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Abstract
Construction of robust regression learning models to fit data with noise is an important and challenging problem of data

regression. One of the ways to tackle this problem is the selection of a proper loss function showing insensitivity to noise

present in the data. Since Huber function has the property that inputs with large deviations of misfit are penalized linearly

and small errors are squared, we present novel robust regularized twin support vector machines for data regression based on

Huber and e-insensitive Huber loss functions in this study. The proposed regression models result in solving a pair of

strongly convex minimization problems in simple form in primal whose solutions are obtained by functional and Newton–

Armijo iterative algorithms. The finite convergence of Newton–Armijo algorithm is proved. Numerical tests are performed

on noisy synthetic and benchmark datasets, and their results are compared with few popular regression learning algorithms.

The comparative study clearly shows the robustness of the proposed regression methods and further demonstrates their

effectiveness and suitability.
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1 Introduction

Support vector machines (SVMs) are powerful machine

learning tools for data classification and regression prob-

lems. Because of their superior generalization performance

over other machine learning methods, such as the artificial

neural networks (ANNs), they have been successfully

applied on a variety of real-world problems such as image

processing, bioinformatics and financial regression

[16, 26, 27].

The basic idea of SVM is in determining the optimal

separating hyperplane by maximizing the margin between

two parallel hyperplanes, leading to solving a quadratic

programming problem (QPP) [11, 36]. Although SVM

owns better generalization performance than other learning

methods, its training time complexity is Oðm3Þ, where m is

the total number of training samples. To overcome this

challenge, by considering the proximity of the data to one

of the two nonparallel hyperplanes, a nonparallel hyper-

plane classifier called generalized eigenvalue proximal

support vector machine (GEPSVM) was first proposed in

Mangasarian and Wild [25]. Similar in spirit, Jayadeva

et al. [22] proposed a twin support vector machine

(TWSVM) wherein two nonparallel hyperplanes are con-

structed so that each plane is closer to one class of data

points but as far away as possible from the data points of

other class. Such strategy leads to solving two QPPs of

smaller size which makes the training of TWSVM four

times faster than the standard SVM [22]. Due to its low

computational training cost, TWSVM attracted lot of

interest in the literature [2, 29, 38].

With the introduction of e-insensitive loss function [36],

support vector machine method for data regression has

been proposed on the principle of SVM. In fact, in the

classical support vector regression method (e-SVR), a

regression function f ðxÞ is determined such that data points

outside of the e-tube between f ðxÞ � e and f ðxÞ þ e con-

tribute to the error and at the same time f ðxÞ is made as flat

as possible. Recently, in the spirit of TWSVM, Peng [28]

proposed twin support vector machine for data regression

(TSVR) where a pair of e-insensitive down-bound and up-

bound functions are constructed by solving two smaller
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QPPs, whereas e-SVR solves a larger QPP. This makes the

learning speed of TSVR significantly faster than e-SVR
[28]. In [32], a e-insensitive twin support vector regression

(e-TSVR) algorithm is proposed where the structural risk is

minimized by adding a regularization term resulting in

better generalization performance and training time than e-
SVR. With the aim of estimating flexible insensitive zone

with high sparsity and better generalization capability,

pairing support vector regression (PSVR) is proposed

recently and the interested reader is referred to [17]. On the

study of some of the interesting twin SVR models reported

in the literature, we refer to Balasundaram and Gupta [1],

Balasundaram and Tanveer [3], Peng et al. [30], Rastogi

et al. [31], Yang et al. [39].

Learning to fit data with noise/outliers is an important

and challenging research problem. The data arising from

real-world applications are in general subject to the pres-

ence of noise and outliers. When the observed data are

noisy, the learning model may try to fit the corrupt data,

which often results in poor generalization performance in

the test phase [10]. In a robust regression model, if the

estimated error of a data point is large, then by considering

it as an outlier, its contribution to learning can be reduced.

Several robust regression models have been reported in the

literature to reduce the negative effect of outliers

[6, 8–10, 37, 40, 41].

One of the approaches proposed in the literature to

achieve robustness is the elimination of the outliers from

the training set by applying an outlier detection technique

and training the remaining set of inputs with a learning

model [9]. The main difficulty of this approach is in

identifying the outliers, especially when no prior knowl-

edge about error distribution is available [6]. Another

drawback is the increase in computational cost.

The other approach in designing robust regression

models is in applying a suitable loss function which can

resist the effect of outliers [44]. For example, in Chuang

et al. [10], a robust SVR is proposed where the e-insensi-
tive loss function is replaced by a robust tanh estimation

function. As we know, quadratic loss function, 1-norm loss

function and e-insensitive loss function are some of the

empirical risk functions commonly used in regression

problems [11, 36]. Quadratic loss function is smooth and

hence attractive but it is non robust. Though both 1-norm

and e-insensitive loss functions are considerably less sen-

sitive to large error of misfit than quadratic loss function,

they are only continuous which precludes the application of

popular numerical minimization methods of solving.

In recent times, Huber function [20] is applied as a

robust error measure to handle noise/outliers. Since sam-

ples with large deviations are penalized linearly like

1-norm loss function and, however, small errors are

squared like quadratic loss function, it is a hybrid function

and is considerably insensitive to large noise. Moreover,

Huber function is convex and, unlike 1-norm loss and e-
insensitive loss functions, it is differentiable everywhere.

Because of differentiability, it is reasonable to suppose that

Huber SVR will be easier to minimize than 1-norm SVR

and e-SVR and in addition it will be possible to apply

gradient-based optimizers. In Guitton and Symes [15], as a

robust model, it is proposed to minimize the Huber

regression problem as a function of the residuals by a

quasi-Newton method and successfully applied on an

inverse problem for velocity analysis. A robust regression

model for Bayesian support vector regression is con-

structed in Chu et al. [8] where the Huber and e-insensitive
loss functions are combined into a unified function to

become e-insensitive Huber function. As hybrid approa-

ches, robust regularized kernel regression for Huber and

similarly e-insensitive Huber loss functions are proposed in

Zhu et al. [44]. Chen et al. [7] proposed a robust algorithm

of SVR in primal with trimmed Huber loss function

claiming high robustness to outliers. In Mangasarian and

Musicant [24], finding an approximate solution of the

regression problem as a function of the residuals via robust

Huber M-estimator is proposed to become an equivalently

solvable convex quadratic problem. By assigning small

weights to samples with large error, it proposed that the

effect of noise can be reduced [34]. Also some researchers

employed nonconvex loss functions instead of convex

functions to obtain robustness to outliers [42, 43]. The

main drawbacks of the previously studied robust Huber

regression models are that they are significantly complex

and require special care in designing algorithms for solving

them. Recently, robust support vector regression models in

simple form have been proposed in Balasundaram and

Meena [4] by defining the misfit error via asymmetric

Huber and e-insensitive asymmetric Huber functions.

The goal of this paper is to present robust, regularized,

Huber and e-insensitive Huber twin support vector machine

formulations for data regression in simple form whose

solutions can be obtained by simple, well-known iterative

methods. Our proposed work is an extension of Shao et al.

[32] on e-insensitive twin support vector regression and the

study of Balasundaram and Meena [4] on robust Huber and

e-insensitive Huber SVR leading to minimization problems

in simple form. From the previous study [5] that primal

approaches usually are superior to dual approaches, it is

proposed to solve the minimization problems directly in

primal.

In this work, all vectors are considered as column vec-

tors. For a vector x ¼ ðx1; . . .; xnÞt 2 Rn, its transpose and

2-norm will be denoted by xt and jjxjj, respectively. We

define the plus function xþ by: ðxþÞi ¼ maxf0; xig where

i ¼ 1; . . .; n. The m-dimensional column vector of zeros
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and similarly the vector of ones will be denoted by 0 and e,

respectively, and the identity matrix of appropriate size

will be denoted by I:

The paper is organized as follows. As related work,

Sect. 2 provides a brief review on the formulations of e-
insensitive support vector regression (e-SVR), least-squares
support vector regression (LS-SVR) and twin support

vector regression (TSVR). Section 3 presents novel robust

twin support vector regression models using Huber and e-
insensitive Huber loss functions in primal whose solutions

are obtained by functional and Newton–Armijo iterative

methods. For comparison purpose, numerical tests on (1)

synthetic datasets with different types of noise/outliers and

(2) benchmark datasets are performed in Sect. 4, while 5

concludes the paper.

2 Related work

2.1 e-Insensitive support vector regression

In this subsection, we briefly describe the formulation of

support vector regression (SVR) with e-insensitive loss

function (e-SVR) proposed by Vapnik [36].

Suppose we are given a set of training examples

fðxi; yiÞgi¼1;2;...;m such that for each input xi 2 Rn; let yi 2 R

be its corresponding observed value. The classical SVR (e-
SVR) aims at searching an optimal function f ðxÞ such that

an e-insensitive tube around the training examples is set

within which errors are neglected.

To obtain a nonlinear regression estimation function, the

inputs are mapped into a higher dimensional feature space

via a nonlinear mapping uð:Þ and a linear learning

regressor is obtained in the feature space [11, 36]. Suppose

that the nonlinear regression estimating function f : Rn !
R takes the form:

f ðxÞ ¼ uðxÞtwþ b for x 2 Rn;

where w is a vector in the feature space and b is a scalar

threshold.

It is well known that the e-insensitive SVR formulation

leads to solving the following unconstrained optimization

problem:

min
w;b

1

2
wtwþ C

Xm

i¼1

jf ðxiÞ � yije;

where jf ðxiÞ � yije ¼ maxf0; jf ðxiÞ � yij � eg is the e-in-
sensitive error at xi and C[ 0, e[ 0 are parameters. By

introducing slack variables n1i and n2i, the primal problem

can be reformulated as a constrained minimization problem

defined as [11, 36]

min
w;b;n1;n2

1

2
wtwþ C

Xm

i¼1

ðn1i þ n2iÞ ð1Þ

subject to

yi � uðxiÞtw� b� eþ n1i;

uðxiÞtwþ b� yi � eþ n2i

and

n1i; n2i � 0 for i ¼ 1; 2; . . .;m:

By introducing Lagrange multipliers u1 ¼ ðu11; . . .; u1mÞt

and u2 ¼ ðu21; . . .; u2mÞt, the Wolfe dual of (1) will be

constructed and the dual problem will be solved. In fact,

replacing the dot product uðxiÞtuðxjÞ by a kernel function

kðxi; xjÞ, the dual of (1) will become:

min
u1;u2

1

2

Xm

i;j¼1

ðu1i � u2iÞðu1j � u2jÞkðxi; xjÞ

þe
Xm

i¼1

ðu1i þ u2iÞ�
Xm

i¼1

yiðu1i � u2iÞ
ð2Þ

subject to

Xm

i¼1

ðu1i � u2iÞ ¼ 0 and 0� u1; u2 �Ce:

Using the solution of the dual problem (2), the nonlinear

fitting function f ð:Þ is obtained as [11, 36] for any x 2 Rn,

f ðxÞ ¼
Xm

i¼1

ðu1i � u2iÞkðx; xiÞ þ b:

For more details on SVR, see Cristianini and Shawe-Taylor

[11] and Vapnik [36].

2.2 Least-squares support vector regression

In this subsection, we brief on least squares SVR (LS-SVR)

method [35]. Instead of considering the inequality con-

straints in the SVR formulation (1), assuming the equality

constraints leads to LS-SVR formulation as a minimization

problem

min
w;b;n

1

2
wtwþ C

2

Xm

i¼1

n2i

subject to

yi ¼ wtuðxiÞ þ bþ ni; i ¼ 1; 2; . . .;m

where the vector w and the scalar b are the unknowns;

n ¼ ðn1; . . .; nmÞt is the residue vector; and C[ 0 is the

regularization parameter. By formulating its dual problem

and solving it, the solution of LS-SVR is obtained. The

main advantage of LS-SVR method is that the unknown
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vector variables are determined by solving a system of

linear equations. For details, see Suykens et al. [35].

2.3 Twin support vector regression

Motivated by the study of twin support vector machines

(TWSVM) [22] for binary classification problem, Peng

[28] proposed twin support vector regression (TSVR)

algorithm where two nonparallel, e-insensitive down-bound
function f1ðxÞ and up-bound function f2ðxÞ are constructed

by solving two smaller SVR-type QPPs. This strategy

makes the training of TSVR faster than e-SVR [28].

Suppose the given input data are arranged in a matrix

A 2 Rm�n in which its ith row becomes the ith training

sample xti. Similarly, let y 2 Rm be the vector of observed

values whose ith row element is yi 2 R. For the kernel

function kð:; :Þ given, the kernel matrix KðA;AtÞ of order m
is defined such that its ijth element becomes

ðKðA;AtÞÞij ¼ kðxi; xjÞ. Also for any x 2 Rn, let Kðx;AtÞ ¼
ðkðx; x1Þ; . . .; kðx; xmÞÞ be a row vector.

Then, the nonlinear TSVR aims at finding the e-insen-
sitive down-bound and up-bound regression functions of

the form: for x 2 Rn,

f1ðxÞ ¼ Kðx;AtÞw1 þ b1 and f2ðxÞ ¼ Kðx;AtÞw2 þ b2

by solving the following two QPPs [28]

min
ðw1;b1;n1Þ2Rmþ1þm

1

2
jjy� e1e� ðKðA;AtÞw1 þ b1eÞjj2

þ C1e
tn1

subject to

y� ðKðA;AtÞw1 þ b1eÞ� e1e� n1; n1 � 0

and

min
ðw2;b2;n2Þ2Rmþ1þm

1

2
jjyþ e2e� ðKðA;AtÞw2 þ b2eÞjj2

þ C2e
tn2

subject to

ðKðA;AtÞw2 þ b2eÞ � y� e2e� n2; n2 � 0

respectively, where C1;C2 [ 0; e1; e2 [ 0 are input

parameters and n1; n2 are vectors of slack variables.

Once we obtain the pair of solutions ðw1; b1Þ and

ðw2; b2Þ, the end regression function f ðxÞ is taken to be the

mean of f1ðxÞ and f2ðxÞ, i.e.,

f ðxÞ ¼ 1

2
ðf1ðxÞ þ f2ðxÞÞ for all x 2 Rn:

For more details on the problem formulation of TSVR,

its method of solution and advantages, the reader is refer-

red to Peng [28].

3 Huber twin support vector regression

Although the popular e-insensitive loss function introduced

by Vapnik [36] is robust and leads to better generalization

ability, it can be easily observed that it is only C0 smooth

which precludes the application of popular numerical

minimization methods. In this section, we propose novel

SVR regression formulations whose loss functions are

differentiable everywhere while still robust against large

residuals, and further to solve them, we apply the well-

known Newton–Armijo algorithm [13, 21] in addition to a

simple functional iterative method. With this objective,

Huber and e� insensitive Huber M-estimator functions

[4, 20, 24, 44] are considered as the loss functions to

measure the residual error.

Let LHð:Þ be the Huber M-estimator, defined by

[4, 20, 24, 44]: for x 2 R;

LHðxÞ ¼
x if jxj � c
cð2jxj � cÞ if jxj[ c;

�
ð3Þ

where c[ 0 is an input parameter. Clearly, LHð:Þ is dif-

ferentiable everywhere and also is convex. At x ¼ �c, it
switches from quadratic to linear, i.e., it is a hybrid func-

tion in which it is quadratic for small errors and linear

otherwise. As a function of the residual, the Huber function

LHð:Þ for different values of c is illustrated in Fig. 1.

It is worth to extend the Huber function (3) by incor-

porating a e-insensitive tube around the inputs and study as

an enhanced function. Similar to the soft insensitive loss

function introduced in Chu et al. [8], which is a hybrid

function resulting a sparse and robust regression model, we

consider the e-insensitive Huber loss function with

parameters c[ 0 and e[ 0, defined by [4, 44]

Fig. 1 Illustration of Huber loss function LHðxÞ for different values

of c
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LeHðxÞ ¼
0 if 0� jxj\e
ðjxj � eÞ2 if e� jxj\ðeþ cÞ
cð2ðjxj � eÞ � cÞ if ðeþ cÞ� jxj\1;

8
<

: ð4Þ

as an enhanced function having the advantages such as

insensitivity to outliers and sparseness in its solution repre-

sentation [8]. Clearly, LeHð:Þ is symmetric, convex and is a

differentiable function having the property that if the dif-

ference between the predicted and the observed values falls

in the interval ½�e; e�, then it will be treated as zero. Again,

like in case of (3), the function switches from quadratic to

linear at x ¼ �ðeþ cÞ, i.e., it is a hybrid function. Finally,

when e ¼ 0, (4) reduces to the Huber M-estimator (3). As a

function of the residual, the function LeHð:Þ for several values
of c[ 0 and e[ 0 is illustrated in Fig. 2.

In Mangasarian and Musicant [24], the problem of

finding an approximate solution of the nonlinear regression

function defined using kernel of the form:

f ðxÞ ¼ Kðx;AtÞwþ b; ð5Þ

is considered for the following generally unsolvable rect-

angular system of equations

f ðxiÞ ¼ ½Kðxi;AtÞ 1�u ¼ yi for i ¼ 1; 2; . . .;m

such that u ¼ w
b

� �
2 Rmþ1 where w 2 Rm and b 2 R are

unknowns. Also, for the purpose of reducing the effect of

outliers, it is proposed to apply the popular Huber M-es-

timator (3) for calculating its residual error. This results in

the following robust Huber support vector regression

(RHSVR) problem defined by

min
u2Rmþ1

Xm

i¼1

LHðf ðxiÞ � yiÞ: ð6Þ

Observing that solving problem (6) is fairly complex, it

was converted into an equivalent, solvable, unconstrained,

convex quadratic problem [24], defined by:

min
u2Rmþ1;z2Rm

1

2
ztzþ c

Xm

i¼1

jf ðxiÞ � yi � zij: ð7Þ

Clearly, the proposed formulation (7) introduces much

more number of unknown variables than those of (6).

In this work, numerical results obtained by the equiva-

lent RHSVR formulation (7) will be used for comparison

with our proposed methods.

Recently, an interesting and rather a much simpler

approach in determining the regression function f ð:Þ of

form (5) by solving

min
ðw;bÞ2Rmþ1

1

2
ðwtwþ b2Þ þ C

2

Xm

i¼1

Lðf ðxiÞ � yiÞ

in primal is proposed in Balasundaram and Meena [4]

where for any real value x;

LðxÞ ¼ LHðxÞ for the case of Huber loss

LeHðxÞ for the case of e-insensitive Huber loss

�

Following the approach of e-twin support vector

regression (e-TSVR) proposed in Shao et al. [32], we now

build one-side Huber and e-insensitive Huber twin SVR

models and study their properties and effectiveness.

Let the nonlinear down-bound and up-bound regression

functions be defined to be

f1ðxÞ ¼ Kðx;AtÞw1 þ b1 and f2ðxÞ ¼ Kðx;AtÞw2 þ b2;

ð8Þ

respectively, where w1;w2 2 Rm and b1; b2 2 R are

unknowns. Equivalently, by letting uk ¼
wk

bk

� �
2 Rmþ1 for

k ¼ 1; 2, the bounding regression functions (8) become

f1ðxÞ ¼ ½Kðx;AtÞ 1�u1 and f2ðxÞ ¼ ½Kðx;AtÞ 1�u2: ð9Þ

Using (9), the end regression function f ðxÞ is obtained [28]

f ðxÞ ¼ f1ðxÞ þ f2ðxÞ
2

: ð10Þ

Motivated by e-TSVR [32], the errors using the one-side

Huber loss function corresponding to the down-bound and

up-bound regression functions can be computed as

Fig. 2 Illustration of e-insensitive Huber loss function LeHðxÞ for

different values of e and c
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Xm

i¼1

maxf0;�ðyi � f1ðxiÞÞg2 �maxf0;�ðyi � f1ðxiÞ þ cÞg2

¼
Xm

i¼1

½ðf1ðxiÞ � yiÞþ�
2 � ½ðf1ðxiÞ � yi � cÞþ�

2

¼ jjðGu1 � yÞþjj
2 � jjðGu1 � y� ceÞþjj

2

ð11aÞ

and

Xm

i¼1

maxf0;�ðf2ðxiÞ � yiÞg2 �maxf0;�ðf2ðxiÞ � yi þ cÞg2

¼
Xm

i¼1

½ðyi � f2ðxiÞÞþ�
2 � ½ðyi � f2ðxiÞ � cÞþ�

2

¼ jjðy� Gu2Þþjj
2 � jjðy� Gu2 � ceÞþjj

2

ð11bÞ

respectively, where G ¼ ½KðA;AtÞ e�m�ðmþ1Þ is an aug-

mented matrix.

Using an intuitive two-dimensional illustration, we now

give the geometric explanation on the misfit error calcu-

lation (11a) for one-sided Huber down-bound function

f1ðxÞ which is shown red in color in Fig. 3. Firstly, the

whole plane is divided into three parts, i.e., region 1, region

2 and region 3, as illustrated in Fig. 3. Depending on the

positioning of the samples, different training errors will be

generated. For samples from region 1, f1ðxiÞ � yi\0 will

be true and there is no error. Again, for samples from

region 2, f1ðxiÞ � yi [ 0 but f1ðxiÞ � yi � c\0 will be

satisfied and in this case the error will become

ðf1ðxiÞ � yiÞ2. Finally, when the samples lie in region 3,

f1ðxiÞ � yi [ 0 and f1ðxiÞ � yi � c[ 0 will be satisfied and

for this case cð2ðf ðxiÞ � yiÞ � cÞ will be the error. Simi-

larly, the misfit error (11b) for the up-bound function f2ðxÞ
is obtained.

By minimizing the sum of the squared error

jjGuk � yjj2, the error using the one-side Huber function

and the regularization term 1
2
utkuk, where k ¼ 1; 2, our

proposed one-side Huber twin SVR (HTSVR) in primal

will be formulated, i.e., we solve

min
u12Rmþ1

L1ðu1Þ ¼
1

2
ut1u1 þ

C1

2
jjGu1 � yjj2 þ C3

2

½jjðGu1 � yÞþjj
2 � jjðGu1 � y� ceÞþjj

2�
ð12aÞ

and

min
u22Rmþ1

L2ðu2Þ ¼
1

2
ut2u2 þ

C2

2
jjGu2 � yjj2 þ C4

2

½jjðy� Gu2Þþjj
2 � jjðy� Gu2 � ceÞþjj

2�
ð12bÞ

whose solutions will be used to obtain the bound regression

functions (9), where C1 [ 0;C2 [ 0;C3 [ 0 and C4 [ 0

are parameters.

Similarly, the error using one-side e� insensitive Huber

function corresponding to the down-bound and up-bound

regression functions can be computed as

Xm

i¼1

maxf0;�ðyi � f1ðxiÞÞ � eg2

�maxf0;�ðyi � f1ðxiÞ þ eþ cÞg2

and

Xm

i¼1

maxf0;�ðf2ðxiÞ � yiÞ � eg2

�maxf0;�ðf2ðxiÞ � yi þ eþ cÞg2
;

respectively and therefore minimizing the sum of the reg-

ularization term and the error terms using the one-side e-

insensitive Huber function and the squared error jjy�
Gukjj2 leads to our proposed one-side e-insensitive Huber

twin SVR (e-HTSVR) formulation

min
u12Rmþ1

Le1ðu1Þ ¼
1

2
ut1u1 þ

C1

2
jjGu1 � yjj2 þ C3

2

½jjðGu1 � y� eeÞþjj
2 � jjðGu1 � y� ee� ceÞþjj

2�
ð13aÞ

and

min
u22Rmþ1

Le2ðu2Þ ¼
1

2
ut2u2 þ

C2

2
jjGu2 � yjj2 þ C4

2
½jjðy� Gu2

� eeÞþjj
2 � jjðy� Gu2 � ee� ceÞþjj

2�;
ð13bÞ

Fig. 3 Illustration of the down-bound function f1ðxÞ on Huber twin

SVR (HTSVR)
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where C1 [ 0;C2 [ 0;C3 [ 0 and C4 [ 0 are input

parameters.

Remark 1 When e ¼ 0; the pair of problems Le1ð:Þ and

Le2ð:Þ will become L1ð:Þ and L2ð:Þ, respectively, i.e., e-
HTSVR formulation becomes the formulation of HTSVR.

Rather than individually deriving the method of solving

HTSVR and e-HTSVR, we describe, as a general study, the
method of solving e-HTSVR. More precisely, we propose

to solve the primal problems (12) and (13) by obtaining

their critical points using functional iterative and Newton

methods.

3.1 Functional iterative method of solving e-
HTSVR (e-FHTSVR)

Let
oLe

1

ou1
and

oLe
2

ou2
be the gradients of Le1ðu1Þ and Le2ðu2Þ,

respectively. Then, since the problem of finding a critical

point of (13a) becomes finding a root of
oLe

1
ðu1Þ

ou1
¼ 0, we

solve

I

C1

þ GtG

� �
u1 ¼ Gty� C3

C1

Gt½ðGu1 � y� eeÞþ � ðGu1
� y� ee� ceÞþ�:

This leads to the following simple iterative scheme:

uiþ1
1 ¼ I

C1

þ GtG

� ��1

Gt

y� C3

C1

½ðGui1 � y� eeÞþ � ðGui1 � y� ee� ceÞþ�
� �

where i ¼ 0; 1; . . .

ð14aÞ

Similarly,
oLe

2
ðu2Þ

ou2
¼ 0 ) I

C2
þ GtG

� �
u2 ¼ Gtyþ C4

C2
Gt½ðy�

Gu2 � eeÞþ � ðy� Gu2 � ee� ceÞþ�whose solution can

be obtained by applying the simple iterative scheme

uiþ1
2 ¼ I

C2

þ GtG

� ��1

Gt

yþ C4

C2

½ðy� Gui2 � eeÞþ � ðy� Gui2 � ee� ceÞþ�
� �

where i ¼ 0; 1; . . .

ð14bÞ

Combining Eqs. (14a) and (14b), the iterative method of

solving problem (13) (e-FHTSVR) becomes: for k ¼ 1; 2

and i ¼ 0; 1; . . .

uiþ1
k ¼ I

Ck

þ GtG

� ��1

Gt

yþ ð�1Þk Ckþ2

Ck

½ðð�1Þkðy� GuikÞ � eeÞþ
�

�ðð�1Þkðy� GuikÞ � ee� ceÞþ�
i
:

ð15Þ

Note that in Mangasarian and Musicant [24], a robust

regression method using Huber loss function without the

regularization term was considered. However, in our

approach the regularization term in 2-norm is employed in

the objective function to improve the generalization ability

which further makes the objective function strongly

convex.

Remark 2 The proposed iterative method requires the

computation of the inverse of two matrices of order

(m ? 1). This suggests that our proposed method is more

suitable for problems of medium size.

Remark 3 Assuming e ¼ 0 in (14) corresponds to the

functional iterative method (FHTSVR)

uiþ1
k ¼ I

Ck

þ GtG

� ��1

Gt

yþ ð�1Þk Ckþ2

Ck

½ðð�1Þkðy� GuikÞÞþ
�

�ðð�1Þkðy� GuikÞ � ceÞþ�
i
; i ¼ 0; 1; . . .

for solving HTSVR problem given by (12).

3.2 Newton method of solving e-HTSVR
(e-NHTSVR)

In this subsection, we solve the two unconstrained mini-

mization problems (13a) and (13b) as the solutions of root-

finding problems by applying Newton iterative method

with Armijo step size [13, 21] and establish the finite

termination.

For this purpose, consider the following functions:

g1ðu1Þ ¼
I

C1

þ GtG

� �
u1

� Gty� C3

C1

Gt½ðGu1 � y� eeÞþ � ðGu1 � y� ee� ceÞþ�
� �

and

g2ðu2Þ ¼
I

C2

þ GtG

� �
u2

� Gtyþ C4

C2

Gt½ðy� Gu2 � eeÞþ � ðy� Gu2 � ee� ceÞþ�
� �

;

or equivalently, we have for k ¼ 1; 2;
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gkðukÞ ¼
I

Ck

þ GtG

� �
uk

� Gtyþ ð�1Þk Ckþ2

Ck

Gt ðð�1Þkðy� GukÞ
h�

�eeÞþ � ðð�1Þkðy� GukÞ � ee� ceÞþ
i�

ð16Þ

Then, a generalized Hessian [18] of gkðukÞ can be com-

puted to be

ogkðukÞ ¼
I

Ck

þ GtG

� �
þ Ckþ2

Ck

GtEkðukÞG; ð17Þ

where EkðukÞ ¼ diagðsignððð�1Þkðy� GukÞ � eeÞþÞÞ�
diagðsignððð�1Þkðy� GukÞ � ee� ceÞþÞÞ.

Remark 4 It is simple to verify that for any vk 2 Rmþ1; the

matrix EkðvkÞ is a diagonal matrix such that its diagonal

values will be either 0 or 1, which implies the Hessian

matrix (17) is always positive definite.

Remark 5 Assuming e ¼ 0 in (16) and (17) and solving the

root-finding problem gkðukÞ ¼ 0 by Newton–Armijo algo-

rithm (NHTSVR), the solutions of HTSVR problems (12a)

and (12b) will be obtained.

We now describe Newton–Armijo algorithm for solving

(13) with k ¼ 1; 2.

Start with any initial guess u0k 2 Rmþ1 and let i ¼ 0

(i) Stop the iteration if gkðuikÞ ¼ 0

Else

Determine the direction vector dik 2 Rmþ1 as the solution of the

following system of linear equations in m?1 variables:

ogkðuikÞdik ¼ �gkðuikÞ
(ii) Armijo stepsize. Define:

uiþ1
k ¼ uik þ kikd

i
k ,

where the stepsize kik ¼ maxf1; 1
2
; 1
4
; . . .g is such that:

LekðuikÞ � Lekðuik þ kikd
i
kÞ� � d kikgkðuikÞ

tdik and d 2 ð0; 1
2
Þ

(iii) Replace i by i?1 and go to (i)

In the next theorem, we establish the global convergence

of our algorithm and its finite termination.

Theorem 1 For the symmetric positive definite matrix

defined by (17) and starting from any u0k 2 Rmþ1 where

k ¼ 1; 2; let fuikg be the sequence of iterates obtained

using Newton algorithm with Armijo step size. Then, the

sequence fuikg terminates at the global minimum uk 2
Rmþ1 in a finite number of step sizes.

Proof Since the objective function of our proposed

unconstrained minimization problem (13) is strongly con-

vex, the convergence of the sequence fuikg, obtained using

Newton algorithm with Armijo step size for solving the

root-finding problem of (16), to its global solution uk 2
Rmþ1 follows from the results of [23, Theorem 2.1,

Example 2.1(ii), Example 2.4(iv)].

Now, we prove the finite termination fuikg at uk by the

simplified Newton method

ogkðuikÞðuiþ1
k � uikÞ ¼ �gkðuikÞ where i ¼ 0; 1; . . . ð18Þ

Since uk is the solution of (12), gkðukÞ ¼ 0 implies

I

Ck

þ GtG

� �
uk

¼ Gtyþ ð�1Þk Ckþ2

Ck

Gt ðð�1Þkðy� GukÞ � eeÞþ
h�

�ðð�1Þkðy� GukÞ � ee� ceÞþ
i�

ð19Þ

Therefore, subtracting (19) from (18), we get

I

Ck

þ GtG

� �
ðuiþ1

k � ukÞ

¼ �Ckþ2

Ck

GtEkðuikÞGðuiþ1
k � uikÞ

þð�1Þk Ckþ2

Ck

Gt

ðð�1Þkðy� GuikÞ � eeÞþ � ðð�1Þkðy� GuikÞ � ee� ceÞþ
h i

� ð�1Þk Ckþ2

Ck

Gt ðð�1Þkðy� GukÞ � eeÞþ
h

� ðð�1Þkðy� GukÞ � ee� ceÞþ�
ð20Þ

To prove the finite termination, we verify that uiþ1
k ¼ uk

when uik is sufficiently close to uk. Setting uiþ1
k ¼ uk in

(20), it is sufficient to show that

� EkðuikÞGðuk � uikÞ þ ð�1Þk

ðð�1Þkðy� GuikÞ � eeÞþ � ðð�1Þkðy� GuikÞ � ee� ceÞþ
h i

� ð�1ÞkGt ðð�1Þkðy� GukÞ � eeÞþ
h

�ðð�1Þkðy� GukÞ � ee� ceÞþ
i
¼ 0

ð21Þ

In fact, by taking rðukÞ ¼ ðð�1Þkðy‘ � G‘ukÞ � eÞ for any
‘ ¼ 1; 2; . . .;m; where G‘ is the ‘th row of the matrix G, we

will verify that the ‘th component of (21) will be zero, i.e.

signðrðuikÞþÞ � signððrðuikÞ � cÞþÞ
	 


G‘ðuk � uikÞ
þ ð�1Þk½rðukÞþ � rðuikÞþ

þ ðrðuikÞ � cÞþ � ðrðukÞ � cÞþ� ¼ 0:

ð22Þ
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By considering the following possible cases, we verify (22)

when uik is sufficiently close to uk.

1. rðukÞ[ c;

• rðuikÞ[ c : ð1� 1ÞG‘ðuk � uikÞ þ ð�1Þk½rðukÞ�
rðuikÞ þ ðrðuikÞ � cÞ � ðrðukÞ � cÞ� ¼ 0

• rðuikÞ ¼ c : Not possible when uik is sufficiently

close to uk
• rðuikÞ\c : Not possible when uik is sufficiently close

to uk

2. rðukÞ ¼ c;

• rðuikÞ[ c : ð1� 1ÞG‘ðuk � uikÞþ ð�1Þk½rðukÞ �
rðuikÞ þ ðrðuikÞ� cÞ � ðrðukÞ � cÞ� ¼ 0

• rðuikÞ ¼ c : ð1� 0ÞG‘ðuk � uikÞ þ ð�1Þk½rðukÞ�
rðuikÞ þ 0� 0� ¼ G‘ðuk � uikÞ ¼ rðukÞ � rðuikÞ ¼ 0

• 0\rðuikÞ\c : ð1� 0ÞG‘ðuk � uikÞ þ ð�1Þk½rðukÞ�
rðuikÞ þ 0� 0�

¼ G‘ðuk � uikÞ þ ð�1Þk½ðð�1Þkðy‘ � G‘ukÞ�
eÞ� ðð�1Þkðy‘ � G‘u

i
kÞ � eÞ� ¼ 0

3. 0\rðukÞ\c;

• rðuikÞ[ c : Not possible when uik is sufficiently

close to uk
• rðuikÞ ¼ c : Not possible when uik is sufficiently

close to uk

• rðuikÞ\c : ð1� 0ÞG‘ðuk � uikÞ þ ð�1Þk½rðukÞ�
rðuikÞ þ 0� 0�

¼ G‘ðuk � uikÞ þ ð�1Þk½ðð�1Þkðy‘� G‘ukÞ �
eÞ� ðð�1Þkðy‘ � G‘u

i
kÞ � eÞ� ¼ 0

4. rðukÞ ¼ 0;

• 0\rðuikÞ\c : ð1� 0ÞG‘ðuk � uikÞ þ ð�1Þk ½0�
rðuikÞ þ 0� 0�

¼G‘ðuk�uikÞþ ð�1Þk½�ðð�1Þkðy‘�G‘u
i
kÞ� eÞ�

¼G‘uk� y‘þð�1Þke¼ ð�1Þkþ1
rðukÞ ¼ 0

• rðuikÞ ¼ 0 : ð0� 0ÞG‘ðuk�
uikÞ þ ð�1Þk½0� 0þ 0� 0� ¼ 0

• rðuikÞ\0 : ð0� 0ÞG‘ðuk�
uikÞ þ ð�1Þk½0� 0þ 0� 0� ¼ 0

5. rðukÞ\0;

• 0\rðuikÞ : Not possible when uik is sufficiently

close to uk
• rðuikÞ ¼ 0 : Not possible when uik is sufficiently

close to uk
• rðuikÞ\0 : ð0� 0ÞG‘ðuk � uikÞþ

ð�1Þk½0� 0þ 0� 0� ¼ 0

Remark 6 In the proof of Theorem 1, one can observe that

Armijo step size is used only to guarantee the global

convergence.

Remark 7 For the numerical study in the next section,

experiments were performed using simplified Newton

method (18).

4 Experiments and results

To demonstrate the efficacy of the proposed FHTSVR,

NHTSVR, e-FHTSVR and e-NHTSVR methods in terms of

accuracy, learning time and robustness, their performances

are compared with SVR, LS-SVR, TSVR and RHSVR on

several synthetic and well-known benchmark datasets

corrupted with noise and having outliers.

All the experiments were implemented in MATLAB

R2008b on a PC with 3.40 GHz Intel� CoreTM i7 proces-

sor, 8 GB RAM under 64-bit Microsoft Windows 7 oper-

ating system. For training SVR, TSVR and RHSVR, the

MOSEK optimization toolbox available at http://www.

mosek.com was used. However, no external optimizer was

used for training LS-SVR, FHTSVR, NHTSVR, e-
FHTSVR and e-NHTSVR.

Experiments were performed by choosing the popular

Gaussian kernel function of the form: kðx; zÞ ¼
expð�ljjx� zjj2Þ; where x; z 2 Rn and l[ 0 is the

parameter. Keeping in mind with the increase in compu-

tational cost, we set C1 ¼ C2 and C3 ¼ C4: In the imple-

mentation of FHTSVR and NHTSVR, we assumed

C ¼ C1 ¼ C2 ¼ C3 ¼ C4. The termination criteria for the

error of tolerance and the maximum iteration were taken as

10�2 and 10 respectively. All the parameters were selected

by employing the grid search using tenfold cross-validation

methodology. The regularization parameters C;C1 ¼ C2

and C3 ¼ C4 and the kernel parameter l were chosen from

the set f2iji ¼ �9;�8;�7; . . .; 9g: However, the parame-

ters e; e1 ¼ e2 were selected from f10iji ¼ �3� 2;�1g
and the parameter c from the set {0.1, 1, 1.345} [24]. By

letting T be the number of test samples and ~yi be the pre-

dicted value for the ith observed value yi, the root-mean-

square error (RMSE): RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

PT
i¼1 ðyi � ~yiÞ2

q
is

Table 1 Types of noise used in experiments. Nð0; 0:22Þ represents

the Gaussian random variable with mean 0 and standard deviation 0.2

Name Noise distribution

Type A Nð0; 0:22Þ
Type B ð1� qÞNð0; 0:22Þ þ qNð0; 22Þ; q ¼ 0:1

Type C ð1� qÞNð0; 0:22Þ þ qNð0; 22Þ; q ¼ 0:2

Type D ð1� qÞNð0; 0:22Þ þ qNð0; 22Þ; q ¼ 0:3
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taken as the measure of accuracy in our study. Further, to

get a better picture on the comparative RMSE performance

of more algorithms (k) on multiple datasets (N) in terms of

statistical tests, we apply, as recommended in Demsar [12],

the popular robust nonparametric Friedman test with the

corresponding Nemenyi post hoc test:

(a) Under the null hypothesis that all the algorithms are

equivalent, the Friedman statistic [12]: v2F ¼
12N

kðkþ1Þ
Pk

j¼1 R
2
j �

kðkþ1Þ2
4

� �
distributed according to

v2F distribution with ðk � 1Þ degrees of freedom,

where Rj ¼
PN

i¼1 r
i
j=N is the average rank of the jth

algorithm and rij is the rank of the ith dataset for the

jth algorithm, and a better statistic FF ¼ ðN�1Þv2F
Nðk�1Þ�v2

F

distributed according to F-distribution with ðk �
1; ðk � 1ÞðN � 1ÞÞ degrees of freedom considered.

(b) If the null hypothesis is rejected, then we proceed

with the Nemenyi post hoc test for pairwise

comparison of the algorithms by computing the

critical difference CD ¼ qa

ffiffiffiffiffiffiffiffiffiffiffi
kðkþ1Þ
6N

q
; where critical

values qa are based on the studentized range statistic

divided by
ffiffiffi
2

p
[12].

4.1 Synthetic datasets

Firstly, in this subsection, we analyze the performance of

the proposed methods in comparison with the other meth-

ods on datasets generated using the following two functions

studied in Chen et al. [6]:

ð1Þ y ¼ sinðpxÞ
px

þ 1; x 2 ½�4; 4�;

ð2Þ y ¼ 15x4ðx2 � 1Þ2 expð�xÞ þ 1; x 2 ½�1; 1�;

where 1 is the additive noise drawn from the noise distri-

butions defined in Table 1.

For each function, 300 training samples are randomly

generated and then polluted by adding noise sampled

according to noise distribution of Table 1, whereas 400

uniformly spaced samples are selected free of noise for

testing. Due to randomness, ten independent trials are per-

formed and their averaged accuracies are tabulated in

Table 2. Note that the inputs contaminated with Type B,

Type C and Type D contain outliers, but in the case of Type

A, only noisy inputs are generated [6]. From the table, one

can observe that among all the methods considered, except

for Type A noise, the best test accuracy is reported by

FHTSVR, NHTSVR or e-FHTSVR. In the case of Type A

noise, LS-SVR shows the best RMSE. Results further

demonstrate that in the case of any estimation function
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obtained by a learning method considered, as the value for

the contamination factor q increases, i.e., as we take q to be

0%, 10%, 20% and 30%, the prediction accuracy decreases.

Comparative accuracy plots for y ¼ sinðpxÞ
px on test datasets for

one sample trial whose inputs are polluted by the noise of

Type A to Type D are illustrated in Fig. 4a–d, respectively.

Larger deviation of the estimation function plots from the

actual curve is clearly visible in Fig. 4c, d, and it is due to the

increase in the value of the contamination factor q. Com-

paring Fig. 4a with d, the estimation functions of SVR, LS-

SVR, TSVR and RHSVR are much distorted than FHTSVR,

NHTSVR, e-FHTSVR and e-NHTSVR which is in confor-

mitywith the results of RMSE from0.0481 to 0.1264, 0.0393

to 0.1204, 0.0464 to 0.1302, 0.0424 to 0.1237, 0.0396 to

0.0697, 0.0398 to 0.0695, 0.0395 to 0.0710 and 0.0397 to

0.0704 for SVR, LS-SVR, TSVR, RHSVR, FHTSVR,

NHTSVR, e-FHTSVR and e-NHTSVR, respectively, i.e.,
our proposed methods based on Huber functions are more

robust than the rest of methods. Similarly, for the synthetic

datasets generated by the function 15x4ðx2 � 1Þ2 expð�xÞ;
one-run simulation results are shown in Fig. 5a–d. As in

Fig. 4, similar observations can be reported.

For the statistical comparison of the algorithms, we

apply Friedman test and Nemenyi post hoc test on the

average ranks of Table 2. Clearly, the minimum average

rank is shown by e-FHTSVR and, however, poor prediction

accuracy is demonstrated by SVR and TSVR. With k ¼ 8

and N ¼ 8, now we perform the statistical tests [12]

v2F ¼ 12� 8

8� 9
7:18752 þ 4:252 þ 7:6252 þ 5:18752þ2:752

�

þ2:93752 þ 2:68752 þ 3:3752 � 8� 92

4

�

ffi 36:7708

FF ¼ 7� 36:7708

8� 7� 36:7708
ffi 13:3857

Fig. 4 Accuracy comparison plots for y ¼ sinðpxÞ=px for inputs corrupted by different types of noise of Table 1
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where FF is distributed according to F-distribution with

ð7; 7� 7Þ ¼ ð7; 49Þ degree of freedom. Since the FF value

is greater than the critical value of Fð7; 49Þ ¼ 2:2032 for

the level of significance a ¼ 0:05, we reject the null

hypothesis. Subsequently, Nemenyi post hoc test is applied

for pairwise comparison of algorithms. From Demsar [12],

the critical value qa for a ¼ 0:10 is 2.780 and the value of

CD is 2:780
ffiffiffiffiffiffi
8�9
6�8

q
ffi 3:4048: In terms of average ranks, the

difference between (1) the best and worst of LS-SVR,

RHSVR, FHTSVR, NHTSVR, e-FHTSVR and e-NHTSVR
is: 5:1875� 2:6875 ¼ 2:5 \3:4048; and hence we con-

clude that the post hoc test is not powerful enough to detect

any significant differences between these algorithms; (2)

the worst of FHTSVR, NHTSVR, e-FHTSVR, e-NHTSVR
and the best of SVR, TSVR is:

7:1875� 3:375 ¼ 3:8125[ 3:4048, which implies that the

performance of FHTSVR, NHTSVR, e-FHTSVR and e-

NHTSVR is better than SVR and TSVR; and (3) the best

and the worst performing algorithms among SVR, LS-

SVR, TSVR and RHSVR is: 7:625� 4:25 ¼
3:375\3:4048; and hence we conclude that the post hoc

test could not detect any significant differences between the

algorithms.

The better average ranks by the proposed methods and

the above statistical comparisons on datasets having noise/

outliers clearly show the superiority of FHTSVR,

NHTSVR, e-FHTSVR and e-NHTSVR for both the test

accuracy and the robustness. Again one can observe from

Table 2 that the training time for FHTSVR, NHTSVR, e-
FHTSVR and e-NHTSVR remains low in comparison with

SVR, TSVR and RHSVR, and among all the algorithms,

LS-SVR shows the least training time.

To further analyze the robustness and predictive per-

formance of our proposed methods, we generate ten more

synthetic datasets using five functions defined in Table 3

Fig. 5 Accuracy comparison plots for 15x4ðx2 � 1Þ2 expð�xÞ for inputs corrupted by different types of noise of Table 1

Neural Computing and Applications (2020) 32:11285–11309 11297

123



whose training samples are corrupted by another type of

noise and outliers [4, 19]. For Function 1 to Function 4, we

generate the training and test samples such that they are

evenly spaced along the domain axes. However, for

Function 5, they are chosen according to uniform distri-

bution on its domain of definition. In all experiments, 400

training and 800 test samples are generated and among

them only the training samples are polluted by adding

asymmetric noise and outliers. In this study, asymmetric

noise drawn from a Chi-square distribution with mean zero

[4, 19] is assumed, i.e., the observed value of a training

sample is taken as: yi ¼ f ðxiÞ þ dv2 � 4
	 


, where dv2 fol-

lows a Chi-square distribution with 4 degrees of freedom.

Further, letting snoise be the ratio of the variance of the

noise ðdv2 � 4Þ to the variance of f ðxÞ; experiments are

performed by taking snoise ¼ 0:05; 0:1: Besides the noise,

outliers are introduced by selecting 5% of the training

samples randomly and replacing their observed values

drawn from uniform distribution in the range of f ðxÞ: By
repeating the above procedure ten times, the results of the

averaged accuracy and standard deviation are shown in

Table 4 along with the averaged training time. Clearly,

comparable performance is shown by all the methods.

Poorer test accuracy for snoise ¼ 0:1 in comparison with

snoise ¼ 0:05 by all the methods indicates the sensitivity to

noise and outliers present in the training data. Among the

above ten datasets considered which are corrupted by

asymmetric noise and having outliers, FHTSVR shows the

best test accuracy four times and is followed by SVR and e-
FHTSVR three times, whereas LS-SVR shows the worst

test accuracy nine times. In fact, for most of the datasets,

our proposed methods result in the smallest RMSE than

SVR, LS-SVR, TSVR and RHSVR.

To get a clear picture on the comparative predictive

performance of the eight algorithms, we apply Friedman

test and Nemenyi test to their average ranks on the ten

datasets reported in Table 4. Under the null hypothesis that

all the algorithms are equivalent, we compute v2F ¼
27:7333 and FF ¼ 5:9054, where FF is distributed

according to F-distribution with ð7; 63Þ degrees of free-

dom. However, from the statistical table, the critical value

of Fð7; 63Þ for the level of significance a ¼ 0:05 is 2.1588

and so we reject the null hypothesis. Since the Friedman

test failed and as the minimum average rank is attained by

FHTSVR, it is reasonable to suppose its superior accuracy

performance in comparison with the remaining algorithms.

To verify this, we apply the Nemenyi test for pairwise

comparison of the algorithms and report their results.

According to Demsar [12], the value of CD is 3.0453. In

terms of average ranks, the difference between: (1) the best

and the worst among SVR, TSVR, RHSVR, FHTSVR,

NHTSVR, e-FHTSVR and e-NHTSVR algorithms is: 5:2�
2:8 ¼ 2:4\3:0453; and hence we conclude, however, that

the post hoc test could not detect any significant differences

between the algorithms; (2) LS-SVR and the worst of SVR,

TSVR, RHSVR, FHTSVR, NHTSVR, e-FHTSVR and e-
NHTSVR algorithms is: 7:8� 4:55 ¼ 3:25[ 3:0453

which implies the performance of LS-SVR is worse than

SVR, TSVR, RHSVR, FHTSVR, NHTSVR, e-FHTSVR
and e-NHTSVR; and (3) LS-SVR and RHSVR algorithms

is: 7:8� 5:2 ¼ 2:6\3:0453; and hence we conclude that

there is no significant difference between the two algo-

rithms. Again, we observe from Table 4 that RHSVR

results in the maximum time for training. Since LS-SVR

solves a system of equations, as expected, it is the fastest

method among all the methods. Further, we see that the

training timings for FHTSVR, NHTSVR, e-FHTSVR and

e-NHTSVR are very close to each other and at the same

time they are faster than SVR, TSVR and RHSVR.

The improved predictive accuracy performance and

comparable training timings with the least training timings

shown by LS-SVR reconfirm our assertion that our

Table 3 Functions used for

generating synthetic datasets
Name Function Domain

Function 1 sinðxÞ cosðx2Þ x 2 ½0; 6�
Function 2 expðx1 
 sinðpx2ÞÞ x1; x2 2 ½�1; 1�
Function 3 40f 13 ðxÞ

f 23 ðxÞ þ f 33 ðxÞ
; where

f 13 ðxÞ ¼ expð8ððx1 � 0:5Þ2 þ ðx2 � 0:5Þ2ÞÞ
f 23 ðxÞ ¼ expð8ððx1 � 0:2Þ2 þ ðx2 � 0:7Þ2ÞÞ
f 33 ðxÞ ¼ expð8ððx1 � 0:7Þ2 þ ðx2 � 0:2Þ2ÞÞ

x1; x2 2 ½0; 1�

Function 4 1:3356ðf 14 ðx1Þ þ f 24 ðx2ÞÞ where

f 14 ðx1Þ ¼ 1:5ð1� x1Þ þ expð2x1 � 1Þ sinð3pðx1 � 0:6Þ2Þ
f 24 ðx2Þ ¼ expð3ðx2 � 0:5ÞÞ sinð4pðx2 � 0:9Þ2Þ

x1; x2 2 ½0; 1�

Function 5 expð2x1 sinðpx4ÞÞ þ sinðx2x3Þ x1; x2; x3; x4

2 ½�0:25; 0:25�

11298 Neural Computing and Applications (2020) 32:11285–11309

123



Ta
bl
e
4

P
er
fo
rm

an
ce

co
m
p
ar
is
o
n
o
f
o
u
r
p
ro
p
o
se
d
m
et
h
o
d
s
F
H
T
S
V
R
,
N
H
T
S
V
R
,
e-
F
H
T
S
V
R

an
d
e-
N
H
T
S
V
R

w
it
h
S
V
R
,
L
S
-S
V
R
,
T
S
V
R

an
d
R
H
S
V
R
.
R
M
S
E

w
as

u
se
d
fo
r
co
m
p
ar
is
o
n
.

G
au
ss
ia
n
k
er
n
el

w
as

em
p
lo
y
ed
.
T
im

e
is

fo
r
tr
ai
n
in
g
in

se
co
n
d
s.
B
o
ld

ty
p
e
sh
o
w
s
th
e
b
es
t
re
su
lt

D
at
as
et

(t
ra
in

si
ze
,
te
st
si
ze
)

T
y
p
es

o
f

n
o
is
e

S
V
R

(C
,
l,

e)
T
im

e

(R
an
k
)

L
S
-S
V
R

(C
,
l
)

T
im

e

(R
an
k
)

T
S
V
R

(C
1
=
C
2
,
l
,

e 1
=
e 2
)

T
im

e

(R
an
k
)

R
H
S
V
R

(l
,
c)

T
im

e

(R
an
k
)

F
H
T
S
V
R

(C
,
l
,
c)

T
im

e

(R
an
k
)

N
H
T
S
V
R

(C
,
l,

c)
T
im

e

(R
an
k
)

e-
F
H
T
S
V
R

(C
1
=
C
2
,
C
3
=
C
4
,

l
,
e 1
=
e 2
,
c)

T
im

e

(R
an
k
)

e-
N
H
T
S
V
R

(C
1
=
C
2
,
C
3
=
C
4
,

l
,
e 1
=
e 2
,
c)

T
im

e

(R
an
k
)

F
u
n
ct
io
n
1

(4
0
0
9

1
,

8
0
0
9

1
)

r n
o
is
e
=
0
.0
5

0
.0
4
2
2
–
0
.0
0
6
3

(2
2
,
2
3
,
1
0
-
1
)

3
.6
5
7
1

(1
.5
)

0
.0
5
1
2
±

0
.0
0
9
3

(2
7
,
2
3
)

0
.1
4
7
2

(8
)

0
.0
4
2
2
–
0
.0
0
6
3

(2
-
1
,
2
3
,
1
0
-
1
)

0
.4
0
2
4

(1
.5
)

0
.0
4
3
0
±

0
.0
0
8

(2
1
,
0
.1
)

3
.9
2
6
3

(3
)

0
.0
4
3
2
±

0
.0
0
5
4

(2
0
,
2
-
1
,
0
.1
)

0
.2
6
8
9

(4
)

0
.0
4
3
8
±

0
.0
0
9
9

(2
7
,
2
3
,
0
.1
)

0
.2
8
9
5

(5
)

0
.0
4
4
8
±

0
.0
1
0
0

(2
7
,
2
7
,
2
3
,
1
0
-
3
,

0
.1
)

0
.1
6
3
9

(7
)

0
.0
4
4
5
±

0
.0
0
6
1

(2
9
,
2
9
,
2
3
,
1
0
-
2
,

0
.1
)

0
.1
6
2
4

(6
)

r n
o
is
e
=
0
.1

0
.0
5
4
5
–
0
.0
0
5
5

(2
2
,
2
3
,
1
0
-
1
)

3
.6
3
5
4

(1
)

0
.0
5
9
1
±

0
.0
0
8
7

(2
6
,
2
3
)

0
.1
5
6
7

(8
)

0
.0
5
4
8
±

0
.0
0
6
2

(2
-
3
,
2
0
,
1
0
-
2
)

0
.3
8
4
2

(2
)

0
.0
5
5
8
±

0
.0
0
8
4

(2
2
,
0
.1
)

3
.9
2
8
9

(4
.5
)

0
.0
5
5
6
±

0
.0
0
7
6

(2
2
,
2
4
,
0
.1
)

0
.2
6
9
9

(3
)

0
.0
5
6
0
±

0
.0
0
7
3

(2
7
,
2
3
,
0
.1
)

0
.2
7
0
1

(6
)

0
.0
5
5
8
±

0
.0
0
9
8

(2
7
,
2
9
,
2
3
,
1
0
-
3
,

0
.1
)

0
.1
6
4
8

(4
.5
)

0
.0
5
6
2
±

0
.0
0
9
9

(2
6
,
2
5
,
2
3
,
1
0
-
3
,

0
.1
)

0
.1
6
2
0

(7
)

F
u
n
ct
io
n
2

(4
0
0
9

2
,

8
0
0
9

2
)

r n
o
is
e
=
0
.0
5

0
.0
6
1
9
±

0
.0
1
2
8

(2
6
,
2
2
,
1
0
-
2
)

1
.9
9
5
5

(6
)

0
.0
6
4
1
±

0
.0
1
6
7

(2
5
,
2
1
)

0
.1
0
2
5

(8
)

0
.0
6
0
2
±

0
.0
1
4
9

(2
-
1
,
2
-
1
,
1
0
-
2
)

0
.2
9
7
6

(5
)

0
.0
6
2
0
±

0
.0
1
7
9

(2
0
,
0
.1
)

5
.0
5
4
3

(7
)

0
.0
5
5
9
±

0
.0
0
8
3

(2
9
,
2
1
,
1
)

0
.1
8
7
6

(3
)

0
.0
5
6
2
±

0
.0
1
0
0

(2
5
,
2
2
,
0
.1
)

0
.1
6
7
8

(4
)

0
.0
5
4
3
–
0
.0
0
8
1

(2
9
,
2
9
,
2
1
,
1
0
-
3
,

0
.1
)

0
.1
8
8
6

(1
)

0
.0
5
5
6
±

0
.0
0
8
2

(2
7
,
2
6
,
2
3
,
1
0
-
3
,

0
.1
)

0
.1
9
0
8

(2
)

r n
o
is
e
=
0
.1

0
.0
7
0
8
±

0
.0
1
0
9

(2
2
,
2
2
,
1
0
-
2
)

1
.9
7
9
0

(5
)

0
.0
7
9
7
±

0
.0
1
3
3

(2
8
,
2
-
4
)

0
.1
0
1
0

(8
)

0
.0
7
2
8
±

0
.0
1
1
1

(2
7
,
2
0
,
1
0
-
2
)

0
.3
2
1
2

(6
)

0
.0
7
5
6
±

0
.0
1
1
9

(2
-
1
,
1
.3
4
5
)

3
.9
4
8
5

(7
)

0
.0
6
5
1
±

0
.0
0
7
8

(2
4
,
2
1
,
1
)

0
.1
8
7
7

(2
)

0
.0
6
4
9
–
0
.0
0
9
2

(2
1
,
2
2
,
0
.1
)

0
.1
6
8
0

(1
)

0
.0
6
5
9
±

0
.0
0
9
2

(2
4
,
2
9
,
2
1
,
1
0
-
3
,

0
.1
)

0
.1
8
9
6

(3
)

0
.0
6
6
0
±

0
.0
0
8
1

(2
9
,
2
5
,
2
1
,
1
0
-
2
,

0
.1
)

0
.1
9
2
0

(4
)

F
u
n
ct
io
n
3

(4
0
0
9

2
,

8
0
0
9

2
)

r n
o
is
e
=
0
.0
5

0
.0
3
6
3
±

0
.0
0
2
2

(2
5
,
2
1
,
1
0
-
1
)

1
.9
7
9
4

(5
.5
)

0
.0
3
7
9
±

0
.0
0
5
7

(2
3
,
2
3
)

0
.1
0
3
1

(8
)

0
.0
3
6
3
±

0
.0
0
5
1

(2
-
1
,
2
-
1
,
1
0
-
1
)

0
.2
9
9
5

(5
.5
)

0
.0
3
6
7
±

0
.0
1
5
0

(2
0
,
0
.1
)

4
.4
2
7
7

(7
)

0
.0
3
2
4
–
0
.0
0
7
3

(2
4
,
2
3
,
1
.3
4
5
)

0
.1
8
6
3

(1
)

0
.0
3
4
1
±

0
.0
0
8
5

(2
2
,
2
2
,
0
.1
)

0
.1
7
8
0

(4
)

0
.0
3
3
0
±

0
.0
0
5
1

(2
4
,
2
2
,
2
3
,
1
0
-
3
,

0
.1
)

0
.1
8
7
4

(2
)

0
.0
3
3
7
±

0
.0
0
8
2

(2
7
,
2
0
,
2
4
,
1
0
-
3
,

0
.1
)

0
.1
8
9
0

(3
)

r n
o
is
e
=
0
.1

0
.0
3
9
9
±

0
.0
0
4
7

(2
8
,
2
1
,
1
0
-
1
)

1
.9
8
5
8

(5
)

0
.0
4
1
4
±

0
.0
0
9
1

(2
2
,
2
3
)

0
.1
0
2
4

(8
)

0
.0
4
0
2
±

0
.0
0
5
2

(2
-
1
,
2
-
1
,
1
0
-
1
)

0
.2
9
0
3

(6
)

0
.0
4
0
8
±

0
.0
0
6
4

(2
0
,
0
.1
)

5
.9
8
4
5

(7
)

0
.0
3
7
3
–
0
.0
0
3
8

(2
3
,
2
3
,
0
.1
)

0
.1
8
8
2

(1
.5
)

0
.0
3
8
5
±

0
.0
0
6
4

(2
4
,
2
3
,
0
.1
)

0
.1
8
9
2

(3
)

0
.0
3
7
3
–
0
.0
0
4
2

(2
4
,
2
4
,
2
3
,
1
0
-
3
,

0
.1
)

0
.1
8
6
6

(1
.5
)

0
.0
3
8
8
±

0
.0
0
7
3

(2
3
,
2
4
,
2
3
,
1
0
-
3
,

0
.1
)

0
.1
9
0
1

(4
)

Neural Computing and Applications (2020) 32:11285–11309 11299

123



Ta
bl
e
4

(c
o
n
ti
n
u
ed
)

D
at
as
et

(t
ra
in

si
ze
,
te
st
si
ze
)

T
y
p
es

o
f

n
o
is
e

S
V
R

(C
,
l,

e)
T
im

e

(R
an
k
)

L
S
-S
V
R

(C
,
l
)

T
im

e

(R
an
k
)

T
S
V
R

(C
1
=
C
2
,
l
,

e 1
=
e 2
)

T
im

e

(R
an
k
)

R
H
S
V
R

(l
,
c)

T
im

e

(R
an
k
)

F
H
T
S
V
R

(C
,
l
,
c)

T
im

e

(R
an
k
)

N
H
T
S
V
R

(C
,
l,

c)
T
im

e

(R
an
k
)

e-
F
H
T
S
V
R

(C
1
=
C
2
,
C
3
=
C
4
,

l
,
e 1
=
e 2
,
c)

T
im

e

(R
an
k
)

e-
N
H
T
S
V
R

(C
1
=
C
2
,
C
3
=
C
4
,

l
,
e 1
=
e 2
,
c)

T
im

e

(R
an
k
)

F
u
n
ct
io
n
4

(4
0
0
9

2
,

8
0
0
9

2
)

r n
o
is
e
=
0
.0
5

0
.1
4
1
9
–
0
.0
1
1
7

(2
2
,
2
3
,
1
0
-
1
)

3
.3
3
4
4

(1
.5
)

0
.1
4
3
6
±

0
.0
2
2
6

(2
6
,
2
3
)

0
.1
7
6
8

(6
)

0
.1
4
2
8
±

0
.0
2
6
7

(2
1
,
2
4
,
1
0
-
2
)

0
.4
2
4
3

(3
)

0
.1
4
1
9
–
0
.0
3
0
1

(2
1
,
0
.1
)

5
.8
2
4
8

(1
.5
)

0
.1
4
2
9
±

0
.0
2
2
9

(2
6
,
2
4
,
0
.1
)

0
.3
0
1
4

(4
)

0
.1
4
3
7
±

0
.0
1
8
8

(2
9
,
2
4
,
0
.1
)

0
.3
0
0
8

(7
.5
)

0
.1
4
3
0
±

0
.0
1
1
4

(2
6
,
2
8
,
2
4
,
1
0
-
3
,

0
.1
)

0
.1
8
9
7

(5
)

0
.1
4
3
7
±

0
.0
2
3
5

(2
9
,
2
4
,
2
4
,
1
0
-
3
,

0
.1
)

0
.1
8
4
7

(7
.5
)

r n
o
is
e
=
0
.1

0
.1
6
8
0
±

0
.0
1
8
1

(2
1
,
2
4
,
1
0
-
3
)

3
.3
5
3
1

(3
.5
)

0
.1
7
1
2
±

0
.0
2
6
8

(2
1
,
2
5
)

0
.1
7
7
8

(8
)

0
.1
6
9
0
±

0
.0
2
0
5

(2
-
1
,
2
4
,
1
0
-
3
)

0
.4
0
7
7

(5
.5
)

0
.1
6
9
0
±

0
.0
2
5
8

(2
1
,
0
.1
)

5
.4
6
6
4

(5
.5
)

0
.1
6
9
2
±

0
.0
2
5
2

(2
4
,
2
4
,
0
.1
)

0
.2
9
4
6

(7
)

0
.1
6
7
8
±

0
.0
1
8
0

(2
9
,
2
3
,
1
)

0
.2
8
0
8

(2
)

0
.1
6
8
0
±

0
.0
3
8
3

(2
9
,
2
1
,
2
4
,
1
0
-
3
,

0
.1
)

0
.1
8
9
5

(3
.5
)

0
.1
6
7
3
–
0
.0
2
3
0

(2
1
,
2
7
,
2
4
,
1
0
-
2
,

0
.1
)

0
.1
8
3
0

(1
)

F
u
n
ct
io
n
5

(4
0
0
9

4
,

8
0
0
9

4
)

r n
o
is
e
=
0
.0
5

0
.0
1
2
8
±

0
.0
1
3
1

(2
6
,
2
1
,
1
0
-
2
)

1
.9
8
3
3

(2
)

0
.0
1
3
3
±

0
.0
0
8
9

(2
9
,
2
-
1
)

0
.1
0
2
8

(8
)

0
.0
1
3
0
±

0
.0
0
1
2

(2
-
2
,
2
0
,
1
0
-
2
)

0
.3
0
7
4

(4
)

0
.0
1
3
1
±

0
.0
0
1
7

(2
-
4
,
0
.1
)

3
.1
1
8
8

(6
.5
)

0
.0
1
2
5
–
0
.0
0
2
0

(2
9
,
2
0
,
0
.1
)

0
.1
8
4
6

(1
)

0
.0
1
3
1
±

0
.0
0
2
1

(2
9
,
2
0
,
0
.1
)

0
.1
8
3
5

(6
.5
)

0
.0
1
3
0
±

0
.0
0
1
9

(2
9
,
2
7
,
2
0
,
1
0
-
3
,

0
.1
)

0
.1
8
8
6

(4
)

0
.0
1
3
0
±

0
.0
0
1
9

(2
9
,
2
9
,
2
0
,
1
0
-
3
,

0
.1
)

0
.1
8
9
1

(4
)

r n
o
is
e
=
0
.1

0
.0
1
4
1
±

0
.0
0
1
8

(2
8
,
2
-
2
,
1
0
-
2
)

2
.0
0
2
2

(4
.5
)

0
.0
1
5
8
±

0
.0
0
3
6

(2
8
,
2
-
1
)

0
.1
0
1
4

(8
)

0
.0
1
4
7
±

0
.0
0
2
4

(2
-
3
,
2
0
,
1
0
-
2
)

0
.3
0
6
5

(7
)

0
.0
1
4
0
±

0
.0
0
3
1

(2
-
3
,
0
.1
)

3
.3
9
9
1

(3
)

0
.0
1
3
6
–
0
.0
0
1
7

(2
9
,
2
0
,
0
.1
)

0
.1
8
7
4

(1
.5
)

0
.0
1
4
1
±

0
.0
0
1
9

(2
8
,
2
0
,
0
.1
)

0
.1
8
6
8

(4
.5
)

0
.0
1
3
6
–
0
.0
0
2
3

(2
9
,
2
9
,
2
0
,
1
0
-
3
,

0
.1
)

0
.1
9
0
9

(1
.5
)

0
.0
1
4
5
±

0
.0
0
2
1

(2
8
,
2
8
,
2
0
,
1
0
-
3
,

0
.1
)

0
.1
9
3
0

(6
)

A
v
er
ag
e
ra
n
k

3
.5
5

7
.8

4
.5
5

5
.2

2
.8

4
.3
5

3
.3

4
.4
5

11300 Neural Computing and Applications (2020) 32:11285–11309

123



Ta
bl
e
5

P
er
fo
rm

an
ce

co
m
p
ar
is
o
n
o
f
o
u
r
p
ro
p
o
se
d
m
et
h
o
d
s
F
H
T
S
V
R
,
N
H
T
S
V
R
,
e-
F
H
T
S
V
R
an
d
e-
N
H
T
S
V
R
w
it
h
S
V
R
,
L
S
-S
V
R
,
T
S
V
R
an
d
R
H
S
V
R
o
n
re
al
-w

o
rl
d
d
at
as
et
s.
R
M
S
E
w
as

u
se
d

fo
r
co
m
p
ar
is
o
n
.
L
in
ea
r
k
er
n
el

w
as

em
p
lo
y
ed
.
T
im

e
is
fo
r
tr
ai
n
in
g
in

se
co
n
d
s.
B
o
ld

ty
p
e
sh
o
w
s
th
e
b
es
t
re
su
lt

D
at
as
et

(t
ra
in

si
ze
,
te
st
si
ze
)

S
V
R

(C
,
e)

T
im

e

(R
an
k
)

L
S
-S
V
R

(C
)

T
im

e

(R
an
k
)

T
S
V
R

(C
1
=
C
2
,
e 1
=
e 2
)

T
im

e

(R
an
k
)

R
H
S
V
R

(c
)

T
im

e

(R
an
k
)

F
H
T
S
V
R

(C
1
=
C
2
,
c)

T
im

e

(R
an
k
)

N
H
T
S
V
R

(C
1
=
C
2
,
c)

T
im

e

(R
an
k
)

e-
F
H
T
S
V
R

(C
1
=
C
2
,
C
3
=
C
4
,

e 1
=
e 2
,
c)

T
im

e

(R
an
k
)

e-
N
H
T
S
V
R

(C
1
=
C
2
,
C
3
=
C
4
,

e 1
=
e 2
,
c)

T
im

e

(R
an
k
)

H
y
d
ra
u
li
c

ac
tu
at
o
r

(7
6
6
9

5
,

2
5
5
9

5
)

0
.2
7
9
0
±

0
.0
1
6
4

(2
7
,
1
0
-
1
)

3
.0
4
3
9

(7
)

0
.1
0
7
8
±

0
.0
1
9
0

(2
9
)

0
.0
5
9
3

(2
.5
)

0
.1
0
7
5
–
0
.0
1
1
6

(2
-
3
,
1
0
-
1
)

0
.9
0
0
1

(1
)

0
.3
8
1
7
±

0
.0
2
0
8

(1
)

0
.4
8
6
1

(8
)

0
.1
0
7
8
±

0
.0
1
4
6

(2
9
,
0
.1
)

0
.2
4
2
0

(2
.5
)

0
.1
0
8
2
±

0
.0
1
4
5

(2
9
,
0
.1
)

0
.2
4
2
5

(4
)

0
.1
0
8
4
±

0
.0
1
5
0

(2
9
,
2
9
,
1
0
-
3
,
0
.1
)

0
.2
1
8
4

(5
)

0
.1
0
8
6
±

0
.0
1
4
5

(2
9
,
2
9
,
1
0
-
2
,
0
.1
)

0
.2
1
7
0

(6
)

P
y
ri
m

(5
6
9

2
6
,

1
8
9

2
6
)

0
.1
3
4
5
–
0
.0
5
3
4

(2
1
,
1
0
-
2
)

0
.0
1
8
6

(1
)

0
.1
3
9
9
±

0
.0
6
2
8

(2
-
7
)

0
.0
0
0
3

(6
)

0
.2
6
0
8
±

0
.0
7
3
8

(2
-
4
,
1
0
-
1
)

0
.0
0
6
6

(7
)

0
.3
0
4
8
±

0
.1
9
9
3

(0
.1
)

0
.0
0
6
4

(8
)

0
.1
3
5
0
±

0
.0
3
4
9

(2
0
,
0
.1
)

0
.0
0
0
9

(2
.5
)

0
.1
3
5
0
±

0
.0
3
4
9

(2
0
,
0
.1
)

0
.0
0
0
8

(2
.5
)

0
.1
3
5
9
±

0
.0
3
3
6

(2
-
2
,
2
-
2
,
1
0
-
3
,

0
.1
)

0
.0
0
0
8

(4
)

0
.1
3
6
9
±

0
.0
3
0
3

(2
-
1
,
2
-
1
,
1
0
-
3
,

0
.1
)

0
.0
0
0
8

(5
)

P
o
ll
u
ti
o
n

(4
5
9

1
5
,

1
5
9

1
5
)

4
4
.4
7
6
5
±

1
0
.3
4
2
1

(2
6
,
1
0
-
3
)

0
.0
0
6
6

(7
)

4
2
.6
6
0
2
–
1
0
.1
3
7
4

(2
2
)

0
.0
0
0
2

(1
)

4
3
.6
7
0
1
±

8
.5
9
3
4

(2
-
9
,
1
0
-
3
)

0
.0
0
6
0

(6
)

8
0
.1
3
4
2
±

2
0
.7
6
8
9

(1
.3
4
5
)

0
.0
0
6
3

(8
)

4
2
.7
4
1
0
±

8
.6
1
0
8

(2
6
,
1
.3
4
5
)

0
.0
0
0
7

(4
)

4
2
.8
2
1
1
±

8
.4
9
0
2

(2
6
,
1
.3
4
5
)

0
.0
0
0
7

(5
)

4
2
.6
7
9
0
±

6
.1
0
8
0

(2
7
,
2
6
,
1
0
-
1
,
0
.1
)

0
.0
0
0
7

(2
)

4
2
.7
2
0
5
±

6
.9
6
2
2

(2
7
,
2
7
,
1
0
-
3
,

1
.3
4
5
)

0
.0
0
0
6

(3
)

C
o
n
cr
et
e
C
S

(7
7
3
9

8
,

2
5
7
9

8
)

1
0
.5
0
9
2
±

0
.5
6
0
5

(2
3
,
1
0
-
1
)

3
.1
5
0
9

(5
)

1
0
.5
6
2
2
±

0
.5
1
8
1

(2
3
)

0
.0
6
9
1

(7
)

1
0
.5
4
4
8
±

0
.2
2
3
3

(2
-
9
,
1
0
-
3
)

0
.5
5
3
4

(6
)

1
0
.8
6
2
9
±

0
.6
9
2
7

(1
.3
4
5
)

5
.2
8
4
5

(8
)

1
0
.4
6
3
5
±

0
.5
1
2
8

(2
9
,
0
.1
)

0
.2
1
7
0

(4
)

1
0
.3
8
6
2
±

0
.4
6
0
2

(2
-
1
,
0
.1
)

0
.2
1
9
6

(2
)

1
0
.4
6
1
3
±

0
.4
6
5
1

(2
-
1
,
2
-
2
,
1
0
-
3
,

0
.1
)

0
.1
9
7
6

(3
)

1
0
.1
9
6
5
–
0
.2
7
4
5

(2
0
,
2
-
1
,
1
0
-
3
,
0
.1
)

0
.2
1
6
0

(1
)

S
u
n
sp
o
ts

(2
1
8
9

5
,

7
2
9

5
)

1
8
.2
0
7
8
±

1
.7
0
2
7

(2
9
,
1
0
-
3
)

0
.1
0
2
0

(7
)

1
9
.3
8
5
4
±

1
.8
5
3
9

(2
5
)

0
.0
0
2
0

(8
)

1
7
.2
5
9
2
±

1
.4
1
0
5

(2
7
,
1
0
-
1
)

0
.0
2
6
6

(5
)

1
8
.1
0
6
2
±

2
.0
0
0
8

(1
.3
4
5
)

0
.2
5
4
1

(6
)

1
6
.6
6
7
4
±

0
.7
1
1
8

(2
6
,
0
.1
)

0
.0
0
6
9

(3
)

1
6
.6
9
4
2
±

1
.4
3
0
2

(2
6
,
0
.1
)

0
.0
0
6
5

(4
)

1
6
.3
1
7
5
–
1
.6
2
8
8

(2
7
,
2
7
,
1
0
-
3
,

1
.3
4
5
)

0
.0
0
7
7

(1
)

1
6
.4
4
8
6
±

1
.7
6
1
6

(2
9
,
2
7
,
1
0
-
2
,

1
.3
4
5
)

0
.0
0
7
1

(2
)

S
er
v
o

(1
2
6
9

4
,

4
1
9

4
)

1
.3
5
5
6
±

0
.2
9
2
6

(2
5
,
1
0
-
1
)

0
.0
2
8
2

(7
)

1
.1
7
2
1
±

0
.1
2
2
3

(2
4
)

0
.0
0
0
6

(6
)

1
.1
0
4
1
–
0
.1
1
5
4

(2
1
,
1
0
-
3
)

0
.0
1
2
3

(1
)

1
.7
0
1
9
±

0
.3
1
5
3

(1
.3
4
5
)

0
.0
2
8
1

(8
)

1
.1
4
0
3
±

0
.1
6
1
3

(2
9
,
1
)

0
.0
0
2
7

(2
)

1
.1
4
5
2
±

0
.1
4
5
3

(2
1
,
1
.3
4
5
)

0
.0
0
2
0

(3
)

1
.1
4
8
7
±

0
.1
7
2
4

(2
1
,
2
-
1
,
2
0
,
1
0
-
1
,

1
)

0
.0
0
3
5

(4
)

1
.1
5
2
4
±

0
.1
4
5
4

(2
-
1
,
2
9
,
1
0
-
2
,

1
.3
4
5
)

0
.0
0
3
0

(5
)

T
ri
az
in
es

(1
4
0
9

5
8
,

4
6
9

5
8
)

0
.2
1
3
0
±

0
.0
1
4
1

(2
-
3
,
1
0
-
2
)

0
.0
3
7
6

(6
)

0
.1
9
3
0
–
0
.0
1
9
8

(2
-
5
)

0
.0
0
1
6

(1
)

0
.2
2
3
7
±

0
.0
6
6
0

(2
-
2
,
1
0
-
1
)

0
.0
2
8
1

(7
)

0
.2
3
5
7
±

0
.0
4
3
6

(1
)

0
.0
6
2
1

(8
)

0
.1
9
4
0
±

0
.0
1
7
9

(2
5
,
2
0
,
0
.1
)

0
.0
0
3
5

(3
)

0
.1
9
3
4
±

0
.0
1
7
9

(2
5
,
0
.1
)

0
.0
0
3
5

(2
)

0
.1
9
7
6
±

0
.0
2
7
8

(2
8
,
2
-
2
,
1
0
-
1
,
0
.1
)

0
.0
0
4
9

(5
)

0
.1
9
7
4
±

0
.0
2
5
6

(2
-
5
,
2
1
,
1
0
-
2
,
0
.1
)

0
.0
0
4
2

(4
)

Neural Computing and Applications (2020) 32:11285–11309 11301

123



Ta
bl
e
5
(c
o
n
ti
n
u
ed
)

D
at
as
et

(t
ra
in

si
ze
,
te
st
si
ze
)

S
V
R

(C
,
e)

T
im

e

(R
an
k
)

L
S
-S
V
R

(C
)

T
im

e

(R
an
k
)

T
S
V
R

(C
1
=
C
2
,
e 1
=
e 2
)

T
im

e

(R
an
k
)

R
H
S
V
R

(c
)

T
im

e

(R
an
k
)

F
H
T
S
V
R

(C
1
=
C
2
,
c)

T
im

e

(R
an
k
)

N
H
T
S
V
R

(C
1
=
C
2
,
c)

T
im

e

(R
an
k
)

e-
F
H
T
S
V
R

(C
1
=
C
2
,
C
3
=
C
4
,

e 1
=
e 2
,
c)

T
im

e

(R
an
k
)

e-
N
H
T
S
V
R

(C
1
=
C
2
,
C
3
=
C
4
,

e 1
=
e 2
,
c)

T
im

e

(R
an
k
)

M
ac
h
in
e
C
P
U

(1
5
7
9

7
,

5
2
9

7
)

3
8
.3
4
0
9
±

2
0
.9
3
2
7

(2
9
,
1
0
-
1
)

0
.0
4
4
3

(7
)

3
8
.8
8
1
4
±

1
9
.6
8
3
8

(2
9
)

0
.0
0
1
0

(8
)

3
8
.1
7
6
2
±

1
1
.0
0
9
2

(2
6
,
1
0
-
3
)

0
.0
2
3
5

(6
)

3
8
.0
2
5
9
±

1
9
.6
6
8
2

(0
.1
)

0
.1
0
6
4

(5
)

3
5
.2
7
3
3
–
1
0
.6
3
3
3

(2
9
,
1
.3
4
5
)

0
.0
0
3
7

(1
)

3
5
.2
9
1
0
±

1
0
.6
1
2
9

(2
9
,
1
.3
4
5
)

0
.0
0
3
5

(2
)

3
7
.2
0
4
8
±

1
3
.8
9
1
9

(2
9
,
2
-
2
,
1
0
-
1
,

1
.3
4
5
)

0
.0
0
3
4

(3
)

3
7
.2
9
0
9
±

1
6
.4
2
2
8

(2
9
,
2
9
,
2
0
,
1
0
-
2
,

1
.3
4
5
)

0
.0
0
3
4

(4
)

W
is
co
n
si
n

B
.C
.

(1
4
6
9

3
4
,

4
8
9

3
4
)

5
.2
6
8
8
±

1
.1
5
7
1

(2
2
,
1
0
-
1
)

0
.0
6
7
4

(7
)

5
.1
2
7
9
±

0
.8
6
6
4

(2
-
1
)

0
.0
0
0
8

(5
)

5
.1
4
4
2
±

0
.9
5
0
9

(2
3
,
1
0
-
3
)

0
.0
1
5
3

(6
)

5
.2
8
8
4
±

0
.6
5
9
1

(0
.1
)

0
.1
2
7
2

(8
)

4
.8
6
2
6
–
0
.6
6
1
8

(2
-
2
,
1
.3
4
5
)

0
.0
0
3
2

(1
)

4
.9
6
9
8
±

0
.7
0
2
8

(2
-
2
,
1
.3
4
5
)

0
.0
0
3
4

(2
)

4
.9
8
9
5
±

0
.7
6
6
7

(2
-
2
,
2
-
2
,
1
0
-
1
,

1
.3
4
5
)

0
.0
0
4
5

(3
)

5
.0
1
2
2
±

1
.0
1
1
7

(2
7
,
2
-
5
,
1
0
-
2
,

1
.3
4
5
)

0
.0
0
4
8

(4
)

A
u
to
M
P
G

(2
9
4
9

7
,

9
8
9

7
)

0
.6
0
4
4
±

0
.0
3
8
6

(2
5
,
1
0
-
1
)

0
.2
9
5
4

(5
)

0
.6
0
6
0
±

0
.0
4
5
0

(2
4
)

0
.0
0
4
5

(7
)

0
.6
0
4
9
±

0
.0
4
0
4

(2
-
2
,
1
0
-
1
)

0
.0
5
3
6

(6
)

0
.6
0
8
3
±

0
.0
3
2
8

(1
.3
4
5
)

0
.9
1
0
5

(8
)

0
.5
9
6
0
±

0
.0
3
9
0

(2
3
,
2
0
,
1
.3
4
5
)

0
.0
1
6
6

(3
)

0
.6
0
4
2
±

0
.0
2
7
5

(2
9
,
0
.1
)

0
.0
1
7
8

(4
)

0
.5
8
6
0
–
0
.0
3
8
7

(2
2
,
2
7
,
1
0
-
2
,

1
.3
4
5
)

0
.0
1
7
7

(1
)

0
.5
8
8
8
±

0
.0
2
7
5

(2
2
,
2
9
,
1
0
-
2
,

1
.3
4
5
)

0
.0
1
8
4

(2
)

B
o
st
o
n

(3
8
0
9

1
3
,

1
2
6
9

1
3
)

4
.9
0
5
3
±

0
.3
5
6
8

(2
2
,
1
0
-
1
)

0
.5
7
4
6

(2
)

4
.9
5
8
3
±

0
.6
1
3
9

(2
2
)

0
.0
1
0
1

(7
)

4
.9
0
4
1
–
0
.3
0
4
2

(2
0
,
1
0
-
2
)

0
.1
0
3
1

(1
)

5
.2
3
7
3
±

1
.0
8
6
1

(0
.1
)

1
.1
5
6
4

(8
)

4
.9
1
6
8
±

0
.3
9
1
1

(2
9
,
2
0
,
1
.3
4
5
)

0
.0
3
4
8

(5
)

4
.9
0
8
3
±

0
.3
7
4
2

(2
9
,
1
.3
4
5
)

0
.0
3
4
2

(3
)

4
.9
2
5
4
±

0
.4
7
2
6

(2
9
,
2
0
,
1
0
-
1
,

1
.3
4
5
)

0
.0
3
4
4

(6
)

4
.9
1
2
7
±

0
.5
2
8
4

(2
1
,
2
9
,
1
0
-
2
,
1
)

0
.0
3
4
0

(4
)

B
o
d
y
fa
t

(1
8
9
9

1
4
,

6
3
9

1
4
)

0
.0
5
0
4
±

0
.0
3
1
5

(2
3
,
1
0
-
3
)

0
.0
8
4
3

(8
)

0
.0
4
7
1
–
0
.0
0
9
8

(2
9
)

0
.0
0
1
6

(1
)

0
.0
4
8
8
±

0
.0
1
1
1

(2
-
2
,
1
0
-
1
)

0
.0
3
5
6

(6
)

0
.0
4
9
3
±

0
.0
2
0
0

(0
.1
)

0
.1
7
6
6

(7
)

0
.0
4
7
3
±

0
.0
1
7
3

(2
4
,
2
0
,
0
.1
)

0
.0
0
6
5

(2
.5
)

0
.0
4
7
3
±

0
.0
1
7
2

(2
4
,
0
.1
)

0
.0
0
6
2

(2
.5
)

0
.0
4
7
6
±

0
.0
1
8
2

(2
3
,
2
4
,
1
0
-
3
,
0
.1
)

0
.0
0
5
4

(5
)

0
.0
4
7
5
±

0
.0
1
2
3

(2
1
,
2
3
,
1
0
-
2
,
0
.1
)

0
.0
0
5
1

(4
)

N
O
2

(3
7
5
9

7
,

1
2
5
9

7
)

0
.5
4
1
0
±

0
.0
2
8
8

(2
0
,
1
0
-
2
)

0
.3
5
2
0

(5
.5
)

0
.5
4
1
2
±

0
.0
3
2
8

(2
3
)

0
.0
1
0
5

(7
)

0
.5
4
1
0
±

0
.0
2
5
8

(2
-
2
,
1
0
-
3
)

0
.0
9
1
8

(5
.5
)

0
.5
7
0
6
±

0
.1
9
8
0

(1
)

2
.1
3
6
7

(8
)

0
.5
3
5
9
±

0
.0
2
5
3

(2
7
,
2
0
,
1
)

0
.0
3
2
3

(3
)

0
.5
3
9
5
±

0
.0
3
3
0

(2
-
1
,
1
)

0
.0
3
3
2

(4
)

0
.5
2
9
4
–
0
.0
2
7
5

(2
1
,
2
5
,
1
0
-
1
,
0
.1
)

0
.0
2
9
6

(1
)

0
.5
3
1
2
±

0
.0
4
6
0

(2
3
,
2
9
,
1
0
-
2
,
1
)

0
.0
2
9
8

(2
)

F
o
re
st
fi
re
s

(3
8
8
9

1
2
,

1
2
9
9

1
2
)

5
7
.8
4
1
6
±

3
7
.1
2
8
3

(2
7
,
1
0
-
1
)

0
.6
5
1
2

(6
)

5
9
.0
6
1
8
±

3
1
.5
5
4
9

(2
-
8
)

0
.0
1
1
6

(8
)

5
8
.4
7
5
4
±

3
2
.5
3
5
2

(2
6
,
1
0
-
3
)

0
.1
2
6
4

(7
)

5
3
.8
6
9
9
±

3
5
.8
5
0
1

(1
.3
4
5
)

1
.0
3
4
2

(3
)

5
4
.7
5
8
9
±

3
4
.1
4
5

(2
-
9
,
2
0
,
1
.3
4
5
)

0
.0
3
3
2

(5
)

5
0
.3
1
1
5
–
3
4
.8
6
9
7

(2
-
9
,
1
.3
4
5
)

0
.0
3
3
0

(1
)

5
4
.3
2
0
1
±

3
7
.5
2
8
5

(2
-
2
,
2
-
2
,
1
0
-
3
,

1
.3
4
5
)

0
.0
2
9
4

(4
)

5
3
.4
5
0
±

3
8
.5
1
4
5

(2
-
9
,
2
-
9
,
1
0
-
3
,

1
.3
4
5
)

0
.0
2
9
1

(2
)

11302 Neural Computing and Applications (2020) 32:11285–11309

123



Ta
bl
e
5

(c
o
n
ti
n
u
ed
)

D
at
as
et

(t
ra
in

si
ze
,

te
st

si
ze
)

S
V
R

(C
,
e)

T
im

e

(R
an
k
)

L
S
-S
V
R

(C
)

T
im

e

(R
an
k
)

T
S
V
R

(C
1
=
C
2
,
e 1
=
e 2
)

T
im

e

(R
an
k
)

R
H
S
V
R

(c
)

T
im

e

(R
an
k
)

F
H
T
S
V
R

(C
1
=
C
2
,
c)

T
im

e

(R
an
k
)

N
H
T
S
V
R

(C
1
=
C
2
,
c)

T
im

e

(R
an
k
)

e-
F
H
T
S
V
R

(C
1
=
C
2
,
C
3
=
C
4
,

e 1
=
e 2
,
c)

T
im

e

(R
an
k
)

e-
N
H
T
S
V
R

(C
1
=
C
2
,
C
3
=
C
4
,

e 1
=
e 2
,
c)

T
im

e

(R
an
k
)

C
it
ig
ro
u
p
(5
6
3
9

5
,

1
8
7
9

5
)

0
.8
1
3
0
±

0
.0
6
7
6

(2
8
,
1
0
-
1
)

0
.9
2
6
2

(5
)

0
.8
1
4
0
±

0
.0
6
3
1

(2
8
)

0
.0
3
1
6

(6
)

0
.8
1
1
9
–
0
.0
3
6
5

(2
1
,
1
0
-
3
)

0
.2
7
3
1

(1
)

0
.9
8
1
6
±

0
.1
1
1
6

(1
)

7
.3
5
4
2

(8
)

0
.8
1
2
1
±

0
.0
6
7
9

(2
6
,
1
.3
4
5
)

0
.0
9
1
2

(2
)

0
.8
1
2
4
±

0
.0
7
9
2

(2
9
,
1
.3
4
5
)

0
.0
9
2
2

(3
)

0
.8
1
2
9
±

0
.0
4
5
9

(2
9
,
2
9
,
1
0
-
3
,

1
.3
4
5
)

0
.0
8
9
6

(4
)

0
.8
1
5
6
±

0
.0
4
7
0

(2
9
,
2
9
,
1
0
-
2
,

1
.3
4
5
)

0
.0
9
0
4

(7
)

G
o
o
g
le

(5
6
3
9

5
,

1
8
7
9

5
)

1
1
.7
8
9
9
±

0
.9
9
5
4

(2
3
,
1
0
-
1
)

0
.8
8
3
6

(6
)

1
1
.9
4
0
4
±

1
.1
6
4
8

(2
7
)

0
.0
3
2
3

(7
)

1
1
.6
9
2
5
±

0
.9
1
4
3

(2
3
,
1
0
-
1
)

0
.2
3
8
4

(5
)

1
1
.9
9
8
0
±

1
.9
9
8
8

(1
.3
4
5
)

2
.5
6
0
4

(8
)

1
1
.3
5
0
7
±

1
.4
9
9
9

(2
9
,
1
.3
4
5
)

0
.0
9
1
2

(4
)

1
1
.3
5
0
2
±

0
.9
3
8
6

(2
9
,
1
.3
4
5
)

0
.0
9
1
0

(3
)

1
1
.3
2
8
4
±

1
.3
3
4
9

(2
9
,
2
9
,
1
0
-
1
,

1
.3
4
5
)

0
.0
8
3
4

(2
)

1
1
.3
2
8
1
–
1
.2
7
5
5
1

(2
9
,
2
9
,
1
0
-
3
,

1
.3
4
5
)

0
.0
8
2
9

(1
)

IB
M

(5
6
3
9

5
,

1
8
7
9

5
)

1
.5
8
9
8
±

0
.1
5
3
4

(2
9
,
1
0
-
3
)

1
.5
3
4
8

(5
)

1
.6
0
3
1
±

0
.1
3
5
3

(2
6
)

0
.0
2
7
5

(8
)

1
.5
9
7
0
±

0
.1
6
6
2

(2
3
,
1
0
-
1
)

0
.2
6
3
8

(6
)

1
.6
0
0
1
±

0
.1
2
3
9

(1
.3
4
5
)

2
.1
2
3
3

(7
)

1
.5
4
6
0
–
0
.0
9
0
3

(2
6
,
1
.3
4
5
)

0
.0
9
6
0

(1
)

1
.5
4
8
7
±

0
.0
8
7
8

(2
9
,
1
.3
4
5
)

0
.0
9
5
6

(2
)

1
.5
5
0
8
±

0
.1
1
2
7

(2
7
,
2
7
,
1
0
-
3
,

1
.3
4
5
)

0
.0
8
4
2

(3
)

1
.5
6
7
8
±

0
.1
7
1
4

(2
9
,
2
-
1
,
1
0
-
3
,

1
.3
4
5
)

0
.0
8
3
8

(4
)

S
N
P
5
0
0
(5
6
3
9

5
,

1
8
7
9

5
)

1
8
.7
6
6
±

2
.1
2
5
6

(2
9
,
1
0
-
1
)

1
.0
8
0
1

(3
)

1
9
.0
8
2
7
±

1
.8
0
9
9

(2
6
)

0
.0
2
7
6

(8
)

1
8
.7
9
2
0
±

1
.9
4
7

(2
6
,
1
0
-
3
)

0
.2
2
3
4

(5
)

1
8
.9
8
7
0
±

1
.6
3
4
6

(0
.1
)

2
.3
0
3
7

(7
)

1
8
.7
9
6
1
±

1
.2
2
3
4

(2
5
,
1
.3
4
5
)

0
.0
9
2
4

(6
)

1
8
.7
6
6
3
±

1
.4
0
6
5

(2
9
,
1
.3
4
5
)

0
.0
9
1
9

(4
)

1
8
.6
7
8
8
±

1
.0
4
7
2

(2
9
,
2
9
,
1
0
-
1
,

1
.3
4
5
)

0
.0
8
2
5

(2
)

1
8
.6
6
6
3
–
1
.8
8
4
0

(2
9
,
2
9
,
1
0
-
2
,

1
.3
4
5
)

0
.0
8
2
2

(1
)

In
te
l
(5
6
3
9

5
,

1
8
7
9

5
)

0
.4
7
7
0
±

0
.0
5
0
7

(2
9
,
1
0
-
1
)

1
.3
4
3
6

(6
)

0
.4
9
1
0
±

0
.0
3
4
9

(2
6
)

0
.0
2
8
1

(7
)

0
.4
7
1
9
–
0
.0
4
1
1

(2
0
,
1
0
-
1
)

0
.2
5
0
3

(1
)

0
.4
9
6
5
±

0
.0
5
6
8

(0
.1
)

2
.4
4
8
1

(8
)

0
.4
7
4
1
±

0
.0
3
3
6

(2
6
,
1
.3
4
5
)

0
.0
9
8
3

(2
)

0
.4
7
4
3
±

0
.0
4
2
0

(2
8
,
1
)

0
.0
9
8
0

(3
)

0
.4
7
6
0
±

0
.0
3
8
4

(2
9
,
2
9
,
1
0
-
1
,
0
.1
)

0
.0
8
8
2

(4
.5
)

0
.4
7
6
0
±

0
.0
3
8
0

(2
9
,
2
9
,
1
0
-
2
,
1
)

0
.0
8
7
5

(4
.5
)

M
ic
ro
so
ft
(5
6
3
9

5
,

1
8
7
9

5
)

0
.5
4
5
6
±

0
.0
5
9
6

(2
9
,
1
0
-
3
)

1
.3
4
6
8

(6
)

0
.5
4
6
5
±

0
.0
4
9
7

(2
9
)

0
.0
2
8
5

(7
)

0
.5
4
0
5
–
0
.0
5
4
8

(2
0
,
1
0
-
1
)

0
.2
5
3
4

(1
)

0
.5
6
6
6
±

0
.0
4
9
2

(0
.1
)

2
.5
6
8
7

(8
)

0
.5
4
1
5
±

0
.0
3
6
8

(2
7
,
1
)

0
.0
9
4
9

(4
)

0
.5
4
4
8
±

0
.0
5
5
2

(2
8
,
0
.1
)

0
.0
9
4
6

(5
)

0
.5
4
0
8
±

0
.0
4
9
8

(2
9
,
2
9
,
1
0
-
3
,
0
.1
)

0
.0
7
9
2

(2
)

0
.5
4
1
0
±

0
.0
5
6
5

(2
9
,
2
7
,
1
0
-
3
,
1
)

0
.0
7
8
4

(3
)

R
ed
h
at

(5
6
3
9

5
,

1
8
7
9

5
)

0
.6
5
8
9
±

0
.1
6
7
0

(2
9
,
1
0
-
3
)

1
.3
4
9
3

(5
)

0
.6
7
9
0
±

0
.1
7
8
9

(2
9
)

0
.0
3
1
5

(8
)

0
.6
5
9
0
±

0
.1
7
9
8

(2
-
1
,
1
0
-
1
)

0
.2
8
7
5

(6
)

0
.6
5
9
9
±

0
.1
1
0
1

(1
.3
4
5
)

3
.0
7
7
1

(7
)

0
.6
4
7
0
±

0
.0
8
7
9

(2
9
,
1
)

0
.0
9
7
7

(2
)

0
.6
4
9
4
±

0
.1
1
8
8

(2
9
,
1
)

0
.0
9
7
1

(4
)

0
.6
4
5
6
–
0
.0
7
8
0

(2
9
,
2
9
,
1
0
-
3
,
1
)

0
.0
8
9
4

(1
)

0
.6
4
7
8
±

0
.0
8
2
4

(2
9
,
2
9
,
1
0
-
3
,
1
)

0
.0
8
9
0

(3
)

A
v
er
ag
e
R
an
k

5
.5
4
7
6

5
.9
7
6
2

4
.5
4
7
6

7
.3
3
3
3

2
.9
7
6
2

3
.0
9
5
2

3
.1
1
9
0

3
.4
0
4
8

Neural Computing and Applications (2020) 32:11285–11309 11303

123



Ta
bl
e
6

P
er
fo
rm

an
ce

co
m
p
ar
is
o
n
o
f
o
u
r
p
ro
p
o
se
d
m
et
h
o
d
s
F
H
T
S
V
R
,
N
H
T
S
V
R
,
e-
F
H
T
S
V
R
an
d
e-
N
H
T
S
V
R
w
it
h
S
V
R
,
L
S
-S
V
R
,
T
S
V
R
an
d
R
H
S
V
R
o
n
b
en
ch
m
ar
k
d
at
as
et
s.
R
M
S
E
w
as

u
se
d

fo
r
co
m
p
ar
is
o
n
.
G
au
ss
ia
n
k
er
n
el

w
as

em
p
lo
y
ed
.
T
im

e
is

fo
r
tr
ai
n
in
g
in

se
co
n
d
s.
B
o
ld

ty
p
e
sh
o
w
s
th
e
b
es
t
re
su
lt

D
at
as
et

(t
ra
in

si
ze
,
te
st

S
iz
e)

S
V
R

(C
,
l
,
e)

T
im

e

(R
an
k
)

L
S
-S
V
R

(C
,
l)

T
im

e

(R
an
k
)

T
S
V
R

(C
1
=
C
2
,
l,

e 1
=
e 2
)

T
im

e

(R
an
k
)

R
H
S
V
R

(l
,
c)

T
im

e

(R
an
k
)

F
H
T
S
V
R

(C
,
l,

c)
T
im

e

(R
an
k
)

N
H
T
S
V
R

(C
,
l
,
c)

T
im

e

(R
an
k
)

e-
F
H
T
S
V
R

(C
1
=
C
2
,
C
3
=
C
4
,
l,

e 1
=
e 2
,
c)

T
im

e

(R
an
k
)

e-
N
H
T
S
V
R

(C
1
=
C
2
,
C
3
=
C
4
,
l
,

e 1
=
e 2
,
c)

T
im

e

(R
an
k
)

H
y
d
ra
u
li
c
ac
tu
at
o
r

(7
6
6
9

5
,
2
5
5
9

5
)

0
.1
05
0
–
0
.0
1
4
5

(2
2
,
2
3
,
1
0
-
2
)

1
3
.5
4
8
4

(1
.5
)

0
.1
0
7
4
±

0
.0
1
4
4

(2
7
,
2
-
1
)

0
.6
8
7
9

(8
)

0
.1
0
6
1
±

0
.0
1
8
2

(2
-
2
,
2
-
2
,
1
0
-
3
)

1
.4
5
0
6

(5
)

0
.1
0
5
0
–
0
.0
19
4

(2
-
3
,
0
.1
)

3
0
.9
3
2
6

(1
.5
)

0
.1
0
7
0
±

0
.0
1
3
4

(2
9
,
2
-
2
,
0
.1
)

1
.1
1
7
5

(6
)

0
.1
0
6
0
±

0
.0
1
4
6

(2
9
,
2
-
1
,
0
.1
)

1
.0
1
1
2

(4
)

0
.1
0
5
8
±

0
.0
1
1
0

(2
9
,
2
9
,
2
-
1
,
1
0
-
3
,

0
.1
)

1
.0
5
7
6

(3
)

0
.1
0
7
2
±

0
.0
1
3
5

(2
9
,
2
9
,
2
0
,
1
0
-
3
,
0
.1
)

1
.1
0
5
0

(7
)

P
y
ri
m

(5
6
9

2
6
,
1
8
9

2
6
)

0
.0
9
6
9
±

0
.0
1
9
2

(2
0
,
2
-
4
,
1
0
-
1
)

0
.0
4
2
3

(2
)

0
.1
0
3
5
±

0
.0
4
3
3

(2
1
,
2
-
9
)

0
.0
0
2
5

(7
)

0
.0
9
9
7
±

0
.0
4
1
3

(2
-
2
,
2
-
9
,
1
0
-
3
)

0
.0
1
4
8

(5
)

0
.2
5
8
5
±

0
.0
7
7
4

(2
0
,
1
.3
4
5
)

0
.0
1
2
6

(8
)

0
.0
84
2
–
0
.0
30
8

(2
0
,
2
-
3
,
1
.3
4
5
)

0
.0
1
2
3

(1
)

0
.0
9
8
9
±

0
.0
4
2
4

(2
3
,
2
-
6
,
0
.1
)

0
.0
0
8
5

(3
)

0
.1
0
0
6
±

0
.0
3
8
1

(2
9
,
2
-
2
,
2
-
4
,
1
0
-
2
,

0
.1
)

0
.0
0
7
3

(6
)

0
.0
9
9
6
±

0
.0
2
7
7

(2
-
3
,
2
2
,
2
-
3
,
1
0
-
3
,

0
.1
)

0
.0
0
5
7

(4
)

P
o
ll
u
ti
o
n
(4
5
9

1
5
,

1
5
9

1
5
)

4
0
.4
7
3
3
±

8
.6
2
2
1

(2
9
,
2
-
4
,
1
0
-
3
)

0
.0
2
5
7

(6
)

4
1
.8
4
3
±

1
0
.0
4
3
2

(2
6
,
2
-
2
)

0
.0
0
1
6

(7
)

3
9
.0
2
0
6
±

9
.2
9
2
8

(2
7
,
2
-
5
,
1
0
-
1
)

0
.0
0
7
2

(5
)

6
6
.1
3
4
2
±

9
.3
6
3
3

(2
-
3
,
1
)

0
.0
0
7
3

(8
)

3
7
.9
7
3
4
±

9
.5
8
7
4

(2
-
3
,
2
-
3
,
0
.1
)

0
.0
0
6
5

(3
)

3
8
.6
2
6
4
±

1
2
.1
5
4
0

(2
9
,
2
-
4
,
1
.3
4
5
)

0
.0
0
7
0

(4
)

3
5
.5
7
6
5
–
8
.8
98
7

(2
7
,
2
7
,
2
-
4
,
1
0
-
3
,

1
.3
4
5
)

0
.0
0
4
9

(1
)

3
6
.4
5
9
1
±

6
.5
8
9
0

(2
9
,
2
9
,
2
-
4
,
1
0
-
3
,

1
.3
4
5
)

0
.0
0
3
4

(2
)

C
o
n
cr
et
e
C
S
(7
7
3
9

8
,

2
5
7
9

8
)

6
.0
9
4
7
±

0
.6
4
3
2

(2
9
,
2
1
,
1
0
-
1
)

1
3
.7
3
4
6

(2
)

5
.9
5
2
6
–
0
.5
91
7

(2
6
,
2
2
)

0
.7
0
7
5

(1
)

6
.1
1
5
8
±

0
.4
1
3
2

(2
5
,
2
1
,
1
0
-
1
)

1
.4
9
3
3

(3
)

6
.2
6
5
3
±

0
.5
2
9
7

(2
-
3
,
1
.3
4
5
)

3
1
.7
7
9
0

(7
)

6
.2
7
8
0
±

0
.5
1
0
0

(2
9
,
2
1
,
1
.3
4
5
)

1
.1
8
1
7

(8
)

6
.1
7
8
1
±

0
.4
4
0
1

(2
9
,
2
1
,
1
.3
4
5
)

1
.0
3
6
5

(6
)

6
.1
2
4
3
±

0
.4
3
2
3

(2
9
,
2
9
,
2
1
,
1
0
-
3
,

1
.3
4
5
)

1
.1
1
1
3

(5
)

6
.1
2
0
7
±

0
.4
9
8
0

(2
9
,
2
9
,
2
1
,
1
0
-
3
,

1
.3
4
5
)

1
.2
6
2
0

(4
)

S
u
n
sp
o
ts
(2
1
8
9

5
,

7
2
9

5
)

1
3
.6
1
9
7
±

1
.2
2
9
6

(2
9
,
2
1
,
1
0
-
1
)

0
.5
6
2
5

(5
)

1
3
.8
4
7
1
±

1
.1
9
4
7

(2
6
,
2
0
)

0
.0
3
1
4

(7
)

1
3
.8
3
2
6
±

1
.3
6
8
5

(2
2
,
2
0
,
1
0
-
1
)

0
.0
6
1
7

(6
)

1
4
.2
1
7
3
±

1
.5
3
3
2

(2
-
7
,
1
)

0
.7
1
2
3

(8
)

1
3
.0
5
5
6
–
1
.4
42
9

(2
9
,
2
0
,
1
)

0
.0
6
1
8

(1
)

1
3
.1
4
9
6
±

1
.2
9
6
0

(2
9
,
2
1
,
1
.3
4
5
)

0
.0
6
2
1

(2
)

1
3
.4
1
8
±

0
.9
0
2
2

(2
9
,
2
8
,
2
1
,
1
0
-
3
,

1
.3
4
5
)

0
.0
8
3
0

(4
)

1
3
.2
3
1
6
±

1
.2
9
6
0

(2
9
,
2
9
,
2
1
,
1
0
-
3
,

1
.3
4
5
)

0
.0
8
0
2

(3
)

S
er
v
o
(1
2
6
9

4
,
4
1
9

4
)

0
.6
5
4
8
±

0
.2
0
9
4

(2
5
,
2
0
,
1
0
-
1
)

0
.1
8
5
2

(5
)

0
.6
6
9
2
±

0
.1
1
7
5

(2
6
,
2
3
)

0
.0
1
0
4

(7
)

0
.6
6
8
5
±

0
.0
7
7
1

(2
1
,
2
0
,
1
0
-
1
)

0
.0
2
1
6

(6
)

0
.7
3
1
9
±

0
.2
3
4
1

(2
-
7
,
1
)

0
.1
7
3
3

(8
)

0
.6
3
7
8
±

0
.1
1
5
4

(2
9
,
2
3
,
1
)

0
.0
2
0
3

(4
)

0
.6
2
9
5
±

0
.1
4
1
5

(2
3
,
2
1
,
1
)

0
.0
3
9
7

(3
)

0
.6
1
3
0
±

0
.1
1
4
0

(2
1
,
2
9
,
2
2
,
1
0
-
3
,
1
)

0
.0
3
1
0

(2
)

0
.6
12
7
–
0
.0
90
3

(2
9
,
2
1
,
2
1
,
1
0
-
3
,
1
)

0
.0
3
4
0

(1
)

T
ri
az
in
es

(1
4
0
9

5
8
,

4
6
9

5
8
)

0
.1
5
5
3
±

0
.0
2
1
4

(2
-
1
,
2
-
3
,
1
0
-
3
)

0
.4
0
6
7

(5
)

0
.1
5
3
8
–
0
.3
01
2

(2
2
,
2
-
9
)

0
.0
3
6
3

(1
)

0
.1
5
5
1
±

0
.0
1
8
2

(2
-
4
,
2
-
9
,
1
0
-
3
)

0
.0
4
6
9

(4
)

0
.2
1
9
1
±

0
.2
1
3
4

(2
0
,
1
.3
4
5
)

0
.0
6
5
7

(8
)

0
.1
5
5
5
±

0
.0
2
9
2

(2
-
1
,
2
-
5
,
0
.1
)

0
.0
4
0
6

(6
)

0
.1
5
8
5
±

0
.0
1
6
6

(2
1
,
2
-
4
,
0
.1
)

0
.0
4
0
8

(7
)

0
.1
5
4
0
±

0
.0
2
7
8

(2
7
,
2
-
2
,
2
-
5
,
1
0
-
3
,

0
.1
)

0
.0
3
7
9

(2
)

0
.1
5
4
6
±

0
.0
2
3
1

(2
1
,
2
-
2
,
2
1
,
1
0
-
3
,

0
.1
)

0
.0
4
4
5

(3
)

11304 Neural Computing and Applications (2020) 32:11285–11309

123



Ta
bl
e
6

(c
o
n
ti
n
u
ed
)

D
at
as
et

(t
ra
in

si
ze
,

te
st

S
iz
e)

S
V
R

(C
,
l,

e)
T
im

e

(R
an
k
)

L
S
-S
V
R

(C
,
l)

T
im

e

(R
an
k
)

T
S
V
R

(C
1
=
C
2
,
l,

e 1
=
e 2
)

T
im

e

(R
an
k
)

R
H
S
V
R

(l
,
c)

T
im

e

(R
an
k
)

F
H
T
S
V
R

(C
,
l,

c)
T
im

e

(R
an
k
)

N
H
T
S
V
R

(C
,
l
,
c)

T
im

e

(R
an
k
)

e-
F
H
T
S
V
R

(C
1
=
C
2
,
C
3
=
C
4
,

l,
e 1
=
e 2
,
c)

T
im

e

(R
an
k
)

e-
N
H
T
S
V
R

(C
1
=
C
2
,
C
3
=
C
4
,

l
,
e 1
=
e 2
,
c)

T
im

e

(R
an
k
)

M
ac
h
in
e
C
P
U

(1
5
7
9

7
,
5
2
9

7
)

2
7
.7
0
4
6
±

1
5
.3
1
5
5

(2
9
,
2
-
3
,
1
0
-
1
)

0
.2
9
0
9

(8
)

2
4
.3
1
5
3
±

2
0
.0
1
3
6

(2
9
,
2
-
4
)

0
.0
1
7
1

(6
)

2
3
.5
8
4
2
±

1
9
.3
0
3
6

(2
7
,
2
-
2
,
1
0
-
1
)

0
.0
3
9
1

(4
)

2
5
.7
5
2
±

2
3
.7
2
7
5

(2
-
3
,
1
.3
4
5
)

0
.3
3
3
0

(7
)

2
2
.7
4
5
7
±

7
.8
4
1

(2
9
,
2
-
3
,
1
.3
4
5
)

0
.0
2
7
2

(2
)

2
0
.5
2
8
1
–
6
.9
3
6
5

(2
9
,
2
-
3
,
1
.3
4
5
)

0
.0
2
6
8

(1
)

2
4
.2
5
0
7
±

1
4
.6
2
4
5

(2
9
,
2
9
,
2
-
2
,
1
0
-
3
,

1
.3
4
5
)

0
.0
4
3
3

(5
)

2
3
.3
7
4
5
±

1
4
.5
0
1
7

(2
9
,
2
9
,
2
-
2
,
1
0
-
3
,

1
.3
4
5
)

0
.0
4
9
0

(3
)

W
is
co
n
si
n

B
.C
.(
1
4
6
9

3
4
,

4
8
9

3
4
)

4
.9
2
6
3
±

1
.1
3
0
1

(2
9
,
2
-
7
,
1
0
-
1
)

0
.2
5
1
5

(6
)

4
.9
5
4
7
±

0
.6
6
4
7

(2
9
,
2
-
9
)

0
.0
1
7
8

(7
)

4
.8
8
5
8
±

0
.9
5
9
6

(2
2
,
2
-
8
,
1
0
-
3
)

0
.0
3
6
7

(4
)

5
.2
5
2
3
±

0
.6
5
9
1

(2
2
,
0
.1
)

0
.0
3
5
4

(8
)

4
.5
55
7
–
0
.6
71
6

(2
3
,
2
-
4
,
1
)

0
.0
3
1
4

(1
)

4
.8
6
6
1
±

0
.9
1
2
6

(2
8
,
2
-
7
,
1
.3
4
5
)

0
.0
3
1
5

(3
)

4
.8
4
8
0
±

0
.8
3
6
3

(2
-
2
,
2
9
,
2
-
5
,
1
0
-
3
,

1
.3
4
5
)

0
.0
3
9
6

(2
)

4
.8
9
5
0
±

1
.0
1
5
6

(2
1
,
2
4
,
2
-
3
,
1
0
-
3
,

1
.3
4
5
)

0
.0
3
2
1

(5
)

A
u
to
M
P
G

(2
9
4
9

7
,

9
8
9

7
)

0
.5
8
2
0
±

0
.0
6
8
0

(2
8
,
2
-
3
,
1
0
-
3
)

1
.0
4
2
8

(7
)

0
.5
7
4
8
±

0
.0
5
2
7

(2
2
,
2
2
)

0
.0
6
8
1

(5
)

0
.5
6
8
7
±

0
.0
4
2
2

(2
-
2
,
2
0
,
1
0
-
1
)

0
.1
3
6
6

(4
)

0
.5
8
7
3
±

0
.0
4
0
4

(2
-
6
,
0
.1
)

1
.6
6
8
3

(8
)

0
.5
6
6
4
±

0
.0
4
4
6

(2
9
,
2
0
,
1
)

0
.1
1
3
8

(3
)

0
.5
62
2
–
0
.0
2
3
5

(2
9
,
2
1
,
0
.1
)

0
.1
1
2
8

(1
)

0
.5
7
8
8
±

0
.0
3
2
3

(2
3
,
2
9
,
2
0
,
1
0
-
3
,

1
.3
4
5
)

0
.1
5
0
2

(6
)

0
.5
6
6
3
±

0
.0
4
0
9

(2
9
,
2
0
,
2
2
,
1
0
-
3
,

1
.3
4
5
)

0
.1
5
0
8

(2
)

B
o
st
o
n
(3
8
0
9

1
3
,

1
2
6
9

1
3
)

3
.4
8
7
4
±

0
.6
2
8
6

(2
9
,
2
3
,
1
0
-
1
)

1
.7
7
0
4

(8
)

3
.2
1
3
8
±

0
.5
0
3
0

(2
8
,
2
-
1
)

0
.1
2
5
2

(4
)

3
.2
1
2
6
±

0
.4
3
3
3

(2
2
,
2
-
1
,
1
0
-
1
)

0
.2
2
6
9

(3
)

3
.4
2
1
7
±

0
.5
6
2
7

(2
-
8
,
0
.1
)

3
.5
4
2
1

(7
)

3
.1
08
8
–
0
.5
27
7

(2
9
,
2
0
,
0
.1
)

0
.1
7
4
0

(1
)

3
.2
8
4
9
±

0
.5
1
1
2

(2
9
,
2
0
,
1
.3
4
5
)

0
.1
5
3
4

(5
)

3
.1
4
4
3
±

0
.4
9
2
6

(2
9
,
2
9
,
2
0
,
1
0
-
1
,

1
.3
4
5
)

0
.2
5
7
5

(2
)

3
.2
9
8
9
±

0
.5
6
8
8

(2
9
,
2
9
,
2
0
,
1
0
-
3
,
1
)

0
.2
7
5
4

(6
)

B
o
d
y
fa
t
(1
8
9
9

1
4
,

6
3
9

1
4
)

0
.0
1
7
3
–
0
.0
01
8

(2
-
4
,
2
-
9
,
1
0
-
3
)

0
.7
3
5
6

(1
)

0
.0
1
9
3
±

0
.0
0
7
6

(2
-
3
,
2
-
4
)

0
.0
5
2
7

(3
)

0
.0
1
9
0
±

0
.0
0
7
0

(2
-
3
,
2
-
9
,
1
0
-
1
)

0
.0
8
4
9

(2
)

0
.0
1
9
6
±

0
.0
1
9
5

(2
-
9
,
0
.1
)

0
.5
6
7
9

(5
)

0
.0
1
9
5
±

0
.0
0
5
3

(2
7
,
2
-
9
,
0
.1
)

0
.0
6
7
0

(4
)

0
.0
1
9
8
±

0
.0
0
4
3

(2
-
7
,
2
-
9
,
0
.1
)

0
.0
5
8
0

(6
)

0
.0
2
0
5
±

0
.0
0
3
9

(2
-
2
,
2
-
2
,
2
-
5
,

1
0
-
3
,
0
.1
)

0
.0
6
6
1

(7
)

0
.0
2
1
0
±

0
.0
0
5
2

(2
-
4
,
2
8
,
2
-
5
,
1
0
-
3
,

0
.1
)

0
.0
6
3
6

(8
)

N
O
2
(3
7
5
9

7
,

1
2
5
9

7
)

0
.5
2
1
3
±

0
.0
2
1
6

(2
3
,
2
0
,
1
0
-
1
)

1
.7
0
3
2

(5
)

0
.5
2
8
0
±

0
.0
3
3
9

(2
2
,
2
1
)

0
.1
0
9
3

(7
)

0
.5
2
2
1
±

0
.0
1
9
6

(2
0
,
2
-
2
,
1
0
-
1
)

0
.2
1
5
5

(6
)

0
.5
6
9
1
±

0
.1
8
9
4

(2
-
7
,
1
)

2
.9
0
3
8

(8
)

0
.5
0
4
2
±

0
.0
3
4
5

(2
2
,
2
0
,
1
)

0
.1
7
3
9

(2
)

0
.5
0
8
3
±

0
.0
2
9
8

(2
5
,
2
1
,
1
)

0
.1
2
5
6

(3
)

0
.5
00
6
–
0
.0
28
6

(2
2
,
2
9
,
2
-
2
,
1
0
-
1
,
1
)

0
.2
4
0
5

(1
)

0
.5
1
4
2
±

0
.0
4
8
5

(2
9
,
2
0
,
2
1
,
1
0
-
3
,
1
)

0
.2
5
0
4

(4
)

F
o
re
st
fi
re
s
(3
8
8
9

1
2
,

1
2
9
9

1
2
)

5
5
.7
5
0
7
±

3
2
.9
8
3
1

(2
9
,
2
-
1
,
1
0
-
3
)

1
.8
9
5
2

(6
)

5
6
.7
0
2
6
±

2
9
.9
2
7
5

(2
0
,
2
-
9
,
1
0
-
2
)

0
.1
1
2
2

(8
)

5
6
.3
1
9
5
±

3
6
.3
8
4
3

(2
5
,
2
-
9
,
1
0
-
3
)

0
.2
5
2
4

(7
)

5
4
.9
2
3
9
±

3
5
.4
5
5
9

(2
-
7
,
1
.3
4
5
)

3
.9
9
2
5

(5
)

5
4
.3
8
2
7
±

3
2
.5
3
1
1

(2
-
5
,
2
9
,
1
.3
4
5
)

0
.2
6
2
6

(4
)

4
8
.4
8
2
1
–
3
4
.7
6
8
8

(2
-
8
,
2
9
,
0
.1
)

0
.1
5
6
8

(1
)

5
1
.6
7
3
3
±

3
5
.9
7
1
9

(2
-
2
,
2
-
2
,
2
-
5
,

1
0
-
3
,
1
.3
4
5
)

0
.2
5
7
0

(3
)

5
0
.3
8
0
3
±

3
0
.0
1
5
9

(2
-
8
,
2
-
7
,
2
9
,
1
0
-
3
,

0
.1
)

0
.3
4
0
4

(2
)

Neural Computing and Applications (2020) 32:11285–11309 11305

123



Ta
bl
e
6

(c
o
n
ti
n
u
ed
)

D
at
as
et

(t
ra
in

si
ze
,

te
st

S
iz
e)

S
V
R

(C
,
l
,
e)

T
im

e

(R
an
k
)

L
S
-S
V
R

(C
,
l)

T
im

e

(R
an
k
)

T
S
V
R

(C
1
=
C
2
,
l,

e 1
=
e 2
)

T
im

e

(R
an
k
)

R
H
S
V
R

(l
,
c)

T
im

e

(R
an
k
)

F
H
T
S
V
R

(C
,
l
,
c)

T
im

e

(R
an
k
)

N
H
T
S
V
R

(C
,
l,

c)
T
im

e

(R
an
k
)

e-
F
H
T
S
V
R

(C
1
=
C
2
,
C
3
=
C
4
,
l,

e 1
=
e 2
,
c)

T
im

e

(R
an
k
)

e-
N
H
T
S
V
R

(C
1
=
C
2
,
C
3
=
C
4
,
l
,

e 1
=
e 2
,
c)

T
im

e

(R
an
k
)

C
it
ig
ro
u
p
(5
6
3
9

5
,

1
8
7
9

5
)

0
.7
8
9
7
±

0
.0
6
7
6

(2
8
,
2
-
1
,
1
0
-
1
)

7
.0
8
1
4

(5
)

0
.7
9
2
8
±

0
.0
4
6
0

(2
9
,
2
-
3
)

0
.3
5
7
4

(8
)

0
.7
88
1
–
0
.0
50
1

(2
2
,
2
-
1
,
1
0
-
3
)

0
.6
9
8
2

(1
)

0
.7
8
8
7
±

0
.0
4
9
5

(2
-
9
,
1
.3
4
5
)

2
1
.9
2
2
8

(3
)

0
.7
8
8
4
±

0
.0
6
8
8

(2
9
,
2
2
,
1
)

0
.5
7
9
0

(2
)

0
.7
9
1
0
±

0
.0
4
1
4

(2
9
,
2
0
,
1
.3
4
5
)

0
.5
1
2
0

(6
)

0
.7
8
9
1
±

0
.0
4
7
6

(2
9
,
2
7
,
2
2
,
1
0
-
3
,
1
.3
4
5
)

0
.5
5
9
2

(4
)

0
.7
9
2
6
±

0
.0
4
0
2

(2
9
,
2
9
,
2
2
,
1
0
-
3
,
1
)

0
.5
8
8
2

(7
)

G
o
o
g
le

(5
6
3
9

5
,

1
8
7
9

5
)

1
1
.4
4
2
±

0
.9
9
5
4

(2
9
,
2
-
1
,
1
0
-
1
)

4
.0
5
8
5

(6
)

1
1
.3
2
0
3
±

0
.5
8
4
9

(2
9
,
2
-
5
)

0
.2
1
6
3

(4
)

1
1
.5
8
3
9
±

1
.2
2
4
3

(2
2
,
2
1
,
1
0
-
1
)

0
.4
6
9
0

(7
)

1
1
.6
6
2
2
±

0
.7
9
8
8

(2
-
9
,
1
.3
4
5
)

8
.4
2
5
9

(8
)

1
1
.2
9
0
8
±

1
.0
4
2
1

(2
9
,
2
-
1
,
1
.3
4
5
)

0
.3
6
0
9

(3
)

1
1
.3
6
4
2
±

0
.9
2
7
8

(2
9
,
2
-
1
,
1
.3
4
5
)

0
.3
6
1
8

(5
)

1
1
.2
2
2
2
–
0
.8
4
9
5

(2
9
,
2
9
,
2
-
1
,
1
0
-
1
,

1
.3
4
5
)

0
.5
4
2
2

(1
)

1
1
.2
8
7
7
±

0
.9
4
7
2

(2
9
,
2
9
,
2
-
1
,
1
0
-
3
,

1
.3
4
5
)

0
.5
3
1
2

(2
)

IB
M

(5
6
3
9

5
,

1
8
7
9

5
)

1
.5
7
9
0
±

0
.0
8
9
4

(2
9
,
2
-
3
,
1
0
-
3
)

4
.0
4
6
4

(6
)

1
.6
0
0
9
±

0
.1
2
6
6

(2
7
,
2
-
2
)

0
.2
1
5
5

(8
)

1
.5
7
1
3
±

0
.1
2
5
9

(2
2
,
2
-
2
,
1
0
-
1
)

0
.4
7
7
7

(5
)

1
.5
8
3
1
±

0
.1
1
3
9

(2
-
9
,
1
.3
4
5
)

7
.0
1
5
5

(7
)

1
.5
31
5
–
0
.0
74
1

(2
9
,
2
-
1
,
1
)

0
.3
7
3
7

(1
)

1
.5
3
8
8
±

0
.1
4
7
0

(2
9
,
2
-
2
,
1
.3
4
5
)

0
.2
9
7
8

(2
)

1
.5
4
8
7
±

0
.0
7
6
7

(2
9
,
2
9
,
2
1
,
1
0
-
3
,
1
)

0
.5
5
7
4

(4
)

1
.5
4
6
3
±

0
.1
2
1
4

(2
9
,
2
9
,
2
-
2
,
1
0
-
3
,

1
.3
4
5
)

0
.5
7
1
9

(3
)

S
N
P
5
0
0
(5
6
3
9

5
,

1
8
7
9

5
)

1
8
.1
1
9
7
±

2
.1
1
3
0

(2
9
,
2
0
,
1
0
-
1
)

6
.9
6
9
2

(8
)

1
7
.6
6
1
1
±

1
.8
7
8
1

(2
9
,
2
-
5
)

0
.3
5
5
2

(2
)

1
7
.9
8
3
±

1
.4
1
4
9

(2
5
,
2
2
,
1
0
-
1
)

0
.6
9
2
3

(7
)

1
7
.4
2
4
3
–
1
.5
50
1

(2
-
4
,
0
.1
)

1
0
.7
7
6
9

(1
)

1
7
.8
4
7
9
±

1
.7
9
6
8

(2
9
,
2
-
1
,
1
.3
4
5
)

0
.5
5
9
6

(4
)

1
7
.8
7
8
4
±

1
.2
4
7
9

(2
9
,
2
1
,
1
.3
4
5
)

0
.5
5
9
8

(6
)

1
7
.7
0
1
2
±

1
.3
4
0
9

(2
9
,
2
9
,
2
-
1
,
1
0
-
1
,

1
.3
4
5
)

0
.5
4
3
7

(3
)

1
7
.8
4
8
8
±

1
.2
1
4

(2
9
,
2
9
,
2
-
1
,
1
0
-
3
,

1
.3
4
5
)

0
.5
3
6
6

(5
)

In
te
l
(5
6
3
9

5
,

1
8
7
9

5
)

0
.4
6
6
3
±

0
.0
5
0
7

(2
9
,
2
-
4
,
1
0
-
1
)

4
.0
3
8
5

(5
)

0
.4
7
1
1
±

0
.0
2
5
2

(2
7
,
2
-
1
)

0
.2
1
4
5

(7
)

0
.4
6
4
2
±

0
.0
5
0
3

(2
-
1
,
2
-
1
,
1
0
-
3
)

0
.4
7
2
3

(4
)

0
.4
7
3
7
±

0
.0
3
6
5

(2
-
7
,
0
.1
)

8
.9
3
0
4

(8
)

0
.4
49
6
–
0
.0
36
9

(2
7
,
2
0
,
1
.3
4
5
)

0
.3
8
5
6

(1
)

0
.4
6
2
5
±

0
.0
3
3
7

(2
7
,
2
-
1
,
1
)

0
.3
6
0
9

(2
)

0
.4
6
3
9
±

0
.0
3
7
3

(2
8
,
2
8
,
2
0
,
1
0
-
3
,
0
.1
)

0
.5
4
0
9

(3
)

0
.4
6
8
0
±

0
.0
5
1
0

(2
9
,
2
9
,
2
0
,
1
0
-
3
,
0
.1
)

0
.5
6
1
2

(6
)

M
ic
ro
so
ft
(5
6
3
9

5
,

1
8
7
9

5
)

0
.5
2
5
7
±

0
.0
4
8
0

(2
9
,
2
-
4
,
1
0
-
3
)

4
.0
4
8
5

(6
)

0
.5
2
6
0
±

0
.0
4
4
4

(2
9
,
2
-
5
)

0
.2
2
1
5

(7
)

0
.5
2
4
8
±

0
.0
3
7
5

(2
0
,
2
-
2
,
1
0
-
1
)

0
.4
8
1
8

(5
)

0
.5
2
6
6
±

0
.0
4
9
2

(2
-
7
,
0
.1
)

1
2
.5
3
5
6

(8
)

0
.5
2
4
5
±

0
.0
2
8
4

(2
9
,
2
-
1
,
0
.1
)

0
.3
6
0
3

(4
)

0
.5
2
1
4
±

0
.0
5
1
2

(2
9
,
2
-
1
,
0
.1
)

0
.3
2
5
6

(3
)

0
.5
21
0
–
0
.0
4
0
5

(2
9
,
2
9
,
2
-
1
,
1
0
-
3
,
0
.1
)

0
.5
4
0
7

(1
.5
)

0
.5
21
0
–
0
.0
42
8

(2
9
,
2
9
,
2
-
2
,
1
0
-
3
,
1
)

0
.5
6
4
6

(1
.5
)

R
ed
h
at

(5
6
3
9

5
,

1
8
7
9

5
)

0
.6
4
8
5
±

0
.0
8
3
7

(2
9
,
2
-
5
,
1
0
-
1
)

4
.0
6
4
2

(6
)

0
.6
7
5
1
±

0
.0
7
7
6

(2
9
,
2
-
5
)

0
.2
1
4
7

(8
)

0
.6
5
5
0
±

0
.0
9
4
8

(2
2
,
2
-
2
,
1
0
-
1
)

0
.4
9
4
8

(7
)

0
.6
4
8
4
±

0
.1
1
0
1

(2
-
9
,
1
.3
4
5
)

1
8
.0
8
0
8

(5
)

0
.6
4
6
2
±

0
.1
0
4
9

(2
9
,
2
-
1
,
1
)

0
.3
7
6
2

(4
)

0
.6
4
3
5
±

0
.1
1
4
9

(2
9
,
2
-
1
,
1
)

0
.3
4
2
6

(3
)

0
.6
37
3
–
0
.0
5
6
7

(2
9
,
2
9
,
2
-
1
,
1
0
-
3
,
1
)

0
.5
5
6
5

(1
)

0
.6
4
2
1
±

0
.0
7
6
7

(2
9
,
2
9
,
2
-
1
,
1
0
-
3
,
1
)

0
.5
6
0
7

(2
)

A
v
er
ag
e
ra
n
k

5
.2
1
4
3

5
.8
0
9
5

4
.7
6
1
9

6
.5

3
.0
9
5
2

3
.6
1
9
0

3
.1
6
6
7

3
.8
3
3
3

11306 Neural Computing and Applications (2020) 32:11285–11309

123



proposed methods are robust and efficient learning methods

for noisy datasets.

4.2 Benchmark datasets

In this subsection, we present the results of comparative

analysis of SVR, LS-SVR, TSVR, RHSVR, FHTSVR,

NHTSVR, e-FHTSVR and e-NHTSVR using both the lin-

ear and Gaussian kernels by performing experiments on 21

benchmark datasets. They are hydraulic actuator dataset

[14, 33]; Pyrim, Pollution, Concrete CS, Sunspots, Servo,

Triazines, Machine CPU, Wisconsin B.C., AutoMPG,

Boston, Forestfires from UCI repository; Bodyfat, NO2

from http://lib.stat.cmu.edu/datasets/NO2.dat; and the

financial time series datasets Citigroup, Google, IBM,

Standard & Poor 500 (SNP500), Intel, Microsoft, Redhat

from http://finance.yahoo.com.

For our first experimental study, we considered the

hydraulic actuator dataset [14, 33] which is often used as a

benchmark dataset for nonlinear system identification. It

consists of 1024 pairs of valves ðuðtÞ; yðtÞÞ where uðtÞ is

the size of the valve through which oil flows into the

actuator and yðtÞ is the oil pressure. By taking the input as

xðtÞ ¼ ðyðt � 1Þ; yðt � 2Þ; yðt � 3Þ; uðt � 1Þ; uðt � 2ÞÞt
with its output being yðtÞ; we obtain 1021 samples of the

form: ðxðtÞ; yðtÞÞ [14, 33]. Regarding the financial time

series datasets considered, i.e., the stock index of Citi-

group, Google, IBM, SNP500, Intel, Microsoft and Red-

Hat, 755 closing prices starting from January 01, 2006, to

December 31, 2008, are selected. The current stock index

value is predicted using five previous values, and thus 750

samples are obtained.

Experiments are performed after normalizing the origi-

nal data by taking: �xij ¼
xij�xmin

j

xmax
j

�xmin
j

; so that �xij becomes the

normalized value corresponding to the jth attribute value xij

of the input example xi wherein xmin
j ¼ mini¼1;...;m xij and

xmax
j ¼ maxi¼1;...;m xij denote the minimum and maximum

values of the jth attribute value over all input examples xi:

In this numerical study, each dataset is randomly split

into training and test sets in which 75% of the inputs are

taken for training and the rest for testing. We randomly

selected 20% of the training samples and polluted them

with additive Gaussian noise with mean 0 and standard

deviation 0.5. As in the study on synthetic datasets, the

optimal parameter values are obtained by tenfold cross-

validation procedure. To avoid biased comparisons, ten

independent trials are performed. The results of the average

test accuracy, the standard deviation and the average

learning time for the linear and Gaussian kernels are

summarized in Tables 5 and 6, respectively. Further,

methods are ranked according to the accuracy obtained for

every dataset and their average ranks are reported. It can be

seen from Tables 5 and 6 that the test accuracy for the

nonlinear case is, in general, better than the linear case and,

however, faster learning speed is achieved for the linear

case.

From the average ranks for the linear case reported in

Table 5, it can be seen that the proposed algorithms

FHTSVR, NHTSVR, e-FHTSVR and e-NHTSVR perform

much better than the remaining algorithms with FHTSVR

and RHSVR having the best and worst accuracies. How-

ever, it is worth to analyze their performances statistically.

With eight algorithms and 21 datasets, we employ Fried-

man statistics. Under the null hypothesis that all the algo-

rithms are equivalent, we compute [12] v2F ffi 65:4767 and

FF ffi 17:5721, where FF is distributed according to F-

distribution with ð7; 7� 20Þ ¼ ð7; 140Þ degrees of free-

dom. Since 17.5721 is greater than 2.0756 which is the

critical value of Fð7; 140Þ for the level of significance

a ¼ 0:05, we reject the null hypothesis. Subsequently, as a

post hoc test, we apply Nemenyi test for pairwise com-

parison of algorithms. According to Demsar [12], the

critical value qa for a ¼ 0:10 is 2.780 and the value of CD

is 2:780
ffiffiffiffiffiffiffiffi
8�9
6�21

q
ffi 2:1015:

In terms of average ranks, the difference between: (1)

the best and worst of the algorithms TSVR, FHTSVR,

NHTSVR, e-FHTSVR and e-NHTSVR is 4:5476�
2:9762 ¼ 1:5714\2:1015; and hence we conclude that the

post hoc is unable to detect any significant difference

between the algorithms; (2) the best of SVR, LS-SVR,

RHSVR and the worst of FHTSVR, NHTSVR, e-FHTSVR
and e-NHTSVR is 5:5476� 3:4048 ¼ 2:1428[ 2:1015,

which implies that the performance of FHTSVR,

NHTSVR, e-FHTSVR and e-NHTSVR is better than SVR,

LS-SVR and RHSVR; (3) the worst and the best of TSVR,

SVR and LS-SVR is 5:9762� 4:5476 ¼ 1:4286\2:1015;

from which we can see that there is no significant differ-

ence between these algorithms; (4) the difference between

TSVR and RHSVR is 7:3333� 4:5476 ¼
2:7857[ 2:1015 so we conclude that TSVR is better than

RHSVR; and (5) the worst and the best of SVR, LS-SVR

and RHSVR is 7:3333� 5:5476 ¼ 1:7857\2:1015, so

there is no significant difference among the algorithms.

We next examine the results for Gaussian kernel shown

in Table 6 where experiments were performed on the same

real-world datasets considered for the linear case. Clearly,

FHTSVR outperforms all the other kernel methods by

showing the best accuracy six times and is followed by e-
FHTSVR five times, whereas TSVR shows the worst per-

formance with only one time the best test accuracy.
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However, the average rank of TSVR is found to be better

than SVR, LS-SVR and RHSVR. To avoid any biasness, it

is proposed to analyze the results of Table 6 statistically by

performing Friedman test and Nemenyi test. Under the null

hypothesis that all the algorithms are equivalent, we

compute v2F ¼ 39:4261 and FF ¼ 7:33, where FF is dis-

tributed according to F-distribution with ð7; 7� 20Þ ¼
ð7; 140Þ degrees of freedom. From statistical table,

Fð7; 140Þ ¼ 2:0756 for the level of significance a ¼ 0:05:

Since FF [Fð7; 140Þ; we reject the null hypothesis. Sub-

sequently, we proceed with Nemenyi post hoc test. From

Demsar [12], at a ¼ 0:10, the value of CD is � 2:1015.

Again from Table 6, the difference between the average

ranks of: (1) the best and the worst of TSVR, FHTSVR,

NHTSVR, e-FHTSVR and e-NHTSVR is: 4:7619�
3:0952 ¼ 1:6667\2:1015; from which we conclude that

the post hoc test could not detect significant difference

between the algorithms; (2) FHTSVR and the best of the

algorithms SVR, LS-SVR and RHSVR is: 5:2143�
3:0952 ¼ 2:1191[ 2:1015; which implies that the perfor-

mance of FHTSVR is better than SVR, LS-SVR and

RHSVR; (3) the best of TSVR, NHTSVR, e-FHTSVR and

e-NHTSVR, and the algorithm SVR is: 5:2143� 3:1667 ¼
2:0476\2:1015; from which we conclude that the post hoc

test could not detect significant difference between the

algorithms; (4) the worst of NHTSVR and e-FHTSVR and

the best of LS-SVR and RHSVR is:

5:8095� 3:6190 ¼ 2:1905[ 2:1015, which implies that

the performance of NHTSVR and e-FHTSVR is better than

LS-SVR and RHSVR; (5) the best of TSVR and e-
NHTSVR and LS-SVR is: 5:8095� 3:8333 ¼
1:9762\2:1015; from which we conclude that the post hoc

test could not detect significant difference between the

algorithms; (6) e-NHTSVR and RHSVR is: 6:5�
3:8333 ¼ 2:6667[ 2:1015; from which we conclude that

e-NHTSVR performs better than RHSVR; and (7) the best

and the worst of SVR, LS-SVR, TSVR and RHSVR is:

6:5� 4:7619 ¼ 1:7381\2:1015; from which we conclude

that the test could not find significant difference between

the three algorithms.

Because of the better average ranks shown by the pro-

posed methods and by the above study of the statistical

tests for comparisons of more algorithms on multiple

datasets corrupted by noise and outliers, we conclude the

superiority of FHTSVR, NHTSVR, e-FHTSVR and e-
NHTSVR in terms of test accuracy and robustness. Again

one can observe from Tables 5 and 6 that the training time

of FHTSVR, NHTSVR, e-FHTSVR and e-NHTSVR
remains low in comparison with SVR, TSVR and RHSVR.

However, as expected, among all the algorithms, LS-SVR

shows the least training time.

5 Conclusion and future work

In this paper, we have proposed novel robust regularized

twin support vector regression methods based on Huber

and e-insensitive Huber loss functions in simple form with

the aim of obtaining efficient and robust regression learn-

ing methods showing less sensitivity to large noise. Our

formulation leads to solving a pair of strongly convex

minimization problems in primal whose solutions are

obtained by functional iterative and Newton–Armijo

methods. The finite convergence of Newton–Armijo

method has been proved. Our proposed methods have been

tested on eight synthetic datasets polluted by four types of

noise and by another ten synthetic datasets under the

influence of asymmetric noise and outliers whose results

have been compared with SVR, LS-SVR, TSVR and

RHSVR. Additionally, experiments have been performed

on 21 benchmark datasets corrupted by noise. Results

demonstrate that our proposed methods are more efficient

than traditional learning methods considered and in addi-

tion robust to noise and outliers present in the data space.

Further, among the methods proposed, the best perfor-

mance is shown by FHTSVR. The main difficulty of the

proposed methods is the determination of the extra model

parameters. However, we recall that as an important con-

tribution, our proposed models give far more robust esti-

mates than the quadratic loss and e-insensitive loss-based

models. We conclude that our proposed methods are effi-

cient and attractive robust learning methods for regression

showing insensitivity to noise and outliers present in the

training samples. Future work includes the possible appli-

cation of the proposed methods to real-world problems,

like [15].
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