows that the mean computational time of

ISA is almost better than that required for other methods.

Table 6 (continued)

Dataset

name

Inst.

no.

No. of

runways

BKV ISA ILS SA

Best Avg. STD Best Avg. STD Best Avg. STD

Airland13 45 1 44,832.38 39,419.19 40,049.32 464.68 44,679.7 44,796.07 64.85 44,703.6 44,777.06 50.51

46 2 5501.96 4053.27 4077.37 19.28 5284.68 5440.5 67.65 5424.31 5474.28 29.69

47 3 1108.51 707.97 725.24 14.08 1043.68 1088.36 20.11 993.69 1082.68 33.43

48 4 188.46 90.56 94.09 3.21 124.3 185.07 51.58 117.55 164.07 19.50

49 5 7.35 0.00 0 0 0.00 0.84 1.78 0.00 0.9 2.04

650

700

750

800

850

900

ISA ILS SA
Instance#11

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

es

650

700

750

800

850

900

950

1000

1050

ISA ILS SA
Instance#15

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

es

100

200

300

400

500

600

700

ISA ILS SA
Instance#24

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

es

0

50

100

150

200

ISA ILS SA
Instance#25

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

es

450

500

550

600

650

ISA ILS SA
Instance#27

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

es

1200

1300

1400

1500

1600

1700

ISA ILS SA
Instance#31

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

es

200

250

300

350

400

450

ISA ILS SA
Instance#32

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

es

1400

1500

1600

1700

1800

1900

2000

ISA ILS SA
Instance#36

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

es

250

300

350

400

450

500

550

ISA ILS SA
Instance#42

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

es

100

150

200

250

300

ISA ILS SA
Instance#48

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

es

Fig. 2 Distribution of the best results over 10 runs performed using ISA, ILS and SA algorithms

Neural Computing and Applications (2020) 32:11745–11765 11759

123

This concur that the computational effort of ISA is con-

vinced within the range of the computational efforts of

comparative methods. This emphasizes that ISA is a

computationally efficient method for processing ALP

which produces high-quality solutions in a reasonable

computational time. In a nutshell, Table 12 affirms that the

ISA method is capable of handling large-sized instances at

very high speed on a computer with modest specifications

such as Intel Core I5 processor running at Lenovo laptop

with 6 GB RAM, running Windows operating system, on

Java platform.

0 300 600 900 1200 1500
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

es

Iterations

ISA
SA
ILS

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5
x 104

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

es

Iterations

ISA
SA
ILS

Instance 14 Instance 23

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1

2

3

4

5

6

7

8

9

10
x 104

Iterations

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

es

ISA
SA
ILS

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
2

3

4

5

6

7

8

9

10

11

12
x 104

Iterations

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

es

ISA
SA
ILS

Instance 35 Instance 40

Fig. 3 Convergence behavior of ISA, ILS and SA

Table 7 Parameter values of the competitor algorithms

Abbreviations Method name Parameter setting

ILS Iterated local search method [27] MaxIter = 150, minimum time varying = 0.1, maximum time varying = 0.9,

the size of RS in GR = 10% of aircraft

HPSO Hybrid particle swarm optimization with rolling

horizon framework [3]

W ¼ 30;R ¼ 10; a = 1.6, swarm_size = 16, num_iter = 40

SS Scatter search method [5] Not available

BA Bionomic method [5] Not available

SA1 A hybrid simulated annealing and variable

neighborhood descent method [9]

t0 = 50, c ¼ 0:01; maximum iterations = 1

SA2 A hybrid simulated annealing and variable

neighborhood search method [9]

t0 = 50, c ¼ 0:01; maximum iterations = 1

11760 Neural Computing and Applications (2020) 32:11745–11765

123

6 Conclusion and future work

This work has evinced the use of a hybridization of iterated

local search (ILS) and simulated annealing (SA) in a single

framework to develop a rapid and adequate optimization

method to solve the aircraft landing problem (ALP) for 49

benchmark problem instances. This single optimization

framework is referred to as iterated simulated annealing

(ISA) and has been adopted to solve the ALP, which aims

to schedule each incoming aircraft subjected to land on a

runway within a predetermined time frame for landing. The

key aims of ILS and SA in ISA are to navigate large search

space and circumvent local optima in order to improve the

ultimate outcomes of ALP. The flexibility of this ISA

scheme in reliably addressing ALP is shown for benchmark

problem instances with problems of various sizes and

number of aircraft and runways in each problem. Specifi-

cally, the standard problem instances under study were

spanned over thirteen datasets split into small-sized and

large-sized groups. De facto, this scheduling problem could

be considered as a combinatorial optimization problem that

cannot be easily tackled by basic algorithms.

The statistical results (best, average and standard devi-

ation) compared to the best-known values showed a high

degree of performance and reliability. Convergence curves

were presented to demonstrate the capacity of the proposed

ISA algorithm to provide sensible solution for the ALP.

Experimental results show that the ISA approach positively

outperforms persuasive state-of-the-art methods on large-

sized instances. Astonishingly, it arrived at new best results

for 4 large-sized instances out of 24 instances and reached

the best-known results in all small-sized instances using

little computational efforts.

There are several trends for further work that could be

considered:

• The assessment of adaptability to various datasets with

high levels of complexity and for datasets with very

large-sized problem instances.

• The evaluation of adaptability to address a dynamic

case of ALP with instances of various structures that

Table 8 A comparison between the computational results of the ISA method with the results of the BKV and the best-known results of the best

existing performing methods for ALP on small-sized instances

Dataset name Inst. no. No. of runways BKV ISADð%Þ HPSO Dð%Þ ILS Dð%Þ SS Dð%Þ BA Dð%Þ SA1 Dð%Þ SA2 Dð%Þ

Airland1 1 1 700 0 0 0 0 0 0 0

2 2 90 0 0 0 0 0 0 0

3 3 0 0 0 0 0 0 0 0

Airland2 4 1 1480 0 0 0 0 0 0 0

5 2 210 0 0 0 0 0 0 0

6 3 0 0 0 0 0 0 100 100

Airland3 7 1 820 0 0 0 0 0 0 0

8 2 60 0 0 0 0 0 16.66 16.66

9 3 0 0 0 0 0 0 100 100

Airland4 10 1 2520 0 0 0 0 0 0 0

11 2 640 0 0 0 0 0 3.12 3.12

12 3 130 0 0 0 0 0 23.07 27.07

13 4 0 0 0 0 0 0 100 100

Airland5 14 1 3100 0 0 0 0 0 0 0

15 2 650 0 0 0 0 0 0 0

16 3 170 0 0 0 0 0 0 0

17 4 0 0 0 0 0 0 100 100

Airland6 18 1 24,442 0 0 0 0 0 0 0

19 2 554 0 0 0 0 0 0 0

20 3 0 0 0 0 0 0 0 0

Airland7 21 1 1550 0 0 0 0 0 0 0

22 2 0 0 0 0 0 0 0 0

Airland8 23 1 1950 0 0 0 0 0 0 0

24 2 135 0 0 0 0 0 0 0

25 3 0 0 0 0 0 0 100 100

Neural Computing and Applications (2020) 32:11745–11765 11761

123

possess additional features such as a combination of

takeoff and landing on the same or on different runways

• Further work could be investigated to assess the

suitability of the ISA method to schedule other

problems in a range of scalability and complexity such

as course time-tabling [35], examination time-tabling

[36], Nurse restoring [37], multiple-reservoir schedul-

ing [38], patient admission scheduling problems [39],

economic load dispatch [40] and traveling salesman

problem [41].

Table 9 A comparison between the computational results of the ISA with the BKV results and the results of the best performing methods for

ALP in the literature on large-sized instances

Dataset name Inst. no. No. of runways BKV ISA Dð%Þ HPSO Dð%Þ ILS Dð%Þ SS Dð%Þ BA Dð%Þ SA1 Dð%Þ SA2 Dð%Þ

Airland9 26 1 5611.7 1.15 0 0 30.06 14.51 8.55 8.55

27 2 452.92 - 0.84 - 1.95 - 1.74 5.67 54.73 - 0.58 0

28 3 75.75 0 0 - 2.31 0 87.46 0 0

29 4 0 0 0 0 0 – 0 0

Airland10 30 1 12,329.3 1.61 - 0.3 - 0.06 44.96 33.9 0 0

31 2 1288.73 - 10.45 - 11.25 - 1.37 7.87 25.95 - 5.39 0

32 3 220.79 - 6.45 - 7.06 - 9.41 8.88 195.88 - 6.49 0

33 4 34.22 0 0 - 6.16 16.74 292.4 3.09 3.09

34 5 0 0 0 0 0 – 100 100

Airland11 35 1 12,418.3 3.6 0 - 0.05 17.95 16.67 0 0

36 2 1540.84 - 12.71 - 13.62 - 8.49 9.19 38.54 - 8.04 0

37 3 280.82 - 9.88 - 9.88 - 3.46 21.59 290.09 - 2.81 0

38 4 54.53 0 0 - 6.47 2.77 474.74 0 0

39 5 0 0 0 0 0 – 0 0

Airland12 40 1 16,209.8 2.66 - 0.54 0 22.15 23.58 0 0

41 2 1961.39 - 12.14 -13.55 0 18.8 50.18 0 0

42 3 290.04 - 23.47 - 23.47 - 6.21 17.48 198.01 - 3.56 0

43 4 3.49 - 30.09 - 30.09 - 2.57 271.63 13,216.91 0 0

44 5 0 0 0 0 0 – 0 0

Airland13 45 1 44,832.4 - 12.07 -17.33 - 7.7 3.24 1.03 - 7.54 0

46 2 5501.96 - 26.66 -28.75 - 0.79 3.72 37.47 - 0.47 0

47 3 1108.51 - 37.14 -39.21 0 1.98 182.69 - 32.79 0

48 4 188.46 - 51.95 -52.27 - 50.71 22.98 1188.81 - 46.62 0

49 5 7.35 - 100 - 100 - 59.18 0 22,308.44 - 48.16 0

Table 10 Average ranking of

the comparative methods

calculated by Friedman’s test

Algorithm Ranking

HPSO 2.06

ILS 2.79

ISA 3.00

SA1 3.98

SA2 4.56

SS 5.77

BA 5.83

Table 11 Adjusted p value of

the Holm procedure table for

a ¼ 0:05 (Friedman)

i Algorithm Adjusted p-value of Holm’s procedure a	 i Null hypothesis

6 BA 1.478E-9 0.008 Rejected

5 SS 2.738E-9 0.010 Rejected

4 SA2 6.100E-5 0.013 Rejected

3 SA1 0.002 0.017 Rejected

2 ISA 0.132 0.025 Not rejected

1 ILS 0.242 0.050 Not rejected

11762 Neural Computing and Applications (2020) 32:11745–11765

123

Table 12 Computational time (in seconds) of ISA and the presented state-of-the-art methods that addressed ALP over all instances

Dataset name Inst. no. No. of runways HPSO ISA ILS SS BA SA1 SA2

Airland1 1 1 0.01 0.002 0 4 60 0 0

2 2 0.01 0 0 24 45 0 0

3 3 0.01 0 0 39 34 0 0

Airland2 4 1 0.03 0.007 0 45 49 1.66 1.65

5 2 0.03 0 0 45 49 1.66 1.65

6 3 0.03 0 0 46 43 1.98 1.91

Airland3 7 1 0.07 0.001 0 8 99 1.78 1.73

8 2 0.06 0 0.8 48 58 3.12 4.22

9 3 0.06 0 0.1 62 63 3.29 5.11

Airland4 10 1 0.1 0.009 1.7 8 95 1,98 2.85

11 2 0.1 0.001 1.9 52 55 3.56 3.94

12 3 0.1 0 2 46 57 3.74 5.05

13 4 0.1 0 2.3 56 52 4.06 7.15

Airland5 14 1 0.13 0.005 1.3 9 100 1.85 1.89

15 2 0.22 0.008 2.4 50 61 3.04 4.84

16 3 0.41 0.001 3.7 54 43 4.11 4.92

17 4 0.11 0 3.1 56 68 4.35 3.04

Airland6 18 1 0.22 0 1.7 158 274 2.12 2.14

19 2 0.24 0.001 2.6 70 101 3.98 4.01

20 3 0.13 0.0 2.5 54 87 4.41 5.91

Airland7 21 1 1.0 0.013 1.8 195 79 2.68 2.65

22 2 0.18 0.0 1.6 118 124 2.83 2.37

Airland8 23 1 0.76 0.148 4.8 42 287 7.1 7.31

24 2 0.72 0.208 6.2 121 196 10.73 9.85

25 3 0.62 0.002 9.5 139 181 14.11 17.39

Airland9 26 1 5.8 25.032 7.6 119 554 11.59 10.12

27 2 4.1 20.641 11.4 342 487 13.78 13.64

28 3 75.75 14.094 10.9 390 466 17.95 18.46

29 4 0.0 8.907 13.7 336 439 19.69 21.18

Airland10 30 1 18.8 44.407 14.33 227 925 20.12 20.75

31 2 13.7 28.297 15.6 608 845 21.33 22.04

32 3 7.0 26.641 17.3 668 803 27.62 25.19

33 4 5.3 26.25 22.7 647 788 30.12 41.28

34 5 5.5 20.688 34.3 607 762 39.85 40.15

Airland11 35 1 15.6 58.657 18.4 256 1417 24.17 33.84

36 2 11.5 41.797 21.7 959 1287 29.09 33.99

37 3 7.3 36.922 34.2 1021 1203 41.22 37.19

38 4 7.5 37 37.1 993 1168 42.4 45.96

39 5 8.2 26.985 54.8 956 1158 66.23 61.05

Airland12 40 1 35.1 73.828 197.7 381 2011 219.03 198.85

41 2 21.7 55.141 310.4 1266 1835 362.6 313.46

42 3 15.7 49.828 401.5 1454 1710 412.73 379.91

43 4 10.9 50.454 398.1 1445 1688 410.22 401.04

44 5 11.8 49.86 357.6 1386 1662 394.6 386.16

Airland13 45 1 115.1 168.97 486.4 1237 5852 566.82 528.84

46 2 111.7 117.329 1011.2 3836 5379 1047.93 1294.23

47 3 48.3 117.141 1123.4 4560 5158 1241 1334.33

48 4 35.7 117.236 1181.2 4413 4977 1201.8 1197.48

49 5 37.6 125.516 1152.4 4421 4887 1203.93 1185.46

Neural Computing and Applications (2020) 32:11745–11765 11763

123

• The proposed ISA could be further improved by

hybridizing it with other effective features that could

derived from promising local search algorithms such as

tabu list from tabu search [42], GRASP operators from

GRASP [43] and b operator from b-hill climbing [44].

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Bennell JA, Mesgarpour M, Potts CN (2011) Airport runway

scheduling. 4OR 9(2):115

2. Faye A (2015) Solving the aircraft landing problem with time

discretization approach. Eur J Oper Res 242(3):1028–1038

3. Girish BS (2016) An efficient hybrid particle swarm optimization

algorithm in a rolling horizon framework for the aircraft landing

problem. Appl Soft Comput 44:200–221

4. Briskorn D, Stolletz R (2014) Aircraft landing problems with

aircraft classes. J Sched 17(1):31–45

5. Pinol H, Beasley JE (2006) Scatter search and bionomic algo-

rithms for the aircraft landing problem. Eur J Oper Res

171(2):439–462

6. Beasley JE, Krishnamoorthy M, Sharaiha YM, Abramson D

(2004) Displacement problem and dynamically scheduling air-

craft landings. J Oper Res Soc 55(1):54–64

7. Lieder A, Briskorn D, Stolletz R (2015) A dynamic programming

approach for the aircraft landing problem with aircraft classes.

Eur J Oper Res 243(1):61–69

8. Lieder A, Stolletz R (2016) Scheduling aircraft take-offs and

landings on interdependent and heterogeneous runways. Transp

Res Part E Logist Transp Rev 88(Supplement C):167–188

9. Salehipour A, Modarres M, Naeni LM (2013) An efficient hybrid

meta-heuristic for aircraft landing problem. Comput Oper Res

40(1):207–213

10. Furini F, Kidd MP, Persiani CA, Toth P (2015) Improved rolling

horizon approaches to the aircraft sequencing problem. J Sched

18(5):435–447

11. Beasley JE, Krishnamoorthy M, Sharaiha YM, Abramson D

(2000) Scheduling aircraft landings—the static case. Transp Sci

34(2):180–197

12. Awasthi A, Kramer O, Lassig J (2013) Aircraft landing problem:

an efficient algorithm for a given landing sequence. In: 2013

IEEE 16th international conference on computational science and

engineering, pp 20–27

13. DÁpice C, De Nicola C, Manzo R, Moccia V (2014) Optimal

scheduling for aircraft departures. J Ambient Intell Humani

Comput 5(6):799–807

14. Farhadi F (2016) Heuristics and meta-heuristics for runway

scheduling problems. In: Rabadi G (ed) Heuristics, metaheuristics

and approximate methods in planning and scheduling. Springer

International Publishing, Switzerland, pp 141–163

15. Osman IH, Laporte G (1996) Metaheuristics: a bibliography. Ann

Oper Res 63(5):511–623

16. Blum C, Roli A (2003) Metaheuristics in combinatorial opti-

mization: overview and conceptual comparison. ACM Comput

Surv: CSUR 35(3):268–308

17. Črepinšek M, Liu S-H, Mernik M (2013) Exploration and

exploitation in evolutionary algorithms: a survey. ACM Comput

Surv 45(3):35:1–35:33

18. Capri S, Ignaccolo M (2004) Genetic algorithms for solving the

aircraft-sequencing problem: the introduction of departures into

the dynamic model. J Air Transp Manag 10(5):345–351

19. Xiao-Bing H, Chen W-H (2005) Genetic algorithm based on

receding horizon control for arrival sequencing and scheduling.

Eng Appl Artif Intell 18(5):633–642

20. Beasley JE, Sonander J, Havelock P (2001) Scheduling aircraft

landings at London Heathrow using a population heuristic. J Oper

Res Soc 52:483–493

21. Farah I, Kansou A, Yassine A, Galinho T (2011) Ant colony

optimization for aircraft landings. In: 2011 4th international

conference on logistics, pp 235–240

22. Ma W, Bo X, Liu M, Huang H (2014) An efficient approximation

algorithm for aircraft arrival sequencing and scheduling problem.

Math Probl Eng 2014:1–8

23. Ng KKH, Lee CKM, Chan FTS, Qin Y (2017) Robust aircraft

sequencing and scheduling problem with arrival/departure delay

using the min–max regret approach. Transp Res Part E Logist

Transp Rev 106:115–136

24. Dastgerdi K, Mehrshad N, Farshad M (2016) A new intelligent

approach for air traffic control using gravitational search algo-

rithm. Sadhana 41(2):183–191

25. Al-Betar MA, Khader AT, Doush IA (2014) Memetic techniques

for examination timetabling. Ann OR 218(1):23–50

26. Van Laarhoven PJM, Aarts EHL (eds) (1987) Simulated

annealing. In: Simulated annealing: theory and applications.

Springer, Netherlands pp 7–15

27. Sabar NR, Kendall G (2015) An iterated local search with mul-

tiple perturbation operators and time varying perturbation

strength for the aircraft landing problem. Omega 56:88–98

28. Martin OC, Otto SW (1996) Combining simulated annealing with

local search heuristics. Ann Oper Res 63(1):57–75

29. Rajalakshmi K, Kumar P, Bindu HM (2010) Hybridizing iterative

local search algorithm for assigning cells to switch in cellular

mobile network. Int J Soft Comput 5(1):7–12

30. Wolpert DH, Macready WG (1997) No free lunch theorems for

optimization. IEEE Trans Evol Comput 1(1):67–82

31. Stútzle T (2006) Iterated local search for the quadratic assign-

ment problem. Eur J Oper Res 174(3):1519–1539

32. Kirkpatrick S, Gelatt CD, Vecchi MP et al (1983) Optimization

by simulated annealing. Science 220(4598):671–680

33. Beasley JE (1990) Or-library: distributing test problems by

electronic mail. J Oper Res Soc 41(11):1069–1072

34. Garcı́a S, Fernández A, Luengo J, Herrera F (2010) Advanced

nonparametric tests for multiple comparisons in the design of

experiments in computational intelligence and data mining:

experimental analysis of power. Inf Sci 180(10):2044–2064

35. Al-Betar MA, Khader AT (2012) A harmony search algorithm for

university course timetabling. Ann Oper Res 194(1):3–31

36. Al-Betar MA, Khader AT, Doush IA (2014) Memetic techniques

for examination timetabling. Ann Oper Res 218(1):23–50

37. Awadallah MA, Bolaji AL, Al-Betar MA (2015) A hybrid arti-

ficial bee colony for a nurse rostering problem. Appl Soft Comput

35:726–739

38. Alsukni E, Arabeyyat OS, Awadallah MA, Alsamarraie L, Abu-

Doush I, Al-Betar MA (2019) Multiple-reservoir scheduling

using b-hill climbing algorithm. J Intell Syst 28(4):559–570

39. Hammouri AI, Alrifai B (2014) Investigating biogeography-

based optimisation for patient admission scheduling problems.

J Theor Appl Inf Technol 70(3):413–421

40. Sheta A, Faris H, Braik M, Mirjalili S (2020) Nature-inspired

metaheuristics search algorithms for solving the economic load

dispatch problem of power system: a comparison study. In: Dey

11764 Neural Computing and Applications (2020) 32:11745–11765

123

N, Ashour AS, Bhattacharyya S (eds) Applied nature-inspired

computing: algorithms and case studies. Springer, Singapore,

pp 199–230

41. Hammouri AI, Samra ETA, Al-Betar MA, Khalil RM, Alasmer

Z, Kanan M (2018) A dragonfly algorithm for solving traveling

salesman problem. In: 2018 8th IEEE international conference on

control system, computing and engineering (ICCSCE). IEEE,

pp 136–141

42. Glover F (1990) Tabu search: a tutorial. Interfaces 20(4):74–94

43. Resende MGC, Velarde JLG (2003) Grasp: Greedy randomized

adaptive search procedures. Intel Artif Rev Iberoam Intel Artif

19(1):61–76

44. Al-Betar MA (2017) b-hill climbing: an exploratory local search.

Neural Comput Appl 28(1):153–168

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2020) 32:11745–11765 11765

123

	ISA: a hybridization between iterated local search and simulated annealing for multiple-runway aircraft landing problem
	Abstract
	Introduction
	Aircraft landing problem: definition and formulation
	Constraints of the ALP model
	Objective function of the ALP model

	Research background
	Fundamentals of the iterated local search algorithm
	Simulating annealing

	Iterated simulating annealing (ISA) algorithm for ALP
	Experimental results and discussion
	Dataset used
	Effect of \alpha on the convergence rate of ISA
	Comparison with the proposed local search methods
	Comparison with previous methods
	Statistical analysis
	Computational time

	Conclusion and future work
	References

