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Abstract
Community detection in networks including singed edges is a primary challenge that has already attracted substantial

attention. In this paper, we show that this task could be reformulated as a combinatorial optimization concerning the trace

of the signed modularity matrix. Keeping the orthogonal and nonnegative constraints in the relaxation, we propose a

multiplicative update rule, named the SMON algorithm, which results in a solution that is a close approximation to the

genuine community indication matrix. In addition, the rows of the solution can be referred to as the probabilities of

corresponding vertex falling into each community, which can help us to discover the overlapping community structure of

the network and identify vertices that reside on the watersheds between different communities. Experimental results on

real-life social networks as well as synthetic signed networks verify that our method is effective and superior to the existing

approaches.

Keywords Modularity optimization � Community detection � Relaxed algorithm � Orthogonal and nonnegative constraints �
Signed networks

1 Introduction

Community structure exists in a wide range of real-world

networked systems, such as social [1, 2], technological [3],

biological [4–6], and other complex networks [7–9]. Given

a network, it has been shown that detecting its communities

can help to understand its intrinsic topology, characteris-

tics, and even dynamics.

Since the pioneering work [10], there come a large

number of algorithms for community detection in networks

(see, e.g., [5, 11–14] and recent reviews [8, 9]). For

example, a two-stage approach to community detection in

signed networks was proposed by Huang et al. [40]. Fur-

ther, Jiang et al. [41] applied the characteristics of network

structure and game theory to the field of social science.

Although these methods have achieved promising

results, they routinely focused on the unsigned networks

including positive edges only. In recent years, singed

graphs have received increasing attention in literature, due

to the fact that it provides a concise mathematical repre-

sentation for many real-life complex systems which con-

tains both ‘‘positive’’ and ‘‘negative’’ relationships. For

example, the friendly and hostile relations coexist among

individuals [15, 16], the alliances and disputes occur

among countries simultaneously [17], and the active and

inhibitive regulations appear among genes at the same

time [18].

The study of signed networks can be traced back to the

1940s. Heider’s sociological research found that if two

individuals are positively related, they normally have the

same attitudes toward other people [19]. This intuitive

discovery was subsequently represented as the structural

balanced theory [20]. This theory tells that we can split

vertices of a structural balanced network into two groups

such that all edges within the same group are positive, and

meanwhile all edges between the different groups are

negative. Soon after, the weak balance [21] concept was

proposed when the network has several clusters, each
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including only positive edges within itself and negative

edges connecting to others. Obviously, we can easily

obtain the community structure of such networks as long as

we remove the negative links. However, it is much more

difficult to detect communities in an unbalanced network

which is usually encountered in many real applications. In

addition, empirical studies have shown that the traditional

approaches developed for unsigned networks are unsuit-

able for networks comprised both positive and negative

links [17, 22, 23], since they have no way to take into

account the information supplied by negative connections

which actually play a very important role in the structure

and evolution of the entire network [18, 24–26].

The most simple way to address this challenge is

seemingly to generalize the existing algorithms to allow for

negative links. Following the idea, Gómez et al. introduced

a reformulation of modularity to analyze the community

structure in networks constructed by correlated data [27].

Coincidentally, Traag and Bruggeman proposed a similar

definition of modularity for signed networks based on a

Potts model and employed the simulated annealing algo-

rithm to minimize the Hamiltonian [17]. Furthermore,

Anchuri and Magdon-Ismail iteratively extracted the

communities in a singed network by using the spectral

partitioning method [28]. Also, they presented a strategy

similar to the Kernighan–Lin method [29] to further

improve the performance. Besides, other methods, such as

the agent-based random walk [30] and the multi-objective

approach [31], have been employed for community

detection in signed networks.

In this paper, we attempt to explore the community

structure of a given signed network by maximizing the

generalized modularity [17, 27]. We show that this task

can be reformulated as a discrete optimization problem that

involves the trace of a matrix (we name it signed modu-

larity matrix). Relaxing the problem while keeping the

orthogonal and nonnegative constraints leads to a solution

which is a close approximation to the ideal community

indication matrix, and vertices can directly be assigned into

groups. In addition, the rows of the solution can be

regarded as the possibilities of corresponding vertex falling

into each community. This information can help us dis-

cover the overlapping community structure of the network

and find vertices that locate on the boundaries between the

communities.

The remainder of this paper is organized as follows. We

begin to go over the definition of modularity for the signed

networks in Sect. 2. We reformulate the problem of mod-

ularity maximization as a discrete optimization involving

the trace of the signed modularity matrix in Sect. 3, whose

relaxation with orthogonal and nonnegative constraints

lead to a multiplicative update rule that can produce a

solution that is a close approximation to the ideal

community indication matrix. Experimental results on two

social networks and a set of synthetic networks with vari-

ous designed community structures are given in Sect. 4,

followed by the conclusions in Sect. 5.

2 Preliminaries

For an unsigned network, the most efficient and accurate

solutions to its community detection problem are those that

optimize a quality function named modularity [14]. This

function measures the discrepancy between the probability

of edges falling into communities in the network and the

corresponding probability in a null model that preserves the

same degree distribution of the network. Indeed, this

function can evaluate the fitness of a partition to a network,

since the larger the modularity the better the partitioning.

Unfortunately, methods based on modularity optimization

suffered a failure when they are directly applied to extract

the community structure of signed networks [22, 23, 27].

To make use of the information hidden in negative links,

Gómez et al. introduced a modification of modularity [27]

that serves as the foundation of our research and will be

briefly reviewed as follows.

A signed network G ¼ ðV;EÞ has a vertex set V in-

cluding n vertices, and an edge set E � ðV;VÞ containing

vertex pairs. Its adjacency matrix A can be defined as Aij ¼
1 if there is a positive edge from vertex i to vertex j,

Aij ¼ �1 if there is a negative edge from vertex i to vertex

j, and Aij ¼ 0 otherwise. For weighted networks, Aij

describes the weight of the edge (i, j). We can separate the

positive and negative edges by setting Aþij ¼ Aij if Aij [ 0

and 0 otherwise, and A�ij ¼ �Aij if Aij\0 and 0 otherwise.

Obviously, we have A ¼ Aþ � A�. The positive degree of

vertex j is defined by kþi ¼
Pn

j¼1 A
þ
ij and the positive total

strengths is given by 2Mþ ¼
Pn

i¼1 k
þ
i ¼

Pn
i;j¼1 A

þ
ij . Sup-

pose that there are c groups fgkgck¼1
1 and the modularity for

the positive component can be given by

Qþ ¼ 1

2Mþ

Xn

i;j¼1

Aþij �
kþi k

þ
j

2Mþ

� �

dðgi; gjÞ; ð1Þ

where the function dðgi; gjÞ returns the values 1 if vertices

i and j are in the same community, and 0 otherwise. Sim-

ilarly, the modularity for the negative part can be repre-

sented as

1 How to choose an optimal value of c will be discussed in Sect. 4.3,

and we take it as a given here.
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Q� ¼ 1

2M�

Xn

i;j¼1

A�ij �
k�i k

�
j

2M�

� �

dðgi; gjÞ; ð2Þ

where k�i is the negative degree of vertex i such that k�i ¼Pn
j¼1 A

�
ij and the negative total strengths

2M� ¼
Pn

i¼1 k
�
i ¼

Pn
i;j¼1 A

�
ij . The total modularity must

be a trade-off between the tendency of building commu-

nities by positive links and that of destroying communities

by negative links. If Qþ and Q� are assumed to give

contributions to modularity proportionally to their respec-

tive positive and negative strengths, the final definition for

modularity is

Q ¼ 2Mþ

2Mþ þ 2M�
Qþ � 2M�

2Mþ þ 2M�
Q�

¼ 1

2Mþ þ 2M�

Xn

i;j¼1

Aij �
kþi k

þ
j

2Mþ
þ
k�i k

�
j

2M�

� �

dðgi; gjÞ:

ð3Þ

It is easy to check that the standard modularity is recovered

without negative links and modularity is equal to zero

when all vertices are in one community together. With the

definition at hand, the problem of community detection in a

signed network becomes to seek an optimal solution that

maximizes Eq. (3).

3 Modularity optimization
with nonnegative relaxation

We cannot use the exhaustive search to solve the opti-

mization of the modularity, because the number of parti-

tions increases at least exponentially along with the rise of

vertices. In other words, this optimization problem is NP-

hard. It has been suggested to solve the problem by various

optimization heuristics [17, 22, 27]. In the following sub-

sections, we first give a reformulation of the modularity

and then propose a relaxation with orthogonal and non-

negative constraints which can be solved by a multiplica-

tive update rule.

3.1 Modularity reformulation

Let fzkgck¼1 be the community indicators whose ith element

zik is 1 if vertex i belongs to community k, and 0 otherwise.

In particular zk ¼ ð0; . . .; 0; 1; . . .; 1; 0; . . .; 0ÞT if vertices

within each community are adjacent. Therefore, up to the

constant factor, Eq. (3) can be rewritten as

Q ¼
Xc

k¼1

Xn

i;j¼1

Aijzikzjk �
1

2Mþ

Xn

i¼1

kþi zik

 !2
0

@

þ 1

2M�

Xn

i¼1

k�i zik

 !2
1

A

¼
Xc

k¼1

zTk Azk �
1

2Mþ
ðkTþzkÞ

2 þ 1

2M�
ðkT�zkÞ

2

� �

¼
Xc

k¼1

zTk A� 1

2Mþ
kþk

þ
þ þ

1

2M�
k�k

T
�

� �

zk;

ð4Þ

where kþ is the positive degree vector such that kþ ¼
ðkþ1 ; . . .; kþn Þ

T
and similarly the negative degree vector

k� ¼ ðk�1 ; . . .; k�n Þ
T
. Denoting Z ¼ ðz1; . . .; zcÞ, the problem

of maximizing Eq. (4) can be further represented by

max
Z

TrðZTBZÞ; s:t:; Z 2 f0; 1gn�c; ð5Þ

where B ¼ A� 1
2Mþ kþk

T
þ þ 1

2M� k�k
T
�. The problem (5) is a

combinatorial optimization involving the trace of the

matrix B which we name the signed modularity matrix

hereafter.

3.2 Nonnegative relaxation

The problem (5) is also NP-hard. We can derive a good

approximation by transforming the discrete optimization

problem into one that is continuous. It is worthwhile to

note that the columns of the indicator matrix Z are

orthogonal and nonnegative. If we retain their orthogo-

nality purely, the optimal solution is exactly the eigen-

vectors corresponding to the top c eigenvalues of the

signed modularity matrix B. The leading eigenvector can

be used to make a bipartition of the network according to

the signs of its elements, on the condition that there only

exist two groups [28]. For a signed network with more than

two clusters, these eigenvectors could be seriously far away

from the true community indication vectors that they

approximate, owing to their mixed-sign entries. Conse-

quently, we often need to use other clustering methods

(e.g., the K-means algorithm) to obtain the final results.

A more accurate relaxation is preserving both the non-

negative and orthogonal constraints on the matrix Z, which

is given by

max
Z

TrðZTBZÞ; s:t:; ZTZ ¼ I; Z� 0: ð6Þ

This problem has been well studied in previous

works [32–34], with different format of the matrix

B. Mathematically, the problem (6) is identical to
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max
Z

Tr½ZTðqI þ BÞZ�; s:t:; ZTZ ¼ I; Z� 0: ð7Þ

because the term TrðZTqIZÞ ¼ qTrðIÞ ¼ qn is irrelevant to

Z. Specifically, let q to be the absolute value of the minimal

eigenvalue of the singed modularity matrix, i.e.,

q ¼ jkminðBÞj, ensuring that the matrix qI þ B is positive

definite. This trick makes the optimization problem well-

behaved. The lagrangian function of problem (7) can be

given by

L ¼ Tr½ZTðqI þ BÞZ� � Tr½KðZTZ � IÞ� � TrðRZÞ; ð8Þ

where the Lagrange multiplier R ensures the nonnegative

constraint Z � 0 and the Lagrange multiplier K ensures the

orthogonal constraint ZTZ ¼ I, respectively. The Karush–

Kuhn–Tucker (KKT) complementary slackness condition

becomes

oL

oZik

� �

Zik ¼ ½ðqI þ BÞZ � ZK�ikZik ¼ 0; ð9Þ

which is mathematically identical to

½ðqI þ BÞZ � ZK�ikZ2
ik ¼ 0: ð10Þ

Summing over k, we obtain Kii ¼ ½ZTðqI þ BÞZ�ii, giving

the diagonal elements of K. To compute the off-diagonal

entries, we temporarily neglect the nonnegative constraint

and let oL=oZ = 0 which leads to Kii0 ¼ ½ZTðqI þ BÞZ�ii0 .
Combining these two results, we have

K ¼ ½ZTðqI þ BÞZ�: ð11Þ

Decomposing matrices B and K into positive and negative

parts by

B ¼ Bþ � B�; K ¼ Kþ � K�; ð12Þ

where Bþ ¼ ðjBj þ BÞ=2, B� ¼ ðjBj � BÞ=2, Kþ ¼ ðjKj þ
KÞ=2 and K� ¼ ðjKj � KÞ=2, respectively, and considering

the matrix Z in L, we have

1

2

o Tr½ZTðqI þ BÞZ� � TrðKZTZÞð Þ
oZ

¼ ðqZ þ BþZ þ ZK�Þ � ðB�Z þ ZKþÞ ¼ 0;

ð13Þ

which leads to the multiplicative update formula

Zik  Zik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqZ þ BþZ þ ZK�Þik
ðB�Z þ ZKþÞik

s

: ð14Þ

We can see that Zik will decrease when the corresponding

element of the gradient in Eq. (14) is smaller than zero, and

will increase otherwise. That is to say, the update direction

of the rule (14) is always the same to the update direction

in the gradient ascent method. The fact guarantees that the

Lagrangian function (8) increases monotonically. Since the

feasible domain of problem (7) is non-convex, the update

rule (14) can only reach a local optimum. The algorithm

may return different solutions if the initial conditions are

different. To get an acceptable solution, we run our algo-

rithm several times with various possible starting values

and output the solution that gives the largest value of

Eq. (4) over all the runs.

3.3 Overlapping structure

The solution, returned by the update rule (14), provides us

with valuable information for the network’s community

structure. When we compute the off-diagonal elements of

the lagrangian multiplier, the nonnegative constraint is

temporally ignored. Therefore, the columns of indicator

matrix Z are not exactly orthogonal. An exact orthogonal

constraint means that each row of Z can have only one

nonzero element, which implies that each vertex can

belong to one community exclusively. This is the hard

partition. The approximately orthogonal condition relaxes

this constraint slightly. Each vertex could fall fractionally

into more than one community, which yields the soft par-

tition of a network and sheds light on the elucidation of its

overlapping structure.

In fact, the rows of the indicator matrix Z can be

understood as the possibilities that each vertex falls into

different groups, as shown in previous studies [32–34] as

well as our experiments. More precisely, the magnitude of

Zik quantifies the degree that the vertex i should be assigned

to community k. Therefore, we can simply group vertex

i into the community k� to which it is most likely to belong,

i.e., k� ¼ maxkfZik; k ¼ 1; . . .; cg. On the other hand, it is

very interesting to assign vertices to more than one cluster,

namely, overlapping community detection [5, 35–37]. The

vertices falling into several groups are observed to play an

essential role in networks. Furthermore, some ‘‘instable’’

vertices [35], which reside on the border between two

communities, are very difficult to be classified into any

community. It is very important to discover the overlapping

community structure of a signed network and to identify

the instable vertices. We can normalize each row of matrix

Z such that
P

k Zik ¼ 1 and employ the bridgeness [36] and

community entropy [34] to explore the overlapping com-

munity structure. The two metrics of vertex i are given by

bi ¼1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c

c� 1

Xc

k¼1

Zik �
1

c

� �2

v
u
u
t ; ð15Þ

ni ¼�
Xc

k¼1

Zik logk Zik: ð16Þ

It is clear that vertex i is likely to participate in more than

one community simultaneously if it has a large bridgeness

bi and entropy ni.
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4 Experiments

In this section, we fist apply the proposed algorithm,

denoted by SMON (Signed Modularity maximization with

Orthogonal and Nonnegative constraints), to two social

networks and make the exploratory analyses of their

community structures. After that, we check our method

with a set of synthetic networks having controlled com-

munity structures and the results demonstrate that it is

effective and efficient.

4.1 Real-life social networks

The first real network was about the Slovene Parliamentary

Party (SPP) in 1994 and included 10 parties in total [38].

The distances between these parties were designed ranging

from - 3 to 3. The community structure of this network is

so clear that we can perfectly discover it through the simple

eigen-partitioning heuristics [28]. In Fig. 1a, the leading

eigenvector of the signed modularity matrix is used to

assign the colors, ranging from green to red, to the vertices.

By setting c ¼ 2, the split of the singed network returned

by our algorithm is completely consistent with the true

community structure, as shown in Fig. 1b. All vertices in

the network are assigned to one of two communities.

However, the vertex ‘‘SNS’’ marked by the bold border

falls into the circle group and the square group with

probability 0.0238 and 0.9762 at the same time. This says

that the vertex is the overlapping vertex of two commu-

nities, as its bridgeness is as high as 0.0476 and community

entropy is 0.1623. It is clear to find that two vertices ‘‘ZS-

ESS’’ and ‘‘DS’’ are connected with this vertex by negative

edges in the same community.

The second experiment is on the Gahuku-Gama Sub-

tribes (GGS) network. This network includes 16 Gahuku-

Gama subtribes, which were engaged in warfare with one

another in a particular area in 1954. The positive and

negative edges stand for political alliance and enmities,

respectively. Unlike the first network, the communities of

this network cannot be correctly discovered by the eigen-

partitioning method. We see from Fig. 2a that the vertex

‘‘GAVEV’’ is misclassified because of its corresponding

negative value in the leading eigenvector of the signed

modularity matrix. The community with larger size can be

further divided into two clusters when we repeat the par-

titioning procedure. But the misclassification is unable to

be revised. Figure 2c shows the three groups categorized

by our method, and they are in good agreement with the

known communities. In addition, the probabilities of the

vertex ‘‘MASIL’’ belonging to the circle group and the

square group are 0.7371 and 0.2629, respectively. This

leads to its high value of bridgeness 0.3530 and group

entropy 0.5244. This indicates that this vertex is the

overlapping vertex of these two groups, as there are two

positive connections between vertex ‘‘MASIL’’ and

‘‘NAGAM’’ and ‘‘UHETO,’’ respectively.

The experiments show that our method can not only

offer the partitions of the two networks that are identical to

ones stemming from the sociological studies, but also can

facilitate the discovery of their overlapping community

structures and the identification of instable vertices that

reside on the watersheds between different communities.

4.2 Synthetic signed networks

We further test our algorithm with a set of synthetic net-

works having controlled community structure and compare

it with other approaches. Similar to the previous

work [23, 30], we generate these networks at random and

denote them by

SKD ZLSD

SDSS LDS

ZS-ESS
ZS

DS

SLS

SPS-SNS

SNS

SKD ZLSD

SDSS LDS

ZS-ESS
ZS

DS

SLS

SPS-SNS

SNS

(a) (b)

Fig. 1 The community structure of the Slovene Parliamentary

network [38] detected by a the eigen-partitioning method and b the

SMON algorithm. The positive and negative links are represented by

the solid and dashed edges, respectively. The ground-truth is denoted

by different shapes, while the detected communities are represented

by two colors (color figure online)
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SN
�
ðN1;N2; . . .;NcÞ;Nc; k; pin; pþ; p�

�

where Ni is the number of vertices in cluster i, Nc is the

number of clusters, k is the average degree of vertices, pin

is the probability of vertices linking with each other in the

same cluster, pþ is the probability of vertices in different

clusters connected by positive links, and p� is the proba-

bility of vertices in same group connected by negative

links. Clearly, the parameter pin controls the cohesion of

the clusters and the other two parameters pþ and p� make

the community structure to be indistinct. For simplicity, we

denote it as SNðN;Nc; k; pin; pþ; p�Þ when the number of

vertices in each cluster is identical.

As a beginning, we consider four balanced synthetic

networks. Figure 3 successively gives the reordered adja-

cency matrices of these networks SN(32, 4, 16, 0.8, 0, 0),

SN(32, 4, 16, 0.1, 0, 0), SN(32, 20, 16, 0.8, 0, 0) and

SN([32, 48, 64, 80], 4, 16, 0.8, 0, 0) according to their

indicator matrix Z. In all the cases, our method can achieve

a satisfactory performance, ignoring the density of links in

each community, the number of the communities and the

sizes of the communities. In particular, it works pretty well

even if the community structure is much less cohesive

when pin ¼ 0:1 (see Fig. 3b). It is clear to see that the

matrix Z is very close to the ideal community indicator

matrix in all the situations. We then conduct a similar study

on two unbalanced networks SN (32, 4, 16, 0.8, 0.2, 0.2)

and SN([32, 48, 64, 80], 4, 16, 0.8, 0.2, 0.2) shown in

Fig. 4. As expected, their community structures can be

successfully discovered by the proposed method regardless

of the sizes of the communities. The experimental results

indicate that the proposed method is rather insensitive to

the noise in the signed networks.

So far, all the experiments were conducted on networks

that include dozens or hundreds of vertices. To further

check our algorithm’s scalability, we test it on a group of

large-size synthetic networks generated by the above-

mentioned strategy. For these synthetic networks, we only

take their hard partition into account. We introduce the

normalized mutual information (NMI) to evaluate the

performance of our algorithm. Suppose that c1 and c2 are

the true and detected community structure, this measure is

computed as

NMIðc1; c2Þ ¼

Pc
i¼1

Pc
j¼1 nij ln

nijn

n
ð1Þ
i
n
ð2Þ
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pc
i¼1 n

ð1Þ
i ln

n
ð1Þ
i

n

� �
Pc

i¼1 n
ð2Þ
i ln

n
ð2Þ
i

n

� �s ;

ð17Þ

where n is the number of vertices in network, nij is the

number of vertices belonging to the true community i and

classified into the community i, n
ð1Þ
i and n

ð2Þ
i are the num-

bers of vertices belonging to the true community i and

assigned to the detected community i, respectively. The

partition obtained by the algorithms is better if the NMI

value is larger.

Once again, we generate balanced and unbalanced

synthetic signed networks. For the balanced network, we

use the generation model SNð1000; 4; 500; pin; 0; 0Þ in

which pin gradually increases from 0 to 1. Figure 5 com-

pares the performance of our method and three other

approaches, i.e., the finding and extracting community

(FEC) method [30], the signed modularity maximization

through simulated annealing (SMMSA) [17, 27] and the

eigen-partitioning heuristics with the Kernighan–Lin

strategy (EigPart?KL) [28]. We see clearly that both the

SMMSA method and our SMON approach are able to

exactly discover the communities in all cases. When

0	 pin	 0:1, the NMI of our method is still acceptable,

namely, more than 0.92, even though it is slightly lower

GAVEV

KOTUN OVE

ALIKA

NAGAM

GAHUK

MASIL

UKUDZNOTOH

KOHIK
GEHAM

ASARO

UHETO

SEUVE

NAGAD

GAMA

GAVEV

KOTUN OVE

ALIKA

NAGAM

GAHUK

MASIL

UKUDZNOTOH

KOHIK
GEHAM

ASARO

UHETO

SEUVE

NAGAD

GAMA

GAVEV

KOTUN OVE

ALIKA

NAGAM

GAHUK

MASIL

UKUDZNOTOH

KOHIK
GEHAM

ASARO

UHETO

SEUVE

NAGAD

GAMA

(a) (b) (c)

Fig. 2 The community structure of the Gahuku-Gama Subtribes

network [39] detected by a the first step of the eigen-partitioning

method, b the second step of the eigen-partitioning method and c the

SMON algorithm. The positive and negative links are denoted by the

solid and dashed edges, respectively. The ground-truth and detected

communities are denoted by various shapes and colors, respectively.

The leading eigenvector is used to assign the colors to the vertices in

(a) and (b) (color figure online)
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than that of the SMMSA method. The rest of two

approaches, however, can only return satisfactory results

when pin is large enough. All of them suffer from a rapid

deterioration along with pin becomes increasingly smaller.

The NMI of the FEC algorithm begins to drop when pin is

smaller than 0.8 and then quickly decreases to less than 0.2

when pin ¼ 0:5 and even approximately is equal to 0 when

pin is smaller than 0.3. Moreover, the EigPart?KL method

can always achieve a competitive performance with our
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Fig. 3 Community detection in four balanced synthetic networks

(a) SN(32, 4, 16, 0.8, 0, 0), (b) SN(32, 4, 16, 0.1, 0, 0), (c) SN(32, 20,

16, 0.8, 0, 0) and (d) SN([32, 48, 64, 80], 4, 16, 0.8, 0, 0). The left

panel of each subfigure is the reordered adjacency matrix according to

the indicator matrix Z shown in the right panel. The black dots stand

for the negative links, and the white dots represent the positive links
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Fig. 4 Community detection in two unbalanced synthetic networks

(a) SN(32, 4, 16, 0.8, 0.2, 0.2) and (b) SN([32, 48, 64, 80], 4, 16, 0.8,

0.2, 0.2). The left panel of each subfigure is the reordered adjacency

matrix according to the indicator matrix Z shown in the right panel.

The black and white dots stand for the negative and positive links,

respectively
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SMON method when 0:3	 pin	 1, but quickly declines as

pin approaches 0.

We then set the parameter pin ¼ 0:8 and increase the

other two parameters pþ and p� from 0 to 0.5. It is clear

that the synthetic networks are all unbalanced in this situ-

ation. Figure 6 summarizes the results obtained by our

method and three other algorithms. As we can see, the

SMMSA method and the SMON method can exhibit a

competitive performance, which outshine the other two

approaches consistently and significantly sometimes. Our

method is able to give a split of the signed networks when

0	 pþ 	 0:3 or 0	 p� 	 0:5, whose NMI is more than 0.2.

In contrast, the NMIs of the FEC method and the Eig-

Part?KL method suddenly collapse and continuously

decrease once pþ is larger than 0.3.

4.3 Optimal number of communities

We suppose that the number of communities c is known in

advance. However, we have no idea about this information

in many cases. For a given network, it is required to pro-

pose a strategy to estimate the community number. Recall

that the modularity (3) is a useful tool to evaluate the fit-

ness of a partition to a signed network. The larger the

modularity is, the better the partitioning becomes. As a

result, we can choose the optimal number of the commu-

nities as follows. We run the SMON algorithm with dif-

ferent values c varying from 2 to a sufficiently large

integer. The value corresponding to the largest modularity

can be referred to as the optimal number. As illustrated in

Fig. 7, this strategy can find the true number of
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Fig. 5 Experimental results obtained by various algorithms on

balanced synthetic networks with controlled community structure.

We repeat 50 random realizations of the networks and report the

average result
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Fig. 6 Experiments on unbalanced synthetic signed networks having various community structure for a FEC, b SMMSA, c EigPart?KL, and

d SMON. We repeat 50 random realizations of the networks and report the average result

10652 Neural Computing and Applications (2020) 32:10645–10654

123



communities in the Slovene Parliamentary Party network,

the Gahuku-Gama Subtribes network, and six aforemen-

tioned synthetic networks.

5 Conclusions

In this paper, we first show that the problem of community

detection in signed networks is identical to a combinatorial

optimization regarding the trace of a matrix called the

signed modularity matrix. We relax this optimization

problem preserving the orthogonal and nonnegative con-

straints, and introduce a multiplicative update rule to solve

it. The solution is a close approximation to the genuine

community indication matrix and therefore is applicable

for dividing vertices into communities directly. Further-

more, the rows of the solution after the normalization can

be represented as the probabilities that each vertex falls

into different communities. This information facilitates the

discovery of the overlapping structure of the network and

the identification of vertices locating on the boundaries

between different communities. Experimental results on

two real social networks and a set of synthetic signed

networks validate that our algorithm can not only detect

their community structures accurately, but also help to

discover their overlapping structures.
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27. Gómez S, Jensen P, Arenas A (2009) Analysis of community

structure in networks of correlated data. Phys Rev E 80:016114

28. Anchuri P, Magdon-Ismail M (2012) Communities and balance in

signed networks: A spectral approach. In: Proceedings of inter-

national conference on advances in social networks analysis and

mining, pp 235–242

29. Kernighan BW, Lin S (1970) An efficient heuristic procedure for

partitioning graphs. Bell Syst Tech J 49:291–307

30. Yang B, Cheung WK, Liu JM (2007) Community mining from

signed social networks. IEEE Trans knowl Data Eng

19(10):1333–1348

31. Amelio A, Pizzuti C (2013) Community mining in signed net-

works: A multiobjective approach. In: Proceedings of the 2013

IEEE/ACM international conference on advances in social net-

works analysis and mining, pp 95–99

32. Luo D, Ding CHQ, Huang H, Li T (2009) Non-negative Lapla-

cian Embedding. In: Proceedings of 9th IEEE international con-

ference on data mining, pp 337–346

33. Nie F, Ding C, Luo D, Huang H (2010) Multi-subspace repre-

sentation and discovery. In: Proceedings of European conference

on machine learning and principles and practice of knowledge

discovery in databases, pp 451–466

34. Jiang JQ, McQuay LJ (2012) Modularity functions maximization

with nonnegative relaxation facilitates community detection in

networks. Physica A 391(3):854–865

35. Gfeller D, Chappelier JC, De Los Rios P (2005) Finding insta-

bilities in the community structure of complex networks. Phys

Rev E 72(5):056135
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