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Abstract
Color perception and orientation selection are very important mechanisms of the human brain that have close relationships

with feature extraction and representation. However, extracting low-level features by mimicking these mechanisms

remains challenging. To address this problem, we present the gradient-structures histogram as a novel method of content-

based image retrieval (CBIR). Its main highlights are: (1) a novel and easy-to-calculate local structure detector, the

gradient-structures, which simulates the orientation selection mechanism based on the opponent-color space and connects it

with low-level features, (2) a novel discriminative representation method that describes color, intensity and orientation

features. It is convenient, as it does not require weight coefficients for color, intensity and orientation. (3) The proposed

representation method has the advantages of being histogram-based and having the power to discriminate spatial layout,

color and edge cues. The proposed method provides efficient CBIR performance, as demonstrated by comparative

experiments in which it significantly outperformed some state-of-the-art methods, including the Bow method, local binary

pattern histogram, perceptual uniform descriptor, color volume histogram, color difference histogram, some improved LBP

methods and the Tree2Vector method in terms of precision/recall and AUC metrics.

Keywords Image retrieval � Edge detection � Orientation selection � Gradient-structures histogram

1 Introduction

Searching is one of the most popular activities on the

Internet. Image searching, or retrieval, has also become a

very hot topic in academia. Current image retrieval tech-

nologies are predominantly based on global or local fea-

tures (e.g., color, texture, edges, spatial information, key

points and salient patches). People can use search engines

to easily find images, videos and documents on the Inter-

net, with Google, Bing, Yahoo and ASK being the most

popular ones. A critical challenge for search engines is in

how to extract and represent features from the vast amount

of image data available.

Feature extraction and representation have close rela-

tionships with the color perception and orientation selec-

tion systems of the human visual system. For instance, as

shown in the two scenes in Fig. 1, we pay more attention to

regions with obvious orientations; those with bright colors

and obvious orientations are more attractive. If we can

extract the visual features of regions with obvious orien-

tations, especially those that also have bright colors, we can

improve discriminative representation and the retrieval

performance of content-based image retrieval (CBIR)

systems. In this paper, we investigate CBIR based on low-

level visual features by mimicking the orientation selection

and color perception mechanisms of the human visual

system, which is a challenging problem.

In the 1980s, Hubel and Wiesel described simple cells as

being linear with bar-shaped or edge-shaped receptive

fields [1]. The visual cortex can be considered as a large

collection of feature detectors which are tuned to edges and

bars of various widths and orientations [1, 2]. Therefore, it

is possible to extract image features by simulating the

orientation selection mechanism according to edges and

bars of various widths and orientations. Inspired by this

concept, a novel image feature representation method,
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namely the gradient-structures histogram (GSH), which is

based on the detection of gradient-structures, is proposed

for CBIR.

The highlights of this paper include: First, a novel local

structure detector, namely gradient-structures, is proposed

to detect local structures by simulating the human orien-

tation selection mechanism based on an opponent-color

space. It is very easy to calculate and can perform a con-

nective function between the orientation selection mecha-

nism and low-level features. Second, a novel

discriminative representation method (GSH) is proposed to

describe image contents using colors, edge orientations and

intensities as constraints. Obvious gradient-structures may

make greater contributions to the retrieval results; there-

fore, it is not necessary to set weight coefficients for color,

intensity and orientation. Third, the proposed representa-

tion method has the advantages of a histogram-based

method with discriminative power based on spatial layout,

color and edge cues. Therefore, the GSH method can

provide efficient CBIR performance.

The remainder of this paper is organized as follows: In

Sect. 2, image retrieval techniques are introduced. The

proposed descriptor is presented in Sect. 3. In Sect. 4,

performance comparisons are made between three bench-

mark datasets. Section 5 concludes the paper.

2 Related works

For more than a decade, image retrieval has been a hot

topic in the field of artificial intelligence. In this subsection,

we focus on image representation for content-based and

object-based image retrieval.

Global features and local features are two types of visual

features used in current image retrieval techniques. Global

features usually comprise color, texture and shape features.

In the MPEG-7 standard, color, texture and shape feature

descriptors are used for image retrieval [3–14, 42]. Many

studies show that a combination of multiple visual features

can improve discriminative power. Some algorithms have

validated this [9–14], such as the methods based on LBP

[6–8, 15, 43, 44], texton-based methods [9, 10, 13] and

methods that use co-occurrence histograms and color dif-

ferences for image representation [9–12]. Shape features

are commonly used for image retrieval [3], object recog-

nition and shape analysis [16–19]. In many cases, image

segmentation is needed for the extraction of shape features,

which remains a difficult problem in image processing. In

some cases, well-defined object boundaries can be detected

to determine shapes. In [14], a saliency structure histogram

(SSH) is proposed for content-based image retrieval, which

has good discriminative power for color, texture, edge and

spatial layout features. In order to avoid image segmenta-

tion, many researchers have used local features (e.g., key

points and salient patches) to extract image features

[20–25].

Recently, dictionary learning methods have been

reported in the literature for the use in object-based image

retrieval, object recognition and scene categorization

[20–32]. The bag-of-visual-words model, based on scale-

invariant feature transform (SIFT), has been widely used in

large-scale, object-based image retrieval applications. The

standard Bow baseline can be considered as a state-of-the-

art method [26]. Based on the bag-of-visual-words model,

various methods have been proposed to represent image

features. Wang et al. [28] proposed merging of the visual

words into a large-sized initial codebook by maximally

preserving class separability. Lobel et al. [29] proposed a

new approach to visual recognition which jointly learns a

shared, discriminative and compact mid-level representa-

tion and a compact, high-level representation using visual

words. Liu et al. [30] proposed a single probabilistic

framework to unify the merging criteria of visual words,

which can be used for the creation of a compact codebook.

Zhou et al. [31] proposed the binary SIFT (BSIFT) method

for larger-scale, object-based image searches. Takahashi

and Kurita [32] proposed a mixture of subspace image

representation and compact coding for the large-scale,

object-based image retrieval. Zhang et al. [45] proposed the

learning of a vectoral representation of tree-structured data

for CBIR and proposed a learning-based framework for

video content-based advertising [46].

Besides the Bow-based methods, deep learning tech-

niques represented by CNNs have been shown to be

effective in various vision-related tasks, including classi-

fication and image retrieval, in recent years [33, 42].

However, Bow- and CNN-based methods have very high

computational requirements compared to traditional global

feature-based methods, such as low-level feature-based

histograms. Thus, low-level feature representation within

the CBIR framework needs to be studied further. The scope

of the present study is limited to the use of low-level fea-

tures in image representation.

Fig. 1 Examples of images with regions of obvious orientation (right)

and without them (left). We pay greater attention to obviously

oriented regions, especially those with bright colors (color

figure online)
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3 The gradient-structures histogram

As mentioned before, it is possible to extract image fea-

tures by simulating the human orientation selection

mechanism based on the perception of edges and bars of

various widths and orientations. Here, we propose a

detector and discriminative representation system within

the CBIR framework.

The detector is defined as a gradient-structures detector,

which extracts edges and bars of certain widths and various

orientations by simulating an orientation selection mecha-

nism in an opponent-color space. Basing on the gradient-

structures detector, we propose a discriminative represen-

tation system, namely the gradient-structures histogram

(GSH), to describe image content and use it for CBIR. A

flow diagram of the proposed detector and representation

system within the CBIR framework is illustrated in Fig. 2.

3.1 Color quantization

Color plays an important role in visual perception and sal-

iency detection [34, 35]. The HSV color space can mimic

human color perception well and can be represented as a

cylinder [5, 11–14, 34, 35]. This allows color information to

be extracted easily. Color processing begins at a very early

stage in the visual system (even within the retina) through

initial opponent-color mechanisms [36]. In the gradient-

structures model, both the HSV and opponent-color spaces

are adopted to extract visual features. The opponent-color

space is used to extract edge features, whereas the HSV color

space is used to extract color, intensity and orientation fea-

tures using feature quantization.

Let R, G and B be the red, green and blue components of

a color image and then normalize them into [0,1] so that the

yellow (Y) component can be defined as Y = (R ? G)/2.

These values can be transformed into values of the three

opponent-color channels: red versus green (RG), blue

versus yellow (BY) and white versus black (WB). They can

be defined as RG = R - G, BY = B - Y and WB = (B ?

R ? G)/3.

In order to maintain the visual appearance of the original

image, a reduction in the number of colors is implemented.

This implementation, called color quantization, is an

important technique in CBIR using color features [9–14].

The concept of color quantization can be extended to

extract other visual features, such as brightness or intensity

quantization, orientation quantization and edge quantiza-

tion. In order to describe image contents, the color, inten-

sity and edge orientations are quantized using the

quantization technique in the HSV color space [5, 13, 14].

The results of quantization are a color map, an intensity

map and an edge orientation map. In color quantization, H,

S and V are uniformly quantized into 6, 3 and 3 bins,

respectively, resulting in a total of 6 9 3 9 3 = 54 color

bins. The results of color quantization are denoted as

MC x; yð Þ, and MC x; yð Þ ¼ w;w 2 0; 1; . . .NC � 1f g, where
NC ¼ 54:

Intensity information comes from the value component

V x; yð Þ. After uniform quantization, an intensity map can

be obtained and is denoted as MI x; yð Þ, so that

MI x; yð Þ ¼ s and s 2 0; 1; . . .;NI � 1f g, where NI ¼ 16.

It is easy to calculate the edge of images using Sobel

operators. According to Sobel operators and the value

component V x; yð Þ, we can obtain the edge orientation

O x; yð Þ. After uniform quantization, an edge orientation

map can be obtained and is denoted as MO x; yð Þ, and

MO x; yð Þ ¼ v; v 2 0; 1; . . .;NO � 1f g, where NO ¼ 60.

3.2 Gradient-structures detection

Visual information processing in the visual system starts

with opponent-color mechanisms [34]. Edge features are

Fig. 2 Flow diagram of the proposed detector and discriminative

representation system within the CBIR framework. Red arrows

denote the procedure for simulating the orientation selection

mechanism. Blue arrows denote the procedure for feature quantiza-

tion using color, orientation and intensity in the HSV color space

(color figure online)
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very important to visual perception [2, 36, 37]. In this

paper, opponent colors are adopted for edge detection.

In our prior studies [9–12], Sobel operators were utilized

to detect edges. Here, we still use this method to detect

edges along the RG, BY and WB components in the

opponent-color system. We use Sobel operators because

they are insensitive to noise and have low computational

requirements [37]. The values of RG, BY and WB are

normalized into [0, 1], and their edge maps are denoted as

gRG x; yð Þ, gBY x; yð Þ and gWB x; yð Þ, respectively. An exam-

ple of color edge detection with opponent-color compo-

nents is shown in Fig. 3.

Components gRG x; yð Þ, gBY x; yð Þ and gWB x; yð Þ are all

uniformly quantized into Ng bins denoted as GRG x; yð Þ,
GBY x; yð Þ and GWB x; yð Þ, respectively. So, in this paper,

gRG x; yð Þ ¼ w;w 2 0; 1; . . .;Ng � 1
� �

, gBY x; yð Þ ¼ w;w 2
0; 1; . . .;Ng � 1

� �
, and gWB x; yð Þ ¼ w;w 2 0; 1; . . .;Ng

�

�1g, where Ng ¼ 16. In order to simulate the orientation

selection mechanisms of the human visual system,

GRG x; yð Þ, GBY x; yð Þ and GWB x; yð Þ are further processed

and used to detect gradient structures.

The gradient-structures are obtained from the consis-

tency of edges. The term consistency is defined as when

edges have the same gradient value in the same direction,

let there be a 3 9 3 block in GRG (x, y) and (x, y) be a

discrete coordinate. The values of the center coordinates

(x0, y0) of the block are denoted as g (x0, y0). Let there be

two coordinates, x1; y1ð Þ and x2; y2ð Þ; on both sides of the

central coordinate (x0, y0), respectively. If g(x1, y1) = g(x0,

y0) = g(x2, y2), we consider such a local structure as having

consistency of edge. In this case, the angle between the

local structure and horizontal direction is denoted as a,

a = {0�, 45�, 90�, 135�}, which also denotes the sense of

direction.

In the processing of gradient-structures detection, the

most important factor is that the direction and gradient

have the same values. As shown in Fig. 4c, if a gradient

structure is found, its gradient values are kept and the

gradient values of the remaining pixels within the 3 9 3

block are set to values of Ng � 1. Otherwise, all gradient

values of the 3 9 3 block are set to Ng � 1 values. By

moving the 3 9 3 block from left-to-right and top-to-bot-

tom throughout the input image using a pixel as the

interval, we can obtain a map of the gradient-structures,

which is denoted as SRG x; yð Þ.
Using the same implementation in GBY x; yð Þ and

GWB x; yð Þ, SBY x; yð Þ and SWB x; yð Þ are also obtained. In

order to integrate edge features according to feature inte-

gration theory [38], we calculate the final edge map in the

manner of winner-take-all.

S x; yð Þ ¼ max SRG x; yð Þ; SBY x; yð Þ; SWB x; yð Þð Þ ð1Þ

In order to enhance the gradient-structures, the Sobel

operators are utilized to detect edges in S x; yð Þ again and

denote the edge map as Es x; yð Þ. It is obvious that the

gradient-structures are very easy to calculate.

3.3 Feature representations

In global feature representation, local structure and spatial

frequency play important roles in addition to low-level

features (e.g., intensity, color and edge orientation); this is

especially true in histogram-based image representation.

Here, we consider local structures from a different per-

spective, which focuses on consistency in edge orientation.

A novel image feature representation method, namely the

gradient-structures histogram (GSH), is proposed for

CBIR.

Fig. 3 Example of color edge detection with opponent-color components: a original color image; b edge magnitudes obtained from the RG

component; c edge magnitudes obtained from the BY component; and d edge magnitudes obtained from the WB component

Fig. 4 Gradient-structures detection: a a 3 9 3 block in the quantized

edge map g x; yð Þ, b the consistency of gradient detection in a 3 9 3

block of g x; yð Þ, and c in a gradient structure, we keep the original

gradient values in pixels which have consistency of orientation, and

the remaining pixels are set to values of Ng � 1 ¼ 15; in this case, the

angle a = 135�
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Let there be two pixel locations x� Dx; y� Dyð Þ and

xþ Dx; yþ Dyð Þ, on each side of the central pixel locations

x; yð Þ in an image, where Dx and Dy are the offsets of the x-
axis and y-axis, respectively. The gradient-structures his-

tograms, using color, edge orientation and intensity as

constraints, are denoted as HC; HO and HI, respectively.

Their formulae are as follows:

HC MC x; yð Þð Þ ¼
XX

1:0� 1

p 1þ Es x; yð Þ2
� �

0

@

1

A ð2Þ

where

MC x� Dx; y� Dyð Þ ¼ MC x; yð Þ ¼ MC xþ Dx; yþ Dyð Þ:

HO MO x; yð Þð Þ ¼
XX

1:0� 1

p 1þ Es x; yð Þ2
� �

0

@

1

A ð3Þ

where

MO x� Dx; y� Dyð Þ ¼ MO x; yð Þ ¼ MO xþ Dx; yþ Dyð Þ:

HI MI x; yð Þð Þ ¼
XX

1:0� 1

p 1þ Es x; yð Þ2
� �

0

@

1

A ð4Þ

where

MI x� Dx; y� Dyð Þ ¼ MI x; yð Þ ¼ MI xþ Dx; yþ Dyð Þ:
In order to integrate the primary visual features (i.e.,

intensity, color and edge orientation) and spatial frequency

information into a single whole unit, the gradient-structures

histogram of a full color image is defined as

H ¼ conca HC;HO;HIf g ð5Þ

In Formula (5), conca :f g denotes the concatenation of

HC, HO and HI. In the concatenation, color, orientation and

intensity have the same weight.

Using color, edge orientation and intensity as con-

straints, obvious the gradient-structures may make a greater

contribution to the retrieval results; therefore, it is not

necessary to set weight coefficients for color, intensity and

orientation. For example, if gradient-structures of color are

obvious, the retrieval results may show a good match for

color features but not other types. The vector dimensions of

the gradient-structures histogram are 54 ? 60 ? 16 = 130

bins.

4 Experimental results

After image representation, the comprised algorithms,

distance metrics and datasets must be selected for perfor-

mance comparisons. The gradient-structures histogram

(GSH), color volume histogram (CVH) [5], local binary

pattern (LBP) histogram [15], color difference histogram

(CDH) [12], Bow histogram (SIFT-based) [26] and per-

ceptual uniform descriptor (PUD) [41] were selected for

comparison. CDH and CVH are two previous techniques

we developed for CBIR, and the Bow histogram is con-

sidered a state-of-the-art method for object retrieval and

recognition.

In the experiments, two image subsets were sampled for

use as query images. These consisted of 10% of the total

number of images in each dataset. The performance was

evaluated using the average results of each query in terms

of precision and recall. The codebook size for Bow was set

as k = 1000, and the cosine metric was used as the baseline

of the Bow method. In the PUD method, the Euclidean

distance is adopted as the similarity measure. An LBP

histogram with a dimensional feature vector of 256 bins,

and using the average values of an LBP histogram based on

R, G and B components. The L1 distance was adopted as

the LBP histogram similarity measure.

For further comparison with some improved LBP

methods and some other methods which work on tree-

structured data, including local texture pattern (LTP) [43],

local tetra patterns (LTrPs) [44], learning a vectorial rep-

resentation for tree-structured data (Tree2Vector) [45] and

the multilayer SOM (MLSOM) [48], we adopted the area

under the precision–recall curve (AUC) and the precision

and recall of various numbers of retrieved images as the

performance metrics and used the Corel-1000 dataset as a

benchmark dataset. All images in this dataset were used as

query images.

4.1 Datasets

There are many datasets used in object-based image

retrieval and object recognition. The Corel image dataset is

the most commonly used dataset for testing the perfor-

mance of CBIR. Images collected from the Internet can

also serve as another data source for CBIR comparisons,

especially for the retrieval of similar images. In this paper,

the Corel dataset and web image collections were used for

CBIR. The first dataset was the Corel-10k dataset, which

contains 10,000 images in 100 categories, such as food,

cars, sunsets, mountains, beaches, buildings, horses, fish,

doors and flowers. Each category contains 100 images

sized 192 9 128 or 128 9 192 pixels in JPEG format.

The second dataset used was the GHIM-10K dataset,

which contains 10,000 images. All images in this dataset

were obtained from the Internet or were created by the

author (Guang-Hai Liu). It contains 20 categories, such as

buildings, sunsets, fish, flowers, cars, mountains and tigers.

Each category contains 500 images sized 400 9 300 or

300 9 400 pixels in JPEG format. Both the Corel-10K and

GHIM-10K datasets can be downloaded from www.ci.

gxnu.edu.cn/cbir.
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For a fair comparison based on various metrics between

improved LBP methods and some other methods that work

with tree-structured data, the Corel-1000 dataset [47] was

adopted as the third dataset. There are 1000 color images in

ten categories, each category containing 100 images.

4.2 Distance metric

After we have extracted the image features from three

datasets using the GSH, we store them in an SQL server

2008 database. T and Q are the feature vectors of a tem-

plate image and a query image, respectively; T is an

M-dimensional feature vector, T ¼ T1;T2; . . .;TMf g, and
Q is also an M-dimensional feature vector,

Q ¼ Q1;Q2; . . .;QMf g. The Canberra distance between

them is simply calculated as in [39], with a minor modi-

fication as follows:

D T;Qð Þ ¼
PM

i¼1

Wi � Ti � Qij j

wi ¼
1

1:0þ Tij j þ Qij j

8
>><

>>:
ð6Þ

L1 can be considered the distance, with wi being the

weight. In order to prevent the denominator being zero, a

constant of 1.0 is added. This addition is a small modifi-

cation to the Canberra distance.

In this paper, we set M ¼ 130 bins for the proposed

GSH in the three experimental datasets. The class label of

the template image which yields the smallest distance will

be assigned to the query image.

4.3 Performance measures

Using a specific type of performance metric is a very

important issue in the comparison of CBIR experiments. In

order to evaluate the effectiveness of the proposed algo-

rithm, precision and recall metrics were adopted. In the

field of image retrieval, they are the most common mea-

surements used for evaluating performance [39]. Precision

is the ratio of retrieved images relevant to the query. The

comparisons made using the Corel-10K and GHIM-10K

datasets were evaluated above a given cutoff point, con-

sidering only the top N = 12 positions. Recall is the ratio of

images relevant to the query that are successfully retrieved

[40].

Precision ¼ relevant imagesf g \ retrieved imagesf gj j
retrieved imagesf gj j

ð7Þ

Recall ¼ relevant imagesf g \ retrieved imagesf gj j
relevant imagesf gj j ð8Þ

In this study, the number of relevant images was 100,

which is also the total number of images in the database

that are similar to the query.

The area under the precision–recall curve (AUC) is a

single-number summary of the information in the preci-

sion–recall curve, which is related to both the precision and

recall metrics. It can be defined as:

AUC ¼
XNmax

N¼2

P Nð Þ þ P N � 1ð Þð Þ � R Nð Þ � R N � 1ð Þð Þ
2

ð9Þ

In Eq. (9), P and R denote precision and recall,

respectively. Nmax denotes the maximum number of

retrieved images. P Nð Þ and R Nð Þ denote the precision and

recall values with N images retrieved, respectively.

4.4 Retrieval performance and discussion

The type of features used is very important in image rep-

resentation. Color, intensity and orientation are the most

commonly used visual features in CBIR and object

recognition. Retrieval performance and vector dimension-

ality are the most important factors in CBIR. It is perfectly

natural to obtain good retrieval performance by minimizing

vector dimensionality. Since the proposed method is a

histogram-based method, feature quantization has a strong

influence on image retrieval performance. The number of

bins of low-level visual features can directly influence the

retrieval results.

In this paper, Microsoft Excel 2010 was used for

drawing the performance curves, with smooth lines used in

Figs. 5, 6, 7 and 8 to make the diagrams reader-friendly.

4.4.1 Evaluation of HSV color space

In order to confirm the contribution of low-level visual

features to image retrieval performance, different quanti-

zation levels of color, intensity and orientation are used in

the gradient-structures histogram in HSV color space and

opponent-color space. The opponent-color space is used for

gradient-structures detection and further processing,

whereas the HSV color space is used for extracting color,

intensity and orientation features using the technique of

feature quantization.

In the CBIR experiments and comparisons, bin Hð Þ,
bin Sð Þ and bin Vð Þ denote the numbers of bins for the H, S

and V components. In this paper, we adopt the method of

gradually increasing the quantity of bins, with bin Hð Þ� 6,

bin Sð Þ� 3 and bin Vð Þ� 3 for the feature quantization of

the HSV color space; hence, the total number of bins is at

least 54 and is gradually increased to 108.
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Fig. 5 Average precision using the gradient-structures histogram on

the Corel-10K dataset in HSV color space, where bin grayð Þ; bin orið Þ
and bin colorð Þ denote the quantization levels of intensity, orientation

and color, respectively: a bin grayð Þ ¼ 16, b bin grayð Þ ¼ 32, and

c bin grayð Þ ¼ 64

Fig. 6 Average precision using the gradient-structures histogram on

the GHIM-10K dataset in HSV color space, where bin grayð Þ; bin orið Þ
and bin colorð Þ denote the quantization levels of intensity, orientation

and color, respectively: a bin grayð Þ ¼ 16, b bin grayð Þ ¼ 32, and

c bin grayð Þ ¼ 64

Fig. 7 Average precision using the gradient-structures histogram on

the Corel-10K dataset in RGB color space, where bin grayð Þ; bin orið Þ
and bin colorð Þ denote the quantization levels of intensity, orientation

and color, respectively: a bin grayð Þ ¼ 16, b bin grayð Þ ¼ 32, and

c bin grayð Þ ¼ 64

Fig. 8 Average precision using the gradient-structures histogram on

Corel-10K dataset in Lab color space, where bin grayð Þ; bin orið Þ and
bin colorð Þ are denoted as the quantization levels of intensity,

orientation and color, respectively: a bin grayð Þ ¼ 16,

b bin grayð Þ ¼ 32, and c bin grayð Þ ¼ 64

Neural Computing and Applications (2020) 32:11717–11727 11723

123



Figures 5 and 6 illustrate the average retrieval precision

of the gradient-structures histogram on both the Corel-10K

and GHIM-10K datasets in HSV color space. The best

average precision was obtained when bin colorð Þ ¼ 54,

bin orið Þ ¼ 60 and bin grayð Þ ¼ 16. The average precision

of the GSH was 54.84% on the Corel-10K dataset and

63.38% on the GHIM-10K dataset.

4.4.2 Evaluation of Lab and RGB color spaces

Besides the HSV color space, the RGB and Lab color

spaces were also evaluated to determine which is most

suitable for use with the proposed algorithm. In Figs. 7 and

8, we can see that the performance of the GSH is better in

the Lab color space than in the RGB color space while

providing the same or similar retrieval precision.

When using a quantization level of intensity is 16 bins,

the precision is about 46–49% in RGB color space and

about 43–51% in Lab color space. When the quantization

level of intensity is 32 bins, the performance of the GSH is

better in Lab color space than in RGB color space. With 64

bins, the performance is better in RGB than in Lab color

space.

In the performance comparisons using the Lab and HSV

color spaces, it is obvious that the average precision is

better using HSV when the quantization level of intensity is

fixed at 16 bins. The vector dimensionality of the GSH is

higher in Lab color space than in RGB color space, but its

precision is lower than in HSV. Considering the vector

dimensionality and retrieval precision, we selected the

HSV color space for color quantization in the proposed

method. The final quantization numbers for color, intensity

and orientation were set to 54 bins, 16 bins and 60 bins,

respectively.

4.4.3 Evaluation of different distance or similarity metrics

In order to determine performance differences due to the

use of different distances or similarity metrics, several of

these were adopted in CBIR experiments. As can be seen

from Table 1, Canberra gives much better results than

other metrics such as L1, x2 statistics, Chebyshev, Cosine

and histogram intersection. The Chebyshev metric gives

the worst results on the two datasets. The computational

burden of the Cosine metric is the greatest due to the

computation of the dot product.

The GSH uses the merits of low-level visual features by

representing the attributes of gradient-structures using a

histogram. In the GSH technique, there are many bins with

frequencies close to zero. If we apply a histogram inter-

section and the probability that min Ti;Qið Þ is high, a false

match may appear; therefore, a histogram intersection is

not suitable for use as a similarity metric for the proposed

method. In the Chebyshev metric D T;Qð Þ :=
max Ti � Qij jð Þ, the max operation results in many false

matches. In contrast, the Canberra distance is simple to

calculate and can be considered as a weighted L1 distance

with 1= 1:0þ Tij j þ Qij jð Þ being the weight. Since the same

values of Ti � Qij j can come from different pairs of Ti and

Qi, using a weight parameter can reduce these opposing

forces.

4.4.4 Performance comparisons

Two image subsets, consisting of 10% of the images from

each dataset, were used as query images for the Corel-10K

and GHIM-10K datasets. The system performed similarity

evaluations on each query image. The performances were

evaluated from the average results of all queries using

precision and recall metrics. Table 2 shows the compar-

isons between Bow histogram, CVH, PUD, LBP, CDH and

GSH in terms of precision and recall on the two datasets.

GSH performs better than the Bow histogram, CVH, LBP

and CDH methods. In the CBIR experiments, the vector

dimensions of GSH, CDH, CVH, LBP, PUD and Bow

histogram were 130, 108, 104, 256, 240 and 1000 bins,

respectively. It is clear that the Bow method is much better

than the CDH and GSH methods in terms of vector

dimensionality.

For a fair comparison with some improved LBP meth-

ods and some other methods that work with tree-structured

data. All the images in the Corel-1000 dataset were

Table 1 Average retrieval precision and recall performance of the GSH method according to different distance or similarity metrics

Dataset Performance Distance or similarity metric

Canberra Cosine L1 x2 statistics Chebyshev Histogram intersection

Corel-10K Precision (%) 54.55 33.74 38.87 42.74 29.98 35.73

Recall (%) 6.55 4.05 4.66 5.13 3.6 4.29

GHIM-10K Precision (%) 63.11 37.9 43.92 47.96 34.6 41.42

Recall (%) 1.51 0.91 1.05 1.15 0.83 0.99
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adopted as query images. Table 3 shows a comparison of

the GSH, Tree2Vector, LTP, LBP, MLSOM and LTrPs

methods in terms of precision/recall and AUC metrics on

the Corel-1000 dataset. In Table 3, all the comparative data

for the Tree2Vector, LTP, LBP, MLSOM and LTrPs

methods are reported in the conference proceedings of [45].

It is clear that the GSH method greatly outperforms

Tree2Vector, LTP, LBP, MLSOM and LTrPs in terms of

the metrics used.

In the Bow method, using the SIFT descriptor to extract

local features and the implementation of clustering can

result in heavy computational and memory costs. It must be

pointed out that local-feature detectors are used for reliable

object matching from different viewpoints and under dif-

ferent lighting conditions. The images in each category of

the Corel-10K and GHIM-10K datasets have similar con-

tents. Similar contents mean that the color, texture and

shape features are similar such that the images cannot be

used for reliable object matching from different viewpoints

and under different lighting conditions. This is the main

reason why the Bow histogram method does perform well

on the Corel-10K and GHIM-10K datasets; however, it can

perform excellently in object-based image retrieval and

object recognition [25–32].

The CVH method incorporates the advantages of his-

togram-based methods as it takes into account the spatial

information of neighboring colors and edges. Although it

performs well, it cannot represent local structures with

various widths and orientations, which leads to reduced

image retrieval performance in some image classes [5].

The local binary pattern (LBP), which includes the

improved LBP methods LTP and LTrPs, is a well-known

texture descriptor which can represent the local structures

of image or color texture regions. However, it does not

have the discriminative power of using edges and bars of

certain widths and various orientations.

The CDH was developed for CBIR. Color, orientation

and perceptually uniform color differences are encoded as

feature representations in a similar manner to that of the

human visual system, but the CDH discards intensity

information and local structure cues such as gradient

structures, which can reduce its ability to describe image

content.

The PUD method has a combined color perceptual

feature and texton frequency feature [41], and its final

corresponding dimensionality is 280 bins. It is derived

from the color difference histogram (CDH) [12] and

microstructure descriptor (MSD) [13]; however, it is dif-

ficult to balance the color perceptual feature and texton

frequency feature, which reduces its discriminatory power

and increases the vector dimensionality.

Both the Tree2Vector and MLSOM methods work on

tree-structured data. Tree2Vector aims to describe the

global discriminative information embedded at the same

levels of all trees. The limitations of MLSOM include its

dependence on designing a specific SOM structure through

a careful training process and its incapability to formulate

an independent vector for each tree [45], while

Tree2Vector can overcome these issues. However, both the

Tree2Vector and MLSOM methods do not have the power

to discriminate edges and bars of certain widths and vari-

ous orientations.

Gradient-structures are based on edges and bars of cer-

tain widths and various orientations that have opponent

colors. Extracting gradient-structures is very useful and

beneficial in describing image content, making the dis-

criminatory power of GSH better than that of CDH. Gra-

dient-structures come from consistency in edge orientation.

gradient-structures perform a connective function between

the orientation selection mechanism and low-level features.

In image representation, using color, edge orientation

and intensity as constraints with obvious gradient-struc-

tures may improve the retrieval results. It is not necessary

to a set weight coefficient for low-level features, but the

Table 2 Comparisons of the

BOW histogram, LBP, PUD,

CVH, CDH and GSH methods

in terms of precision and recall

metrics on the Corel-10K and

GHIM-10K datasets

Dataset Performance Method

Bow histogram LBP PUD CVH CDH GSH

Corel-10K Precision (%) 30.36 37.23 50.24 48.58 45.24 54.84

Recall (%) 3.64 4.47 6.03 5.83 5.43 6.58

GHIM-10K Precision (%) 39.67 46.89 58.89 57.48 51.79 63.38

Recall (%) 0.96 1.13 1.41 1.38 1.24 1.52

Table 3 Comparisons with some improved LBP methods in terms of

precision/recall and AUC metrics on the Corel-1000 dataset

Method AUC Number of retrieved images

Precision (%) Recall (%)

10 50 100 10 50 100

GSH 0.4338 82.80 67.10 54.34 8.28 33.55 54.34

Tree2Vector 0.3220 76.67 61.08 50.52 7.67 30.54 50.52

LTP 0.2370 68.01 52.04 42.80 6.80 26.02 42.80

LBP 0.2225 66.47 50.59 41.21 6.65 25.30 41.21

MLSOM 0.2943 69.82 56.90 49.86 6.98 28.45 49.86

LTrPs 0.2378 69.42 52.47 42.44 6.94 26.24 42.24
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retrieval results may show a good match with their corre-

sponding low-level features (color, orientation and

intensity).

Figures 9a, b show two retrieval examples using the

GSH method on the Corel-10K and GHIM-10K datasets. In

Fig. 9a, the query is a sailboat image; 11 images were

correctly retrieved and ranked within the top 12 images.

All the top 12 retrieved images show good matches of

texture, color and shape with the query image. In Fig. 9b,

the query image is a naval ship, which has obvious shape

features and a sea surface as the background. All the

returned images were correctly retrieved and ranked within

the top 12 images. These included a warship, hospital ship

and cruise ship. Two retrieval examples from the sensory

effects and a side confirmed that the GSH has the power to

discriminate color, texture and shape features.

4.4.5 Limitations of the proposed method

The proposed method has the advantages of being his-

togram-based and being able to simulate human color

perception and the orientation selection mechanism. The

gradient-structures perform the function of connecting the

orientation selection mechanism with low-level features,

which is very useful for describing image contents. How-

ever, a limitation of the proposed method is that the gra-

dient-structures are simultaneously sensitive to the

represented color, intensity and edge orientation. It is dif-

ficult to perfectly balance these three parameters.

Besides, the proposed method does not entirely simulate

the visual mechanisms of the human brain. Connecting

other visual mechanisms with low-level features according

to the principle of visual pathways will be studied in future.

5 Conclusions

Both the orientation selection mechanism and color per-

ception are very important processes of the human brain. In

order to extract low-level features by mimicking the ori-

entation selection mechanism and color perception, in this

paper, we propose a detector and discriminative represen-

tation system within the CBIR framework. In such a

framework, we extract image features by simulating the

orientation selection mechanism based on edges and bars

of various widths and orientations. In order to mimic color

perception well, the HSV color space and opponent-color

space were used in the proposed operator and

representation.

Experiments were conducted on three datasets and the

results compared with those of some existing state-of-the-

art methods. The results demonstrate that the GSH method

has strong discriminatory power for low-level features

(e.g., color, texture and edges) and significantly outper-

forms the Bow histogram, local binary pattern histogram,

perceptual uniform descriptor, color volume histograms,

color difference histogram and Tree2Vector methods, as

well as some improved LBP methods, in terms of precision

and recall and AUC metrics.

In further research, we plan to maintain the existing

advantages of our method while introducing deep learning

and exploiting other color space properties.
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