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Abstract
Twin support vector machine (TWSVM) is proved to be better than support vector machine (SVM) in most cases, since it

only deals with two smaller quadratic programming problems, which leads to high computational efficiency. It is proposed

to solve a single-task learning problem, just like many other machine learning algorithms. However, a learning task may

have relationships with other tasks in many practical problems. Training those tasks independently may neglect the

underlying information among all tasks, while such information may be useful to improve the overall performance.

Inspired by the multi-task learning theory, we propose two novel multi-task m-TWSVMs. Both models inherit the merits of

multi-task learning and m-TWSVM. Meanwhile, they overcome the shortcomings of other multi-task SVMs and multi-task

TWSVMs. Experimental results on three benchmark datasets and two popular image datasets also clearly demonstrate the

effectiveness of our methods.

Keywords Multi-task learning � Twin support vector machine � Pattern recognition � Kernel method � Upper and lower

bound � Image classification

1 Introduction

As a milestone in the development of support vector

machine (SVM) [1], twin support vector machines

(TWSVMs) attract much attention during recent years. It is

first introduced in [2]. After a decade of research, there are

many variants appeared, such as least squares twin support

vector machine (LS-TWSVM) [3], twin bounded support

vector machine (TBSVM) [4], robust twin support vector

machine (robust-TWSVM) [5] and improved twin support

vector machine (ITWSVM) [6]. A classical variant of

TWSVM is m-TWSVM [7]. It is motivated by the classical

m-SVM [8] and is proved to be more effective and efficient

than m-SVM. Experiments on both synthetic and real

datasets also demonstrate the effectiveness and efficiency

of TWSVMs when compared to SVMs [9, 10]. TWSVM

has also been applied into many machine learning areas,

such as multi-view learning [11], domain adaptation [12]

and clustering (TWSVC) [13]. Based on the PAC-Bayes

theory, the generalization ability of TWSVM is analyzed

[14]. Some novel safe screening rules are also proposed to

speed up TWSVM without performance degradation

[15, 16]. More advances of TWSVM can be found in recent

survey [17, 18].

We should note that most machine learning algorithms

belong to single-task learning, such as support vector

machine, linear discriminant analysis, decision tree and so

on. Many variants of TWSVM also belong to single-task

learning. Actually, we usually train multiple tasks inde-

pendently. In other words, one task is trained at one time.

However, researchers point out that we may neglect the

shared information among these tasks, which may be useful

to improve the overall performance of these learning

algorithms. The multi-task learning theory is thus proposed

and has been studied extensively during the past two dec-

ades [19, 20]. It aims at improving the overall performance

of several related tasks. Compared to single-task learning,

it suggests that related tasks may share underlying

knowledge, which should be learned jointly so as to take

full advantages of the underlying information behind all

tasks. Empirical works have demonstrated the effectiveness

& Yitian Xu

xytshuxue@126.com

1 College of Information and Electrical Engineering, China

Agricultural University, Beijing 100083, China

2 College of Science, China Agricultural University,

Beijing 100083, China

123

Neural Computing and Applications (2020) 32:11329–11342
https://doi.org/10.1007/s00521-019-04628-5(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-7577-4420
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-019-04628-5&amp;domain=pdf
https://doi.org/10.1007/s00521-019-04628-5


of multi-task learning and have also pointed out the

mechanism of this machine learning paradigm [21].

A multi-task learning problem may be composed of

several single-label learning problems regardless of how

these tasks are related. One prerequisite is that all the

samples in these tasks share the same feature space, which

is also termed as homogeneous multi-task learning [22]. A

special case of multi-task learning is multi-label learning,

which studies the problem where each sample is associated

with a set of labels simultaneously. The relation between

these two machine learning paradigms has been clarified in

[23]. Suppose the prediction of each label is a task, the

multi-label learning problem can be transformed into a

multi-task learning problem. By modeling the correlation

of all tasks, the relations among multiple labels can be

captured as well.

The research on multi-task learning in the early days can

be found in [21, 24]. It mainly focused on neural network-

based multi-task learning methods and also discussed k-

nearest neighbors (k-NN) and decision tree-based multi-

task learning algorithms. The generalization bound of

multi-task learning was also discussed in early research

[25]. At present, many multi-task learning methods

appeared, such as Bayesian multi-task learning [26] and

multi-task Gaussian process [27]. Recent survey on multi-

task learning categorizes these methods into several types,

including multi-task feature learning, multi-task relation

learning, low-rank approach, dirty approach-based meth-

ods, task-clustering methods and other methods [22]. More

surveys on multi-task learning can be found in [23, 28].

Recent success in multi-task support vector machines is

interesting as well. The first practice is regularized multi-

task learning (RMTL) [29–31], which suggests all tasks

share a common separating hyperplane and belongs to

mean-regularized multi-task learning. It has been used in

human action recognition [32]. A generalized sequential

minimal optimization (GSMO) is proposed for

SVM þ MTL [33]. Some other multi-task SVMs are also

proposed recently, including multi-task least square sup-

port vector machine (MTLS-SVM) [34], multi-task proxi-

mal support vector machine (MTPSVM) [35] and multi-

task asymmetric least squares support vector machine

(MT-aLS-SVM) [36], all of which are based on a certain

single-task learning method. Some other variants, such as

multi-task infinite latent support vector machines (MT-

iLSVM) [37], multi-task multi-class support vector

machine (MTMCSVM) [38] and multi-view multi-task

support vector machine (MVMTSVM) [39], are also

inspiring. Based on SVM, an online multi-task learning

algorithm is proposed for semantic concept detection in

video [40]. A multi-task ranking SVM is proposed for

image co-segmentation [41]. A least squares support vector

machine for semi-supervised multi-task learning is also

proposed recently [42].

In contrast to the extensive research on multi-task

SVMs, few attention is focused on multi-task TWSVMs.

Recent works on multi-task TWSVMs have directed multi-

task twin support vector machine (DMTSVM) [43], multi-

task centroid twin support vector machine (MTCTSVM)

[44] and multi-task least squares twin support vector

machine (MTLS-TWSVM) [45]. Compared to their single-

task learning counterparts, these models show better gen-

eralization performance. They suppose all tasks share two

mean hyperplanes, one for the positive and the other for the

negative. Inspired by the multi-task learning, we propose

two novel multi-task m-twin support vector machines (MT-

m-TWSVMs) to take full advantage of the regularized

multi-task learning and m-TWSVM. Both models inherit

the merits of m-TWSVM and multi-task learning and

overcome the shortage of TWSVM, DMTSVM and

MTCTSVM. Thus, our model can perform better than

DMTSVM and MTCTSVM. The main contributions of our

paper are as follows:

1. We propose two novel multi-task m-twin support vector

machines based on different assumptions. They are

natural extensions of m-TWSVM in multi-task setting.

2. Both models inherit the merits of m-TWSVM. The

fraction of support vectors is thus easier to control in

our models than other multi-task SVMs and TWSVMs.

3. The task relation is easier to control in our models and

more flexible than other methods.

4. Our models achieve better performance than other

multi-task SVMs and TWSVMs.

The remainder of this paper is organized as follows.

After a brief review of m-TWSVM and DMTSVM in Sect.

2, we give a detailed derivation of the proposed MT-m-
TWSVMs in Sects. 3 and 4. Analysis of algorithms is

shown in Sect. 5. The numerical experimental results are

shown in Sect. 6. Finally, we show the conclusions and

future work in Sect. 7.

2 Related work

Here we introduce m-twin support vector machine (m-
TWSVM) and the primal multi-task twin support vector

machine (DMTSVM). It would be better to clarify the

original inspiration of these methods, since they lay a solid

foundation for our proposed methods.

2.1 m-Twin support vector machine

For a standard TWSVM model, it aims at finding two

nonparallel hyperplanes rather than one hyperplane in
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SVM. It is also proved to be faster than SVM for four times

on training large datasets. The m-TWSVM is similar to

TWSVM. Suppose Xp represents all the positive samples,

and Xn stands for the negative. For simplicity, denote

A ¼ ½Xp e�, B ¼ ½Xn e�, u ¼ ½w1; b1�> and v ¼ ½w2; b2�>, and
this model generates two nonparallel hyperplanes by

solving the following problems,

min
u;p;qþ

1

2
kAuk2 � m1qþ þ 1

l�
e>2 p

s.t. � Buþ p� qþ;

qþ; p� 0;

ð1Þ

and

min
v;q;q�

1

2
kBvk2 � m2q� þ 1

lþ
e>1 q

s.t. Avþ q� q�;

q�; q� 0:

ð2Þ

where m1 and m2 are positive parameters. lþ and l� denote

the numbers of positive samples and negative samples,

respectively. Both e1 and e2 are vectors of ones of appro-

priate dimensions. Then, a new point x 2 Rn is assigned to

class iði ¼ þ1;�1Þ by

f ðxÞ ¼ arg min
r¼�1

jx>wr þ brj: ð3Þ

This model is modeled after the m-SVM. It can adjust the

fraction of support vectors and is proved to be more effi-

cient and effective than traditional SVMs and TWSVMs.

However, just like many other single-task learning models,

it is not designed to deal with the commonality and indi-

viduality of multiple tasks.

2.2 Multi-task twin support vector machine

This model introduces TWSVM into multi-task learning

setting, is modeled after the RMTL and also is called direct

multi-task twin support vector machine (DMTSVM) [43],

unlike multi-task support vector machines, which supposes

all tasks share two mean hyperplanes. Suppose the positive

(negative) samples in the tth task are represented by

Xpt(Xnt). Meanwhile, Xp represents the positive samples,

while Xn stands for the negative. Now, we let

At ¼ ½Xpt et�; Bt ¼ ½Xnt et�; A ¼ ½Xp e�; B ¼ ½Xn e�;

where et and e are one vectors of appropriate dimensions.

Suppose there are two mean hyperplanes u ¼ ½w1; b1�>

and v ¼ ½w2; b2�> shared by all tasks, the two hyperplanes

in the tth task are ðuþ utÞ ¼ ½w1t; b1t�> and

ðvþ vtÞ ¼ ½w2t; b2t�>, respectively. The bias between the

hyperplanes in the tth task and the common hyperplanes u

and v is captured by ut and vt. Then, the primal problem of

DMTSVM is illustrated as follows:

min
u;ut ;pt

1

2
kAuk22 þ

1

2

XT

t¼1

qtkAtutk22 þ c1
XT

t¼1

e>2tpt

s.t. � Btðuþ utÞ þ pt � et; pt � 0;

ð4Þ

and

min
v;vt ;qt

1

2
kBvk22 þ

1

2

XT

t¼1

ktkBtvtk22 þ c2
XT

t¼1

e>1tqt

s.t. Atðvþ vtÞ þ qt � et; qt � 0;

ð5Þ

where t 2 f1; 2; . . .; Tg, e1t and e2t are one vectors. c1 and

c2 are nonnegative trade-off parameters. The relationships

of all tasks can be adjusted by parameters qt and kt. Both pt
and qt are slack variables. Then all tasks can be modeled

unrelated when qt ! 0 and kt ! 0 simultaneously. On the

contrary, these models will be learned the same when qt !
1 and kt ! 1. Finally, the label of a new point x in the tth

task can be determined by

f ðxÞ ¼ arg min
r¼�1

jx>wrt þ brtj: ð6Þ

3 Multi-task m-twin support vector machine I

3.1 Linear case

In this section, based on the regularized multi-task learning

and the m-TWSVM, we propose a primal multi-task

learning problems as follows:

min
u0;ut ;qþ;pt

1

2
kAu0k2 þ

l1
2T

XT

t¼1

kAtutk2 � m1qþ

þ 1

l�

XT

t¼1

e>2tpt

s.t. � Btðu0 þ utÞ þ pt � qþ;

qþ; pt � 0;

ð7Þ

and

min
v0;vt ;q�;qt

1

2
kBv0k2 þ

l2
2T

XT

t¼1

kBtvtk2 � m2q�

þ 1

lþ

XT

t¼1

e>1tqt

s.t. Atðv0 þ vtÞ þ qt � q�;

q�; qt � 0;

ð8Þ

where t 2 f1; 2; . . .; Tg, lþ and l� are the numbers of

positive and negative samples, separately. Note that,

wrtðr 2 fþ1;�1gÞ are the weight vectors of the
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hyperplanes for each task. Here, u0ðv0Þ and utðvtÞ indicate
the commonality and personality of each task, separately.

The difference between all tasks is controlled by l. How-
ever, we take ideas from m-TWSVM. Its merits may be

different from the DMTSVM and MTCTSVM. Two

additional variables q� in (7) and (8) need to be optimized.

Before analyzing the effect of m, we take the dual problem

of (7) and (8). The Lagrangian function of problem (7) is

given by

L1 ¼
1

2
kAu0k2 þ

l1
2T

XT

t¼1

kAtutk2 � m1qþ þ 1

l�

XT

t¼1

e>2tpt

�
XT

t¼1

a>t ð�Btðu0 þ utÞ þ pt � qþÞ

�
XT

t¼1

b>t pt � gqþ;

ð9Þ

where at, bt and g are the Lagrangian multipliers. The

Karush–Kuhn–Tucker (KKT) conditions are given below

oL

ou0
¼ A>Au0 þ B>a ¼ 0;

oL

out
¼ l1

T
A>
t Atut þ B>

t at ¼ 0;

oL

oqþ
¼ �m1 þ e>2 a� g ¼ 0 ) e>2 a� m1;

oL

op
¼ e2

l�
� a� b ¼ 0 ) 0� a� 1

l�
;

ð10Þ

where a ¼ ½a>1 ; a>2 ; . . .; a>T �
>

and p ¼ ½p>1 ; p>2 ; . . .; p>T �
>
.

Then, we have

u0 ¼ �ðA>AÞ�1
B>a;

ut ¼ � T

l1
ðA>

t AtÞ�1
B>
t at:

ð11Þ

Then, substituting u0, ut into function (9)

L1 ¼
1

2
u>0 A

>Au0 þ
l1
2T

XT

t¼1

u>t A
>
t Atut

þ
XT

t¼1

a>t Btðu0 þ utÞ;
ð12Þ

and using below equations

Q ¼ BðA>AÞ�1
B>;

Pt ¼ BtðA>
t AtÞ�1

B>
t ;

P ¼ blkdiagðP1;P2; . . .;PTÞ;
ð13Þ

the dual problem of (7) can be simplified as

max
a

� 1

2
a> Qþ T

l1
P

� �
a

s.t. e>2 a� m1;

0� a� e2

l�
:

ð14Þ

Similarly, we introduce below equations

R ¼ AðB>BÞ�1
A>;

St ¼ AtðB>
t BtÞ�1

A>
t ;

S ¼ blkdiagðS1; S2; . . .; STÞ:
ð15Þ

The dual problem of (8) can be written as

max
c

� 1

2
c> Rþ T

l2
S

� �
c

s.t. e>1 c� m2;

0� c� e1

lþ
:

ð16Þ

Finally, the label of a new sample x in the tth task can be

determined by

f ðxÞ ¼ arg min
r¼�1

jx>wrt þ brtj: ð17Þ

3.2 Nonlinear case

Since linear classifier may not be appropriate for linear

nonseparable cases, the kernel trick can be used in such

case. Now, we introduce the kernel function Kð�Þ and

define

E ¼ ½KðA;X>Þ; e�; Et ¼ ½KðAt;X
>Þ; et�;

F ¼ ½KðB;X>Þ; e�; Ft ¼ ½KðBt;X
>Þ; et�:

where X represents training samples from all tasks, i.e.,

X ¼ ½A>
1 ;B

>
1 ;A

>
2 ;B

>
2 ; . . .;A

>
T ;B

>
T �

>
. By substituting A and

B in (7) and (8) with E and F, respectively, we can obtain

the kernel version of this model. The primal problems of

the nonlinear model are

min
u0;ut ;qþ;pt

1

2
kEu0k2 þ

l1
2T

XT

t¼1

kEtutk2 � m1qþ

þ 1

l�

XT

t¼1

e>2tpt

s.t. � Ftðu0 þ utÞ þ pt � qþ;

qþ; pt � 0;

ð18Þ

and
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min
v0;vt ;q�;qt

1

2
kFv0k2 þ

l2
2T

XT

t¼1

kFtvtk2 � m2q�

þ 1

lþ

XT

t¼1

e>1tqt

s.t. Etðv0 þ vtÞ þ qt � q�;

q�; qt � 0:

ð19Þ

Then the corresponding decision function of the tth task is

f ðxÞ ¼ arg min
r¼�1

jKðx;X>Þwrt þ brtj: ð20Þ

4 Multi-task m-twin support vector machine
II

Although it is easy to understand MT-m-TWSVM I, this

model may have some disadvantages. Because the range of

parameters l1 (l2) is ð0;þ1Þ, it is hard for us to adjust the
relationship among multiple tasks. Thus we propose

another multi-task m-TWSVM to address this problem in

this section.

4.1 Linear case

Suppose the hyperplane of the tth task can be expressed as

a linear convex combination of the common vectors u0ðv0Þ
and the task specific vectors utðvtÞ, we propose another

problem as follows:

min
u0;ut ;qþ;pt

l1
2
kAu0k2 þ

1� l1
2T

XT

t¼1

kAtutk2 � m1qþ

þ 1

l�

XT

t¼1

e>2tpt

s.t. � Btðl1u0 þ ð1� l1ÞutÞ þ pt � qþ;

qþ; pt � 0;

ð21Þ

and

min
v0;vt ;q�;qt

l2
2
kBv0k2 þ

1� l2
2T

XT

t¼1

kBtvtk2 � m2q�

þ 1

lþ

XT

t¼1

e>1tqt

s.t. Atðl2v0 þ ð1� l2ÞvtÞ þ qt � q�;

q�; qt � 0;

ð22Þ

where t 2 f1; 2; . . .; Tg.
Similar to DMTSVM, the differences between all tasks

are controlled by parameters l1 and l2. But it is different
from DMTSVM, that is, the task relation is captured by a

linear convex combination of the common hyperplane

u0(v0) and a specific vector ut(vt) for the positive (nega-

tive). If we set l1 ¼ 0 and l2 ¼ 0, it means that u0 and v0
have no effect on the tth task. Then T completely different

tasks will be learned, and the hyperplanes of the tth task

will be far away from the common hyperplanes. When

l1 ¼ 1 and l2 ¼ 1, our model reduces to an enlarged m-
TWSVM, and it means all tasks have the same two

hyperplanes. Therefore, the difference among all tasks can

be easily captured by two parameters l1 and l2. It is more

flexible than DMTSVM and MTCTSVM.

However, both models are based on m-TWSVM. Their

merits may be different from the DMTSVM and

MTCTSVM. Two additional variables q� in (21) and (22)

need to be optimized. Before analyzing the effect of m, we
take the dual problem of (21). The Lagrangian function of

problem (21) is given by

L1 ¼
l1
2
kAu0k2 þ

1� l1
2T

XT

t¼1

kAtutk2 þ
1

l�

XT

t¼1

e>2tpt

�
XT

t¼1

a>t ð�Btðl1u0 þ ð1� l1ÞutÞ þ pt � qþÞ

�
XT

t¼1

b>t pt � gqþ � m1qþ:

ð23Þ

Taking the partial derivatives of Lagrangian function (23)

with respect to (w0, wt, qþ, p), we obtain the following

KKT conditions:

oL

ou0
¼ l1ðA>Au0 þ B>aÞ ¼ 0;

oL

out
¼ ð1� l1Þ

1

T
A>
t Atut þ B>

t at

� �
¼ 0;

oL

oqþ
¼ �m1 þ e>2 a� g ¼ 0 ) e>2 a� m1;

oL

op
¼ e2

l�
� a� b ¼ 0 ) 0� a� 1

l�
;

ð24Þ

where a ¼ ½a>1 ; a>2 ; . . .; a>T �
>
.

Then, we have the following equalities with respect to

primal problem variables (u0, ut)

u0 ¼ �ðA>AÞ�1
B>a;

ut ¼ �T � ðA>
t AtÞ�1

B>
t at:

ð25Þ

Then, we substitute u0 and ut into function (23)

L1 ¼
l1
2
u>0 A

>Au0 þ
1� l1
2T

XT

t¼1

u>t A
>
t Atut

þ
XT

t¼1

a>t Btðl1u0 þ ð1� l1ÞutÞ:
ð26Þ

The dual problem of (21) can be simplified as
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max
a

� 1

2
a>ðl1Qþ ð1� l1ÞT � PÞa

s.t. e>2 a� m1;

0� a� e2

l�
:

ð27Þ

Similarly, the dual problem of (22) can be written as

max
c

� 1

2
c>ðl2Rþ ð1� l2ÞT � SÞc

s.t. e>1 c� m2;

0� c� e1

lþ
:

ð28Þ

Finally, the label of a new sample x in the tth task can be

determined by

f ðxÞ ¼ arg min
r¼�1

jx>wrt þ brtj: ð29Þ

4.2 Nonlinear case

A linear classifier may not be suitable for training samples

that are linear inseparable. The kernel trick can be used to

deal with such problems. Similarly, we introduce the kernel

function Kð�Þ and define

E ¼ ½KðA;X>Þ; e�; Et ¼ ½KðAt;X
>Þ; et�;

F ¼ ½KðB;X>Þ; e�; Ft ¼ ½KðBt;X
>Þ; et�;

where X represents training samples from all tasks, i.e.,

X ¼ ½A>
1 ;B

>
1 ;A

>
2 ;B

>
2 ; . . .;A

>
T ;B

>
T �

>
. The Kð�Þ is a kernel

function. The primal problems of the nonlinear case are

given as

min
u0;ut ;qþ;pt

l1
2
kEu0k2 þ

1� l1
2T

XT

t¼1

kEtutk2 � m1qþ

þ 1

l�

XT

t¼1

e>2tpt

s.t. � Ftðl1u0 þ ð1� l1ÞutÞ þ pt � qþ;

qþ; pt � 0;

ð30Þ

and

min
v0;vt ;q�;qt

l2
2
kFv0k2 þ

1� l2
2T

XT

t¼1

kFtvtk2 � m2q�

þ 1

lþ

XT

t¼1

e>1tqt

s.t. Etðl2v0 þ ð1� l2ÞvtÞ þ qt � q�;

q�; qt � 0:

ð31Þ

Then the decision function of the tth task is

f ðxÞ ¼ arg min
r¼�1

jKðx;X>Þwrt þ brtj: ð32Þ

5 Analysis of algorithms

5.1 Equivalent form of model

The dual problems of MT-m-TWSVM are similar to that of

m-TWSVM. The difference lies in the Hessian matrix.

Besides, these models share similar features with m-
TWSVM. Similar to m-SVM and m-TWSVM, to compute

q�, we select samples xi (or xj) with 0\ai\ 1
l�

(or

0\cj\ 1
lþ
) from all tasks, which means that pt ¼ 0 (or

qt ¼ 0) and w>
1 xj þ bþ ¼ �qþ(or w>

2 xi þ b2 ¼ q�).
According to the KKT conditions, the q� can be calculated

by

qþ ¼ � 1

l�

XT

t¼1

XNtn

j¼1

ðw>
1txj þ b1tÞ;

q� ¼ 1

lþ

XT

t¼1

XNtp

i¼1

ðw>
2txi þ b2tÞ;

ð33Þ

where Ntn and Ntp represent the number of negative and

positive samples satisfying above constraints in the tth task.

Here we show an equivalent form of QPP (14). How-

ever, the optimal value of parameter qþ (q�) is actually

larger than zero. According to previous conclusions, we

have the following Proposition 1.

Proposition 1 QPP (14) can be transformed into the fol-

lowing QPP.

max
a

� 1

2
a> Qþ T

l1
P

� �
a

s.t. 0� a� e2

l�
;

e>2 a ¼ m1:

ð34Þ

The difference between (14) and (34) lies in the second

constraint. The second inequality constraint e>2 a� m1 can

be transformed into an equality constraint e>2 a ¼ m1.

Proof According to the KKT conditions gqþ ¼ 0 and the

assumption qþ [ 0, we have that g ¼ 0. Then we obtain

the equality constraint e>2 a ¼ m1 by substituting g into (10).

Thus we prove Proposition 1.

Similar to m-TWSVM, dual problems (14) and (15) of

MT-m TWSVM I can be seen as minimizing the general-

ized Mahalanobis norm. This norm is defined as

kukGM ¼
ffiffiffiffiffiffiffiffiffiffiffi
u>Su

p
. Here, we set S ¼ Qþ T

l1
P, and problem

(14) can be written as a standard generalized Mahalanobis

norm minimizing problem as follows,
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min
a

1

2
a>Sa

s.t. 0� a� am;

e>2 a ¼ 1;

ð35Þ

where am ¼ e2
m1l�

. Further analysis of this property can be

found in [7], and the only difference lies in the Hessian

matrix. Similar conclusions can be obtained for QPP (15)

as well. The MT-m-TWSVM II also has these features. h

5.2 Property of parameter m

As in m-TWSVM, parameter m in our multi-task m-
TWSVMs also has these properties. They are discussed in

the following propositions.

Proposition 2 Suppose we run both MT-m-TWSVM I and II

with n samples on dataset D, obtaining the result that

q� � 0. Then

1. m2 (or m1) is an upper bound on the fraction of positive

(or negative) margin errors of the common task.

2. m2 (or m1) is a lower bound on the fraction of positive

(or negative) support vectors of the common task.

Proof The proof of Proposition 2 is similar to that of

Proposition 5 in [8]. These results can be extended to the

nonlinear case by introducing the kernel function. h

5.3 Complexity analysis

We analyze the training time complexity of our proposed

algorithms. Clearly, both models need solving two smaller

quadratic programming problems. It is the same as training

original single-task learning m-TWSVM on all the samples

in these tasks. Although one may notice that there is 2T þ
2 times matrix inversion in a training process, we note that

it can be better optimized by carefully organizing the

training procedure of the grid process. It will not affect the

overall time complexity theoretically. Therefore, the

training time complexity of our proposed algorithms is the

same as that of m-TWSVM. Suppose the number of training

samples in all the tasks is l, the time complexity of our

algorithms is also Oðl3
4
Þ.

According to the analysis, we know that training such a

multi-task learning model needs additional computation

when compared to training a unify model on all the sam-

ples. But in one aspect, the personality and commonality

can be modeled to improve the overall performance. In

other aspect, the training tasks could help each other in a

multi-task learning scenario. This is what a single-task

learning method cannot achieve practically.

6 Numerical experiments

In this section, we present experimental results on both

single-task learning methods and multi-task learning

algorithms. The single-task learning algorithms are con-

sisted of SVM, PSVM, LSSVM, TWSVM, LSTWSVM

and m-TWSVM, while the multi-task learning methods are

MTPSVM, MTLS-SVM, MTL-aLS-SVM, DMTSVM,

MCTSVM and our proposed MT-m-TWSVM I and II. The

numerical experiments are first conducted on three

benchmark datasets. To further evaluate these methods, we

have also made comparisons on popular Caltech 101 and

256 datasets.

For each algorithm, all parameters, such as k, c and q,
are turned by grid-search strategy. Without specification,

all parameters are selected from set f2iji ¼ �3;�2; . . .; 8g.
The parameter p in MTL-aLS-SVM is selected from set

f0:82; 0:86; 0:90; 0:95g. The parameter m in m-TWSVM and

MT-m-TWSVMs is selected from set f0:1; 0:2; . . .; 1:0g.
The parameter l in MT-m-TWSVM II is selected from set

f0; 0:1; . . .; 0:9; 1g. Then, we use fivefold cross-validation

to obtain average performance. Finally, all experiments are

conducted in MATLAB R2018b on Windows 8.1 running

on a PC with system configuration of Intel(R) Core(TM)

i3-6100 CPU (3.90 GHz) with 12.00 GB of RAM.

We note one special operation we had done to handle

multi-task learning problems when conducting simulations.

Since training a group of unrelated tasks may have negative

impact on the performance of our proposed multi-task

learning models, all the training tasks should be concep-

tually positive related. In our work, the training tasks sat-

isfy such requirement to a certain extent. Thus it can better

utilize the generalization ability of our proposed multi-task

learning methods.

6.1 Benchmark datasets

In this subsection, we conduct experiments on three data-

sets. The general information is show in (Table 1). The

details of these datasets are as follows.

Monk This dataset comes from a first international

comparison of learning algorithms and contains three

Monk’s problems corresponding to three tasks [46]. The

domains of all tasks are the same. Thus, these tasks can be

seen as related. We select different number of samples to

test these methods.

Emotions This is a multi-label dataset in Mulan library

[47] and is used to recognize different emotions. There are

six kinds of labels for all samples. Each sample may have

more than one label (or emotion). Suppose the recognition

tasks of different emotions share similar features and can
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be seen as related tasks. We cast it into a multi-task clas-

sification problem, and each task is to recognize one type

of emotion. We select 100 to 200 samples from this dataset

to evaluate these multi-task learning algorithms.

Flags This is a multi-label dataset in Mulan library [47]

as well. Each sample may have seven labels. Since the

recognition task of each label can be seen as related. Thus,

we also consider it as a multi-task learning problem. Then

we select different number of samples from this dataset to

compare the performance of these multi-task learning

methods.

Finally, we use Gaussian kernel function on Monk

dataset only. But considering the feature mapping of the

Gaussian kernel, the data could be more linear separable in

high-dimensional space, causing the classification perfor-

mance of each model cannot be easily distinguished on

limited testing samples. Therefore, a polynomial kernel

function is applied in our experiments, i.e.,

Kðxi; xjÞ ¼ ðhxi; xji þ cÞd: ð36Þ

In our experiments, we set the kernel parameter c ¼ 1 and

d ¼ 2. By the kernel trick, the input data are mapped into a

high-dimensional feature space. In the feature space, a

linear classifier is implemented which corresponds to a

nonlinear separating surface in the input space.

Figures 1 and 2 show the performance comparison on

Monk dataset with RBF kernel function. We can learn from

them that our algorithms clearly outperform these single-

task learning algorithms. The performance of each algo-

rithm increases when increasing the size of each task. With

the task size increases, the performance gap between sin-

gle-task learning methods and our methods decreases. It

can be explained as follows. Since our models train all

tasks simultaneously, it can take advantage of the under-

lying information among all tasks when there are few

samples in each task. The performance of single-task

learning algorithms also becomes better when increasing

the number of samples. Thus our multi-task learning

methods are suitable for training small tasks. Meanwhile,

the performance of our models in Fig. 2 is clearly better

than other multi-task learning algorithms when there are

few samples in each task. With the increase in task size, the

performance of each algorithm also increases. In addition,

we note that the average training time of these four multi-

task TWSVMs is almost the same, while the training time

of MTPSVM and MTLS-SVM is lower than the other

algorithms.

In the following, the performance comparison on Monk

dataset with polynomial kernel function is shown in Figs. 3

and 4. We point out that our algorithms also outperform

other single tasks at varying task size. In addition, since our

methods train all tasks simultaneously, the training time is

surely larger than those single-task learning algorithms.

But we also note that the training time of SVM, TWSVM

and m-TWSVM is close to our methods when there are few

training samples in each task, since these algorithms need

to solve one or two quadratic programming problems. In

addition, our algorithms also perform better than other

multi-task learning methods at varying task size in terms of

the mean accuracy. Meanwhile, the average training time

of the last four algorithms is almost the same. The training

time of PSVM, LSSVM and their multi-task leaning

extensions MTPSVM and MTLS-SVM is the lowest

among all algorithms. Finally, our algorithms perform

better than these single-task learning and multi-task

learning methods on Monk dataset in our experimental

results in terms of the mean accuracy.

The experimental results on Flags dataset between

multi-task learning algorithms with polynomial kernel

function are illustrated in Fig. 5. Our algorithms perform

better than other multi-task learning algorithms when the

number of samples in each task is larger than 100. Since

there are 7 tasks in this dataset, we cannot suppose these

tasks are really correlated. The performance of these multi-

task learning algorithms may not be so well. But our

algorithms still perform better than these three multi-task

SVMs in terms of mean accuracy. In addition, the training

time of MPTSVM and MTLS-SVM is clearly lower than

other algorithms. However these two algorithms just solve

a larger linear equation problem, while our algorithms need

to solve two smaller quadratic programming problems and

several small matrix inversions. The computational costs of

our methods are naturally high.

The comparison between multi-task learning algorithms

on Emotions dataset with polynomial kernel function is

shown in Fig. 6. In this group of experiments, our algo-

rithms perform better than other similar methods in terms

of the mean accuracy. The MTPSVM and MTLS-SVM are

faster than other methods. The average training time of the

last five algorithms is almost the same.

6.2 Image datasets

To further evaluate the effectiveness of MT-m-TWSVMs,

we conduct experiments on two image datasets. The ima-

ges are selected from the Caltech 101 [48, 49] and the

Table 1 The statistics of these three datasets

Name #Tasks #Samples #Features

Monk 3 432 6

Flags 7 194 19

Emotions 6 593 72
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Caltech 256 datasets [50], which have been widely used in

computer vision researches. There are 102 categories in

Caltech 101 dataset, and each category has more than 50

samples. Each image has about 300� 200 pixels [48]. We

select about 50 samples from each category in our exper-

iments. Caltech 256 dataset has 256 categories of images in
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total, such as mammals, birds, insects and flowers. There is

a clutter category in this dataset, which can be seen as

negative samples. The number of images in each category

ranges from 80 to 827. We select no more than 80 samples

from each category. Then, we manually cluster these

images into 15 main categories according to the hierarchy
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of category, each category contains three to ten classes of

images. Some images are shown in Fig. 7. We note that the

images in one column have similar features. But each row

belongs to different subclass. Therefore, the recogni-

tion tasks of different subclasses belonging to the

same category can be regarded as a group of related tasks.

Then, we train these tasks simultaneously to evaluate these

multi-task learning methods.

As a classical image feature extractor, scale invariant

feature transform (SIFT) algorithm [51] is widely used in

many computer vision researches before [52–54]. Until few

years ago, hand crafted features such as SIFT represented

the state of the art for visual content analysis. In particular,

SIFT is widely regarded as the gold standard in the context

of local feature extraction [55]. In this paper, a fast and

dense version of SIFT, called dense-SIFT1, is used in

accompany with Bag of Visual Words (BoVW) method to

obtain the vector representation of the images. It is a fast

algorithm for the calculation of a large number of SIFT

descriptors of densely sampled features of the same scale

and orientation.2 It not only runs faster than original SIFT

feature extractor, but also can generate more feature

descriptors. Thus it can provide more information of an

image. It is especially important in building the feature

vector of an image with BoVW method. The feature vector

of a preprocessed image is 1000 dimensions in our

experiments. Afterward, the dimensions of those feature

vectors are reduced with PCA to capture 97% of the

variance. Thus, to reduce the training complexity, the task

is to recognize those samples in each subclass. Finally,

considering the high dimensional of samples, all

experiments on these two datasets are conducted with a

polynomial kernel function as described in previous

experiments.

Figures 8 and 9 illustrate our experimental results on the

Caltech 101 and Caltech 256 datasets. We find that our

methods perform better than MTPSVM, MTLS-SVM and

MTL-aLS-SVM on four categories in Caltech 101 dataset.

However, from the training time, multi-task TWSVMs are

almost the same. But our methods outperform the

DMTSVM and MTCTSVM. In comparison, the MTL-aLS-

SVM performs badly on these two metrics in most cases. In

addition, our algorithms perform better than other two

multi-task TWSVMs on seven categories in Caltech 256

dataset. Our algorithms also perform better than MTLS-

SVM on six categories. We notice that the training time of

the last five algorithms is almost the same in this group of

experiments. However, they all need to solve one or two

quadratic programming problems instead of one larger

linear equation. The MTPSVM and MTLS-SVM perform

well in terms of the average training time. The reason has

been clarified in the previous section. Although the feature

vector has been reduced to a low dimension, the dimen-

sions are still high when compared to the number of all

sample in most cases. We point out that the number of

features is about 300–600 dimensions in these two groups

of experiments. In contrast to previous results on bench-

mark datasets, the ability of our algorithms in dealing with

such case may not be so well.

After showing our experimental results, we then have an

overview of the accuracy levels other researchers reported

when they used Caltech 101 and 256 datasets in Table 2.

As we can see, the SVM is applied with a specific feature

extractor to evaluate the performance in these researches.

Fig. 7 Samples selected from ten categories in Caltech datasets. Each column of samples belongs to the same main category, but the features of

image differ in rows

1 http://www.vlfeat.org/matlab/vl_dsift.html.
2 http://www.vlfeat.org/api/dsift.html.
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We note that recently proposed ResFeats-152 þ PCA-

SVM achieves the best accuracy on both datasets. It uses

deep neural network as an image feature extractor and then

feeds the preprocessed feature vectors into the SVM. In

contrast, the other methods are manually designed feature

extractors. The Pyramid SIFT is a feature extractor based

on SIFT. In a word, the main difference of above

researches on Caltech datasets lies in the feature extraction

method. Compared to previous results, the accuracy level

of our methods is comparable to the other method on

Caltech 101 dataset. Meanwhile, the accuracy level of our

methods is better than the above methods in most cases.

The comparison shows the effectiveness of our methods on

Caltech datasets.

Finally, to verify our hypothesis that recognizing images

belongs to different subclasses but in a common category

can be trained simultaneously, Fig. 10 shows the trend of

mean accuracy with respect to the parameters l and m
around the best parameters when the kernel parameters are

fixed. The raw data come from the result of MT-m-TWSVM

II on Caltech 256 image dataset with a RBF kernel func-

tion. According to this figure, we can directly know whe-

ther the performance is largely affected by the choice of l
or m. This figure indicates that the performance has strong

correlation with the value of l rather than m. Our model
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Fig. 9 Performance comparison between multi-task methods on Caltech 256 image dataset (polynomial kernel)

Table 2 The accuracy levels recently proposed image recognition

methods obtained on Caltech 101 and 256 datasets

Method Caltech 101 Caltech 256

Pyramid SIFT þ Linear SVM [56] 80.13 52.59

DRLTP þ Linear SVM [57] 80.41 81.89

SC-MCASP þ Linear SVM [58] 75.07 37.09

ResFeats-152 þ PCA-SVM [59] 94.70 79.50

LEFSI þ Linear SVM [60] 85.78 52.90
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achieves the highest accuracy at a larger value of l.
According to the previous analysis of our model, it means

all tasks share two mean hyperplanes and have high cor-

relation. Thus, we should choose a larger parameter l in

the range of [0, 1]. This result is in consistent with our

hypothesis. It means the tasks selected from Caltech 256

dataset are related and should be learned jointly rather than

separately. However, this is not the case on all the datasets.

But we can find the relationships of all tasks according to

this figure. Therefore, it provides a better way to choose the

best parameters.

7 Conclusion and future work

In this paper, we propose two novel multi-task classifiers,

termed as MT-m-TWSVM I and II, which are natural

extension of m-TWSVM in multi-task learning. Both

models inherit the merits of m-TWSVM and multi-task

learning. Our analysis shows that both models share similar

properties with m-TWSVM. The main difference lies in the

two Hessian matrices, which model the personality and

commonality of all tasks. Unlike original m-TWSVM, it is

the fraction of support vectors of the common task that can

be bounded by parameter m. It overcomes the shortage of

DMTSVM and MTCTSVM. The multi-task relationship

can be modeled from completely irrelevant to fully relevant

in the second model. Therefore, it is more flexible.

Experimental results on three benchmark datasets and two

image datasets demonstrate the effectiveness and efficiency

of our algorithms. Meanwhile, the accuracy levels other

researchers obtained on these two image datasets are also

discussed. This comparison also clearly confirms that our

proposed methods are powerful and consistently outper-

form the other image classification algorithms.

Finally, our future work will focus on speeding up the

training process of multi-task SVM and TWSVMs on large

datasets.
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