
ORIGINAL ARTICLE

Axiomatic fuzzy set theory-based fuzzy oblique decision tree
with dynamic mining fuzzy rules

Yuliang Cai1 • Huaguang Zhang2 • Shaoxin Sun1 • Xianchang Wang3 • Qiang He4

Received: 22 April 2019 / Accepted: 22 November 2019 / Published online: 11 December 2019
� Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
This paper proposes a novel classification technology—fuzzy rule-based oblique decision tree (FRODT). The neighbor-

hood rough sets-based FAST feature selection (NRS_FS_FAST) is first introduced to reduce attributes. In the axiomatic

fuzzy set theory framework, the fuzzy rule extraction algorithm is then proposed to dynamically extract fuzzy rules. And

these rules are regarded as the decision function during the tree construction. The FRODT is developed by expanding the

unique non-leaf node in each layer of the tree, which results in a new tree structure with linguistic interpretation. Moreover,

the genetic algorithm is implemented on r to obtain the balanced results between classification accuracy and tree size. A

series of comparative experiments are carried out with five classical classification algorithms (C4.5, BFT, LAD, SC and

NBT), and recently proposed decision tree HHCART on 20 UCI data sets. Experiment results show that the FRODT

exhibits better classification performance on accuracy and tree size than those of the rival algorithms.

Keywords Fuzzy oblique decision tree � Fuzzy rule extraction � AFS theory � Decision function

1 Introduction

Decision trees have received great attention on account of

its significant potential applications, especially in statistics,

machine learning and pattern recognition [1–3]. They have

been widely used in classification problems due to the

following three advantages: (1) the classification perfor-

mance of the decision trees is close to or even outper-

forming other classification models, (2) the decision trees

can handle different types of attributes, such as numeric

and categorical, and (3) the results of decision trees are

easy to be comprehended [4–6].

The decision trees grow in a top-down way, and recur-

sively divide the training samples into segments having

similar or the same outputs. Until now, there are three types

of decision trees: ‘‘standard’’ decision trees [7–10], fuzzy

decision trees [11–15], and oblique decision trees [16–22].

‘‘Standard’’ decision trees are the simplest decision trees.

However, they are incapable of addressing uncertainties

consistent with human cognitive, such as vagueness and

ambiguity. In this case, fuzzy decision trees with fuzzy

uncertainty measure came into fashion [11–15]. For

example, a novel fuzzy decision tree was introduced for the

data mining task [11]. A new type of coherence
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membership function based on AFS theory was established

to describe the fuzzy concepts, and fuzzy rule-based clas-

sifier was proposed in [12]. Moreover, based on fuzzy set

theory, the new tree construction technology for data

classification problem was presented in [14]. The above

decision trees [6–15] take one attribute as decision function

during the tree construction. However, if these data are

more properly segmented by the hyperplanes, they may

lead to complex and inaccurate trees. In this event, oblique

decision trees are more suitable.

Many profound results on oblique tree induction algo-

rithms have been obtained [16–22]. For example, Erick

et al. improved the decision function by combining evo-

lutionary algorithm with genetic algorithm to increase the

efficiency of tree building [17]. A new bottom-up oblique

decision tree structure framework was presented in [19].

Moreover, Wickramarachchi et al proposed an effective

heuristic approach to build oblique decision trees [22].

These evolutionary algorithms greatly improve the effi-

ciency of tree building; however, they lack of semantic

interpretation. Fortunately, the AFS theory-based classifi-

cation methods have received extensive attention because

of its significant advantage with semantic interpretation for

classification results. Motivated by the above discussion,

this paper combines AFS theory with decision tree tech-

nology to construct the new fuzzy oblique decision tree

endowed with readable linguistic interpretation.

The structure of the FRODT is depicted in Fig. 1. All

sample data are contained at the root node of the FRODT.

At this node, we adopt the FREA to extract fuzzy rules and

the samples that have not been classified by these rules are

placed on an additional non-leaf node. At the non-leaf

node, we use the FREA again to generate new fuzzy rules.

And the samples that have not been classified by these new

rules are also placed on an additional non-leaf node. The

growth of the FRODT is repeated until the stopping con-

dition has been satisfied.

The main contributions of the current work are sum-

marized as four aspects:

– The Neighborhood Rough Sets-based FAST Feature

Selection (NRS_FS _FAST) algorithm is introduced to

reduce data redundancy and improve classification

efficiency.

– A new fuzzy rule extraction algorithm (FREA) is

proposed to decrease the scale of the tree.

– The AFS theory is adopted to increase semantic

interpretation and decrease the human subjectivity in

selecting membership functions.

– The genetic algorithm is implemented on r to balance

the results between classification accuracy and tree size.

This paper is arranged as follows: the NRS_FS_FAST

algorithm is introduced in Sect. 2. In Sect. 3, the basic

notions and properties of the AFS theory are provided.

Section 4 describes the construction of the FRODT in

detail. In Sect. 5, several comparative experiments are

conducted to verify the superiority and interpretability of

the FRODT. Section 6 concludes this paper.

2 The neighborhood rough sets-based FAST
feature selection (NRS_FS_FAST)
algorithm

2.1 The neighborhood rough set

The basic notations of the neighborhood rough set are

introduced in this section, and the readers can refer to the

details in [23, 24].

The data can be denoted as NDT ¼ hU;A;Di, where
U is a non-empty set of samples fx1; x2; x3; . . .; xng, A is a

condition attribute set and D is a decision attribute. NDT ¼
hU;A;Di is called as a neighborhood decision system.

Definition 1 ([24]). Consider a neighborhood decision

system NDT ¼ hU;A;Di, for 8xi 2 U and B � A, the

neighborhood dBðxiÞ of xi is defined as:

dBðxiÞ ¼ fxj j xj 2 U;DBðxi; xjÞ� dg; 1� i; j� n; ð1Þ

where the metric D is a metric function.

Definition 2 ([24]). Let NDT ¼ hU;A;Di be a neighbor-

hood decision system, the decision attribute D partitions

the domain U into N equivalence classes with

X1;X2; . . .;XN . For arbitrary B � A, the lower and upper

approximations of the decision attribute D with regard to

the condition attribute set B are described as:Fig. 1 The overall structure of the FRODT
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NBD ¼
[N

k¼1

NBXk; ð2Þ

NBD ¼
[N

k¼1

NBXk; ð3Þ

where:

NBXk ¼ fxi j dBðxiÞ � Xk; xi 2 U; 1� i� ng; ð4Þ

NBXk ¼ fxi j dBðxiÞ \ Xk 6¼ £; xi 2 U; 1� i� ng; ð5Þ

and the lower approximation is usually called decision

positive region, denoted by POSBðDÞ.
The decision boundary region of the decision attribute

D with regard to the condition attribute set B is defined as:

BNðDÞ ¼ NBD� NBD: ð6Þ

Figure 2 shows a binary classification problem with two

condition attributes B1 and B2. The decision attribute

D partitions the domain U into two equivalence classes X1

and X2. X1 is labeled with ‘‘*’’ and X2 is labeled with ‘‘?’’.

Let the metric D be a circular neighborhood with radius d
for each condition attribute. Given three samples x1, x2 and

x3, on the basis of above definitions, we can get

dB1
ðx1Þ � X1, dB1

ðx3Þ � X2, dB1
ðx2Þ \ X1 6¼ £ and

dB1
ðx2Þ \ X2 6¼ £. Therefore, x1 2 NB1

X1, x3 2 NB1
X2 and

x2 2 B1NðDÞ. Similarly, we can obtain dB2
ðx1Þ � X1,

dB2
ðx3Þ � X2, dB2

ðx2Þ \ X1 6¼ £ and dB2
ðx2Þ \ X2 6¼ £.

Therefore, x1 2 NB2
X1, x3 2 NB2

X2 and x2 2 B2NðDÞ.

Definition 3 ([24]). The dependence degree of the deci-

sion attribute D on the condition attribute set B is defined

as:

cBðDÞ ¼ jPOSBðDÞj=jUj: ð7Þ

Obviously, 0� cBðDÞ� 1. If cBðDÞ ¼ 1, the decision

attribute D completely depends on the condition attribute

set B.

Definition 4 ([24]). Consider a neighborhood decision

system hU;A;Di, for any B � A, a 2 A� B, the signifi-

cance of the attribute a to condition attribute set B is given

as:

SIGða;B;DÞ ¼ cB[aðDÞ � cBðDÞ: ð8Þ

2.2 The NRS_FS_FAST algorithm

As we all know, setting the same neighborhood size for all

attributes can affect the results of feature selection, due to

the fact that the data distribution of each attribute is often

different. To settle this issue, the NRS_FS_FAST algo-

rithm is introduced in this paper, and the pseudo-code is

summarized in Algorithm 1.

Fig. 2 The binary classification example
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Definition 5 ([25]). Let NDT ¼ hU;A;Di be a neighbor-

hood decision system, SD ¼ fSD1; SD2; . . .; SDmg is a set

of standard deviation of each attribute, where m is the

number of attributes. The relationship matrix of neigh-

borhood relation Ni of the attribute i on U is defined as:

MðNiÞ ¼ ðrp;qÞn�n; ð9Þ

where

rp;q ¼
1; Dðxp; xqÞ� di
0; others

�
; 1� p� n; 1� q� n; ð10Þ

di ¼ SDi=L denotes the threshold of neighborhood size,

and L is a given parameter to control the size of

neighborhood.

3 The introduction of the AFS theory

This section mainly recalls the notations of the AFS theory.

The detailed introduction can be referred to [26–31].

Table 1 The description of

samples
Age Appearance Wealth Gender Hair color

Height Weight Salary Estate Male Female Black White Yellow

x1 20 1.9 90 1 0 1 0 6 1 4

x2 13 1.2 32 0 0 0 1 4 3 1

x3 50 1.7 67 140 34 0 1 6 1 4

x4 80 1.8 73 20 80 1 0 3 4 2

x5 34 1.4 54 15 2 1 0 5 2 2

x6 37 1.6 80 80 28 0 1 6 1 4

x7 45 1.7 78 268 90 1 0 1 6 4

x8 70 1.65 70 30 45 1 0 3 4 2

x9 60 1.82 83 25 98 0 1 4 3 1

x10 3 1.1 21 0 0 0 1 2 5 3
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3.1 AFS algebra

In order to explain the AFS algebra, the following example

is given.

Example 1 Consider a set of data with 10 samples X ¼
fx1; . . .; x10g and the features of data are described by real

numbers (age, appearance, and wealth), Boolean values

(gender) and the order relations (hair color), shown in

Table 1.

In Table 1, the order number i in the ‘‘hair color’’ col-

umns denotes that the hair color of x 2 X has ordered

according to our perception. Take the order relations of

‘‘hair black,’’ for example,

x7 [ x10 [ x4 ¼ x8 [ x2 ¼ x9 [ x5 [ x6 ¼ x3 ¼ x1, where

xi [ xj means that the hair of xi is more closer to black

color than that of xj.

Let M ¼ fm1;m2; . . .;m12g be a set of simple fuzzy

concepts on X and each m 2 M associates with one single

attribute. These fuzzy concepts can be explained as fol-

lows: m1: ‘‘old persons’’, m2: ‘‘tall persons’’, m3: ‘‘heavy

persons’’, m4: ‘‘high salary’’, m5: ‘‘more estate’’, m6:

‘‘male’’, m7: ‘‘female’’, m8: ‘‘black hair persons’’, m9:

‘‘white hair persons’’, m10: ‘‘yellow hair persons’’, m11:

‘‘young persons’’, and m12: ‘‘the persons about 40 years

old’’. For any A � M,
Q

m2A m indicates the conjunction

(i.e., the logic operator ‘‘and’’) of concepts in A. For

example, for A ¼ fm1;m6g � M,
Q

m2A m indicates the

new complex fuzzy concept ‘‘old males’’ associated with

two attributes ‘‘age’’ and ‘‘gender’’.P
i2Ið
Q

m2Ai
mÞ is the formal sum ofQ

m2Ai
m ðAi � M; i 2 I, and I is a non-empty index set),

which denotes the disjunction (i.e., the logic operator ‘‘or’’)

of the complex fuzzy concept
Q

m2Ai
m. For example, c ¼

m1m6 þ m1m3 þ m2 can be interpreted as ‘‘old males’’ or

‘‘heavy old persons’’ or ‘‘tall persons’’. By the comparison

of the complex fuzzy concepts m3m8 þ m1m4 þ m1m6m7 þ
m1m4m8 and m3m8 þ m1m4 þ m1m6m7, we can get that the

fuzzy concepts in the left side and right side are equivalent.

This is due to the fact that, for any sample x, the degree of

x belonging to the fuzzy concept m1m4m8 is always less

than or equal to that of m1m4. Therefore, the term m1m4m8

is redundant in the left side.

Take two complex fuzzy concepts with the form a :
m1m4 þ m2m5m6 and t : m5m6 þ m5m8 into consideration,

the semantics of ‘‘a or t’’ and ‘‘a and t’’ can be explained

as:

‘‘a or t’’: m1m4 þ m2m5m6 þ m5m6 þ m5m8 =

m1m4 þ m5m6 þ m5m8;

‘‘a and t’’: m1m4m5m6 þ m2m5m6 þ m1m4m5m8þ
m2m5m6m8 ¼ m1m4m5m6 þ m2m5m6 þ m1m4m5m8.

The
P

i2Ið
Q

m2Ai
mÞ forms AFS algebra, and the set EM� is

given as:

EM� ¼
X

i2I

Y

m2Ai

m

 !
jAi � M; I is a non-empty index set

( )
;

ð11Þ

where the symbols R and P denote the disjunction and

conjunction of fuzzy concepts, respectively.

For any fuzzy concepts m, n, and h 2 M, the AFS

algebra is based on the following assumptions:

(1) ‘‘m and m and n’’ is equivalent to ‘‘m and n’’;

(2) ‘‘m and n’’ is equivalent to ‘‘n and m’’;

(3) ‘‘ m and n and h’’ or ‘‘n and m’’ is equivalent to

‘‘n and m’’.

Definition 6 ([27]) Consider a simple fuzzy concept setM,

the binary equivalence relation R on EM� can be described

as: for any
P

i2Ið
Q

m2Pi
mÞ, and

P
j2Jð
Q

m2Qj
mÞ 2 EM�,

ð
P

i2Ið
Q

m2Pi
mÞÞRð

P
j2Jð
Q

m2Qj
mÞÞ ,

(1) for arbitrary Piði 2 IÞ, there exists Qhðh 2 JÞ such

that Pi � Qh;

(2) for arbitrary Qjðj 2 JÞ, there exists Pkðk 2 IÞ such

that Qj � Pk.

The notation
P

i2Ið
Q

m2Pi
mÞR

P
j2Jð
Q

m2Qj
mÞ means

that
P

i2Ið
Q

m2Pi
mÞ and

P
j2Jð
Q

m2Qj
mÞ are equivalent

under equivalence relation R. For example,

n ¼ m3m8 þ m1m4 þ m1m6m7 þ m1m4m8,

f ¼ m3m8 þ m1m4 þ m1m6m7 2 EM, by Definition 6, we

have n ¼ f.

Theorem 1 ([27]) Consider a simple fuzzy concept set M,

the ðEM;_;^Þ constitutes a completely distributive lattice

if
P

i2Ið
Q

m2Pi
mÞ 2 EM and

P
j2Jð
Q

m2Qj
mÞ 2 EM satisfy

the following conditions:

X

i2I

Y

m2Pi

m

 !
_
X

j2J

Y

m2Qj

m

0

@

1

A

¼
X

k2IbcJ

Y

m2Wk

m

 !
;

ð12Þ
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X

i2I

Y

m2Pi

m

 !
^
X

j2J

Y

m2Qj

m

0
@

1
A

¼
X

i2I;j2J

Y

m2Pi[Qj

m

0

@

1

A;

ð13Þ

where IbcJ denotes the disjoint union of I and

J. Therefore, Wk ¼ Pk if k 2 I, and Wk ¼ Qk if k 2 J.

Definition 7 ([30]) Given a simple fuzzy concept m on X,

the binary relation Rm is described as: for any u; v 2
X; ðu; vÞ 2 Rm , u belongs to the fuzzy concept m, and the

degree of u belonging to m is larger than or equals to that of

v; or u belongs to m to some extent while v does not belong

to m.

3.2 AFS structure

AFS structure can produce various lattice representations

of the fuzzy logic operations and fuzzy membership

degrees [27, 30].

Definition 8 ([30]) Given a simple fuzzy concept set M,

sðu; vÞ=fnjn 2 M; ðu; vÞ 2 Rng 2 2M , if s meets the fol-

lowing conditions:

(1) for any ðu; vÞ 2 X � X; sðu; vÞ � sðu; uÞ,
(2) for any

ðu; vÞ; ðv;wÞ 2 X � X; sðu; vÞ \ sðv;wÞ � sðu;wÞ,
where 2M is the power set ofM, and ðM; s;XÞ is considered
as AFS structure.

For instance, when x ¼ x4; y ¼ x1; x2. . .; x10, respec-

tively, one has

sðx4; x1Þ ¼ fm1;m4;m5;m6;m8;m10g;
sðx4; x2Þ ¼ fm1;m2;m3;m4;m5;m6;m8g;
sðx4; x3Þ ¼ fm1;m2;m3;m5;m6;m8;m10g;
sðx4; x4Þ ¼ fm1;m2;m3;m4;m5;m6;m8;m9;m10;m11;m12g;
sðx4; x5Þ ¼ fm1;m2;m3;m4;m5;m6;m8;m10g;
sðx4; x6Þ ¼ fm1;m2;m5;m6;m8;m10g;
sðx4; x7Þ ¼ fm1;m2;m6;m9;m10g;
sðx4; x8Þ ¼ fm1;m2;m3;m5;m6;m8;m9;m10g;
sðx4; x9Þ ¼ fm1;m6;m8g;
sðx4; x10Þ ¼ fm1;m2;m3;m4;m5;m6;m9;m10g:

Definition 9 ([30]) Given a simple fuzzy concept set M,

for any A � M and x 2 X; AsðxÞ � X is defined as:

AsðxÞ ¼ fy 2 Xjsðx; yÞ � Ag: ð14Þ

For instance, if x ¼ x4, A ¼ fm1;m2;m3g � M, we have

sðx4; x2Þ � A, sðx4; x3Þ � A, sðx4; x4Þ � A, sðx4; x5Þ � A,

sðx4; x8Þ � A, and sðx4; x10Þ � A (refer to Definition 8).

Then Asðx4Þ ¼ fx2; x3; x4; x5; x8; x10g can be obtained. In

summary, AsðxÞ is determined by data distribution and the

semantic interpretations of fuzzy sets.

Definition 10 ([27]) Given a simple fuzzy concept x on X,

if qx : X ! Rþ satisfies the following two conditions:

(1) qxðxÞ ¼ 0 , ðx; xÞ 62 Rx; 8x 2 X;

(2) qxðxÞ	 qxðyÞ , ðx; yÞ 2 Rx; 8x; y 2 X,

qx is called as the weight function of fuzzy concept x.

Definition 11 ([27]). Consider a simple fuzzy concept set

M and weight function qm of m 2 M, for any x 2 X,

Ai � M, the membership degree of x belonging to f ¼P
i2Ið
Q

m2Ai
mÞ 2 EM is given as:

lfðxÞ ¼ supi2I infm2Ai

P
u2As

i
ðxÞ qmðuÞNuP

u2X qmðuÞNu

; ð15Þ

here Nu is the number that how many times u has been

observed.

From Eq. (15), we can see that lfðxÞ is determined by

As
i ðxÞ, simple concept set Ai and weight function qmðuÞ.

From Definition 9, AsðxÞ is determined by data distribution

and the semantics of fuzzy sets. Thus, if the weight func-

tion has been determined, the membership function is only

related to the data distribution and the semantics of fuzzy

sets.

4 The construction of the FRODT

4.1 The expression of fuzzy rules

Let X ¼ ½xij
n�m be a sample data set, here m is the feature

numbers and n is the sample numbers. The set of class

labels of X is C ¼ f1; 2; . . .; cg, and the jth feature of X is

fjðj ¼ 1; 2; . . .;mÞ. Moreover, Xlðl ¼ 1; 2; . . .; cÞ is the set

of samples belonging to the lth class.

For simplicity, the fuzzy concepts ‘‘small’’, ‘‘medium’’

and ‘‘big’’ are adopted to describe the characteristics of

each feature fj. We use fj;p to represent the pth fuzzy con-

cept of the jth attribute. The linguistic interpretation of

fj;pðp ¼ 1; 2; 3Þ is that fj is small, medium, and big,

respectively.
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The main features of data can be well described by the

fuzzy IF-THEN rules. In 1997, Zadeh proposed a method

of expressing fuzzy rules [32]:

Rule: if xi1 is big and xi2 is small, then the sample xi falls

into the first class.

By the defined fuzzy concepts fj;p, we can rewrite the

above rule:

Rule: if the sample xi is f1;3 and f2;1, then it is classified

as the first class.

According to the definitions of logical operations ‘‘and’’

and ‘‘or’’ in Example 1, we can redescribe the above rule:

Rule: if the sample xi is f1;3f2;1, then it falls into the first

class.

4.2 Fuzzy rule extraction

Fuzzy IF-THEN rules are critical for constructing the

FRODT. The classical form of fuzzy association rules is

A ) B. It means that an element satisfies the condition

A can also satisfy the condition B. The association degrees

of association rules were measured by the Support and

Confidence indices [33]. Later, Fuzzy Support and Fuzzy

Confidence indices were applied in classification problems

[34]. Inspired by [34], based on AFS theory, we define the

Fuzzy Confidence indice of this paper, as follows:

Neural Computing and Applications (2020) 32:11621–11636 11627
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FConf ðF ) cÞ ¼
P

x2Xc
lFðxÞP

x2X lFðxÞ
; ð16Þ

lFðxÞ ¼
P

f2A lf ðxÞ
jAj ; ð17Þ

where the former part of the fuzzy rule corresponds to the

complex fuzzy concept F, and the class label corresponds

to c. lFðxÞ (lf ðxÞ) demonstrates the average membership

degree (membership degree) of x that is described by the

complex fuzzy concept F (simple fuzzy concept f), and |.|

represents the cardinality of a set. Moreover, A is the set of

all simple fuzzy concepts contained in F, for example, if

F ¼ f11f22, then A ¼ ff11; f22g; jAj ¼ 2. The bigger the

fuzzy confidence degree is, the more suitable complex

fuzzy concept F is for describing the lth class.

The FREA based on Fuzzy Confidence is proposed to

extract only one single rule for each class, shown in

Algorithm 2.

4.3 The architecture of the FRODT

The architecture of the FRODT is shown in Fig. 3, and the

build-up process is as follows.

Firstly, all sample data X is contained at the root node of

the FRODT. At this node, we use the FREA to extract

fuzzy rules, expressed as R1;lðl ¼ 1; . . .; c1Þ with ‘‘1’’

denoting the first layer and ‘‘l’’ indicating the lth category.

Since only one rule is extracted for each class, thus c1 ¼ c.

Each class is assigned a leaf node, which contains as many

samples that belongs to this class as possible. The samples

that cannot be covered by these rules are placed on an non-

leaf node X1;r. Besides, the threshold r is applied to judge

whether the sample can be covered by these rules or not. In

order to balance the accuracy of classification and the size

of tree, we propose a new algorithm—Rules Covering

Samples Algorithm (RCSA), as shown in Algorithm 3.

Secondly, on the non-leaf node X1;r, we use the FREA

again to extract fuzzy rules, expressed as

R2;lðl ¼ 1; . . .; c2Þ. Each class is also assigned a leaf node

and the samples that cannot be covered by these rules are

placed on the second non-leaf node X2;r.

. .
.

Finally, on additional non-leaf node Xh;r, the FRODT

continues to grow until it meets one of the three stopping

conditions: (1)Xh;r ¼ £, (2) Xh;r ¼ Xh�1;r and (3) ch ¼ 1.

They, respectively, represent that, in the hth layer of the

FRODT, the rules cover all samples; the rules lose its

effect; and the samples belong to the same class. In the

second case, we select the class with the largest number of

samples as the final category.

The construction process of FRODT is summarized in

Algorithm 4.

Fig. 3 The overall structure of the FRODT
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4.4 Analysis of the time complexity

In this subsection, we analyze the time complexity of

Algorithms 1–4. Assuming that the Algorithms 1–4 are

conducted on one data set with n training instances, m at-

tributes, and c class label. In general, the number of

training instances is greater than that of attributes, i.e.,

n[m. Algorithm 1 is composed of two main phases:

GetNeighborRelation and SelectAttributes. By Definition 5

and Algorithm 1, we can get that the time complexity of

GetNeighborRelation is Oðm � n � nÞ, and the time com-

plexity of SelectAttributes is Oðm � m � nÞ. Since n[m,

thus the time complexity of Algorithm 1 is Oðm � n � nÞ.
For Algorithm 2, the maximum length of fuzzy rule is

H ¼ minfMaxR; c � mg, thus the time complexity of

Algorithm 2 is OðH � cÞ. For Algorithm 3, it is easy to get

that the time complexity of Algorithm 3 is O(1). For

Algorithm 4, the number of layers of the FRODT is the

number of samples in the worst situation, i.e., only one

sample of training data is determined on each layer of the

tree. Therefore, the time complexity of Algorithm 4 is

OðH � c � nÞ in the worst situation. However, the depth of

the tree is on the order of O(logn). Thus, the total time

complexity of the Algorithm 4 is OðH � c � lognÞ.

5 Experimental results and analysis

In this section, we compare the FRODT with HHCAT [19]

and five classical classification algorithms such as SC [5],

C4.5 [7], BFT [35], LAD [36], and NBT [37] under the

Waikato environment for knowledge analysis (WEKA) 3.6

framework [38]. We use ten times tenfold cross-validation

to estimate the classification accuracy and tree size of the

FRODT. In the experiment, the parameter L in the

NRS_FS_FAST is set to 2, the number of simple fuzzy

concepts on each attribute is set to 3, and the adjustment

factors MaxR and b in the FREA are set to 5 and 0.02,

respectively. For the sake of simplicity, Nu ¼ 1 and

qmðuÞ ¼ 1 in this paper.

5.1 The experiment on Iris data

Iris data is one of the most commonly used data in the UCI

machine learning database. We apply the proposed algo-

rithm to Iris data set, and the detailed process is as follows.
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First, the NRS_FS_FAST algorithm is applied to select

an attribute subset, which has petal length, petal width,

sepal length and sepal width, respectively. That is, the

number of attributes is not reduced on iris data.

Second, according to the AFS theory, we can get the

fuzzy concepts fi;j; i ¼ 1; 2; 3; 4; j ¼ 1; 2; 3 of each attri-

bute. For example, the semantics of f2;2 is ‘‘ the width of

sepal is medium ’’. Moreover, by Eq. (15), we can get the

membership functions of these concepts.

Then, we adopt the FREA to generate fuzzy rules that

are used for building the FRODT. Given parameter r =0.6,

we can get a tree depicted in Fig. 4a. And the corre-

sponding rules of the FRODT are given as:

IF the sample x is F1;1, THEN it belongs to class 1

�! R1;1,

ELSE IF x is F1;2, THEN it belongs to class 2 �! R1;2,

ELSE IF x is F1;3, THEN it belongs to class 3 �! R1;3,

where F1;1 ¼ f3;1f4;1f1;1f2;3, F1;2 ¼ f3;2f4;2, F1;3 ¼ f3;3f4;3f1;3.

The linguistic interpretations of the fuzzy rules are that

‘‘ the samples that have short petal length, short petal

width, short sepal length and long sepal width belong to

class 1; the samples that have medium petal length, med-

ium petal width belong to class 2; and the samples that

have long petal length, long petal width and long petal

length belong to class 3 ’’. Moreover, Fig. 4b presents the

tree builded by the C4.5 algorithm. It can be observed that

the structure of the FRODT is obviously simpler than that

(a) (b)Fig. 4 a The structure of the

FRODT, b the tree obtained by

C4.5
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of C4.5 tree. Therefore, the tree size in this paper is less

than C4.5.

Moreover, the three-dimensional classification result of

Iris data by fuzzy rules R1;1;R1;2; and R1;3 is shown in

Fig. 5. The red circles indicate the samples determined by

the rule R1;1, the green squares represent the samples

determined by the rule R1;2, and the blue diamonds stand

for the samples determined by the rule R1;3. Besides, arrow

1 indicates that the rule R1;2 classifies the samples that

belong to the third class into the second class, and arrow 2

represents that the rule R1;3 classifies the samples that

belong to the second class into the third class. In addition,

the membership degrees of iris training data on fuzzy rules

R1;1;R1;2 and R1;3 are depicted in Fig. 6. It shows that the

samples in the first class originally belong to the rule R1;1

with the largest membership degrees, the samples in the

second class originally belong to the rule R1;2 with the

largest membership degrees, and the samples in the third

class originally belong to the rule R1;3 with the largest

membership degrees. That is, we can obtain satisfactory

results by using fuzzy rules R1;1;R1;2 and R1;3 to classify

the iris data set.

5.2 Comparison of the FRODT and HHCART

In order to demonstrate the superiority of the proposed

method, we compare FRODT with HHCART of [19] in

this section.

Table 2 summarizes the results in terms of classification

accuracy and tree size along with the respective standard

deviations. It shows that the classification accuracy of the

FRODT is higher than HHCART tested for all data sets

except Boston Housing and Glass. From the ‘‘tree size’’

column, it demonstrates that the FRODT produces fewer

leaf nodes than the chosen benchmarks on Boston Housing,

Bupa, Glass, Heart and Survival data sets. Moreover, from

the last line of Table 2, we can obtain that the average

classification accuracy and tree scale of the FRODT are

better than those of the rival algorithms. Moreover, Fig. 7

depicts these results. These results advocate that our

strategy has more preferable performance than the com-

parison algorithms.

5.3 Comparison of the FRODT and five
conventional decision trees

In order to better verify the superiority of the FRODT, we

also compare FRODT with five conventional decision trees

such as SC, C4.5, BFT, LAD, and NBT on 20 UCI data

sets, shown in Table 3.

The classification accuracies of the FRODT and five

state-of-the-art methods on 20 UCI data sets are presented

in Table 4. The overall picture conveyed by the results in

Table 4 is clearly in favor of the FRODT. The FRODT

outperforms the other methods on most data sets. In par-

ticular, it is not as good as the traditional decision tree SC

only in three data sets and BFT or C4.5 only in four data

sets and LAD only in five data sets. Besides, compared

with the chosen benchmarks, the FRODT obtains the

highest average classification accuracy. Note that the

symbol ‘‘H’’ indicates that the NBT is inoperative on

AMLALL data set.

Table 5 shows the tree sizes of the FRODT and five

chosen benchmarks on 20 UCI data sets. It can be observed

that the FRODT is better than BFT, C4.5, LAD, and SC on

all data sets. In particular, from the last line of Table 5, we

can get that the FRODT has the least average tree size.

Fig. 5 The three-dimensional classification result of Iris training data

by fuzzy rules R1;1;R1;2 and R1;3
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Therefore, we can conclude that the FRODT can generate

more simpler decision trees. Moreover, we plot the results

in Tables 4 and 5 as two bar diagrams, as shown in Figs. 8

and 9. It can be seen that the FRODT obtains superior

classification performance than the chosen benchmarks on

accuracy and tree scale.

Remark 1 The unique features of the FRODT are high-

lighted in the following four aspects. Firstly, the use of

AFS theory can reduce the subjectivity of choosing mem-

bership functions. Secondly, the dynamic mining fuzzy

rules that are used as the decision functions at each non-

leaf node can reduce the size of the tree. Thirdly, FRODT

overcomes the shortcoming that the oblique decision trees

lack semantic interpretation. Finally, the ideal threshold r
can be obtained by using the genetic algorithm, and the

balance between classification accuracy and tree size can

be achieved.

The main advantages of the results over others are as

follows: (1) the FRODT performs better in both average

classification accuracy and tree size than the chosen

benchmarks; (2) different from the ‘‘traditional’’ decision

trees where only one feature is considered on each node,

the FRODT takes one dynamic mining fuzzy rule which

involves multiple features at each node to simplify tree

structure; and (3) the FRODT is endowed with readable

linguistic interpretation.

5.4 The Holm test

The Holm test [39] is applied to analyze whether FRODT

is significantly better than other decision trees, and the test

Table 2 The classification accuracy (%) and tree size along with the respective standard deviations of the HHCART(A), HHCART(D) and

FRODT, and the best scores are indicated in boldface

Dataset Classification accuracy Tree size

HHCART(A) HHCART(D) FRODT HHCART(A) HHCART(D) FRODT

Boston housing 83.4 ± 1.2 82.0 ± 1.1 81.72 ± 0.07 7.0 ± 2.9 8.0 ± 2.8 5.3 ± 1.0

Breast cancer 97.0 ± 0.3 97.0 ± 0.3 97.13 ± 0.24 2.3 ± 0.4 2.6 ± 1.1 6.5 ± 0.4

BUPA 64.9 ± 3.0 64.8 ± 2.1 66.58 ± 2.59 7.8 ± 1.5 10.2 ± 3.0 7.3 ± 0.4

Glass 61.9 ± 3.1 61.7 ± 3.4 51.53 ± 1.95 8.8 ± 3.1 10.7 ± 2.7 5.9 ± 0.5

Heart 75.0 ± 2.3 75.2 ± 3.6 81.56 ± 1.41 5.5 ± 1.9 8.1 ± 3.1 4.6 ± 0.2

Pima Indian 73.2 ± 1.4 73.7 ± 1.5 74.96 ± 1.05 11.9 ± 6.5 11.5 ± 8.4 13.6 ± 0.9

Wine 91.4 ± 1.8 88.3 ± 1.8 94.68 ± 1.01 3.4 ± 0.3 4.7 ± 0.7 3.5 ± 0.4

Survival 72.5 ± 1.7 72.2 ± 2.2 73.61 ± 1.08 6.5 ± 2.6 10.6 ± 5.5 3.2 ± 0.2

Average 77.41 76.86 77.72 6.65 8.30 6.23

Fig. 7 The classification accuracy (%) and tree size of the HHCART(A), HHCART(D) and FRODT
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statistic for comparing the jth classifier and the kth classi-

fier is as follows:

Z ¼Rankj � Rankk

SE
; ð18Þ

Rankj ¼
1

N

XN

i¼1

r
j
i ; ð19Þ

here SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ=ð6� NÞ

p
, l is the number of classi-

fiers, N is the number of data sets, r
j
i is the ranking of the

jth classifier on the ith data set, and Rankj is the average

ranking of the jth classifier on the entire data sets.

Statistic Z follows the standard normal distribution.

According to Z value, we can get the corresponding

probability p. Moreover, the number of classifiers is l, the

number of Z needed to calculate is l, and the number of the

corresponding probability p is l - 1. We sort

p1 � p2 � . . .� pl�1, and compare pj with a=ð1� jÞ. If

p1\a=ðl� 1Þ, the hypothesis (two classifiers have the

same performance) should be rejected, and then compare

p2\a=ðl� 2Þ until the last.

According to Table 4 and Eq. (19), the average accu-

racy ranking of all decision trees can be obtained,

RankLAD ¼ 4:25, RankSC ¼ 4:05, RankBFT ¼ 4,

Table 3 Description of data sets in UCI database

No Data set Samples Attributes Classes

1 Iris 150 4 3

2 Wine 178 13 3

3 Wdbc 569 30 2

4 Credit 690 14 2

5 Heart 270 13 2

6 Haberman 306 3 2

7 Newthyroid 215 5 3

8 Wobc 699 9 2

9 Column 310 6 3

10 AMLALL 72 7129 2

11 Australian 690 14 2

12 Breast cancer 683 9 2

13 Bupa 345 6 2

14 Hepatitis 155 19 2

15 Ionosphere 351 34 2

16 Pima Indian 768 8 2

17 Sonar 208 60 2

18 Tae 151 5 3

19 Transfusion 748 4 2

20 Wpbc 198 32 2

Table 4 The classification accuracy (%) and standard deviation of different decision trees

Data set BFT C4.5 LAD SC NBT FRODT

Iris 94.40 ± 0.87 94.73 ± 0.80 94.47 ± 0.87 94.20 ± 1.00 93.47 ± 1.27 95.06 ± 0.90

Wine 89.55 ± 1.24 93.20 ± 1.35 87.08 ± 1.80 89.49 ± 1.69 96.07 ± 1.35 94.68 ± 1.01

Wdbc 93.04 ± 0.65 93.76 ± 0.49 90.65 ± 1.21 93.16 ± 0.62 93.95 ± 0.81 94.04 ± 0.74

Credit 84.61 ± 0.52 83.91 ± 0.71 79.48 ± 1.86 84.68 ± 0.65 84.17 ± 0.59 85.51 ± 0.02

Heart 77.22 ± 1.70 78.15 ± 2.26 72.37 ± 1.93 78.07 ± 1.63 80.93 ± 1.22 81.56 ± 1.41

Haberman 72.42 ± 1.47 72.16 ± 1.11 70.52 ± 2.42 73.24 ± 1.21 71.57 ± 1.31 74.57 ± 0.97

Newthyroid 92.93 ± 0.79 92.60 ± 0.98 88.88 ± 1.02 91.86 ± 0.93 92.37 ± 1.40 91.52 ± 1.87

Wobc 94.45 ± 0.54 95.01 ± 0.44 93.89 ± 0.76 94.74 ± 0.37 96.37 ± 0.43 96.78 ± 0.45

Column 80.06 ± 1.52 81.55 ± 1.19 77.32 ± 1.71 80.87 ± 1.29 80.71 ± 1.52 80.62 ± 0.91

AMLALL 84.10 ± 11.09 81.43 ± 10.99 95.41 ± 7.40 83.94 ± 10.86 H 84.42 ± 1.84

Australian 84.60 ± 4.38 83.91 ± 3.84 84.88 ± 4.33 84.68 ± 4.09 84.17 ± 4.41 85.50 ± 0.01

Breast

cancer

94.87 ± 2.43 95.43 ± 2.42 95.90 ± 2.13 95.08 ± 2.32 96.50 ± 2.35 97.13 ± 0.24

Bupa 67.03 ± 7.94 66.19 ± 7.20 67.40 ± 8.16 66.19 ± 7.62 63.82 ± 8.92 66.58 ± 2.59

Hepatitis 57.10 ± 10.92 60.71 ± 11.54 57.55 ± 12.66 56.97 ± 9.66 63.81 ± 11.18 66.17 ± 1.17

Ionosphere 89.22 ± 4.52 89.76 ± 4.64 89.36 ± 4.26 88.91 ± 4.28 90.02 ± 4.74 89.06 ± 0.94

Pima Indian 73.30 ± 4.09 73.99 ± 5.01 74.90 ± 4.05 74.23 ± 4.17 75.72 ± 4.04 74.96 ± 1.05

Sonar 71.63 ± 0.95 73.61 ± 9.34 75.91 ± 8.92 70.72 ± 9.42 77.11 ± 10.33 74.58 ± 2.47

Tae 54.46 ± 12.37 55.13 ± 13.26 52.15 ± 12.97 52.52 ± 11.65 53.84 ± 12.35 50.16 ± 2.76

Transfusion 77.95 ± 4.26 78.10 ± 3.96 77.79 ± 3.65 78.01 ± 3.95 75.44 ± 4.12 78.18 ± 0.71

Wpbc 74.55 ± 5.59 73.61 ± 8.69 73.63 ± 8.31 74.56 ± 5.37 75.06 ± 4.74 75.21 ± 1.81

Average 80.37 80.85 79.98 80.31 81.12 81.81

The best scores are indicated in boldface
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RankC4:5 ¼ 3:40, RankNBT ¼ 3:15, and RankFRODT ¼ 2:15.

The confidence level a is set to 0.05 and the results of the

Holm test are presented in Table 6. It shows that the first

three hypotheses are rejected and the last two hypotheses

are accepted. This means that the classification accuracy of

the FRODT is significantly better than that of traditional

decision trees LAD, SC, and BFT. Although the FRODT is

not significantly higher than C4.5 and NBT, the average

classification accuracy of the FRODT is higher than that of

C4.5 and NBT.

Table 5 The tree size and

standard deviation of different

decision trees

Data set BFT C4.5 LAD SC NBT FRODT

Iris 9.3 ± 2.1 4.6 ± 0.6 7.0 ± 0.3 7.4 ± 2 4.4 ± 2.9 3.1 ± 0.2

Wine 10.6 ± 2.7 9.6 ± 1.2 13.0 ± 5.1 10.3 ± 3.2 3.9 ± 2.6 3.5 ± 0.4

Wdbc 16.5 ± 4.6 22.4 ± 3.9 16.2 ± 2.6 12.6 ± 4.4 18.2 ± 3.6 9.7 ± 0.5

Credit 30.3 ± 23.3 51.7 ± 12.1 8.8 ± 2.2 10.5 ± 10.6 14.2 ± 7.7 2.0 ± 0

Heart 28.8 ± 11.9 34.6 ± 5.7 15.6 ± 1.2 15.4 ± 8.1 9.6 ± 3.7 4.6 ± 0.2

Haberman 20.2 ± 22.5 21.8 ± 11.4 8.4 ± 1.9 3.8 ± 3.8 9.9 ± 6.8 3.1 ± 0.2

Newthyroid 13.6 ± 2.8 14.9 ± 2.1 11.8 ± 1.9 11.8 ± 3.6 7.6 ± 3.2 5.3 ± 0.4

Wobc 31.0 ± 12.4 23.5 ± 5.5 13.6 ± 3.2 15.9 ± 7.1 5.7 ± 5.6 6.6 ± 0.4

Column 27.3 ± 11.2 23.2 ± 5.7 9.8 ± 0.9 13.3 ± 8.3 16.0 ± 5.1 8.1 ± 0.4

AMLALL 3.8 ± 0.9 4.3 ± 0.9 28.2 ± 2.0 3.2 ± 0.6 H 3.0 ± 0.7

Australian 30.3 ± 23.4 51.7 ± 12.2 30.3 ± 1.3 10.5 ± 10.7 14.2 ± 7.7 2.0 ± 0

Breast

cancer

26.1 ± 9.8 20.6 ± 5.1 30.9 ± 0.3 15.5 ± 6.1 5.5 ± 5.5 6.5 ± 0.4

Bupa 44.6 ± 26.8 49.6 ± 11.2 31.0 ± 0 26.7 ± 23.1 7.2 ± 3.3 7.3 ± 0.4

Hepatitis 21.1 ± 12.3 35.1 ± 8.1 31.0 ± 0 9.6 ± 9.3 3.5 ± 2.7 5.1 ± 0.3

Ionosphere 14.9 ± 6.9 26.8 ± 4.2 31.0 ± 0 9.9 ± 6.9 16.2 ± 3.7 4.5 ± 0.3

Pima Indian 49.4 ± 42.2 39.3 ± 13.7 31.0 ± 0 20.1 ± 16.0 4.7 ± 4.6 13.6 ± 0.9

Sonar 17.6 ± 7.3 27.9 ± 3.5 31.0 ± 0 10.5 ± 7.3 13.7 ± 2.6 6.8 ± 0.9

Tae 45.5 ± 12.0 51.8 ± 8.7 31.0 ± 0 31.2 ± 19.3 7.6 ± 2.1 4.6 ± 0.4

Transfusion 35.1 ± 34.1 12.1 ± 4.4 31.0 ± 0 12.6 ± 6.3 2.4 ± 1.6 4.6 ± 0.2

Wpbc 11.3 ± 9.6 22.1 ± 6.3 31.0 ± 0 4.1 ± 5.9 4.4 ± 3.2 3.9 ± 0.6

Average 24.37 27.38 22.08 12.75 8.89 5.39

The best scores are indicated in boldface

Fig. 8 The classification

accuracy of different decision

trees
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6 Conclusion

This paper proposes a new architecture of the FRODT

based on dynamic mining fuzzy rules. It is different from

the traditional tree construction methods that take one

single attribute or the combination of several attributes as

decision function. In order to eliminate data redundancy

and improve classification efficiency, the NRS_FS_FAST

algorithm is first introduced. And the AFS theory is

adopted to increase semantic interpretation and decrease

human subjectivity in selecting membership functions. In

the AFS theory framework, the FREA is proposed to

dynamically extract fuzzy rules. And in each layer of the

tree, the build-up of the FRODT is achieved by developing

the only one non-leaf node. Moreover, the genetic algo-

rithm is adopted to optimize the threshold r that can affect

the scale of the tree. Finally, a series of comparative

experiments have been carried out to show the superiority

of our algorithm.

It should be noted that the main disadvantage of the

FRODT is that the FREA extracts only one fuzzy rule for

each class. When dealing with large data sets, it is difficult

to discover more potential knowledge by leveraging one

rule extracted for each class. Therefore, how many rules

are extracted for each class is a direction of future research.

Moreover, the application of decision trees is often

related to the analysis goal and scenario. For example,

financial industry can use decision tree to evaluate loan

risk, insurance industry can use decision tree to forecast the

promotion of insurance products, medical industry can use

decision tree to generate assistant diagnostic disposal

model and so on. The decision trees are largely used in all

area of real life. Several typical applications on this topic

were discussed in [40] for business, in [41] for power

systems, in [42] for medical diagnosis, in [43] for intrusion

detection, and in [44] for energy modeling. Our paper also

deals with the data sets from different application domains,

such as the data sets including Wdbc, Heart, Haberman,

Column, Breast Cancer, Bupa, Pima Indian and Wpbc in

medical diagnosis area, and the data sets including Credit

and Australian in business area. How to apply the proposed

method to other application scenarios is also our future

research direction.
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Table 6 The Holm test

No Classifier Rankj�RankFRODT
SE

Z p a
l�j

1 LAD (4.25–2.15)/0.5916 3.5497 7.3244e-04 0.01
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1. López-Chau A, Cervantes J, López-Garca L, Lamont FG (2013)

Fisher’s decision tree. Expert Syst Appl 40(16):6283–6291

2. Mirzamomen Z, Kangavari MR (2017) A framework to induce

more stable decision trees for pattern classification. Pattern Anal

Appl 20(4):991–1004

3. Manwani N, Sastry PS (2012) Geometric decision tree. IEEE

Trans Syst Man Cybernet Part B (Cybernet) 42(1):181–192

4. Kevric J, Jukic S, Subasi A (2017) An effective combining

classifier approach using tree algorithms for network intrusion

detection. Neural Comput Appl 28(1):1051–1058

5. Breiman L (2017) Classification and regression trees. Routledge,

Abingdon

6. Azar AT, El-Metwally SM (2013) Decision tree classifiers for

automated medical diagnosis. Neural Comput Appl

23(7–8):2387–2403

7. Quinlan JR (2014) C4.5: programs for machine learning. Else-

vier, Amsterdam

8. Sok HK, Ooi MP, Kuang YC (2016) Multivariate alternating

decision trees. Pattern Recogn 50:195–209

9. Kumar PS, Yung Y, Huan TL (2017) Neural network based

decision trees using machine learning for alzheimer’s diagnosis.

Int J Comput Inf Sci 4(11):63–72

10. Wu CC, Chen YL, Liu YH (2016) Decision tree induction with a

constrained number of leaf nodes. Appl Intell 45(3):673–685

11. Shukla SK, Tiwari MK (2012) GA guided cluster based fuzzy

decision tree for reactive ion etching modeling: a data mining

approach. IEEE Trans Semicond Manuf 25(1):45–56

12. Liu X, Feng X, Pedrycz W (2013) Extraction of fuzzy rules from

fuzzy decision trees: an axiomatic fuzzy sets (AFS) approach.

Data Knowl Eng 84:1–25

13. Segatori A, Marcelloni F, Pedrycz W (2018) On distributed fuzzy

decision trees for big data. IEEE Trans Fuzzy Syst 26(1):174–192

14. Han NM, Hao NC (2016) An algorithm to building a fuzzy

decision tree for data classification problem based on the fuzzi-

ness intervals matching. J Comput Sci Cybernet 32(4):367–380

15. Sardari S, Eftekhari M, Afsari F (2017) Hesitant fuzzy decision

tree approach for highly imbalanced data classification. Appl Soft

Comput 61:727–741

16. Tan PJ, Dowe DL (2006) Decision forests with oblique decision

trees. In: Mexican international conference on artificial intelli-

gence, Springer, Berlin, Heidelberg, pp 593–603

17. Cantu-Paz E, Kamath C (2003) Inducing oblique decision trees

with evolutionary algorithms. IEEE Trans Evol Comput

7(1):54–68

18. Do TN, Lenca P, Lallich S (2015) Classifying many-class high-

dimensional fingerprint datasets using random forest of oblique

decision trees. Vietnam J Comput Sci 2(1):3–12

19. Barros RC, Jaskowiak PA, Cerri R (2014) A framework for

bottom-up induction of oblique decision trees. Neurocomputing

135:3–12

20. Patil SP, Badhe SV (2015) Geometric approach for induction of

oblique decision tree. Int J Comput Sci Inf Technol 5(1):197–201

21. Rivera-Lopez R, Canul-Reich J (2017) A global search approach

for inducing oblique decision trees using differential evolution.

In: Canadian conference on artificial intelligence, Springer,

Cham, pp 27–38

22. Wickramarachchi DC, Robertson BL, Reale M et al (2016)

HHCART: an oblique decision tree. Comput Stat Data Anal

96:12–23

23. Wang C, Shao M, He Q, Qian Y, Qi Y (2016) Feature subset

selection based on fuzzy neighborhood rough sets. Knowl-Based

Syst 111:173–179

24. He Q, Xie Z, Hu Q, Wu C (2011) Neighborhood based sample

and feature selection for svm classification learning. Neurocom-

puting 74(10):1585–1594

25. Zhang DW, Wang P, Qiu JQ, Jiang Y (2010) An improved

approach to feature selection. In: International conference on

machine learning and cybernetics, pp 488–493

26. Liu X (1998) The fuzzy sets and systems based on AFS structure,

EI algebra and EII algebra. Fuzzy Sets Syst 95(2):179–188

27. Liu X, Chai T, Wang W, Liu W (2007) Approaches to the repre-

sentations and logic operations of fuzzy concepts in the framework

of axiomatic fuzzy set theory i. Inf Sci 177(4):1007–1026

28. Wang B, Liu XD, Wang LD (2015) Mining fuzzy association

rules in the framework of AFS theory. Ann Data Sci

2(3):261–270

29. Menga E, Dan A, Lu J, Liu X (2015) Ranking alternative

strategies by SWOT analysis in the framework of the axiomatic

fuzzy set theory and the ER approach. J Intell Fuzzy Syst

28(4):1775–1784

30. Burra LR, Poosapati P (2016) A study of notations and illustra-

tions of axiomatic fuzzy set theory. Int J Comput Appl

134(11):7–12

31. Li Z, Duan X, Zhang Q, Wang C, Wang Y, Liu W (2017) Multi-

ethnic facial features extraction based on axiomatic fuzzy set

theory. Neurocomputing 242:161–177

32. Zadeh LA (1997) Toward a theory of fuzzy information granu-

lation and its centrality in human reasoning and fuzzy logic.

Fuzzy Sets Syst 90(2):111–127

33. Agrawal R, Imielinski T, Swami A (1993) Database mining: a

performance perspective. IEEE Trans Knowl Data Eng

5(6):914–925

34. Wang X, Liu X, Pedrycz W, Zhu X, Hu G (2012) Mining axio-

matic fuzzy set association rules for classification problems. Eur J

Oper Res 218(1):202–210

35. Shi H (2007) Best-first decision tree learning. University of

Waikato, Hamilton

36. Holmes G, Pfahringer B, Kirkby R, Frank E, Hall M (2002)

Multiclass alternating decision trees. Springer, Berlin

37. Kohavi R (1996) Scaling up the accuracy of naive-bayes classi-

fiers:a decision-tree hybrid. In: Second international conference

on knowledge discovery and data mining

38. Witten IH, Frank E, Hall MA, Pal CJ (2016) Data mining:

practical machine learning tools and techniques. Morgan Kauf-

mann, Burlington

39. Ar J (2006) Statistical comparisons of classifiers over multiple

data sets. J Mach Learn Res 7(1):1–30

40. Creamer G, Freund Y (2010) Using boosting for financial anal-

ysis and performance prediction: application to s&p 500 com-

panies, latin american adrs and banks. Comput Econ

36(2):133–151

41. Liu C, Sun K, Rather ZH, Chen Z, Bak CL, Thøgersen P, Lund P

(2013) A systematic approach for dynamic security assessment

and the corresponding preventive control scheme based on

decision trees. IEEE Trans Power Syst 29(2):717–730

42. Al Snousy MB, El-Deeb HM, Badran K, Al Khlil IA (2011) Suite

of decision tree-based classification algorithms on cancer gene

expression data. Egypt Inform J 12(2):73–82

43. Sindhu SSS, Geetha S, Kannan A (2012) Decision tree based

light weight intrusion detection using a wrapper approach. Expert

Syst Appl 39(1):129–141

44. Yu Z, Haghighat F, Fung BC, Yoshino H (2010) A decision tree

method for building energy demand modeling. Energy Build

42(10):1637–1646

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

11636 Neural Computing and Applications (2020) 32:11621–11636

123


	Axiomatic fuzzy set theory-based fuzzy oblique decision tree with dynamic mining fuzzy rules
	Abstract
	Introduction
	The neighborhood rough sets-based FAST feature selection (NRS_FS_FAST) algorithm
	The neighborhood rough set
	The NRS_FS_FAST algorithm

	The introduction of the AFS theory
	AFS algebra
	AFS structure

	The construction of the FRODT
	The expression of fuzzy rules
	Fuzzy rule extraction
	The architecture of the FRODT
	Analysis of the time complexity

	Experimental results and analysis
	The experiment on Iris data
	Comparison of the FRODT and HHCART
	Comparison of the FRODT and five conventional decision trees
	The Holm test

	Conclusion
	Acknowledgements
	References




