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Abstract

Wireless communications play an important role in the mobile Internet of Things (IoT). For practical mobile communication
systems, N-Nakagami fading channels are a better characterization than N-Rayleigh and 2-Rayleigh fading channels. The average
bit error probability (ABEP) is an important factor in the performance evaluation of mobile IoT systems. In this paper, cooperative
communications is used to enhance the ABEP performance of mobile IoT systems using selection combining. To compute the
ABEP, the signal-to-noise ratios (SNRs) of the direct link and end-to-end link are considered. The probability density function
(PDF) of these SNRs is derived, and this is used to derive the cumulative distribution function, which is used to derive closed-form
ABEP expressions. The theoretical results are confirmed by Monte-Carlo simulation. The impact of fading and other parameters
on the ABEP performance is examined. These results can be used to evaluate the performance of complex environments such as
mobile IoT and other communication systems. To support active complex event processing in mobile [oT, it is important to predict
the ABEP performance. Thus, a back-propagation (BP) neural network-based ABEP performance prediction algorithm is
proposed. We use the theoretical results to generate training data. We test the extreme learning machine (ELM), linear regression
(LR), support vector machine (SVM), and BP neural network methods. Compared to LR, SVM, and ELM methods, the simulation
results verify that our method can consistently achieve higher ABEP performance prediction results.

Keywords Mobile Internet of Things - Mobile cooperative communication - Average bit error probability -
Performance prediction - BP neural network

1 Introduction

The rapid development of the mobile Internet of Things
(IoT) has led to increased interest in mobile communica-
tion systems [1-5]. A novel mobile front haul architecture
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was proposed in [6] for passive optical mobile networks. In
[7], a two-dimensional anti-jamming mobile communica-
tion scheme was proposed which employs reinforcement
learning techniques.

As a promising technology for mobile IoT, cooperative
diversity has gain popularity in recent years [8, 9]. [10]
investigated the secrecy outage performance of a multiple-
relay-assisted non-orthogonal multiple access (NOMA)
network over Nakagami-m fading channels. Considering
MIMO-NOMA systems, [11] proposed a max—min trans-
mit antenna selection (TAS) strategy to improve the
secrecy performance. Cooperative two-way cognitive
relaying was used in [12] to reduce the influence of a
passive eavesdropper. Full-duplex cooperative communi-
cations were considered to provide secure communications
[13]. Cooperative device-to-device communications were
proposed in [14] to reduce cellular resource consumption.

To date, the research on cooperative communications
has been limited to Rayleigh, Rician, and Generalized-
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K fading channels. However, the fading in mobile coop-
erative communications systems is more complex and so
cannot be accurately characterized by these channels
[15-18]. In [19, 20], the secrecy performance of mobile
cooperative networks was analyzed over 2-Rayleigh fading
channels. Mobile cooperative systems over N-Rayleigh
fading channels were examined in [21]. Vehicle-to-vehicle
(V2V) communications over 2-Rayleigh fading channels
was investigated in [22]. In [23], the secrecy outage
probability (SOP) performance of wireless mobile sensor
communication networks over 2-Nakagami fading chan-
nels was investigated.

In [24-26], N-Nakagami fading was considered to pro-
vide a realistic mobile channel model. N-Nakagami fading
channels contain N-Rayleigh, 2-Rayleigh, Nakagami-m,
and their mixtures as special cases. In particular, N-Nak-
agami fading is better suited to practical mobile commu-
nication environments than N-Rayleigh and 2-Rayleigh
fading channels. Thus, N-Nakagami fading channels are
considered here for the evaluation of mobile communica-
tion systems.

Due to the complexity of mobile IoT over N-Nakagami
fading channels, secure communications is complicated.
To ensure secure communications, performance changes in
mobile IoT must be predicted accurately and timely. The
average bit error probability (ABEP) is an important
measure of mobile communication system performance,
and it is important to predict the ABEP performance of
mobile IoT. Because of good nonlinear prediction ability,
back-propagation (BP) neural network models are very
popular in engineering applications [27-29]. For complex
environments such as mobile IoT, a BP neural network
model is very suitable for performance prediction. To
predict telecommunication customer churn, [30] used a
particle classification method to optimize the BP network.
Using BP neural network, [31] proposed a blind signal
detection method. Weight splitting was used to improve the
filtering performance of BP neural networks in [32].

However, with incremental amplify-and-forward (IAF)
relaying, the ABEP performance of mobile cooperative
communication systems has not previously been investi-
gated. Further, ABEP performance prediction for mobile
communication systems has not been considered. The main
contributions of this paper are as follows.

1. The direct link signal-to-noise ratio (SNR) and end-to-
end link SNR are derived. The probability density
function (PDF) of these SNRs is derived, and the PDF
is used to derive cumulative distribution function
(CDF) expressions.

2. The PDF and CDF expressions are used to derive exact
closed-form ABEP expressions. To verify the analysis,
Monte-Carlo simulation results are compared with the
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theoretical ABEP. The impact of fading and other
parameters on the ABEP is examined.

3. A BP neural network-based ABEP performance pre-

diction algorithm is proposed. The ABEP theoretical
results are used to generate training data. We test
the extreme learning machine (ELM), linear regression
(LR), support vector machines (SVM), and BP neural
network methods. Compared to LR, SVM, and ELM
methods, the experimental results verify that our
method can consistently achieve higher ABEP perfor-
mance prediction results.

This remainder of this paper is organized as follows.
Section 2 presents the system model. The PDF and CDF
for direct link SNR and end-to-end link SNR are obtained
in Sects. 3 and 4, respectively. The ABEP is derived in
Sect. 5. Based on a BP neural network, we propose a
ABEP performance prediction algorithm in Sect. 6. The
ABEP performance is evaluated and compared with the
simulation results in Sect. 7 and Sect. 8 gives some con-
cluding remarks.

2 System model

Figure 1 presents the mobile cooperative communication
system model. This model includes a mobile source (MS)
node and a mobile relay (MR) node that communicates
with the mobile destination (MD) node. Gsp =1 is the
relative gain of the MS — MD link, Ggg is the relative
gain of the MS — MR link, and Gyp is the relative gain of
the MR — MD link. The channel coefficient h = hy,
ge{SR,RD,SD}, follows an N-Nakagami distribution [24].

The total energy in the system is denoted by E. In the
first time slot, MS transmits a signal x, which has mean 0
and variance 1. MR and MD receive the signals

rsp = VKEhspx + nsp, (1)
'SR = / GSRKEhSR)C + NsR, (2)

where ngp and ngg have mean 0 and variance Ny/2 and K is
the power allocation parameter, 0 < K < 1.

The SNR of the MS — MD link is ysp. Whether MR
forwards the signal to MD or not depends on the com-
parison between ysp and a threshold Rt. If ysp > Rt, the
MR will not forward the signal to MD. In this case, the
SNR at MD is

\

Fig. 1 The system model
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Yo = Vsp> (3) 3 PDF and CDF of the direct link SNR
where The CDF of the direct link SNR ygp is
K|hsp|’E _ N
Isp = % = K|hsp|*7. CON (r) = 1 GVl IR ) . (16)
/sp vazl F(m,) N+ VS P Qi my,...,my,
If ysp < Rt, the MR uses AF relaying. Then MD receives
the signal where
rRp = V cEhsphrpX + nrp (5) Tsp = K7, (17)
where ngp has mean 0 and variance and Ny/2 and c is given and the corresponding PDF is
by [33] | N
for) = —=——Gon | =T fmom |- (18)
K(1 — K)GsgGrpE/No rITi, T(mi) 7 | Vsp oy l™

B 1+ KGSR‘hSR|2E/N0 + (1 - K)GRD|hRD‘2E/N0 '

(6)
The received SNR at MD is then
7sc = max(Ysp, Ysrp); (7)

where the end-to-end link SNR is ysgrp, which is given by

YSRVRD
\ — , 8
YSRD 1+ 7sg + 70 (8)
GsrK|hsg|*E _
VSR = % = GsrK |hs|*7, )
1 — K)Gro|hro|’E -
YRD = ( );D| ko =(1- K)GRD|hRD|2V' (10)
0
For an N-Nakagami distribution, % is given by [24]
N
~ [ (11)
where a; is a Nakagami random variable with PDF
A . m
fla) = er(m)a exp( af ) (12)
The PDF of h can be expressed as
2 2
f(h) = VAN Gyy |h H |m1,..., . (13)
=1
Define y = |th2 which has CDF and PDF
1 N, 1 m |y
F(y)ziGlN 1|y O |mi...my0]" (14)
[ TOmy) 0 7 @A
0)= S ( ST T o yH i, ] (15)
=1

4 PDF and CDF of the end-to-end link SNR

From (8), the exact PDF and CDF of ysrp are intractable to
obtain. Thus, the method in [18] is employed to approxi-
mate ysrp as

N &
From [34], we obtain that

Ve <Vup = Min(Ysg, 7rp)> (20)
so, the CDF is lower bounded as

Figo (r) > Fy, (). (21)

The CDF of y,;, is

1 1
F},“p(r) =1- (1 _NimGll\/;NJﬁl

i1 I'(my) VSR =y 4
1 N
% N1 r Hmnl
N 1,N+1 O |mi..my,0
=1 F(mll) YRD ;= Qy

Tgeeey my,0
=1
1 N,1 r My |y

+—=———GC M

Hi\tlzl F(m,,) 1.N+1 V RD i IQ my,...,my,0

1 GVl ro m|,

_ N I,N+1 V:H_, i 0

[T, I(m) H I'(my) SR 7=

(22)

and the corresponding PDF is
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f ( ) 1 N0 L ﬁ _ f:VSD (r"ySD Z Rt)
Tup "H,,I F(m,) o,N m[:l Q, |msmy 0’ r <Rt
+ 1 GN,O r ﬂmtt — 1 N0 r m;|_
ON |5— O My 0.
r T I(my) VRD o5 @™ — rILL, I'(m) i el O ™ , r>Rt
1
— N 1— 1 GN’I Rt m; 1
N -
rle I'(m) "];[l I'(my) I—E\/:l r(m;) A QI my 0
0 <Rt
GNO Hmt GN] r Hm,,l ) r~
o,N TSR 1. Qt my,...,my 1LN+1 )} RD 1 Qtt my,...,nmy,0 1 N.O r m;
~Yon [=— 110 |mi
N N = rov VSD,'lgl b , >Rt
+G1 N+l i 1 0 Gg],f,) ’ Hm,, N
.Q ,,,,, my, RD Qrt my N1 Rt 1
=l [II(m) - Gy N+1 Hﬁ 1y eemy,0
(23) i=1 Vsp iy i

5 ABEP performance

The ABEP can be expressed as [35]

P(e) = Pr(ygp <Rt) X Pgiy(e) + Pr(ysp > Rt) X Pyirect(€),
(24)

where the error probability of MD is Pg;,(e), when MR

forwards the signal to MD and Pgjec(€) is the corre-

sponding error probability given that the MR does not
forward the signal to MD. We have

Pr(ysp <Rt) = Fy,, (R1)
1 N1 | Rt fpm 1
= G ] 0. m \m )
[T, I (my) b VSD,-IJ j 10
(25)
Pr(ysp > Rt) = 1 — Pr(ysp <Rt)
1 N,1 Rt mi|y
=1 G ’ ,
Hi\/ X F(m) I.N+1 VSDi Q|5 mN,0:|
(26)
and
Pyireat(€) = / Pavec (€], (Flysp > RO, (27)
0
where
Pairect(e]r) = a x erfc(vV/br). (28)

The type of modulation decides the constants a and b, e.g.,
a=0.5and b =1 for BPSK, and a = 0.5 and b = 0.5 for
QPSK. Further

@ Springer

Combining (28) and (29), we obtain

a

Pdirecl(e) = N

N N, 1 m;

[T F(mi) = Gy [,{;tj 1:[ AL 0}
o0 1 r m;

X erfe(Vbr) =Gy v |—=TT=m .. |dr

/Rt roON Ysp ,11 Q|7

B a

N m;

[T~ I(mi) — Gl N+] [,SE 1:[ i 11y 0}
[o¢]
Ve NO| T m;|_
/ erfc( ) GON 5 My mN:| dr—
0 7sp
Rt Nol T m;
erfc(Vbr) =Gy |— 1| | =l .. ldr
A o,N YD g Qi yeeey N
a
= ~ Vi — V3,

N m;

[T I(mi) — Gl N+l [=t 1:[1 o rlnl ..... mNAo}
(30)
where

1 N,0
0,%) GO,N

Using the results in [36], we obtain

1 N2 1 mi
Vi=———— Gy | — | | 5.,
VAT, Tm) 2 [;%D H Q

Further, V, is given by
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Rt 1 ’ . We have
V) :/ erfc(\/ﬁ)—Gf)v,g — 5’ _1,4--‘mN] dr 00
" 7sp iy S Pav(e) =a / erfc(\/b— ) . (F[7sp <RY)dr, (40)
1 L 20( 1 \eNo| T Trmil- ’
_\/_E/o r Gl.Z(b ‘ol)Gozv 75 L gl dr where
(33)  frse(rlysp<Rt) =
1
A closed-form solution to (33) is difficult to obtain. Thus, F RO ( 250 (M) F, (1) + FVSD(r)ﬁ,up(r)) ,r<Rt
using Meijer’s G-function [37] sp :
ﬁ,up(r), r> Rt
Gy [Z blt;t.,zj (41)
= zm: L2 T(bi = bu) [Timy I'(1 + by — i) & Combining (32) and (33) gives
h=1 H[i):n+1 F(al bh) iq*m+1 F(l + bh - bl) 1
X pFg1(L4+by —ar, ..., 1 +by —ay; 1 Pygiv(e) ZG[F ) (V3+V4)+V5} (42)
7
by — b, L+ by — by (—1)P"712), >
(34) where
Rt
qu(Otl,OCz, “paﬁlvﬁb LS} a ) V3 = / erfc(\/—) )sp( ) ,up< )dl"
S w T
=0 (Bk(Ba) -+ (By)i k! ZNi/ erfc(\/“) oo (F ) 1N+1
. Hr:l F(mi) 0
@) =] x+1),(x) =1, (36) x | ﬁ,ln oo |47
=0 VSRI Q|
whichgives 1 R
Tt N / erfc ( \/l;)f?’SD (I") Gjlvl\lH- 1
20 1 1 1= 1 T'(ma) Jo
G3[orfh] = ra/2nF (051,55 -br .
X 4 M1 dr
( 1/2) 13 V— Q my,...00,nmy,0
=~ T (br) F 1:=br ) = | /RD =1 =1t
+r(1/2)()“22” r)=vE | &
1 2 00 b k+% - CI‘fC(\/b_}") VSD(r)GllY}\ll+l
I'(- / Z (b)) 1 N N 0 ’
3/2 k' [T I'(me) I I'(mer)
k=0 =1
(37) H
so that TSR 1 e
N
Rt N N,1 r Myt |y
—1,~N,0 r mp,__ G dr
Vs :/O r IGO,N VSDI_AI[Q|m1,...,mN‘| dr X UiNT %}_[ Q,,1m nlNO]
4 12§ (/2D = VA, + VA, — VAs. -
= (32K
R No| T -
x/ rk’iGO‘N — |m1,...,mN dr (38)
0 " Vsp iz Q;
N1 | R pymip
Gl N+1 / _Q my,...,my,0
mi l_k
+A ZBGI N+1 - 5[ my,...,my, k—‘|
r(-1/2 1/2), (=1 ()"
A TE12) B:</>k< Fiort )
m (3/2), (k")
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\A :/0 lerfc(\/_) rsn( )f}up( )

1 Rt 1
= erfc(vVbr)F,. (r)— G\
H%m>/ (VENF, (1) GO

[l

r My | _
>< _
RD ;] ‘Q”

1 Rt 1

— 5 erfc(m)F},SD (r)— GS’}S
r o0
Hil I'(m) H I'(my) 0
. mtt
|:))SRH N GI,N-H Qtt my,...,my,0 dr
1 Rt 1

- erfc(\/l;)FySD(r)fG[K;\l,H
I, rm ’
t=1

r N mt
X |=
VSR 1=1 Q

= VB; + VB; — VB; — VB,.

1
my...my .0

N
r m,
GNO ] [ tt|—
0N|:V Q1"

RD y=1

(44)
Vs = /OOO erfc(\/ﬁ)fyup(r)dr — /0 erfc(\/l;)fyup (r)dr
= VC; — VC,.
(45)

In (43)-(45), Meijer’s G-function gives
N
r m;

1
my,...,my,0
t

Tsr ot
N
_XN:H] lr
1—|—mh

h=1

N,1
GI N+1

X 1FN<mh;l—|—mh—m1,...7

Z c i D(r)m.
h= k=0

(46)
T T (my = my)T(my)
€= r'(1+my) ’ .
«ﬂN%AU@ ()
b=a1m, — ) (Lt my —ma)y - (1+ mp) k!
(47)
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and for V3, V,, and Vs

1 /R’ L 20 1 _no
- [ otlio
VIS Tn) TIL Tm) o 12 L0 ow
N
r N mi|_ N1 r m,
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Equations (24)-(63) are used to obtain the analytical
results.

Fig. 2 The BP neural network
structure

Input Layer

6 ABEP performance prediction based
on a BP neural network

6.1 Selection of input and output

The ABEP performance is affected significantly by m, N, V,
and K. We therefore use 11 indicators as the input X, and
the ABEP performance is output Y. The 11 indicators are
mgR, Mgp, Msp, Gsr, Grp> Nsrs Nrp> Nsp, K, Ry, 7 s0 X is

X = (x1,%2,. .., x11). (64)

6.2 BP neural network structure

The BP neural network is shown in Fig. 2. For the input
layer, there are 11 neurons, for the hidden layer, there are
q neurons and for the output layer, there is 1 neuron. For
the input and hidden layers, w; is the weight coefficient and
b; is the bias value. For the hidden and output layers, v; is
the weight coefficient and 6 is the bias value. The network
steps are as follows.

(1) For the hidden layer, the input is

11
Sj:ZWUX[-l-bj, j:1,2,...,q, (65)
i=1

and the corresponding output is
¢ =f(s), (66)

where f(x) is the activation function.
For the output layer, the input is

q
p= Z vicj + 0. (67)
=1

Hidden Layer

Output Layer
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and the corresponding output is
o =f(p). (68)

P is the number of training data. For rth output neuron, o' is
the output for the /th training data, and the error is given by

EE' = (d'—o')’, (69)

where d' is the desired output.The overall output error E of
P training data is

EE = IZP; (d — o). (70)

(2) For the different layers, the weights and biases are as
follows.

The error of the output layer is

0= (d—-o0)(l-o), (71)
and the error of the hidden layer is

o; = ovi(1 —y). (72)

The weights and thresholds are

vj = vj + 19y, (73)
0 =0+ no, (74)
Wwij = Wy + aox;, (75)
bj = b; + aaj, (76)

where 7 is the weight adjustment parameter, 0 < 5
and a is the learning coefficient, 0 < a < 1.

A

15

6.3 ABEP performance prediction based on a BP
neural network

Figure 3 shows the flowchart of the OP performance pre-
diction algorithm. The algorithm steps are as follows.

(1) Data collection and preparation. We use the derived
closed-form expressions to generate 1000 groups of
data. 950 groups are used for training, and 50 groups
are used for testing. The groups of data are
normalized.

(2) Network initialization. To initialize the biases and
weights, small random numbers are used. We also set
the minimum error, maximum number of iterations,
and the learning rate.

(3) Network training. We provide input X and output
Y which are randomly selected. During training, the
network output of each layer and the training
error are calculated, and the biases and weights of
the layers are adjusted. When the learning converges

@ Springer

| Initialize the network structure |
JI€

| Sample input and expected output |

| Calculate the input and output of each layer |

| Calculate the learning error of each layer |

I
‘ Backpropagate ,and adjust weight coeffident |
and biases

| Calculate the average error |

Whether it meets the
accuracy
Yes

!
I Get the best MSE |

Fig. 3 The flowchart of the OP performance prediction algorithm

or the error is less than the minimum, the training
stops.

(4) When model training is completed, the network
structure is saved. Then, the testing data are used
to detect whether it meets the accuracy requirements.

(5) If the accuracy requirements are met, the network
structure is used for ABEP performance predic-
tion and the optimal weights and biases are obtained.

6.4 Metric

We use the mean squared error (MSE) to evaluate the
performance. A higher prediction accuracy means a smaller
MSE. The MSE is given by
PP )
Z (dl _ 01)
MSE=2L (77)
PP

where PP is the number of testing data.

7 Performance results

In this section, QPSK modulation is considered with
E=1and u= Gsr/Grp. Figure 4 presents the ABEP
performance comparison with the parameters given
in Table 1. The ABEP performance of IAF is the best and
the performance of direct communication is the worst. For
SNR = 16 dB, the ABEP is 2 x 107° with IAF,
1.1 x 1072 with end-to-end communication, and 2 X 1072
with direct communication.
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—B—IAF
—— Only End-to-End Communication
—¥— Only Direct Communication

ABEP

SNR(dB)

Fig. 4 The ABEP performance comparison

Table 1 The parameters for

ABEP performance comparison g :B
Rt 8 dB
msp 2
mMsr 2
MRD 2
Nsp 2
Nsr 2
Nrp 2

Figure 5 presents the ABEP performance for 4 = 0 dB,
K =0.5, and Rt = 4 dB with the combinations of N and
m given in Table 2. These results show that the theoretical
and simulation results are similar, which verifies the the-
oretical results. Further, the ABEP improves as the SNR
increases.
The effect of Rt on the ABEP performance is presented
in Fig. 6 for u=0dB, K=0.5, N=2, m=2, and Rt =
—4 dB, 0dB, and 4 dB. This shows that the ABEP
improves as Rt is increased. This is because the probability
that the MR cooperates increases with Rt. When SNR =
14 dB, the ABEP is 3 x 1072 for Rt = —4 dB, 2 x 1072
for Rt =0 dB, and 9 x 1073 for Rt = 4 dB. Further, the
ABERP is better than that with direct transmission alone.

10°

ABEP

10°

]

Simulation ABEP
Theoretical ABEP

Scenario 2

Scenario 1

10 15
SNR(dB)

Fig. 5 The ABEP performance for two scenarios

Table 2 The parameters for two
scenarios

10°

20 25

Scenario 1 ~ Scenario 2

ABEP

msp 1 2

msr 1 2

mgrp 1 2

Nsp 2 2

Nsg 2 2

Nrp 2 2
—B— Rt=4dB
—&— Rt=0dB
—%— Rt=-4dB

10°

Fig. 6 The effect of Rt on the ABEP performance

6 8 10 12 14
SNR(dB)
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10° : : : : : . 10° :
—B— N=2|] —B— m=1
—0— m=2
—%— m=3
10"}
o 0 g2
i W07k
Q <
10°}
10* '
10'4 L L L L L J] 0 5 10 15 20 25 30
0 5 10 15 20 25 30 SNR(dB)
SNR(dB)

Fig. 7 The effect of N on the ABEP performance

10 T T T T T - - -
—H—u=15dB
—0—u=0dB | ]
—%— y=-15dB | |

ABEP

2 4 6 8 10 12 14 16 18 20
SNR(dB)

Fig. 8 The effect of 1 on the ABEP performance

The effect of N on the ABEP performance is given in
Fig. 7for N=2,3, 4, m=2, n=0dB, Rt =2 dB, and
K =0.5. Figure 7 shows that the ABEP performance
degrades as N increases. This is because a larger N results
in more severe N-Nakagami fading channels.

The effect of u on the ABEP performance is given in
Fig. 8 for u=15dB, 0dB, — 15dB, Rt=2dB, N =2,
K =0.5, and m = 2. As p is reduced, this shows that the
ABEP is improved. These results indicate that the MR
should be located near the MD.

The effect of m on the ABEP performance is given in
Fig.9for N=2, m=1, 2, 3, t=0dB, Rt =2 dB, and
K = 0.5. These results indicate that increasing m improves
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Fig. 9 The effect of m on the ABEP performance

—#— Actual Value
o3y N | ©- Predictive Value H

Comparison Value
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0 5 10 15 20 25 30 35 40 45 50
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Fig. 10 Actual and predicted BP neural network outputs

0.4 T T T —f—

—*— Actual Value
~~~~~~ &~ Predictive Value

0.35f

03

0.25f

0.2

0.15F

Comparison Value

0.1

0.05F

ot i

0.05 L L L L L L
0 5 10 15 20 25 30 35 40 45 50

Estimation Sample

Fig. 11 Actual and predicted ELM outputs
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0.35

—¥— Actual Value
"""" ©- Predictive Value |

@ ®

Cox

Comparison Value

.0.05 L L L L L ! L L
0 5 10 15 20 25 30 35 40

Estimation Sample

Fig. 12 Actual and predicted SVM outputs

0.4

—%— Actual Value
035 e ©-- Predictive Value {

0.3

0.25

0.2

0.15F

Comparison Value
)

01

0.05F

-0.05
0
Estimation Sample

Fig. 13 Actual and predicted LR outputs

Table 3 The parameters for four methods

Algorithm BP ELM SVM LR
Number of training sets:950 Number of test sets: 50
X 11 11 11 11
y y:1 1 1 1
q:10 q:2559 c: 11.314 tau:0.49
a:0.1 g:0.03125
Table 4 The running time and MSE for four methods
Algorithm BP ELM SVM LR
Running Time 331s 2.36 s 75.67 s 5.60 s
MSE 0.00026 0.0019 0.00085 0.0016

. Best Validation Performance is 0.0019064 at epoch 70
10

Train
Validation

10°F

Fan)
A\

10°*+

Mean Squared Error (mse)

10°

0 20 40 60 80 100 120
120 Epochs

Fig. 14 Validation performance of BP neural network

Gradient = 5.9125e-06, at epoch 120

gradient
6\0

mu

val fail

0 20 40 60 80 100 120
120 Epochs

Fig. 15 Training state of the BP neural network

the ABEP. When SNR = 15 dB, the ABEP is 2.8 x 1072
form=1,1 x 107* for m =2, and 8 x 107> for m = 3.

Figures 10, 11, 12, and 13 compare the performance of
the BP neural network with the LR [38], SVM [39], and
ELM [40] methods. The parameters for the four methods
are given in Table 3. These results show that the MSE of
the BP neural network is 0.00026, which is lower than that
of the LR, SVM, and ELM methods, and indicate that the
proposed method can consistently achieve higher ABEP
performance prediction results.

Table 4 gives the running time and MSE for the four
methods. This shows that, compared to ELM, BP has
a longer running time, but the performance is better than
with ELM. Also, compared to SVM and LR, BP has
a shorter running time and smaller MSE. In conclusion, BP
is the best forecasting model.

Figure 14 illustrates the validation performance. This
shows that the MSE generally improves as the number of
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Fig. 16 Regression results for
the BP neural network
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Tableb 5 ?he effecvthof Izheh'dd Number of neurons  MSE we can see how the gradient change as the number of
i‘um cr Othneﬁgﬁs in the hidden epochs increases. From the 70 epoch, the validation error
ayer on the . . . .

Y 4 0.000838 increases. After 50 consecutive increasing at the 120
5 0.000651  epoch, the validation checks fail 50 times and the training
6 0.000548  state will stop.

7 0.000506 The regression results are shown in Fig. 16. The rela-
8 0.000497  tionship between the targets and outputs is indicated by the
9 0.000481  correlation coefficient R. A larger R means the BP neural
10 0.000260  network model has better prediction capability. In Fig. 16,
11 0.000315 R is 0.99214, which indicates that the proposed method has
12 0.000306  good prediction capability.

13 0.000399 Table 5 gives the effect of the number of neurons in the
14 0.000484  hidden layer on the MSE. This shows that when the number

epochs increases. In our setup, if the validation error
increases for 50 consecutive epochs, the training stops. In
the figure, this occurs after 120 epochs while the best
validation performance is 0.0019064 at epoch 70.

In Fig. 15, we can obtain the training state. In training
state, the BP uses gradient descent method. From Fig. 15,

@ Springer

of neurons is small, the MSE performance is poor.
The MSE performance improves as the number of neurons
increases. However, with a sufficiently large number of
neurons, the structure of the neural network is too complex
and the MSE begins to decrease. In the proposed networks
the best MSE performance is achieved when there are 10
neurons.

The training function employed also affects the MSE
performance. Table 6 shows the effect of six different
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;rrzl?rll.ianz 1;{1 };itie(fflzcz)r?i}?;flf\j[rsgt Training function Abbreviation MSE
Levenberg—Marquardt trainlm 0.000260
Fletcher—Reeves traincgf 0.000362
Gradient descent traingd 0.003010
Gradient descent with adaptive learning rate traingda 0.001200
Gradient descent with momentum traingdm 0.003800
Gradient descent with momentum and adaptive learning rate traingdx 0.000482

0.3 ) T T T
—%— Actual Value
"""" ©- Predictive Value
0.25
0.2

Comparison Value

-0.05 ! I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50

Estimation Sample

Fig. 17 Actual and predicted outputs of a network with two hidden-
layers

Best Validation Performance is 0.00040163 at epoch 32
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©
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Fig. 18 Validation performance of a network with two hidden layers

training functions on the MSE. This indicates that the best
training function is the Levenberg—Marquardt function
with an MSE of 0.000260.

We also considered the effect of the number of hidden
layers on the MSE performance. Figures 17, 18, 19, and
20, show the MSE performance, validation performance,

Gradient = 1.8496e-05, at epoch 82

10
<
2
el
o
o
10°
o Mu = 1e-06, at epoch 82
10 T T T T
s 10° F i
£ 10 \_\ V\/
10'10 1 1 1 1 1 1 1 1
Validation Checks = 50, at epoch 82
50 T T T T T T
:‘_§
©
>

f L L L L
0 10 20 30 40 50 60 70 80
82 Epochs

Fig. 19 Training state of a network with two hidden layers

training state, and regression for a network with two hid-
den layers.

Table 7 shows the effect of different numbers of hidden
layers on the MSE performance. The performance with two
hidden layers is better than that with one hidden layer, but
the running time with two hidden-layers is longer. Thus,
increasing the number of layers can improve the MSE
performance, but will also increases the running time.

8 Conclusion

Closed-form PDF and CDF expressions for the direct link
SNR and end-to-end link SNR were derived for a mobile
cooperative communication system. These results were used
to derive an exact closed-form ABEP expression. A BP neural
network-based ABEP performance prediction algorithm was
proposed. To verify the analysis, theoretical results were
compared with Monte-Carlo simulation results. In addition,
these results indicated that m, N, u, and K can significantly
affect the ABEP performance. As m is increased and N and u
are reduced, the ABEP performance is improved. Compared
to the LR, SVM, and ELM methods, the experimental results
verify that the proposed method can consistently achieve
higher ABEP performance prediction results.
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Fig. 20 Regression results for a
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Table 7 The effect of the number of hidden layers on the MSE References

1 hidden layer 2 hidden layers

MSE

Time

2.60e—04
3313 s

6.29e—05
3.9109125 s
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