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Abstract
Time-varying nonlinear optimization problems with different noises often arise in the fields of scientific and engineering

research. Noises are unavoidable in the practical workspace, but the most existing models for time-varying nonlinear

optimization problems carry out with one assume that the computing process is free of noises. In this paper, from a control-

theoretical framework, noise-suppressing zeroing neural dynamic (NSZND) model is developed, analyzed and investigated

by feat of continuous-time zeroing neural network model, which behaves efficiently for hurdling online time-varying

nonlinear optimization problems with the presence of different noises. Further, for speeding the rate of convergence,

general noise-suppressing zeroing neural network (GNSZNN) model with different activation functions is discussed. Then,

theoretical analyses show that the proposed noise-suppressing zeroing neural network model derived from NSZND model

has the global convergence property in the presence of different kinds of noises. Besides, how GNSZNN model performs

with different activation functions is also proved in detail. In addition, numerical results are provided to substantiate the

feasibility and superiority of GNSZNN model for online time-varying nonlinear optimization problems with inherent

tolerance to noises.

Keywords Noise-suppressing zeroing neural network (NSZNN) model � Time-varying nonlinear optimization �
Random noises � Global convergence � Exponential convergence � Online solution

1 Introduction

Being an important branch of optimization problems, the

time-varying nonlinear optimization problem is widely

encountered in scientific computing and engineering

applications, for example, quadratic program [1], matrix

square root estimation [2], convex optimization [3], non-

linear programming [4], bipedal walking robots [5, 6], and

manipulator [7, 8]. Owing to its fundamental roles, more

and more algorithms have been developed and verified to

compute nonlinear optimization problems [9–11]. Fur-

thermore, due to the simplicity of its iterative framework

and the low memory requirement, the nonlinear conjugate

gradient method is considered as an important optimization

algorithm in the case of solving large-scale optimization

problems in scientific and engineering computation

[4, 5, 9–11]. In [11], according to a new secant condition,

Dai and Liao developed and investigated a novel conjugate

gradient method for large-scale minimization problem,

which did not necessarily construct a descent search
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direction. In [4], Abubakar and Kumam presented a des-

cent conjugate gradient method based on Dai-Liao descent

condition and hyperplane projection method for solving the

system of nonlinear equations. By virtue of a subspace

minimization technique, Andrei proposed a three-term

conjugate gradient method for large-scale optimization, in

which the search direction satisfied the Dai-Liao conjugacy

condition [12]. Moreover, two modified three-term conju-

gate gradient methods were developed which satisfied both

the descent condition and the Dai-Liao conjugacy condi-

tion for unconstrained optimization [13]. According to the

Dai-Liao’s idea, Sun et al. [14] developed, analyzed and

investigated two spectral conjugate gradient methods

which satisfied sufficient descent property for uncon-

strained optimization problems. In fact, these methods

could be considered as modifications of the modified

Broyden–Fletcher–Goldfarb–Shanno (MBFGS) method

with different parameters. Generally speaking, given that

the optimization problem does not change during the

computational time, the traditional numerical algorithms

have been developed, analyzed and investigated for solving

static nonlinear optimization problems. Therefore, the

computed solutions are directly utilized to the nonlinear

optimization problem after the calculation. However, they

might not be feasible and effective in handling time-

varying nonlinear optimization problems. In addition, the

time-varying nonlinear optimization problem is different

from the static one as the former changes with the time.

Indeed, the objective function of time-varying nonlinear

optimization relates to time t that is a unidirectional uni-

form stream parameter. Thereby, the time derivative

information is vital for obtaining the time-varying opti-

mization solution for the time-varying nonlinear opti-

mization problem.

Recently, owing to the merits like self-adaptation, dis-

tributed storage, and parallel processing schemes, the

neural dynamics have been generalized for large-scale

online nonlinear optimization problems [15–17]. For

instance, a generalized repetitive motion planning

scheme was presented with the limit of position error being

thoroughly analyzed [18]. A novel dynamical method

based on gradient dynamics was usually exploited through

defining an ordinary differential equation [19]. Therefore,

the solution of the optimization problem could be seen as a

stable equilibrium point of the ordinary differential equa-

tion system. Moreover, as a powerful tool for real-time

varying nonlinear optimization problem, zeroing neural

network model was firstly proposed with superior feasi-

bility and effectiveness [16, 20]. Furthermore, in order to

realize potential digital hardware applications, Jin and

Zhang [21] firstly proposed, investigated and developed

continuous/discrete-time zeroing neural network model and

two gradient dynamics models for online time-varying

nonlinear optimization. For instance, taking the basis of

zeroing neural networks, one discrete-time neural dynam-

ics model able to online solve the time-dependent nonlinear

optimization problem in complex-valued form was pro-

posed with global convergence characteristic and applied

in robotics and filters [22]. To eliminate the explicit matrix-

inversion computation, a quasi-Newton–Broyden–

Fletcher–Goldfarb–Shanno (BFGS) method was general-

ized and analyzed, which could be considered as an

effectively approximate method for the inverse of Hessian

matrix [23]. Subsequently, in [8, 24], a neural dynamic

distributed scheme based on the zeroing neural network

was proposed and developed to realize the cooperative

control of multiple redundant manipulators with exponen-

tially convergent position errors. Furthermore, the robust-

ness performances of the zeroing neural network model

with linear activation functions and power-sigmoid acti-

vation functions were verified for online time-varying

problems. In [25], Zhang et al. proposed a novel finite-time

varying-parameter convergent-differential neural network

with finite-time exponential convergence and strong

robustness for solving nonlinear and nonconvex optimiza-

tion problems. In [26], due to the monotonicity of linear

variational inequality, Huang et al. developed a new pro-

jection neural network for solving linear variational

inequality problems and nonlinear optimization problems.

In addition, for solving a complex-valued nonlinear convex

programming problem, a complex-valued neural dynamical

method was investigated, which was globally stable and

convergent to the optimal solution [27]. Although previous

neural network models have considered the time derivative

information of the problem to be computed, noises were

still not explicitly taken into account. Note that noises are

unavoidable in the implementation of the practical system.

Time-varying errors always exist in external disturbances

or parameter disturbance which can be considered as

measurement noises. Therefore, it is worth exploiting a

kind of model for time-varying nonlinear optimization

problems which is inherently tolerant to measurement

noises.

The rest of this paper is organized into the following five

sections. In Sect. 2, NSZND model and NSZNN model are

described with the basic definitions with existing classical

ZNN model being revisited. Furthermore, from the view-

point of control, a control-theoretic framework is firstly

designed and developed for time-varying nonlinear opti-

mization problems. Theoretical analyses of Sect. 3 show

that apart from the time-varying vector-form error of

NSZND model, which has an exponential convergence

performance, the vector-form time-varying state variable of

NSZNN model converges to their optimal solutions with

the presence of noises. In Sect. 4, to further investigate

how three types of monotonically increasing odd activation
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functions speed the convergence, general noise-suppressing

zeroing neural network (GNSZNN) model is analyzed in

this section. In addition, the convergence performance of

GNSZNN model is verified though a classical Lyapunov

theorem. Section 5 provides numerical experiments

belonging to the time-varying nonlinear optimization,

conducted by the proposed GNSZNN model as well as

other existing models comparatively. In Sect. 6, the con-

clusion and future works of this paper are presented. Last,

before ending this introductory section, the main contri-

butions of this paper can be obtained as follows:

1. The continuous-time ZNN model for the online time-

varying nonlinear optimization problem is redesigned

from a control framework. Moreover, NSZNN model is

firstly proposed, analyzed and verified for the solution

of time-varying nonlinear optimization problem with

inherent tolerance to noises. Furthermore, the time-

varying vector-form state variable of NSZNN model

can globally/exponentially converges to the time-

varying optimization solution of the time-varying

nonlinear optimization problem.

2. Comparisons among the classical ZNN model, the

gradient neural network model and the GNSZNN

model for solving time-varying nonlinear optimization

problems are given, which shows the efficacy and

superior performance of the GNSZNN model with

inherent tolerance to noises.

2 Problem formulation and ZNN solution

In order to lay a basis for further investigation, the problem

formulation and the design procedures of the continuous-

time ZNN model are provided for solving the online time-

varying nonlinear optimization problem in this section.

2.1 Problem formulation and definitions

In this subsection, considering the time-varying nonlinear

optimization problem, which is generalized as follows:

min
xðtÞ2Rn

f
�
xðtÞ; t

�
2 R; t 2 ½0;þ1Þ; ð1Þ

where f ð�; �Þ : Rn � ½0;þ1Þ ! R means a second-order

differentiable and time-varying nonlinear mapping func-

tion and xðtÞ 2 Rn denotes a time-varying vector in real

time t. The objective of this paper is to solve an unknown

time-varying optimization solution xðtÞ 2 Rn in real time t,

which achieves the minimum value of time-varying non-

linear optimization problem (1) at each time instant.

Assume that there always exists a time-varying

optimization solution x�ðtÞ 2 Rn at any time interval

t 2 ½t0; tf Þ 2 ½0;þ1Þ.
To obtain the online solution of time-varying nonlinear

optimization problem (1), the following definitions are

described as follows [21], provided that f ð�; �Þ :
Rn � ½0;þ1Þ ! R is a second-order differentiable and

time-varying nonlinear mapping function.

Definition 1 The gradient of f ð�; �Þ is defined as

gðxðtÞ; tÞ ¼ of ðxðtÞ; tÞ
oxðtÞ ; ð2Þ

where of
ox1

; of
ox2

; � � � ; of
oxn

� �>
¼ g1ðxðtÞ; tÞ; g2ðxðtÞ; tÞ; � � � ; gnð

ðxðtÞ; tÞÞ> 2 Rn and the superscript > denotes the transpose

operator of a vector or matrix.

Definition 2 The time-varying set is defined as

X�ðtÞ ¼ fðt; x�ðtÞÞjof ðx�ðtÞ; tÞ=ox�ðtÞ ¼ 0g ð3Þ

for time instant t 2 ½0;þ1Þ.

Definition 3 The vector-valued error function is defined as

eðtÞ ¼ gðx�ðtÞ; tÞ � gðxðtÞ; tÞ ¼ 0� gðxðtÞ; tÞ ¼ �gðxðtÞ; tÞ;
ð4Þ

i.e.,

eðtÞ ¼ ½e1ðtÞ; e2ðtÞ; � � � ; enðtÞ�>; ð5Þ

where ejðtÞ ¼ gjðxðtÞ; tÞ is the jth element of eðtÞ,
8j 2 f1; 2; � � � ; ng. To obtain the time-varying optimization

solution x�ðtÞ of time-varying nonlinear optimization

problem (1), gðxðtÞ; tÞ should be zero.

2.2 ZNN model and gradient neural network
model

The ZNN model developed in this subsection combines the

error information and the time derivative information,

thereby obtaining strong robustness and high accuracy for

the online solution of time-varying nonlinear optimization

problem (1). To monitor, control and solve the online

solution of time-varying nonlinear optimization problem

(1) via zeroing gðxðtÞ; tÞ, on account of Zhang et al.’s

design approach [28], we define the zeroing dynamic as

follows:

_eðtÞ ¼ deðtÞ
dt

¼ �ceðtÞ; ð6Þ

i.e.,

_gtðxðtÞ; tÞ ¼
dgðxðtÞ; tÞ

dt
¼ �cgðxðtÞ; tÞ;

with design parameter c[ 0. _eðtÞ denotes the time

derivative of vector-valued error function and _gtðxðtÞ; tÞ
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means the time derivative of gradient function. In fact, if

the vector-valued error function eðtÞ approaches zero, the

time-varying solution xðtÞ converges to the time-varying

optimization solution x�ðtÞ. Expanding zeroing dynamic

(6) obtains the following differential equation

HðxðtÞ; tÞ _xðtÞ ¼ �cgðxðtÞ; tÞ � _gtðxðtÞ; tÞ; ð7Þ

where HðxðtÞ; tÞ is a Hessian matrix and _gtðxðtÞ; tÞ is a time

derivative vector, respectively. The details can be seen as

HðxðtÞ; tÞ ¼ o2f ðxðtÞ; tÞ
oxðtÞox>ðtÞ

¼

o2f ðxðtÞ; tÞ
ox1ox1

o2f ðxðtÞ; tÞ
ox1ox2

� � � o2f ðxðtÞ; tÞ
ox1oxn

o2f ðxðtÞ; tÞ
ox2ox1

o2f ðxðtÞ; tÞ
ox2ox2

� � � o2f ðxðtÞ; tÞ
ox2oxn

..

. ..
. . .

. ..
.

o2f ðxðtÞ; tÞ
oxnox1

o2f ðxðtÞ; tÞ
oxnox2

� � � o2f ðxðtÞ; tÞ
oxnoxn

2

666666666664

3

777777777775

2 Rn�n

ð8Þ

and

_gtðxðtÞ; tÞ ¼
og1ðxðtÞ; tÞ

ot
;
og2ðxðtÞ; tÞ

ot
; � � �; ognðxðtÞ; tÞ

ot

� �>
2 Rn:

ð9Þ

Due to the nonsingular property of Hessian matrix

HðxðtÞ; tÞ that we consider in this paper, the above zeroing

dynamic (6) can be rewritten as the classic ZNN model

[21]

_xðtÞ ¼ �H�1ðxðtÞ; tÞ cgðxðtÞ; tÞ þ _gtðxðtÞ; tÞð Þ: ð10Þ

xðtÞ represents the state of ZNN model (10) corresponding

to x�ðtÞ 2 Rn of time-varying nonlinear optimization

problem (1), which starts from a randomly generated initial

vector xð0Þ 2 Rn. In addition, for the convenience of

comparison, the gradient neural network model [19] which

called GD-1 for short is described as follows:

_xðtÞ ¼ �c
oe
ox

¼ �cHðxðtÞ; tÞ of ðxðtÞ; tÞ
oxðtÞ ; ð11Þ

where e ¼ kof ðxÞ=oxk22=2 2 R is defined as a norm-based

energy function. Besides, another GD model, termed GD-2

model, is formulated with e ¼ f ðxÞ as follows:

_xðtÞ ¼ �c
oe
ox

¼ �c
of ðxðtÞ; tÞ
oxðtÞ : ð12Þ

To overcome the sensitivity of ZNN model with noises,

NSZND model is proposed, analyzed and investigated in

the next subsection.

2.3 NSZND model and NSZNN model

To solve time-varying nonlinear optimization problem (1)

efficiently in real time and robustly in spite of measurement

noises, noise-suppressing zeroing neural dynamic

(NSZND) model is defined as

_eðtÞ ¼ �ceðtÞ � k
Z t

0

eðsÞds; ð13Þ

where c[ 0 and k[ 0 are two positive scalars. In fact, the

NSZND model (13) can be obtained as a second-order

linear system. Specifically, assume that �ðtÞ ¼
R t

0
eðsÞds

and _�ðtÞ; €�ðtÞ be the first and second derivative of �ðtÞ,
respectively. Thereby, NSZND model (13) can be descri-

bed as a second-order linear system,

€�ðtÞ ¼ �c _�ðtÞ � k�ðtÞ: ð14Þ

To design parameters c and k of (14), the location of

characteristic roots can be manually set on the left half-

plane, which guarantees the convergence property of the

second-order linear system. In addition, NSZND model

(13) provides a feedback mechanism driving vector-valued

error function eðtÞ to zero. The left side of (13) denotes the

changing rate of eðtÞ, and the right side of (13) includes the

negative feedback term �ceðtÞ and the penalty term

k
R t

0
eðsÞds, which can dynamically drive the vector-valued

error function eðtÞ to zero. By expanding NSZND model

(13), the following noise-suppressing zeroing neural net-

work (NSZNN) model is generalized as

_xðtÞ ¼ � H�1ðxðtÞ; tÞ cgðxðtÞ; tÞ þ _gtðxðtÞ; tÞð

þ k
Z t

0

gðxðsÞ; sÞds
�
:

ð15Þ

For further investigation on the robustness of NSZNN

model (15) under the disturbance of unknown measurement

noises, the following noise-polluted NSZNN model can be

obtained as

_xðtÞ ¼ � H�1ðxðtÞ; tÞ cgðxðtÞ; tÞ þ _gtðxðtÞ; tÞð

þ k
Z t

0

gðxðsÞ; sÞdsþ gðtÞ
� ð16Þ

where gðtÞ 2 Rn means the vector-form measurement

noises.

Remark 1 Assume that HðxðtÞ; tÞ is a positive definite

Hessian matrix, NSZNN model (15) derived from NSZND

model (13) generates a unique solution, which corresponds

to the exact solution to time-varying nonlinear optimization

problem (1).
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2.4 A control-theoretic approach for the time-
varying nonlinear optimization problem

Owing to the viewpoint of control, the vector-form error

function eðtÞ can be generalized as a measurable distance

between the time-varying state variable xðtÞ and the time-

varying optimization solution x�ðtÞ. In other words, if the

time-varying state variable xðtÞ of (7) sufficiently con-

verges to the theoretically time-varying optimization

solution x�ðtÞ when t ! 1, the vector-form error function

eðtÞ is driven to zero. Therefore, the goal of this paper is to

construct a nonlinear control system composed of the state

variable xðtÞ, a controller input uðtÞ, and the error output

function eðtÞ. The controller uðtÞ is supposed to drive eðtÞ
to zero according to the suitable control law which is

demonstrated in the following control system.

_xðtÞ ¼ dxðtÞ
dt

¼ uðtÞ;

yðtÞ ¼ gðxðtÞ; tÞ ¼ �eðtÞ:

8
<

:
ð17Þ

That is, as eðtÞ approximates zero, the state variable xðtÞ
converges to the time-varying optimization solution x�ðtÞ.
Thereby, the time-varying nonlinear optimization problem

(1) can be transformed into a nonlinear control problem.

Furthermore, NSZNN model (15) can be reconsidered as

a generalized proportional-integral-derivative (PID) con-

troller from the control-theoretic viewpoint. To this end, as

shown in Fig. 1, _gtðxðtÞ; tÞ denotes the derivative part, and
k
R t

0
gðxðsÞ; sÞds signifies the integral part, respectively,

where Wð�Þ represents the activation function that will be

discussed in the next section.

Having constructed the control system (17), the con-

vergence performance of vector-form error function eðtÞ
and NSZND model (13) will be discussed in the following

section as well as how noise-polluted NSZNN model (16)

carries out in the presence of measurement noises.

3 Theoretical analyses and results

This section follows on from the previous formulation and

outlines theoretical analyses on the convergence charac-

teristic of NSZNN model (16) with different kinds of

measurement noises disturbing.

3.1 Convergence of NSZND model and NSZNN
model

For classical ZNN model (10) designed for time-varying

nonlinear optimization problem without noises, it has been

verified that the time-varying state variable xðtÞ globally

converges to the exact solution x�ðtÞ [21]. Owing to solv-

ing time-varying nonlinear optimization problem (1) with

different noises, NSZNN model (15) is an equivalent

expansion of NSZND model (13), theoretical analyses on

which is deduced thoroughly as follows.

Theorem 1 Consider time-varying nonlinear optimization

problem (1). Assume that Hessian matrix HðxðtÞ; tÞ is

positive definite, then time-varying state variable xðtÞ 2 Rn

Fig. 1 The block diagram of NSZNN model (15) with activation function Wð�Þ being linear
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of NSZNN model (15), starting from randomly generated

initial state xð0Þ 2 Rn, converges to the optimal solution to

time-varying nonlinear optimization problem (1) as

t ! þ1.

Proof The Lyapunov function candidate can be obtained

as

V1ðxðtÞ; tÞ ¼
1

2
kgðxðtÞ; tÞk22 þ

1

2
kk

Z t

0

gðxðsÞ; sÞdsk22

¼ 1

2

Xn

j¼1

g2j ðxðtÞ; tÞ þ
1

2
k
Xn

j¼1

ĝ2j ðxðtÞ; tÞ

> 0;

ð18Þ

where ĝjðxðtÞ; tÞ is the jth element of
R t

0
gðxðsÞ; sÞds.

Therefore, it guarantees the positive-definiteness of Lya-

punov function V1ðxðtÞ; tÞ, that is, V1ðxðtÞ; tÞ[ 0 for any

gjðxðtÞ; tÞ 6¼ 0, and V1ðxðtÞ; tÞ ¼ 0 only for each element

gjðxðtÞ; tÞ ¼ ĝjðxðtÞ; tÞ ¼ 0, with j 2 f1; 2; � � � ; ng. Con-

sidering the equation (13), the time derivative of V1ðxðtÞ; tÞ
along the element trajectories of noise-polluted NSZNN

model (15) becomes

_V1ðxðtÞ; tÞ ¼
dV1ðxðtÞ; tÞ

dt

¼
Xn

j¼1

gjðxðtÞ; tÞ
dgjðxðtÞ; tÞ

dt

þ k
Xn

j¼1

ĝjðxðtÞ; tÞ
dĝjðxðtÞ; tÞ

dt

¼
Xn

j¼1

gjðxðtÞ; tÞ
�
� c gjðxðtÞ; tÞ

� k
Z t

0

gjðxðsÞ; sÞds
�

þ k
Xn

j¼1

Z t

0

gjðxðsÞ; sÞdsgjðxðtÞ; tÞ

¼ � c
Xn

j¼1

gjðxðtÞ; tÞgjðxðtÞ; tÞ

¼ � c
Xn

j¼1

of ðxðtÞ; tÞ
oxjðtÞ

of ðxðtÞ; tÞ
oxjðtÞ

� 0:

ð19Þ

In light of the Lyapunov theory in research [24], it can be

guaranteed that if _V1ðxðtÞ; tÞ� 0 and V1ðxðtÞ; tÞ > 0, the

time derivative _V1ðxðtÞ; tÞ of Lyapunov function candidate

is negative-definiteness. That is to say, the Lyapunov

function candidate (18) is a positive definite function and

its time derivative (19) is negative definite, which means

the time-varying state variable xðtÞ 2 Rn of NSZNN model

(15) converges to the time-varying optimal solution x�ðtÞ 2
Rn to time-varying nonlinear optimization problem (1) as

t ! þ1. The proof is thus completed. h

In order to further investigate analytical results on time-

varying nonlinear optimization problem (1) solved by

NSZNN model (15), the theorem is developed as follows.

Theorem 2 NSZND model (13) for online time-varying

nonlinear optimization problem (1) globally and expo-

nentially converges to zero.

Proof Given that �ðtÞ ¼
R t

0
eðsÞds and _�ðtÞ; €�ðtÞ be the first

and second derivatives of �ðtÞ. Therefore, NSZND model

(13) can be obtained as the following second-order linear

system,

€�ðtÞ ¼ �c _�ðtÞ � k�ðtÞ: ð20Þ

Moreover, the characteristic values of second-order linear

system (20) can be computed as

v1 ¼ ð�cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4k

p
Þ=2 ð21Þ

and

v2 ¼ ð�c�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4k

p
Þ=2: ð22Þ

Furthermore, the initial conditions of formula (20) i.e.,

�ð0Þ ¼ 0 and _�ð0Þ ¼ 0 should satisfy the following equa-

tions. Therefore, the theoretical solutions of second-order

linear system (20) fall into the following three cases.

1. If c2 [ 4k, two different characteristic values can be

obtained, which satisfy the following inequality

v1 6¼ v2. Furthermore, as both v1 and v2 are real

numbers, we can obtain

�iðtÞ ¼
eið0Þ½expðv1tÞ � expðv2tÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � 4k
p ð23Þ

and

eiðtÞ ¼
eið0Þ½v1 expðv1tÞ � v2 expðv2tÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � 4k
p : ð24Þ

Moreover, the vector-form error can be described as

eðtÞ ¼ eð0Þ½v1 expðv1tÞ � v2 expðv2tÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4k

p : ð25Þ

2. If c2 ¼ 4k, two equally characteristic values can be

computed, which satisfy the following equality

v1 ¼ v2. Thus, the following equation can be general-

ized as

�iðtÞ ¼ eið0Þt expðv1tÞ: ð26Þ

In addition, the vector-form error can be obtained as

eðtÞ ¼ eð0Þ expðv1tÞ þ v1eð0Þ expðv1tÞ; ð27Þ

11510 Neural Computing and Applications (2020) 32:11505–11520

123



where v1 ¼ v2 ¼ �c=2.
3. If c2\4k, two different conjugate complex values can

be generalized, which are v1 ¼ aþ ib and v2 ¼ a� ib.
Therefore, the following equations can be obtained as

�iðtÞ ¼
eið0Þ sinðbtÞ expðatÞ

b
ð28Þ

and

eðtÞ ¼ eð0Þ expðatÞ a sinðbtÞ
b

þ cosðbtÞ
	 


; ð29Þ

where a ¼ �c=2 and b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k� c2

p
=2:

Summarizing the above analyses of the three situations and

the rigorous proof of Theorem 1 in [29], it infers that the

error-monitoring function eðtÞ of NSZND model (13) for

online time-varying nonlinear optimization problem (1)

globally and exponentially converges to zero. The proof is

thus completed. h

Remark 2 The time-varying state variable xðtÞ of NSZNN
model (15) exponentially converges to the exact solution to

time-varying nonlinear optimization problem (1) with the

first n elements constituting the time-varying optimal

solution.

3.2 The convergence property of NSZNN model
with the presence of different measurement
noises

In this subsection, to analyze the performance of NSZNN

model (15) dealing with different measurement noises

categorized by constant noises, linear time-varying noises,

and random noises for time-varying nonlinear optimization

problem (1), the following three significant theorems are

given.

Theorem 3 The solution generated by noise-polluted

NSZNN model (16) globally converges to the time-varying

optimal solution to (7) no matter how large the unknown

vector-form constant noise gðtÞ ¼ ~g 2 Rn is. Furthermore,

the state vector constituted by the first nth elements of xðtÞ
globally converges to the time-varying optimization solu-

tion to time-varying nonlinear optimization problem (1).

Proof With the aid of Laplace transformation [30], the ith

subsystem of noise-polluted modified zeroing neural net-

work model (16) leads to

jeiðjÞ � eið0Þ ¼ �ceiðjÞ �
k
j
eiðjÞ þ giðjÞ: ð30Þ

It can be directly computed that

eiðjÞ ¼
j½eið0Þ þ giðjÞ�
j2 þ jcþ k

; ð31Þ

thereby, the transfer function can be obtained as

j=ðj2 þ jcþ kÞ. Furthermore, the poles of the transfer

function are j1 ¼ ð�cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4k

p
Þ=2 and

j2 ¼ ð�c�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4k

p
Þ=2. In addition, due to

c; k[ 0 2 R, the poles of transfer function are located on

the left half-plane, which indicates that the time-varying

nonlinear optimization problem (1) is stable. Moreover,

because the noise is constant, it is worth noticing that

giðjÞ ¼ ĝi=j, where i ¼ 1; 2; � � �; n. Using the final value

theorem [30] to (31), the following equation can be got

lim
t!1

eiðtÞ ¼ lim
j!0

jeiðjÞ ¼ lim
j!0

j2½eið0Þ þ ĝi
j�

j2 þ jcþ k
¼ 0: ð32Þ

Therefore, it can be obtained that limt!1 keðtÞk2 ¼ 0, the

proof is thus completed. h

Theorem 4 With linear noise gðtÞ ¼ ĝt 2 Rn disturbing,

the time-varying state vector xðtÞ of noise-polluted NSZNN

model (16) globally converges to the time-varying optimal

solution x�ðtÞ to time-varying nonlinear optimization

problem (1), where the upper bound of the vector-form

error limt!1 keðtÞk2 is kĝk2=k which approximates zero as
k approximates positive infinity.

Proof As gðtÞ ¼ ĝt denotes the linear noise, using the

Laplace transformation [30] to the ith subsystem of for-

mula (16) yields

jeiðjÞ ¼ eið0Þ � ceiðjÞ �
k
j
eiðjÞ þ

gi
j2

; ð33Þ

where gi=j
2 is the Laplace transformation of ĝit and

i ¼ 1; 2; � � �; n. According to the final value theorem [30],

the previous equation can be generalized as

lim
t!1

eiðtÞ ¼ lim
j!0

jeiðjÞ ¼ lim
j!0

j2½eið0Þ þ ĝi
j2�

j2 þ jcþ k
¼ ĝi

k
: ð34Þ

Thereby, it can be obtained that if k ! 1,

limt!1 keðtÞk2 ¼ kĝk2=k ! 0. The proof is thus com-

pleted. h

Theorem 5 Constrained by the bounded vector-form

random noise gðtÞ ¼ hðtÞ 2 Rn, the supremum of the vec-

tor-form error keðtÞk2 generated by noise-polluted NSZNN

model (16) for solving time-varying nonlinear optimization

problem (1) is 2-
ffiffi
n

p
ffiffiffiffiffiffiffiffiffi
c2�4k

p for c2 [ 4k, or 4k-
ffiffi
n

p

c
ffiffiffiffiffiffiffiffiffi
c2�4k

p for

c2\4k, where - ¼ max1� i� nfmax0� s� t jhiðsÞjg and

hiðtÞ means the ith element of hðtÞ, which can arbitrarily

small for parameter c being enough large and parameter k
being proper.

Proof Noise-polluted NSZND model (13) can be rewritten

as
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_eðtÞ ¼ �ceðtÞ � k
Z t

0

eðsÞdsþ hðtÞ; ð35Þ

where c[ 0 2 R; k[ 0 2 R and hðtÞ 2 Rn denotes the

random noise. The ith subsystem of (35) can be described

as

_eiðtÞ ¼ �ceiðtÞ � k
Z t

0

eiðsÞdsþ hiðtÞ; ð36Þ

where i ¼ 1; 2; � � �; n. According to the values of parame-

ters c and k, the theoretical analyses can be fallen into the

following three cases.

1. If c2 [ 4k, the ith subsystem of the time-varying

optimization solution to (36) can be generalized as

follows

eiðtÞ ¼
eið0Þ½l1 expðl1tÞ � l2 expðl2tÞ�

l1 � l2

þ
Z t

0

½l1 expðl1ðt � sÞÞ
�

� l2 expðl2ðt � sÞÞ�hiðsÞdsg
1

l1 � l2
;

ð37Þ

where l1 ¼ ð�cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4k

p
Þ=2 and

l2 ¼ ð�c�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4k

p
Þ=2. Furthermore, owing to the

triangle inequality, the following inequality can be

obtained as

jeiðtÞj �
jeið0Þ½l1 expðl1tÞ � l2 expðl2tÞ�j

l1 � l2

þ
Z t

0

jl1 expðl1ðt � sÞÞ
�

� l2 expðl2ðt � sÞÞj max
0� s� t

jhiðsÞjds
�

1

l1 � l2
:

ð38Þ

Therefore, the following supremum of vector-form

error can be described as

lim
t!1

sup keðtÞk2 � 2p

ffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4k

p ; ð39Þ

where - ¼ max1� i� nfmax0� s� t jhiðsÞjg.
2. If c2 ¼ 4k, the ith subsystem of the time-varying

optimization solution to (36) can be computed as

follows

eiðtÞ ¼ eið0Þ expðl1tÞðtl1 þ 1Þ

þ
Z t

0

½ðt � sÞl1 þ 1� exp½l1ðt � sÞ�hiðsÞds;
ð40Þ

where l1 ¼ l2 ¼ �c=2. Owing to the proof of The-

orem 1 in [29], let r1 [ 0 2 R and r2 [ 0 2 R, the

following inequality can be obtained

jl1js expðl1Þ� r1 expð�r2tÞ: ð41Þ

According to the triangle inequality theorem, the fol-

lowing inequality can be generalized as

jeiðtÞj � jeið0Þ expðl1tÞðtl1 þ 1Þj

þ r1
r2

� 1

l1

� �
max
0� s� t

jhiðsÞj:
ð42Þ

Thereby, the following supremum of vector-form error

can be described

lim
t!1

sup keðtÞk2 �
r1
r2

� 1

l1

� �
p

ffiffiffi
n

p
; ð43Þ

where - ¼ max1� i� nfmax0� s� t jhiðsÞjg.
3. If c2\4k, the ith subsystem of the time-varying

optimization solution to (36) can be described as

follows

eiðtÞ ¼eið0Þ expðd1tÞ
d1 sinðd2tÞ

d2

þ
Z t

0

d1 sinðd2ðt � sÞÞ expðd1ðt � sÞÞ
d2

hiðsÞds

þ cosðd2tÞ þ
Z t

0

cosðd2ðt � sÞÞ expðd1ðt � sÞÞhiðsÞds;

ð44Þ

where d1 ¼ �c=2 and d2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k� c2

p
=2. Using the trian-

gle inequality theorem to the previous equation, it can be

computed that

jeiðtÞj � jeið0Þ expðd1tÞ
d1 sinðd2tÞ

d2
þ cosðd2tÞj

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21 þ d22

q

d1d2
max
0� s� t

jhiðsÞj:
ð45Þ

Moreover,

jeiðtÞj � jeið0Þ expðd1tÞ
d1 sinðd2tÞ

d2
þ cosðd2tÞj

þ 4k

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k� c2

p max
0� s� t

jhiðsÞj:
ð46Þ

In addition, the following supremum of vector-form error

can be described as

lim
t!1

sup keðtÞk2 � 4k-

ffiffiffi
n

p

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4k

p ; ð47Þ

where - ¼ max1� i� nfmax0� s� t jhiðsÞjg. Therefore, the

proof is thus completed. h
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4 GNSZNN model

To improve the efficiency of the proposed NSZND model

(13) and NSZNN model (15), the following section will

discuss how the activation functions cooperate with them.

4.1 Formulation of GNSZNN model and different
activation functions

To further investigate the performance of different acti-

vation functions, NSZND model (13) is extended to a

general form for time-varying nonlinear optimization

problem (1) as follows.

_eðtÞ ¼ �cWðeðtÞÞ � k
Z t

0

eðsÞds; ð48Þ

where W : Rn ! Rn with each element means a general

monotonically increasing odd activation function, and the

parameters c[ 0 and k[ 0 are two positive scalars.

Generally speaking, the activation functions can be applied

to accelerating the convergence of ZNN model (10)

[31, 32]. Therefore, three types of monotonically increas-

ing odd activation functions are analyzed and considered

here.

1. Bi-exponential activation function [24]:

WiðeiÞ ¼ expð1eiÞ � expð�1eiÞ; ð49Þ

with parameter 1 ¼ 3.

2. Power-sigmoid activation function [24]:

WiðeiÞ ¼
e
p
i ; if jeij � 1;

1þ expð�nÞ
1� expð�nÞ

1� expð�neÞ
1þ expð�neiÞ

; otherwise,

8
<

:

ð50Þ

with parameters n ¼ 4 and p ¼ 3.

3. Power-sum activation function [24]:

WiðeiÞ ¼
XN

k¼1

ei
2k�1; ð51Þ

with integer parameter N ¼ 3.

In fact, NSZNN model (15) is a special case of general

model (48) when the activation function in equation (48) is

a linear activation function, i.e., WiðeiÞ ¼ ei.

4.2 Convergent property of GNSZNN model

Based on Eq. (48), general noise-suppressing zeroing neural

network (GNSZNN) model can be described for the time-

varying nonlinear optimization problem (1) as follows:

_xðtÞ ¼ � H�1ðxðtÞ; tÞ cWðgðxðtÞ; tÞÞ þ _gtðxðtÞ; tÞð

þ k
Z t

0

gðxðsÞ; sÞds
�
:

ð52Þ

To further analyze and investigate the robustness of

GNSZNN model (52) with different measurement noises,

noise-polluted GNSZNN model is given

_xðtÞ ¼ � H�1ðxðtÞ; tÞ cWðgðxðtÞ; tÞÞ þ _gtðxðtÞ; tÞð

þ k
Z t

0

gðxðsÞ; sÞdsþ gðtÞ
�
:

ð53Þ

where gðtÞ 2 Rn denotes the vector-based measurement

noises, which include constant noises, linear time-varying

noises and random noises.

Theorem 6 Consider time-varying nonlinear optimization

problem (1). Assume that Hessian matrix HðxðtÞ; tÞ is

positive definite, then time-varying state variable xðtÞ 2 Rn

of noise-polluted GNSZNN model (53), where Wi : R
n !

Rn with each element means a general monotonically

increasing odd activation function, starting from randomly

generated initial state xð0Þ 2 Rn, converges to the time-

varying optimal solution to time-varying nonlinear opti-

mization problem (1) as t ! þ1.

Proof The Lyapunov function candidate can be obtained as

V2ðxðtÞ; tÞ ¼
1

2
kgðxðtÞ; tÞk22 þ

1

2
kk

Z t

0

gðxðsÞ; sÞdsk22 > 0;

ð54Þ

where ~gjðxðtÞ; tÞ is the jth element of
R t

0
gðxðsÞ; sÞds.

Therefore, it guarantees the positive-definiteness of Lya-

punov function candidate V2ðxðtÞ; tÞ, that is, V2ðxðtÞ; tÞ[ 0

for any gjðxðtÞ; tÞ 6¼ 0, and V2ðxðtÞ; tÞ ¼ 0 only for each

gjðxðtÞ; tÞ ¼ 0 and ~gjðxðtÞ; tÞ ¼ 0, with j 2 f1; 2; � � � ; ng.
Considering the equation (48), the time derivative
_V2ðxðtÞ; tÞ along the element trajectories of noise-polluted

GNSZNN model (53) becomes

_V2ðxðtÞ; tÞ ¼
dV2ðxðtÞ; tÞ

dt
¼

Xn

j¼1

gjðxðtÞ; tÞ
dgjðxðtÞ; tÞ

dt

þ k
Xn

j¼1

~gjðxðtÞ; tÞ
d~gjðxðtÞ; tÞ

dt

¼
Xn

j¼1

gjðxðtÞ; tÞ
�
� cWiðgjðxðtÞ; tÞÞ ð55Þ

� k
Z t

0

gjðxðsÞ; sÞds
�

þ k
Xn

j¼1

Z t

0

gjðxðsÞ; sÞdsgjðxðtÞ; tÞ

¼ � c
Xn

j¼1

of ðxðtÞ; tÞ
oxjðtÞ

Wi

of ðxðtÞ; tÞ
oxjðtÞ

� �
� 0:
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Since the activation function Wi : R
n ! Rn is a mono-

tonically increasing odd function, the following inequality

can be obtained

Wi

of ðxðtÞ; tÞ
oxjðtÞ

	 

:¼

[ 0; if
of ðxðtÞ; tÞ
oxjðtÞ

[ 0;

¼ 0; if
of ðxðtÞ; tÞ
oxjðtÞ

¼ 0;

\0; if
of ðxðtÞ; tÞ
oxjðtÞ

\0:

8
>>>>>>><

>>>>>>>:

ð56Þ

Therefore, using the Lyapunov theory [24], it can be

summarized and generalized that generally modified time-

varying zeroing dynamic eðtÞ (48) globally converges to

zero. That is, the time-varying state vector xðtÞ of noise-

polluted GNSZNN model (53) globally converges to the

theoretical solution to time-varying nonlinear optimization

problem (1) as t ! þ1. The proof is thus completed.

To prove feasibility and efficiency of the proposed

models, the illustrative examples are reported in the next

section. h

5 Numerical simulations

In this section, some numerical examples are considered to

verify the superiority and efficacy of GNSZNN model (52)

for solving the online time-varying nonlinear optimization

problem (1). The simulations run in MATLAB version
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Fig. 2 Comparison among GNSZNN model (52), GD-1 model (11),

GD-2 model (12) and ZNN model (10) for solving online time-

varying nonlinear minimization problem (57) with constant noises

gðtÞ ¼ 1, parameters c ¼ 10 and k ¼ 50, where GNSZNN model (52)

is activated by the linear function array
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2017b with a Microsoft Windows 7 Professional operating

system containing a central processing unit of 3.20-GHz

Inter(R)Core(TM)i5-6500, 4.0-GB memory.

5.1 GNSZNN model for solving online time-
varying nonlinear optimization problem

To compare the convergent property of the proposed

GNSZNN model (52), GD-1 model (11), GD-2 model (12)

and ZNN model (10) when solving the online time-varying

nonlinear optimization problem with different measure-

ment noises, a numerical example is considered as follows

min
xðtÞ2R4

f ðxðtÞ; tÞ ¼ ðx1ðtÞ þ tÞ2 þ ðx2ðtÞ þ tÞ2

þ ðx3ðtÞ � expð�tÞÞ2 þ 0:1ðt � 1Þx3ðtÞx4ðtÞ
� ðx1ðtÞ þ lnð0:1t þ 1ÞÞðx2ðtÞ þ sinðtÞÞ þ ðx1ðtÞ
þ sinðtÞÞx3ðtÞ þ ðx4ðtÞ þ expð�tÞÞ2 þ gðtÞ;

ð57Þ

where gðtÞ means different measurement noises, i.e., con-

stant noises, time-varying linear noises and random noises.

Moreover, the aforementioned models are directly coded

and simulated using MATLAB routine ‘‘ODE45’’ in this

paper [33].

In Fig. 2, the noise of time-varying nonlinear mini-

mization problem (57) is constant and the parameters of
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Fig. 3 Comparison among NTZNN model (53), GD-1 model [21],

GD-2 model [21] and ZNN model (10) for solving online time-

varying nonlinear minimization problem (57) with liner time-varying

noise gðtÞ ¼ t, parameters c ¼ 10 and k ¼ 50, where GNSZNN

model (52) is activated by the linear function array
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previous neural network models are c ¼ 10 and k ¼ 50.

The time-varying state variable xðtÞ starts from an initial

state vector xð0Þ ¼ ½0; 4; �8; �6�>. Particularly, elemen-

tary solutions of time-varying state variable xðtÞ of

GNSZNN model (52) using the linear activation function

array WiðeiÞ ¼ ei are demonstrated in Fig. 2a. It infers that

GNSZNN model (52) is feasible and effective for solving

online time-varying nonlinear minimization problem (57)

with constant noises. The logarithmic time-varying residual

error logðkeðtÞk2Þ is defined and simulated during the

computing process as shown in Fig. 2b, where the time-

varying residual error of GNSZNN model (52) rapidly

converges, but other comparative models do not. Further-

more, Fig. 2b further illustrates that the convergent ratio of

GNSZNN model (52) is highly superior to the other

models. Therefore, the proposed GNSZNN model (52) is

suitable to solve the real-time nonlinear optimization

problem. Moreover, the minimal characteristic value of

Hessian matrix HðxðtÞ; tÞ is always larger than zero during

the computing process as shown in Fig. 2c. That is to say,

the Hessian matrix HðxðtÞ; tÞ is not singular matrix during

time interval [0, 10] s. Therefore, it means that the time-

varying nonlinear minimization problem (57) can be solved

by the GNSZNN model (52). In addition, Fig. 2d shows

comparative results of f ðxðtÞ; tÞ computed by GNSZNN

model (52), GD-1 model (11), GD-2 model (12) and ZNN

model (10), where the minimization function f ðxðtÞ; tÞ
computed by GNSZNN model (52) is smaller than those

generated by the other methods, which reveals that the

time-varying state variable xðtÞ of GNSZNN model (52)

achieves the time-varying minimal value of the objective
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Fig. 4 Comparison among GNSZNN model (52), GD-1 model (11),

GD-2 model (12) and ZNN model (10) for solving online time-

varying nonlinear minimization problem (57) with Gaussian noise,

parameters c ¼ 10 and k ¼ 50, where GNSZNN model (52) is

activated by the linear function array
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function depicted in time-varying nonlinear minimization

problem (57) in real time.

In Fig. 3, under liner time-varying noise gðtÞ ¼ t

affecting, parameters of GNSZNN model (52) are set as

c ¼ 10 and k ¼ 50. As shown in Fig. 3a, it infers that

GNSZNN model (52) is feasible and effective for solving

online time-varying nonlinear minimization problem (57)

with liner time-varying noises. To be specific, as seen from

Fig. 3b, the logarithmic time-varying residual error

logðkeðtÞk2Þ of GNSZNN model (52) rapidly converges to

zero within 2 s differing from that of GD-1 model (11),

GD-2 model (12) and ZNN model (10) which are all of

divergence. In addition, the minimal eigenvalue of Hessian

matrix HðxðtÞ; tÞ is also larger than zero during the solving

process as shown in Fig. 3c. Figure 3d shows that the

minimum solution f ðxðtÞ; tÞ computed by proposed

GNSZNN model (52) is much smaller than those generated

by the other methods. Therefore, we can naturally that the

time-varying state variable xðtÞ of GNSZNN model (52)

converges to the time-varying minimum solution of time-

varying nonlinear minimization problem (57) with the

presence of linear time-varying noises.

As shown in Fig. 4a, it is evident that GNSZNN model

(52) can efficiently deal with random noises when solving

online time-varying nonlinear minimization problem (57).

Moreover, as seen from Fig. 4b, the logarithmic time-
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varying residual error logðkeðtÞk2Þ of GNSZNN model (52)

drops to a tiny value, whereas other models including GD-1

model (11), GD-2 model (12) and ZNN model (10) fail to

generate accurate solutions. Similarly, the minimal eigen-

value of Hessian matrix HðxðtÞ; tÞ prove the applicability

of GNSZNN model (52). Besides, Fig. 4d represents the

comparison of objective function f ðxðtÞ; tÞ generated by all

the comparative models for time-varying nonlinear mini-

mization problem (57).

Therefore, from Figs. 2, 3 and 4, it can be seen that the

proposed GNSZNN model (52) of this paper is more effi-

cient and superior to the other classical approaches for

time-varying nonlinear minimization problem (57) with

different measurement noises.

5.2 GNSZNN model with different parameters
and activation functions for online
continuous-time nonlinear minimization
problem

In this subsection, the following continuous-time nonlinear

minimization problem with different measurement noises

will be considered as a more complicated case, which

generates from equation (1) in [34].

min
xðtÞ2Rn

f ðxðtÞ; tÞ ¼
X

n
2

i¼1

4x22i�1 þ 2 sinðtÞx2i�1x2i

þ 2x22i � 22x2i�1 � 2x2i þ gðtÞ;
ð58Þ

where gðtÞ means different measurement noises, i.e., con-

stant noises, linear time-varying noises and random noises.

Different parameters and activation functions are utilized

to investigate and analyze the efficient and superiority of

GNSZNN model (52) for online continuous-time nonlinear

minimization problem (58) with different noises. In this

paper, the dimension of (58) is n ¼ 10. The corresponding

numerical results, synthesized by GNSZNN model (52)

starting with initial state xð0Þ ¼ ½0; 0; � � �; 0�> 2 R10, are

shown in Figs. 5, 6 and 7. As shown in Fig. 5a, different

parameters k are selected as k ¼ 50; 100; 200; 500; 1000. It

can be seen that the larger parameter k is, the faster con-

vergent ratio of the logarithmic time-varying residual error

logðkeðtÞk2Þ can become. Therefore, the global/exponential

convergence is verified through simulations for GNSZNN

model (52) with different parameters. In addition, the

convergent ratio can be manually set via adjusting the

parameters k. If you want to accelerate the convergent rate

of computational formula, the parameter k should be cho-

sen as a sufficient large number. As shown in Fig. 5b, it is

also demonstrated that the larger parameter k is, the smaller

optimal value of objective function f ðxðtÞ; tÞ is.
In Fig. 6a, parameters c are adopted as

c ¼ 50; 100; 200; 500; 1000. It can be seen that the larger

parameter c is, the faster convergent ratio of the logarith-

mic time-varying residual error logðkeðtÞk2Þ can be.

Therefore, the global convergence is investigated via

numerical simulations for GNSZNN model (52) with c
changing. In addition, the convergent rate can be acceler-

ated through adopting the larger c. As shown in Fig. 6b, it

is demonstrated that the larger parameter c is, the smaller

optimal value of objective function f ðxðtÞ; tÞ is. Overall,

the convergent ratio of GNSZNN model (52) can be

manually set via simultaneously adjusting the parameters k
and c.

0 1 2 3 4 5 6 7 8 9 10

Time(s)

-6

-5

-4

-3

-2

-1

0

1

2

3

4
lo

g(
||e

(t)
||)

Linear
Bi-exponential
Power-sigmoid
Power-sum

(a) Comparison of log( e(t) ) with Different
Activation Functions

Time(s)

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

f(x
(t)

,t)

Linear
Bi-exponential
Power-sigmoid
Power-sum

0 0.2 0.4
-154

-152

-150

7.852 7.8525 7.853
-160

-159.9998

-159.9996

-159.9994

-159.9992

(b) Comparison of f(x(t), t) with Different Acti-
vation Functions

0 1 2 3 4 5 6 7 8 9 10

Fig. 7 Comparison of time-varying error function and minimum function of GNSZNN model (52) with different activation functions for online

continuous-time nonlinear minimization problem (58)
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What plots in Fig. 7a reveals that logarithmic time-

varying residual error logðkeðtÞkÞ of GNSZNN model (52)

with the linear activation function is slightly larger than

that with other activation functions, where the bi-expo-

nential activation function and power-sigmoid activation

function arrays can achieve relatively better performance

for solving online time-varying nonlinear minimization

problem (58). In addition, Fig. 7b shows the comparison of

f ðxðtÞ; tÞ generated by GNSZNN model (52) with different

activation functions where the one with bi-exponential

activation function is smaller than those accompanied with

other activation functions.

6 Conclusions and future works

In this paper, from a control viewpoint, GNSZNN model

(52) is developed with the aid of classical ZNN model (10),

showing robust performance in noisy workspace and high

accuracy with time varying for online time-varying non-

linear optimization problems, which has been thoroughly

proved to have global/exponential convergence property.

In addition, collaborating with different monotonically

increasing odd activation functions, the convergence of

GNSZNN model (52) has been accelerated. Besides, sim-

ulative and numerical results further illustrated the efficacy

and advantages of GNSZNN model (52) for time-varying

nonlinear optimization problems.

Furthermore, GNSZNN model (52) may open a door to

the performance improvement of the related applications,

such as redundant manipulator [35, 36], rehabilitation robot

[37–39], trajectory planning [40, 41] and time-varying

problem [42], with the great capacity in tolerating noises

and computing accuracy. Moreover, since Hessian matrix

involved in the GNSZNN model (52) is required to be

invertible in the online solution process of the time-varying

nonlinear optimization problem, one of our future research

directions is the investigation of new models with a sin-

gular Hessian matrix.
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