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Abstract
This work investigates the synchronization problem of a dynamical network with multi-links, where each node is assumed

to be nonlinear and the couplings are involved with different discrete delays. In order to reduce the control cost, an

intermittent pinning controller is applied. By using a generalized Halanay-type inequality, a main theorem for ensuring

synchronization is established, revealing the interplay between the average of the smallest eigenvalue of certain matrix,

node dynamics and the heterogeneous delays. Besides, the largest admissible delay can also be estimated. In specific, some

intermittent pinning control strategies are further studied as applications. Unlike existing works on intermittent pinning

control, our work removes the common restriction on the control ratio over each single control period, exhibiting good

generality and tractability. Numerical simulations are also given for demonstration purpose.
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1 Introduction

Synchronization is an attractive yet puzzling phenomenon

existent in many scientific fields, such as the movement of

animals [5], the firing of neurons [1], the collaboration of

mobile vehicles [24] and the synchronous operation of

distributed generators [25]. Therefore, entangling the

mechanism resulting in synchronization is of significance

and may possibly inspire efficient designs for cooperation

in man-made systems.

So far, enormous efforts have been paid to dynamical

networks and it was discovered that the network structure

may trigger many remarkable dynamics, such as synchro-

nization [3, 18, 19, 33], coherence [28] and epidemics [34].

It was reported that pinning a fraction of the network nodes

may help to reach synchronization [17, 26, 30] . However,

for the ease of theoretical analysis, most existing studies

assumed that the network has no multi-links, i.e., there is

only one link between each pair of nodes, which unfortu-

nately ignores many significant properties of practical

networks. In fact, multi-links may happen and trigger

interesting dynamics, such as synchronization [6] and

chimera state [21]. From the point of view of control the-

ory, existing control schemes workable for single-layered

network may fail when multi-links is in concern. In [9], the

synchronization problem of a dynamical network with

multiple interactions is studied, where one-layer interaction

is of linear and the other is of impulsive effect.

In some situations, the interaction between the nodes

may be delayed due to the limitation of data transfer speed

[27] and/or the data congestion in communication channels

[11]. As reported, a large time delay may hinder the syn-

chronization of a networked system [10, 14]. Furthermore,

when heterogeneous delays are in concern, the theoretical

analysis becomes more challenging. In [22], the master

stability function method is extended to examine different

synchronization phenomena. In contrast, [4] realized syn-

chronization of dynamical network with multiple delays

via Lyapunov stability theory. In [7], networks with mul-

tiple delays are driven to synchronization by using pinning

control method. Very recently, [32] represented networks

with multiple delays as multiplex networks and achieved
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synchronization of the resultant multiplex network via

adaptive pinning technique.

For the purpose of reduction in control cost and data

congestion, intermittent control method was introduced

[13], where the control is not necessarily to execute con-

tinuously. For example, [31] realized synchronization of a

BAM neural network by using intermittent control method.

In [16], intermittent coupling with and without time delay

was examined to ensure synchronization of networks. In

[23], a quasi-periodically intermittent control was proposed

for synchronizing a dynamical network. Again, pinning

control is evidenced to be effective under an intermittent

control framework. [29] investigated the synchronization

problem of dynamical networks with delayed node

dynamics with periodically intermittent pinning control,

where the pinning control applied follows a periodic on-off

fashion. Such a scheme is also applicable to networks with

more complicated node dynamics, such as fractional-order

system [15]. In [19], the intermittent pinning controller is

allowed to be switched on and off aperiodically. Mean-

while, it was shown in [20] that for networks with delayed

node dynamics, the aperiodic intermittent pinning control is

still workable. However, the existing results on intermittent

control often assume that the (pinning) control is subjected

to certain control ratio, i.e., the ratio between the working

interval and the control period should satisfy certain

threshold, which may restrict its application in practice.

Motivated by the foregoing discussions, this work aims

to investigate the synchronization problem of a dynamical

network with multi-links represented by a multiplex net-

work. In our scenario, a nonlinear dynamical network with

heterogeneous coupling delays is taken into account, and

the intermittent pinning control technique is applied, which

overcomes the drawbacks mentioned above. The main

contribution is twofold. On the one hand, the network with

heterogeneous delays is represented as one with multi-

links, and an intermittent pinning control technique is used

to achieve synchronization. On the other hand, the average

of the smallest eigenvalue of an augmented matrix relating

to the network topology is revealed to be crucial for

reaching synchronization, which removes the conventional

restrictions in existing works on intermittent pinning con-

trol, providing good generality and tractability.

The remainder of the work is structured as follows.

Section 2 formulates the problem to be studied and intro-

duces some useful definitions, assumptions and lemmas.

Section 3 presents the main theorem to ensure the syn-

chronization of a dynamical network with multi-links

under intermittent pinning control and investigates some

situations with specified intermittent pinning strategies.

Section 4 gives some numerical examples to verify the

validity of the theoretical results. Finally, Sect. 5 concludes

the whole work.

2 Problem formulation

Consider a dynamical network composed of N nodes, and

the interactions among these nodes are involved with

multiple discrete delays. The objective herein is to guar-

antee all nodes to reach uniform dynamics by using certain

well-designed intermittent pinning control strategies.

For the ease of illustration, a multiplex network with

N nodes and m layers of couplings is introduced, where

N[ 1;m� 1. Given a set of nodes V ¼ fv1; v2; . . .; vNg, let
Gð‘Þ ¼ fV; Eð‘Þ;Að‘Þg be a weighted topology for the ‘th

layer (‘ ¼ 1; 2; . . .;m), Eð‘Þ ¼ fe‘ijg � V � V defines the

coupling between the nodes within the ‘th layer, and a

weighted matrix Að‘Þ ¼ ðað‘Þij ÞN�N characterizes the cou-

pling structure. In specific, an edge e
ð‘Þ
ij characterizes

whether node vi and vj can influence each other, and e
ð‘Þ
ij 2

E‘ if only if a
ð‘Þ
ij ¼ a

ð‘Þ
ji [ 0, otherwise a

ð‘Þ
ij ¼ 0. For sim-

plicity, it is assumed that there is no self-loop in each layer,

i.e., a
ð‘Þ
ii ¼ 0.

Furthermore, let d
ð‘Þ
i ¼

PN
j¼1 a

ð‘Þ
ij be the degree of node i

in ‘th layer, and Dð‘Þ ¼ diagðdð‘Þ1 ; d
ð‘Þ
2 ; . . .; d

ð‘Þ
N Þ be the

degree matrix. The Laplacian matrix Lð‘Þ ¼ ðLð‘Þij Þ associ-

ated with ‘th layer is defined by Lð‘Þ ¼ Dð‘Þ � Að‘Þ. For
better illustration, a three-layered network with different

interactions is given in Fig. 1.

With the forgoing statement, the dynamics of node i

with m� 1 heterogeneous coupling delays can be repre-

sented by a multiplex with m layers, yielding that

_xiðtÞ ¼ f ðt; xiðtÞÞ

�
Xm

‘¼1

c‘
XN

j¼1

L
ð‘Þ
ij xjðt � s‘Þ þ uiðtÞ;

ð1Þ

Fig. 1 Schematic representation of a network with three layers of

interaction
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where xiðtÞ 2 Rn is the state of node i and f ð�; �Þ : R�
Rn 7!Rn is a nonlinear function. The matrices Lð‘Þ ¼ ðLð‘Þij Þ
are as defined above, characterizing the topological struc-

ture in each single layer, and c‘ [ 0 denotes the coupling

strength in each layer. s‘ � 0; 1� ‘�m stand for the

heterogeneous delays involved in ‘ layer, and uiðtÞ is the

intermittent pinning controller to be designed. Without loss

of generality, it is assumed that the layer-1 is delay free,

i.e., s1 ¼ 0, and �s,max‘s‘ [ 0.

In order to facilitate the study, some useful lemmas and

assumptions are given.

Lemma 1 [11] For a delayed differential inequality

_xðtÞ� � aðtÞxðtÞ þ b sup
�s� s� 0

xðt þ sÞ; ð2Þ

where aðtÞ : ½0;þ1Þ7!R is a piecewise continuous boun-

ded function, b� 0 is certain constant and s[ 0 denotes

the time delay. Then, xðtÞ converges exponentially if there
exists certain constant T[ 0 such that

1

T

Z ðqþ1ÞT

qT

aðsÞ ds� bels; q ¼ 0; 1; 2; . . .; ð3Þ

where l ¼ supt� 0 jaðtÞ � �aj.

Proof Recalling Lemma 1 in [11] and letting the function

b(t) therein as bðtÞ � b[ 0, one may readily prove that

xðtÞ converges to zero exponentially under condition (3).

The detailed steps are thus omitted. h

Remark 1 The conventional Halanay’s inequality assumes

aðtÞ � a[ 0, where a[ b[ 0 is requisite to guarantee

exponential stability [8]. In contrast, Lemma 1 only

demands the average of aðtÞ[ b[ 0 over each interval of

length T to be positive and is thus more general.

Definition 1 The dynamical network with multi-links (1)

is said to achieve synchronization if

lim
t!þ1

kxiðtÞ � xjðtÞk ¼ 0; i; j ¼ 1; 2; . . .;N: ð4Þ

Assumption 1 [10] For the nonlinear function f ðt; �Þ, there
exists certain constant q[ 0 such that for any y1; y2 2 Rn

and t� 0; we have

ðy1 � y2ÞTðf ðt; y1Þ � f ðt; y2ÞÞ� qky1 � y2k2; ð5Þ

where ð�ÞT stands for the transpose of a vector.

Remark 2 Assumption 1 gives a basic requirement for the

dynamics of each individual node. By selecting certain

constant q[ 0, many nonlinear systems, such as the well-

known Lorenz chaotic system, Chua’s chaotic circuit, can

fulfill condition (5).

Assumption 2 The underlying topology for the delay-free

layer is connected, i.e., Lð1Þ is irreducible.

Let s(t) be a solution of an isolated agent, and it yields

that

_sðtÞ ¼ f ðt; sðtÞÞ; ð6Þ

which can be an equilibrium point, periodic orbit or chaotic

orbit.

By defining the synchronization error as

eiðtÞ ¼ xiðtÞ � sðtÞ, an intermittent pinning controller is

applied to the first c nodes, which is described by

uiðtÞ ¼
�kðtÞeiðtÞ; 1� i� c;

0; cþ 1� i�N;

�

ð7Þ

where kðtÞ� 0 is the time-varying pinning strength,

reflecting the intermittency of the control. In specific,

kðtÞ[ 0 indicates the control is switched on, otherwise, the

control is switched off.

The objective of this work is to establish sufficient

conditions to synchronize the system (1) with multi-links

by using the intermittent controller (7).

Remark 3 Different from most existing works on inter-

mittent control, our framework is based on a time-varying

pinning strength k(t), which reflects the intermittency of the

pinning control with kðtÞ ¼ 0 from time to time. As

demonstrated later, it is helpful to establish some general

synchronization criteria over any interval of certain length

instead of sticking to each control period.

Noting that the pinning controller (7) is only applied to

the first c nodes, the dynamics of the network (1) is thus

governed by

_eiðtÞ ¼ f ðt; xiðtÞÞ � f ðt; sðtÞÞ

�
Xm

‘¼1

c‘
XN

j¼1

L
ð‘Þ
ij ejðt � s‘Þ � kðtÞeiðtÞ; 1� i� c;

_eiðtÞ ¼ f ðt; xiðtÞÞ � f ðt; sðtÞÞ

�
Xm

‘¼1

c‘
XN

j¼1

L
ð‘Þ
ij ejðt � s‘Þ; cþ 1� i�N:

ð8Þ

One may observe that the stability of (8) guarantees the

synchronization of dynamical network (1). In order to

facilitate the later analysis, one may define

bLðtÞ ¼ c1L
ð1Þ þ kðtÞF ð9Þ

with F ¼ diagð1; 1; . . .; 1
zfflfflfflfflfflffl}|fflfflfflfflfflffl{

c

; 0; . . .; 0Þ.
Recalling Assumption 2 and denoting the smallest

eigenvalue of bLðtÞ as kðtÞ, the below lemma can be readily

obtained from [12].
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Lemma 2 When Lð1Þ is symmetric and irreducible, bLðtÞ is
a nonsingular M-matrix for kðtÞ[ 0 and c� 1. Further-

more, kðtÞ ¼ 0 if and only if kðtÞ ¼ 0.

Assumption 3 There exists a constant T[ 0 such that the

average of kðtÞ over any interval with length T,

½qT; ðqþ 1ÞTÞ, satisfies

1

T

Z ðqþ1ÞT

qT

kðsÞ ds� �k[ 0; q ¼ 0; 1; 2; . . .: ð10Þ

3 Main results and applications

In this section, we first present a sufficient condition for

reaching synchronization of network (1) under intermittent

pinning control and then deduce some corollaries for some

specified intermittent pinning strategies.

3.1 Main theorem

Theorem 1 Given Assumptions 1, 2 and 3, the network (1)

with controller (7) is guaranteed to achieve synchroniza-

tion if

�k� q[ el�s
Xm

‘¼2

c‘kLð‘Þk; ð11Þ

where l ¼ supt� 0 j�k� kðtÞj.

Proof First, consider a nonnegative quadratic function of

time t,

VðtÞ ¼ 1

2

XN

i¼1

eTi ðtÞeiðtÞ: ð12Þ

Its derivative along the trajectory of (8) gives that

_VðtÞ ¼
XN

i¼1

eTi ðtÞ
�
f ðt; xiðtÞÞ � f ðt; sðtÞÞ

�
Xm

‘¼1

c‘
XN

j¼1

L
ð‘Þ
ij ejðt � s‘Þ � kðtÞeiðtÞ

�

� eðtÞT ½ðqIN � bLðtÞÞ 	 In
eðtÞ

þ
Xm

‘¼2

c‘eðtÞTLð‘Þeðt � s‘Þ

� ðq� kðtÞÞeTðtÞeðtÞ þ
Xm

‘¼ 2

c‘kLð‘ÞkkeðtÞkkeðt � s‘Þk

¼ 2ðq� kðtÞÞVðtÞ

þ
Xm

‘¼2

c‘keðtÞkkLð‘Þk sup
��s� s� 0

keðt þ sÞk;

where eðtÞ ¼ ðeT1 ðtÞ; eT2 ðtÞ; . . .; eTNðtÞÞ
T
.

In order to establish the synchronization condition, take

a Lyapunov function WðtÞ ¼
ffiffiffiffiffiffiffiffiffi
VðtÞ

p
. It follows that

_WðtÞ ¼ 1
2WðtÞ

_VðtÞ. Noting that keðtÞk ¼
ffiffiffi
2

p
WðtÞ and

keðt þ sÞk ¼
ffiffiffi
2

p
Wðt þ sÞ, one may deduce that

_WðtÞ ¼ðq� kðtÞÞWðtÞ þ
Xm

‘¼2

c‘kLð‘Þk sup
��s� s� 0

Wðt þ sÞ

� � aðtÞWðtÞ þ b sup
��s� s� 0

Wðt þ �sÞ;

ð13Þ

where aðtÞ ¼ kðtÞ � q; b �
Pm

‘¼2 c‘kLð‘Þk.
By Lemma 1, it follows that W(t) converges exponen-

tially if (11) is satisfied. Therefore, the dynamical network

(1) with pinning controller (7) is ensured to reach

synchronization with an exponential rate. h

Remark 4 It is of interest to observe that Theorem 1 is

applicable to a general pinning strength k(t). The time

average of smallest eigenvalue of bLðtÞ over a sequence of

intervals of length T plays a substantial role in reaching

synchronization, which reveals how the network structure,

node dynamics and time delay existent in each layer affect

the synchronization. Many existing works on intermittent

control focused on each single control period, and a lower

bounded control duration is often imposed on each control

period [3, 4, 15, 16, 18–20, 29]. In contrast, our theorem

relies on the averaged eigenvalue of bLðtÞ over intervals of
certain length instead of each single control period, pro-

viding more flexibility in applications.

Remark 5 When the pinning strength k(t) is a periodic

function with period T[ 0, Theorem 1 is still valid with

�k ¼ 1
T

R tþT

t
kðsÞds.

Remark 6 From (11), a larger value �k is helpful to enhance
the synchronization rate. One may tune the value of �k by

increasing the pinning strength and the number of pinned

nodes. Meanwhile, if the number of the pinned nodes is

fixed, one may also reach better synchronizability by

selecting the pinned nodes under the procedure given in

[26].

3.2 Application to synchronization
under specified intermittent pinning control

In this section, the preceding theorem is applied to syn-

chronization of network (1) with heterogeneous delays

under some specified intermittent pinning control strate-

gies. As a consequence, some simple synchronization cri-

teria are deduced.
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3.2.1 Periodic intermittent pinning strategy

In this case, the pinning controller is assumed to switch on

and off p 2 Nþ times in each control period of length

T[ 0 and the pinning strength may be different within

each subinterval. Such an intermittent pinning strategy can

be depicted by a time-varying pinning strength function.

For simplicity, assume that the control period of length T is

divided into p subintervals. That is, for any

t 2 ½qT; ðqþ 1ÞTÞ; q ¼ 0; 1; 2; . . ., the pinning strength is

governed by

kðtÞ ¼

k1; t 2 ½qT; qTþ �1TÞ;
k2; t 2 ½qTþ T ; qTþ ð1þ �2ÞTÞ;

..

.

kp; t 2 ½qTþ ðp� 1ÞT; qTþ ðp� 1þ �pÞTÞ;
0; otherwise;

8
>>>>>>><

>>>>>>>:

ð14Þ

where kr [ 0 defines the pinning strengths, the parameters

�r 2 ð0; 1Þ; r ¼ 1; 2; . . .; p characterize the work intervals,

T ¼ pT , p� 1 is an integer and T [ 0 is a constant.

A direct utilization of Theorem 1 gives the following

Corollary.

Corollary 1 For the network (1) with heterogeneous

delays, the intermittent pinning controller (7) with (14) can

guarantee synchronization if (11) is fulfilled, where

�k ¼ 1

p

Xp

r¼1

kr�r ð15Þ

with kr ¼ kmin c1L
ð1Þ þ krF

� �
and l ¼ max1� r� pfkr � �k;

�kg

Remark 7 As asserted in Assumption 2, �k is the average of
kðtÞ over any interval of length T, which provides more

tractability in designing intermittent strategies than the

existing results [2]. Furthermore, our control (7) is also

very flexible since the pinning strength can be adjusted

within each control period.

3.2.2 Aperiodic intermittent pinning strategy

The pinning strength in (7) can also follow a semi-periodic

on-off switch, which resembles the schemes studied in

[23], where synchronization of a single-layered network

was investigated. Consider an aperiodic pinning strength

function given as follows

kðtÞ ¼
k; t 2 ½rT ; rT þ drTÞ; r ¼ 0; 1; 2; . . .;

0; otherwise;

�

ð16Þ

where k[ 0 is the pinning strength and dr is taken from a

finite set M ¼ f0\1i\1; i ¼ 1; 2; . . .;Mg.
According to Theorem 1, the below corollary can be

deduced.

Corollary 2 For the network (1) with heterogeneous

delays, the intermittent pinning controller (7) with (16) can

guarantee synchronization if there exists an integer S[ 0

such that (11) is fulfilled, where

�k ¼ k
S
min
q

Xðqþ1ÞS�1

r¼qS

dr; ð17Þ

where k ¼ kmin c1L
ð1Þ þ kF

� �
and l is as defined in

Theorem 1.

Remark 8 For a general pinning strength k(t), the com-

putation of l in Theorem 1 may be not easy. By admitting

certain conservativeness, one may replace l by using

maxt� 0 jkðtÞj for simplicity.

4 Numerical simulations

In this section, some numerical examples are given to

demonstrate the validity of our theorems and corollaries.

Consider a dynamical network composed of six nodes,

and each isolated node is governed by

_xi1ðtÞ ¼ aðxi2ðtÞ � xi1ðtÞ � /ðxi1ðtÞÞÞ;
_xi2ðtÞ ¼ xi1ðtÞ � xi2ðtÞ þ xi3ðtÞ;
_xi3ðtÞ ¼ �bxi2ðtÞ;

8
><

>:
ð18Þ

where i ¼ 1; 2; . . .; 6. The function /ðxi1Þ ¼ m1xi1þ
m0�m1

2
ðjxi1 þ 1j � jxi1 � 1jÞ, r1;r2; a and b are constants.

When a ¼ 4:3; b ¼ 5:1, m0 ¼ �1:34;m1 ¼ �0:73, each

isolated agent exhibits chaotic dynamics. Figure 2 shows

its chaotic attractor under the above parameters. Based on

the technique given in [26], it is readily to obtain that

Assumption 1 is fulfilled with q ¼ 3:54.

A dynamical network with heterogeneous delays is

taken into account, which results in a multiplex network of

three layers. In specific, the layer-1 is delay-free and the

layer-2 and layer-3 are with different constant delays,

rendering three Laplacian matrices as listed below
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Lð1Þ ¼

3 �1 �1 �1 0 0

�1 3 �1 0 0 �1

�1 �1 3 �1 0 0

�1 0 �1 4 �1 �1

0 0 0 �1 1 0

0 �1 0 �1 0 2

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

;

Lð2Þ ¼

2 0 0 �1 0 �1

0 0 0 0 0 0

0 0 0 0 0 0

�1 0 0 2 �1 0

0 0 0 �1 1 0

�1 0 0 0 0 1

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

;

and

Lð3Þ ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 �1

0 0 0 0 0 0

0 0 0 �1 0 1

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

;

respectively.

Further, assume that the coupling strength of each layer

is c1 ¼ 25, c2 ¼ 0:3 and c3 ¼ 0:2, respectively. The

delayed network model is solved by using the dde23

package in MATLAB software, and the synchronization

error is defined as EðtÞ ¼ k
P6

j¼1ðxjðtÞ � sðtÞÞk with

s(t) being the solution of _sðtÞ ¼ f ðt; sðtÞÞ.

Example 1 Synchronization under periodic intermittent

pinning control.

Consider a periodically intermittent pinning controller

uiðtÞ ¼ �kðtÞeiðtÞ, i ¼ 1; 2; . . .; 6. It is assumed that the

first three nodes are pinned, i.e., the matrix

F ¼ diagð1; 1; 1; 0; 0; 0Þ, and the pinning strength k(t) is

governed by a periodic function

kðtÞ ¼

20; t 2 ½qT; qTþ 0:2TÞ;
30; t 2 ½qTþ 0:2T; qTþ 0:9TÞ;

q ¼ 0; 1; 2; . . .;

0; otherwise:

8
>>><

>>>:

ð19Þ

After some simple algebraic calculations, it follows that
�k ¼ 6:16: By using Theorem 1, one may obtain that the

largest admissible delay �s ¼ 0:06. In the simulation,

T ¼ 0:4, and the heterogeneous delays are configured as

s2 ¼ 0:05; s3 ¼ 0:03. Figure 3 displays the time evolution

of the states of (1) with pinning strength (19), while Fig. 4

shows the time evolution of the pinning strength function

k(t) and the synchronization error E(t), respectively.

It is of interest that the pinned nodes are not necessarily

to be first three nodes. By following the methodology

proposed in [26], one may select a different set of pinned

nodes such that a larger value of �k is reached. For example,

when F ¼ diagð1; 0; 0; 0; 1; 1Þ, it yields that �k ¼ 7:78,

which leads to a larger admissible delay bound as �s\0:11.

Example 2 Synchronization under aperiodic intermittent

pinning control.

In this example, an aperiodic intermittent pinning

control is applied. Similarly, the first three nodes are

pinned, and the pinning strength follows

kðtÞ ¼

k; t 2 ½3rT ; 3rT þ 0:7TÞ;
k; t 2 ½ð3r þ 2ÞT ; ð3r þ 2ÞT þ 0:9TÞ;
k; t 2 ½ð3r þ 3ÞT ; ð3r þ 3ÞT þ drTÞ;

r ¼ 0; 1; 2; . . .;

0; otherwise:

8
>>>>>><

>>>>>>:

ð20Þ
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with dr being randomly taken from (0, 0.8).

By selecting k ¼ 40; T ¼ 0:1 and following Corollary 2,

one obtains that �k[ 5:719, and the largest admissible

delay can be estimated as s\0:019 by simply taking

l ¼ kminðcLð1Þ þ kFÞ. In the simulation, the delays are

configured as s2 ¼ 0:015 and s3 ¼ 0:01.

Similarly, Fig. 5 displays the time evolution of the states

of (1) with pinning strength (20). Accordingly, Fig. 6

shows the time evolution of the pinning strength function

k(t) and the synchronization error E(t) in Example 2.

5 Conclusion

This work investigates the synchronization problem of a

group of nodes with nonlinear dynamics, and the couplings

between these nodes are of heterogeneous delays. In order

to reduce the control cost, a pinning controller with inter-

mittency is applied. Then, the synchronization problem is

transformed into the stability of delay differential system

with time-varying parameters. Some sufficient synchro-

nization criteria are consequently established on the basis

of a generalized Halanay-type inequality. It is worth to

point out that our criteria are in terms of the average of the

smallest eigenvalue of certain matrix over intervals of

certain length, revealing the interplay between the syn-

chronization, node dynamics and the topology. The largest

admissible delay can also be estimated. Meanwhile, as an

application, some corollaries for reaching synchronization

under some specific intermittent strategies are deduced.

Compared with existing works on intermittent control, our

results remove the conventional positive lower bound of

the control duration within each control period, demon-

strating good generality and tractability. Numerical simu-

lations are also given to demonstrate the theoretical results.
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