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Abstract
This paper investigates the fixed-time synchronization problems for competitive neural networks with proportional delays

and impulsive effect. The concerned network involves two coupling terms, i.e., long-term memory and short-term memory,

which leads to the difficulty to the dynamics analysis. Based on Lyapunov functionals, the differential inequalities and for

the objective of making the settling time independent of initial condition, a novel criterion guaranteeing the fixed-time

synchronization of addressed system is derived. Finally, two examples and their simulations are given to demonstrate the

effectiveness of the obtained results.
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1 Introduction

In recent years, various neural networks (NNs) such as

cellular neural networks, Hopfield neural networks, bidi-

rectional associative memory neural networks, and com-

petitive neural networks have been extensively studied in

both theory and application, and they have been success-

fully applied to signal processing, pattern recognition,

associative memory, optimization problems, [1–4] and

multiscale modeling [5–8]. For example, the authors in [5]

present an artificial NNs-based multiscale method for

coupling continuum and molecular simulations. In [6], the

authors investigated the development of a neural network

approach in conjunction with molecular dynamics

simulations.

One of the popular NNs is competitive neural networks

(CompNNs) which is introduced by Cohen and Grossberg

[9] in 1983. Recently, Meyer-Bäse [10] proposed in 1996

the so-called CompNNs with different time scales. So,

CompNNs with different time scales are extensions of

Hopfield neural networks [11, 12], Grossberg’s shunting

network [13] and Amaris model for primitive neuronal

competition [14], which model the dynamics of cortical

cognitive maps with unsupervised synaptic modifications.

In the model of CompNNs, there are two types of state

variable: that of the (STM: short-term memory) describing

the fast neural activity and that (LTM: long-term memory)

describing the slow unsupervised synaptic modifications.

Recently, the study of the dynamics of delayed

CompNNs has been widely studied due to their important

theoretical significance. On the other hand, much attention

has been devoted to analyzing the synchronization of

CompNNs, for example, Lou and Cui [15] studied the

exponential synchronization of CompNNs by using the
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Lyapunov functional method and linear matrix inequality

techniques. In [16] the authors introduced an adaptive

feedback controller to show the complete synchronization

of CompNNs with different time scales and stochastic

perturbations by using the Salle-type invariance principle.

By using stochastic analysis approaches and designing

adaptive feedback controller, Gan et al. [17] investigated

the exponential synchronization of stochastic CompNNs

with different time scales, mixed time-varying delays.

In addition, time delays particularly time-varying delay

can be encountered in the implementations of NNs, and the

existence of time delays occurs in the response and com-

munication time of neurons. So, it is very important to

introduce the dynamics of artificial neural networks with

delay [18]. Note that the delays are used in NNs models,

coefficients are often constant, and delays are bounded.

Contrary to the distributed delay [19–21] are the bounded

time-varying delay [22–28] and the constant time delay

[29]. The proportional delay sðtÞ ¼ ð1� qÞt (pantograph

delay factor q is a constant and satisfies 0\q\1) is time-

varying, less conservative, unbounded and more widely

applied in real world [30].

On the other hand, in view of the importance of the

control for delayed NNs, finite-time synchronization

requires the master and the slave system remain completely

identical after some finite time, which is called the ‘‘set-

tling time’’ [31, 32]. The problem of finite-time synchro-

nization of CompNNs is studied in [33, 34]. In [33], the

authors investigated the finite-time synchronization of

CompNNs with mixed delays and non-identical perturba-

tions by using Lyapunov–Krasovskii functionals. Note that

the settling time in [33] is dependent on the initial values of

the coupled CompNNs.

In [34], the authors studied the finite-time synchro-

nization of delayed CompNNs with discontinuous neuron

activations by using the theory of differential inclusions,

inequality techniques, nonsmooth analysis and a general-

ized finite-time convergence theorem and the settling time

is dependent on the initial conditions. So, in practical

applications, the initial conditions of the NNs must be

given in advance, which limits practical applications since

the knowledge of initial conditions may be difficult to

adjust or even impossible to estimate [35]. To avoid this

problem, we define a new concept known by the name

‘‘fixed-time stability’’ which was studied in [35, 36]. Fixed-

time synchronization means that the system is globally

finite-time synchronized and the settling time is bounded

for any initial states, that is to say that the convergence

settling time is independent of the initial conditions.

Motivated by the above discussions, in this paper, we

study the fixed-time synchronization of CompNNs with

proportional delays and impulsive effect by using Lya-

punov functionals and inequality technique. Based on the

fixed-time convergence theory, we establish some new and

useful sufficient conditions on the fixed-time synchro-

nization of the addressed system. The proposed controller

in this paper can be used to practically secure communi-

cation with chaotic nodes, i.e., sender and receiver. The

main contributions of this paper are listed as follows: (1)

Sufficient conditions are obtained to guarantee that the

CompNNs with proportional delays can be synchronized in

fixed time; (2) the settling time of the synchronization is

bounded for any initial states; (3) from the viewpoint of

time delay, CompNNs with proportional delays are dif-

ferent from delayed CompNNs models in [33, 34], so those

results in [33, 34] cannot be directly applied to the system

given in this paper; (4) it is shown theoretically and

numerically that the designed feedback controllers are

effective. The rest of the paper is organized as follows. In

Sect. 2 we will present the model of CompNNs with pro-

portional delays. In Sect. 3 we will introduce some nec-

essary definitions and lemmas, which will be used in the

paper. In Sect. 4 some sufficient conditions are derived

ensuring the fixed-time synchronization results. In Sect. 5

an example and their simulations are given to illustrate the

effectiveness of our theoretical results. In Sect. 7 we give a

brief conclusion.

2 Model description, notations
and hypotheses

For convenience, let R denote the set of real numbers. Rn

denotes the set of all n-dimensional real vectors (real

numbers).

For any fxig ¼ ðx1; x2; . . .; xnÞ 2 Rn, kxk is the square

norm defined by kxk ¼
�Pn

j¼1 x
2
i

�1
2. For a bounded and

continuous function h(t), let hþ, h� be defined as

hþ ¼ sup
t2R

hðtÞ; h� ¼ inf
t2R

hðtÞ

Consider the following competitive neural networks with

proportional delays:

STM : ex0iðtÞ ¼ �aiðtÞxiðtÞ þ
Xn

j¼1

bijðtÞfjðxjðtÞÞ

þ
Xn

j¼1

cijðtÞfjðxjðhjtÞÞ

þ BiðtÞ
Xn

j¼1

yjmijðtÞ þ IiðtÞ;

LTM : m0
ijðtÞ ¼ �~eiðtÞmijðtÞ þ yjfiðxiðtÞÞ þ JiðtÞ

STM: Dxint¼tk ¼ xiðtkÞ � xiðt�k Þ ¼ �pixiðtkÞ
LTM : Dmijnt¼tk ¼ mijðtkÞ � mijðt�k Þ ¼ �qimijðtkÞ

ð1Þ

where n� 2, t� t0 i; j ¼ 1; 2. . .; n, xið:Þ is the neuron
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current activity level; mijð:Þ is the synaptic efficiency; aið:Þ,
eeið:Þ[ 0 are the time variable of the neuron; bijð:Þ and

cijð:Þ represent the connection weight and the synaptic

weight of delayed feedback between the ith neuron and the

jth neuron, respectively; yj is the constant external stimu-

lus; fjðxjð:ÞÞ is the output of neurons; IiðtÞ, JiðtÞ denote the

external inputs on the ith neuron at time t; Bið:Þ[ 0 is the

strength of the external stimulus; hj are proportional delay

factors and satisfy 0\hj\1 and hjt ¼ t � ð1� hjÞt, in

which ð1� hjÞ correspond to the time delays required in

processing and transmitting a signal from the jth cell to the

ith neuron, and ð1� hjÞt ! þ1 as t ! þ1; e is a fast

time scale decided by STM and e[ 0,

xiðtþk Þ ¼ limt!tþ xiðtÞ, mijðtþk Þ ¼ limt!tþ mijðtÞ, xiðt�k Þ ¼
limt!t� xiðtÞ, mijðt�k Þ ¼ limt!t� mijðtÞ. For simplicity, it is

assumed that xiðt�k Þ ¼ xiðtkÞ and mijðt�k Þ ¼ mijðtkÞ, which
means yiðtÞ and ZiðtÞ are left continuous at each tk. The

moments of impulse satisfy t1\t2\ � � �\tk\ � � � and

limk!þ1 tk ¼ þ1. In this paper, taking e ¼ 1 for conve-

nience. After settling SiðtÞ ¼
Pn

j¼1 yjmijðtÞ ¼ miðtÞTy,
where y ¼ ðy1; . . .; ynÞT , miðtÞ ¼ ðmi1ðtÞ; . . .;minðtÞÞT then

(1) can be written as

STM : x0iðtÞ ¼ �aiðtÞxiðtÞ þ
Xn

j¼1

bijðtÞfjðxjðtÞÞ

þ
Xn

j¼1

cijðtÞfjðxjðhjtÞÞ

þ BiðtÞSiðtÞ þ IiðtÞ
LTM : S0iðtÞ ¼ �~eiðtÞSiðtÞ þ jyj2fiðxiðtÞÞ þ JiðtÞ
STM : Dxint¼tk ¼ xiðtkÞ � xiðt�k Þ ¼ �pixiðtkÞ
LTM : DSint¼tk ¼ SiðtkÞ � Siðt�k Þ ¼ �qiSiðtkÞ

ð2Þ

where i; j ¼ 1; 2. . .; n, jyj2 ¼ y21 þ y22 þ � � � þ y2n is a con-

stant without loss of generality, the input stimulus y is

assumed to be a normalized vector with unit magnitude

jyj2 ¼ 1, then (2) are simplified as

STM : x0iðtÞ ¼ �aiðtÞxiðtÞ þ
Xn

j¼1

bijðtÞfjðxjðtÞÞ

þ
Xn

j¼1

cijðtÞfjðxjðhjtÞÞ

þ BiðtÞSiðtÞ þ IiðtÞ
LTM : S0iðtÞ ¼ �~eiðtÞSiðtÞ þ fiðxiðtÞÞ þ JiðtÞ
STM : Dxint¼tk ¼ xiðtkÞ � xiðt�k Þ ¼ �pixiðtkÞ
LTM : DSint¼tk ¼ SiðtkÞ � Siðt�k Þ ¼ �qiSiðtkÞ

ð3Þ

The initial conditions of system (3) are given by

xiðsÞ ¼ uiðsÞ; s 2 ½�qit0; t0�; SiðsÞ ¼ /iðsÞ; s 2 ½�qit0; t0�;
ð4Þ

where qi ¼ max1� j� nfpjg, uiðsÞ; /iðsÞ 2 Cð½�qit0;
t0�;RnÞ with Cð½�qit0; t0�;RnÞ denotes the Banach space of

all continuous functions mapping ½�qit0; t0� into Rn.

To derive the main results, we assume that the following

conditions hold:

ðH1Þ The activation functions fj satisfy the Lipschitz

condition, i.e., there exist constant Lfj [ 0, such

that jfjðxÞ � fjðyÞj� Lfj jx� yj, x; y 2 R, for

j ¼ 1; 2; . . .; n.

In this work, we will make drive-response chaotic neural

networks with delays achieve synchronization in fixed-time

by designing some effective controllers. The corresponding

response system of (3) can be rewritten in the following

form of an impulsive differential equation:

STM : y0iðtÞ ¼ �aiðtÞyiðtÞ þ
Xn

j¼1

bijðtÞfjðyjðtÞÞ

þ
Xn

j¼1

cijðtÞfjðyjðhjtÞÞ

þ BiðtÞZiðtÞ þ IiðtÞ þ RiðtÞ
LTM : Z 0

iðtÞ ¼ �~eiðtÞZiðtÞ þ fiðyiðtÞÞ þ JiðtÞ þ QiðtÞ
STM : Dyint¼tþ

k
¼ yiðtþk Þ � yiðt�k Þ ¼ �piyiðtkÞ

LTM : DZint¼tþ
k
¼ Ziðtþk Þ � Ziðt�k Þ ¼ �qiZiðtkÞ

ð5Þ

where yi ¼ ðy1; y2; . . .; ynÞT , Zi ¼ ðZ1; Z2; . . .; ZnÞT are the

response state scalar of the ith node, Ri ¼ ðR1;R2; . . .;RnÞT

and Qi ¼ ðQ1;Q2; . . .;QnÞT donates the controller that will

be appropriately designed for fixed-time synchronization

objective, i ¼ 1; 2; . . .; n.
Define error states eiðtÞ ¼ yiðtÞ � xiðtÞ and

eiðtÞ ¼ ZiðtÞ � SiðtÞ, we can derive the following error

system

STM : e0iðtÞ ¼ �aiðtÞeiðtÞ þ
Xn

j¼1

bijðtÞFjðejðtÞÞ

þ
Xn

j¼1

cijðtÞFjðejðhjtÞÞ

þ BiðtÞeiðtÞ þ RiðtÞ
LTM : e0iðtÞ ¼ �~eiðtÞeiðtÞ þ FiðeiðtÞÞ þ QiðtÞ
STM : Deint¼tk ¼ eiðtkÞ � eiðt�k Þ ¼ �pieiðtkÞ
LTM : Deint¼tk ¼ eiðtkÞ � eiðt�k Þ ¼ �qieiðtkÞ

ð6Þ

where FjðejðtÞÞ ¼ fjðyjðtÞÞ � fjðxjðtÞÞ and

FjðejðpjtÞÞ ¼ fjðyjðpjtÞÞ � fjðxjðpjtÞÞ.
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Remark 1 Based on Assumption ðH1Þ, we conclude that

Fjð:Þ satisfies: jFðejðtÞÞj � Lfj jejðtÞj.

3 Definitions and lemmas

In this section, we introduce some definitions and state

some preliminary results

Definition 1 Let V : R2n ! Rþ, then V is said to belong to

class V if

(1) V is continuous on each of the sets ðtk; tkþ1� � R2n for

z 2 R2n, k 2 N and Vðt; zÞ ¼ limt;z ! ðtþk ; cÞVðtþk ; cÞ
exists.

(2) V is locally Lipschitzian in z.

Definition 2 The competitive neural network is said to be

fixed-time synchronization if for any initial condition, there

exists a settling-time function Tðz0Þ such that:

limt!Tðz0Þ keðtÞk ¼ 0, limt!Tðz0Þ keðtÞk ¼ 0, and eðtÞ ¼ 0,

eðtÞ ¼ 0, where the settling-time function is bounded, i.e.,

there exist constant Tmax [ 0 such that Tðz0Þ�
Tmax; 8z0 2 R2n.

Lemma 1 [35] Let x ¼ ðx1; x2; . . .; xnÞ� 0, 0\p� 1,

q[ 1 the following two inequalities hold:

Pn
i¼1 x

p
i �
�
Pn

i¼1 xi

�p

,
Pn

i¼1 x
q
i � n1�q

�
Pn

i¼1 xi

�q

.

Lemma 2 [37] Let VðxðtÞÞ 2 V be positive definite and

radially unbounded function. Assume that the following

conditions are satisfied :

_VðxðtÞÞ� � aVpðxðtÞÞ � bVqðxðtÞÞ; t 6¼ tk; t 2 Rþ ð7Þ

Vðxðtþk ÞÞ�VðtkÞ; ð8Þ

where a; b[ 0, 0\p� 1, q[ 1, then the system (6) is

globally fixed-time stable and the settling time bounded by

T � Tmax :¼
1

að1� pÞ þ
1

bðq� 1Þ :

4 Main results

In this section, we will address the controller design

problem for fixed time for competitive neural networks

with proportional delay and impulsive perturbation.

4.1 Fixed-time synchronization with delay-
dependent feedback controller

In this section, we will derive some criteria to guarantee the

fixed-time synchronization between drive system (3) and

response system (5). First, a delayed feedback controller is

defined as follows:

RiðtÞ ¼ �k1eiðtÞ � k2signðeiðtÞÞjeiðtÞja � k3signðeiðtÞÞjeiðtÞjb

�
Xn

j¼1

cijðtÞFjðejðpjtÞÞ

QiðtÞ ¼ �q1eiðtÞ � q2signðeiðtÞÞjeiðtÞja � q3signðeiðtÞÞjeiðtÞjb

ð9Þ

where 0\a\1, b[ 1; kp; qp, p ¼ 1; 2; 3 are the param-

eters to be designed later.

Theorem 1 Under Assumption (H1),the drive-response

systems (3) and (5) will achieve fixed-time synchronization

under controller (9) if the following conditions hold

k1 � � a�i þ 1

2
Lfi þ

Xn

j¼1

1

2
jbijjþLfj þ

Xn

j¼1

1

2
jbjijþLfi þ

1

2
jBijþ;

q1 � � ~e�i þ 1

2
Lfi þ

1

2
jBijþ;

k2 [ 0; k3 [ 0; q2 [ 0; q3 [ 0;

max max
1� i� n

fð1� piÞ2; ð1� qiÞ2g
� �

\1

ð10Þ

moreover, the finite time t1for synchronization satisfies

t1 �
1

min
�
k2; q2

	
2

aþ1
2 ð1� aÞ

þ 1

min
�
k3; q3

	
2

bþ1
2 n

1�b
2 ðb� 1Þ

:

ð11Þ

Proof Consider the following Lyapunov function:

VðtÞ ¼ 1

2

Xn

i¼1

e2i ðtÞ þ
1

2

Xn

i¼1

e2i ðtÞ ð12Þ

Calculating the derivative _VðtÞ along the solution of system
(6), we have
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_VðtÞ ¼
Xn

i¼1

eiðtÞ _eiðtÞ þ
Xn

i¼1

eiðtÞ _eiðtÞ

¼
Xn

i¼1

eiðtÞ


� aiðtÞeiðtÞ þ

Xn

j¼1

bijðtÞFjðejðtÞÞ

þ
Xn

j¼1

cijðtÞFjðejðhjtÞÞ þ BiðtÞeiðtÞ þ RiðtÞ
�

þ
Xn

i¼1

eiðtÞ


� eiðtÞeiðtÞ þ FiðeiðtÞÞ þ QiðtÞ

�

�
Xn

i¼1



� aiðtÞe2i ðtÞ þ

Xn

j¼1

eiðtÞbijðtÞFjðejðtÞÞ

þ
Xn

j¼1

eiðtÞcijðtÞFjðejðhjtÞÞ þ eiðtÞBiðtÞeiðtÞ

� k1e
2
i ðtÞ � k2jeiðtÞjaþ1 � k3jeiðtÞjbþ1

�
Xn

j¼1

eiðtÞcijðtÞFjðejðpjtÞÞ
�

þ
Xn

i¼1



� ~eiðtÞe2i ðtÞ þ eiðtÞFiðeiðtÞÞ � q1e

2
i ðtÞ

� q2jeiðtÞjaþ1 � q3jeiðtÞjbþ1

�

�
Xn

i¼1



� a�i e

2
i ðtÞ þ

Xn

j¼1

jbijðtÞjLfj jeiðtÞjjejðtÞj

þ jeiðtÞjjBiðtÞjjeiðtÞj � k1e
2
i ðtÞ � k2jeiðtÞjaþ1

� k3jeiðtÞjbþ1

�
þ
Xn

i¼1



� ~e�i e

2
i ðtÞ þ Lfi jeiðtÞjjeiðtÞj

� q1e
2
i ðtÞ � q2jeiðtÞjaþ1 � q3jeiðtÞjbþ1

�

�
Xn

i¼1



� a�i e

2
i ðtÞ þ

Xn

j¼1

jbijjþLfj
1

2
ðe2i ðtÞ þ e2j ðtÞÞ

þ jBijþ
1

2
ðe2i ðtÞ þ e2i ðtÞÞ � k1e

2
i ðtÞ � k2jeiðtÞjaþ1

� k3jeiðtÞjbþ1

�
þ
Xn

i¼1



� ~e�i e

2
i ðtÞ þ Lfj

1

2

�
e2i ðtÞ

þ e2i ðtÞ
�
� q1e

2
i ðtÞ � q2jeiðtÞjaþ1 � q3jeiðtÞjbþ1

�

�
Xn

i¼1



� a�i � k1 þ

1

2
Lfi þ

Xn

j¼1

1

2
jbijjþLfj

þ
Xn

j¼1

1

2
jbjijþLfi þ

1

2
jBijþ

�
e2i ðtÞ

þ
Xn

i¼1



� ~e�i � q1 þ

1

2
Lfi þ

1

2
jBijþ

�
e2i ðtÞ

þ
Xn

i¼1



� k2jeiðtÞjaþ1 � k3jeiðtÞjbþ1

� q2jeiðtÞjaþ1 � q3jeiðtÞjbþ1

�
:

ð13Þ

By using (10), and Lemma 1, we have

DþVðtÞ� �min
�
k2; q2

	Xn

i¼1

�
jeiðtÞjaþ1 þ jeiðtÞjaþ1

�

� min
�
k3; q3

	Xn

i¼1

�
jeiðtÞjbþ1 þ jeiðtÞjbþ1

�

� �min
�
k2; q2

	Xn

i¼1

�
jeiðtÞj2 þ jeiðtÞj2

�aþ1
2

� min
�
k3; q3

	Xn

i¼1

�
jeiðtÞj2 þ jeiðtÞj2

�bþ1
2

� �min
�
k2; q2

	
2

aþ1
2 VðtÞ

aþ1
2

� min
�
k3; q3

	
2

bþ1
2 n

1�b
2 VðtÞ

bþ1
2 :

ð14Þ

When t ¼ tk, it can be obtained from (12) that

Vðtþk Þ ¼
1

2

Xn

i¼1

e2i ðtþk Þ þ
1

2

Xn

i¼1

e2i ðtþk Þ

¼ 1

2

Xn

i¼1

ð1� piÞ2e2i ðtkÞ þ
1

2

Xn

i¼1

ð1� qiÞ2e2i ðtkÞ

� maxfð1� piÞ2; ð1� qiÞ2g

�
�
1

2

Xn

i¼1

e2i ðtkÞ þ
1

2

Xn

i¼1

e2i ðtkÞ
�

� maxf max
1� i� n

fð1� piÞ2; ð1� qiÞ2ggVðtkÞ

�VðtkÞ

ð15Þ

Thus, by Lemma 2, the error system (6) will converge to

zero within t1, that is, the master–slave systems (3) and (5)

achieve the fixed-time synchronization and the settling

time is given as t1. h

Remark 2 Note that, in Theorem 1, by designing a special

fixed-time controller, we achieved the fixed-time syn-

chronization between two chaotic competitive neural net-

works. On the other hand, the used control (9) is somehow

expensive and not easily applicable. Below, we will modify

the controller (9) to improve the applicability of our results.

ðH2Þ The activation functions fj are bounded, i.e., there

exist constant Mj [ 0, such that jfjð:Þj �Mj, for

j ¼ 1; 2; . . .; n.

4.2 Fixed-time synchronization with delay-
independent feedback controller

Let the following delay-independent feedback controller :
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RiðtÞ ¼ �k1eiðtÞ � k2signðeiðtÞÞjeiðtÞja

� k3signðeiðtÞÞjeiðtÞjb � k3signðeiðtÞÞ
QiðtÞ ¼ �q1eiðtÞ � q2signðeiðtÞÞjeiðtÞja

� q3signðeiðtÞÞjeiðtÞjb

ð16Þ

Theorem 2 Under the assumptions (H1)–(H2), the drive-

response systems (3) and (5) will achieve fixed-time syn-

chronization under controller (16), if (10) is satisfied and

k3 � 2
Xn

j¼1

jcijjþMj ð17Þ

moreover, the settling time t1 for synchronization is the

same as defined in Theorem 1.

Proof Using the same Lyapunov function that defined in

(12) and calculating the derivative _VðtÞ along the solution

of system (6) we have

_VðtÞ ¼
Xn

i¼1

eiðtÞ


� aiðtÞeiðtÞ þ

Xn

j¼1

bijðtÞFjðejðtÞÞ

þ
Xn

j¼1

cijðtÞFjðejðhjtÞÞ þ BiðtÞeiðtÞ þ RiðtÞ
�

þ
Xn

i¼1

eiðtÞ


� ~eiðtÞeiðtÞ þ FiðeiðtÞÞ þ QiðtÞ

�

�
Xn

i¼1



� aiðtÞe2i ðtÞ þ

Xn

j¼1

eiðtÞbijðtÞFjðejðtÞÞ

þ
Xn

j¼1

eiðtÞcijðtÞFjðejðhjtÞÞ þ eiðtÞBiðtÞeiðtÞ

� k1e
2
i ðtÞ � k2jeiðtÞjaþ1 � k3jeiðtÞjbþ1 � k3jeiðtÞj

�

þ
Xn

i¼1



� eeiðtÞe2i ðtÞ þ eiðtÞFiðeiðtÞÞ � q1e

2
i ðtÞ � q2jeiðtÞjaþ1

� q3jeiðtÞjbþ1

�

ð18Þ

Using the same discussion method as in Theorem 1, one

can get that

_VðtÞ�
Xn

i¼1



� a�i � k1 þ

1

2
Lfi þ

Xn

j¼1

1

2
jbijjþLfj þ

Xn

j¼1

1

2
jbjijþLfi

þ 1

2
jBijþ

�
e2i ðtÞ

þ
Xn

i¼1



� ~e�i � q1 þ

1

2
Lfi þ

1

2
jBijþ

�
e2i ðtÞ

þ
Xn

i¼1



� k3 þ 2

Xn

j¼1

jcijjþMj

�
jeiðtÞj

þ
Xn

i¼1



� k2jeiðtÞjaþ1 � k3jeiðtÞjbþ1 � q2jeiðtÞjaþ1

� q3jeiðtÞjbþ1

�
:

ð19Þ

from condition of Theorem 2 and Lemma 1, we get

DþVðtÞ� �min
�
k2; q2

	
2

aþ1
2 VðtÞ

aþ1
2

� min
�
k3; q3

	
2

bþ1
2 n

1�b
2 VðtÞ

bþ1
2 :

ð20Þ

When t ¼ tk, it can be obtained from (12) that

Vðtþk Þ ¼
1

2

Xn

i¼1

e2i ðtþk Þ þ
1

2

Xn

i¼1

e2i ðtþk Þ

¼ 1

2

Xn

i¼1

ð1� piÞ2e2i ðtkÞ þ
1

2

Xn

i¼1

ð1� qiÞ2e2i ðtkÞ

� maxfð1� piÞ2; ð1� qiÞ2g

�
�
1

2

Xn

i¼1

e2i ðtkÞ þ
1

2

Xn

i¼1

e2i ðtkÞ
�

� max max
1� i� n

fð1� piÞ2; ð1� qiÞ2g
� �

VðtkÞ

�VðtkÞ
ð21Þ

Thus, by Lemma 2, the error system (6) will converge to

zero within t1, that is, the master–slave systems (3) and (5)

achieve the fixed-time synchronization and the settling

time is given as t1. h

Remark 3 Note that, the competitive neural networks

models studied in [33, 34] are considered with constant

coefficients. In this paper, we study the model with time-

varying coefficients and without impulse. In addition, our

models include models in [33, 34] as special cases when

pi ¼ qi ¼ 0, aiðtÞ ¼ ai, eiðtÞ ¼ ei, BiðtÞ ¼ Bi, bijðtÞ ¼ bij,

cijðtÞ ¼ cij, IiðtÞ ¼ Ii and JiðtÞ ¼ 0. So, our results have

been shown to be the generalization of existing results

reported recently in the literature.

Remark 4 In the designed control inputs used in this

works, discontinuous terms sgnðeiðtÞÞ and sgnðeiðtÞÞ will

result in undesirable chattering phenomenon which is

undesirable in practice. In real applications, in order to

attenuate the unfavorable chattering, the discontinuous

terms sgnðeiðtÞÞ and sgnðeiðtÞÞ are approximated by
eiðtÞ

eiðtÞþj

and
eiðtÞ

eiðtÞþj, respectively, where j[ 0 and j[ 0 are suffi-

ciently small.

5 Numerical example

In this section, numerical example is given to show the

effectiveness of the obtained theoretical analysis. Consider

the following competitive neural networks with propor-

tional delays as follows:
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STM : x0iðtÞ ¼ �aiðtÞxiðtÞ þ
X2

j¼1

bijðtÞfjðxjðtÞÞ

þ
X2

j¼1

cijðtÞfjðxjðhjtÞÞ

þ BiðtÞSiðtÞ þ IiðtÞ
LTM : S0iðtÞ ¼ �eiðtÞSiðtÞ þ fiðxiðtÞÞ þ JiðtÞ
STM : Dxint¼tk ¼ xiðtkÞ � xiðt�k Þ ¼ �pixiðtkÞ
LTM : DSint¼tk ¼ SiðtkÞ � Siðt�k Þ ¼ �qiSiðtkÞ

ð22Þ

and the slave system described as

STM : y0iðtÞ ¼ �aiðtÞyiðtÞ þ
X2

j¼1

bijðtÞfjðyjðtÞÞ

þ
X2

j¼1

cijðtÞfjðyjðhjtÞÞ

þ BiðtÞZiðtÞ þ RiðtÞ
LTM : Z 0

iðtÞ ¼ �eiðtÞZiðtÞ þ fiðyiðtÞÞ þ QiðtÞ
STM : Dyint¼tþ

k
¼ yiðtþk Þ � yiðt�k Þ ¼ �piyiðtkÞ

LTM : DZint¼tþ
k
¼ Ziðtþk Þ � Ziðt�k Þ ¼ �qiZiðtkÞ

ð23Þ

for i ¼ 1; 2, where aiðtÞ ¼ 3þ 0:1 sinðtÞ, eiðtÞ ¼
2þ 1:5 cosðtÞ; I1ðtÞ ¼ sinð0:9tÞ; I2ðtÞ ¼ cosð0:9tÞ; J1ðtÞ ¼
sinð0:8tÞ; J1ðtÞ ¼ cosð0:8tÞ; hj ¼ 0:5, pi ¼ qi ¼ 0:8; the

activation function is described by fiðxÞ ¼ tanhðxÞ and

ðbijðtÞÞ ¼
1:5þ 0:1 sinðtÞ 2þ 0:1 cosðtÞ
2:5þ 0:1 cosðtÞ 1þ 0:1 sinðtÞ

� �

ðcijðtÞÞ ¼
2:5þ 0:1 cosðtÞ 2þ 0:1 cosðtÞ
1:5þ 0:1 sinðtÞ 1:9þ 0:1 sinðtÞ

� �

ðBiðtÞÞ ¼
0:3j sinð

ffiffiffi
3

p
tÞj 0

0 0:3j sinð
ffiffiffi
3

p
tÞj

 !

Figure 1 presents the chaotic trajectory of (22) with initial

value xð0Þ ¼ ð0:5;�0:5ÞT , Sð0Þ ¼ ð0:25;�0:25ÞT .
According to the conditions presented in Theorem 1,

choose k1 ¼ 1:5200� � a�1 þ 1
2
Lf1 þ

P2
j¼1

1
2
jb1jjþLfj þ

P2
j¼1

1
2
j bj1jþLf1 þ 1

2
jB1jþ ¼ 1:5200; k1 ¼ 1:5200� �

a�2 þ 1
2
Lf2 þ

P2
j¼1

1
2
jb2jjþLfj þ

P2
j¼1

1
2
jbj2jþLf2 þ 1

2
jB2jþ ¼

1:0200; q1 ¼ 0:1500� � ~e�1 þ 1
2
Lf1 þ 1

2
jB1jþ ¼ 0:1500;

q1 ¼ 0:1500� � ~e�2 þ 1
2
Lf2 þ 1

2
jB2jþ ¼ 0:1500; k2 ¼

1:2[ 0; k3 ¼ 1:1[ 0; q2 ¼ 1:1[ 0; q3 ¼ 1:2[ 0; a ¼
0:5; b ¼ 2: Thus, the control inputs of the slave system are

formulated as

R1ðtÞ ¼ �1:52e1ðtÞ � 0:2signðe1ðtÞÞje1ðtÞj0:5

� 0:1signðe1ðtÞÞje1ðtÞj2

�
X2

j¼1

c1jðtÞFjðejð0:5tÞÞ

R2ðtÞ ¼ �1:52e2ðtÞ � 0:2signðe2ðtÞÞje2ðtÞj0:5

� 0:1signðe2ðtÞÞje2ðtÞj2

�
X2

j¼1

c2jðtÞFjðejð0:5tÞÞ

Q1ðtÞ ¼ �0:15e1ðtÞ � 0:1signðe1ðtÞÞje1ðtÞj0:5

� 0:2signðe1ðtÞÞje1ðtÞj2

Q2ðtÞ ¼ �0:15e2ðtÞ � 0:1signðe2ðtÞÞje2ðtÞj0:5

� 0:2signðe2ðtÞÞje2ðtÞj2

• Under controller (9) the state trajectories of master/

salve system are illustrated in Figs. 2, 3, 4 and 5.

• Under controller (9) and the initial conditions

e1ð0Þ ¼ �6, e2ð0Þ ¼ 6, e1ð0Þ ¼ �4, e2ð0Þ ¼ 4, the

evolution of the synchronization errors is described in

Fig. 6.

• The settling time for synchronization is estimated by

1.5766.

Remark 5 In Theorems 1–2, some auxiliary parameters

k1, k2, k3, q1; q2; and q3; are introduced to cut down the

conservatism of (10) and (11).

In practice, these parameters can be properly selected to

improve the feasibility and generality of the obtained

results. In addition, by choosing suitable values of these

parameters, the above conditions can be always satisfied

for different values of the system’s coefficients. On the

other hand, when the coefficients of the system are given,

the values of these parameters can be adjusted to reduce the

values of the control coefficients. In general, the values of

the auxiliary parameters are randomly given first (e.g.,

k1 ¼ k2 ¼ k3 ¼ q1 ¼ q2 ¼ q3 ¼ 1), and then adjusted

appropriately according to the actual situation. As for

whether an effective algorithm can be used to select these

auxiliary parameters, it is still a valuable research issue.

6 Discussion and comparisons

A laterally inhibited NNs with a deterministic signal

Hebbian learning law, which can model the dynamics of

cortical cognitive maps with unsupervised synaptic modi-

fications, were recently proposed and its global asymptotic

stability was studied in Meyer-Bäse et al. [10, 38]. In this

model, there are two types of state variables, the short-term
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memory variables (STM) describing the fast neural activity

and the long-term memory (LTM) variables describing the

slow unsupervised synaptic modifications. Thus, there are

two time scales in these neural networks, in which one

corresponds to the fast changes of the neural network states

and another corresponds to the slow changes of the

synapses by external stimuli.

Recently, many authors studied the synchronization of

competitive neural networks like exponential synchro-

nization [39], adaptive lag synchronization [40], general

decay lag synchronization [41] and finite-time synchro-

nization [42]. In practical execution, the fixed-time syn-

chronization is more realistic and valuable. To the best of

our knowledge, no such result has been proved on finite-

time synchronization between impulsive competitive neu-

ral networks with time delays. Comparing with previous
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Fig. 2 Time evolution of variables x1ðtÞ and y1ðtÞ of drive neural

network (22) and corresponding response system (23)
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Fig. 3 Time evolution of variables x2ðtÞ and y2ðtÞ of drive neural

network (22) and corresponding response system (23)
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Fig. 5 Time evolution of variables S2ðtÞ and Z2ðtÞ of drive neural

network (22) and corresponding response system (23)
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published results, this paper reports the optimality in set-

tling time of synchronization. In addition, the proportional

delays and impulsive effect are considered for fixed-time

synchronization of delayed competitive neural networks.

Thus, they can implement the abundance of flexibility and

freedom in practical applications for system.

On the other hand, the fixed-time synchronization of

impulsive competitive neural networks has not been seen;

hence the obtained Theorems 1 and Theorem 2 are sub-

stantially new and the explored criteria can be easily

expanded to the impulsive effects of study on the fixed-

time synchronization of the other kinds of neural networks

such as BAM neural networks, Cohen–Grossberg neural

networks, and Cohen–Grossberg BAM neural networks.

7 Conclusion and future works

This paper focuses on the fixed-time synchronization

problem for a class of competitive neural networks with

proportional delays. Using Lyapunov functionals and ana-

lytical techniques, we obtain some sufficient conditions for

the fixed-time synchronization of the master and slave of

addressed systems. To the best of our knowledge, this is the

first paper to study the fixed-time synchronization for

CompNNs with proportional delays. Finally, an illustrated

example with their simulations is given to demonstrate the

effectiveness of the theoretical results.

In the present paper, we demonstrate that two different

chaotic nonlinear competitive neural networks with pro-

portional delays can be synchronized in fixed-time. In [43]

the authors investigated the finite-time synchronization of

neural networks with discrete and distributed delays by

using periodically intermittent memory feedback control,

in addition an application to secure communication is

given. Therefore, studying the application of fixed-time

synchronization in secure communication will be our

future research interest.

STM: e0iðtÞ ¼ �aiðtÞeiðtÞ þ
Xn

j¼1

bijðtÞFj ejðtÞ
� �

þ
Xn

j¼1

cijðtÞFj ej hjt
� �� �

þ BiðtÞeiðtÞ þ RiðtÞ
LTM: e0iðtÞ ¼ �~eiðtÞeiðtÞ þ Fi eiðtÞð Þ þ QiðtÞ
STM:Deijt¼tk

¼ ei tkð Þ � ei t
�
k

� �
¼ �piei tkð Þ

LTM:Deijt¼tk
¼ ei tkð Þ � ei t

�
k

� �
¼ �qiei tkð Þ:

ð24Þ
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