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Abstract
In an intelligent transportation system, accurate bus information is vital for passengers to schedule their departure time and

make reasonable route choice. In this paper, an improved deep belief network (DBN) is proposed to predict the bus travel

time. By using Gaussian–Bernoulli restricted Boltzmann machines to construct a DBN, we update the classical DBN to

model continuous data. In addition, a back-propagation (BP) neural network is further applied to improve the performance.

Based on the real traffic data collected in Shenyang, China, several experiments are conducted to validate the technique.

Comparison with typical forecasting methods such as k-nearest neighbor algorithm (k-NN), artificial neural network

(ANN), support vector machine (SVM) and random forests (RFs) shows that the proposed method is applicable to the

prediction of bus travel time and works better than traditional methods.
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1 Introduction

With the development of technologies and information

systems, the intelligent transportation systems (ITSs) and

advanced traveler information systems (ATISs) have been

widely deployed in city region. In the field of public

transportation, the delivery of real-time traffic information

is actually the most visible applications of ITS [1]. Tradi-

tionally, this type of information is delivered in the form of

arrival and departure times on digital boards at bus stops.

More recently, passengers can obtain it via smartphone

apps and in-vehicle screens. Currently, public transport can

always serve passengers in an easy and comfortable way.

However, due to some unpredictable factors, sometimes

there is an early arrival or delay at a particular stop. For the

lack of operational reliability, many travelers incline to

choose private cars rather than public transport. Transit

agencies realize that providing an accurate bus arrival time

is valuable to attract more passengers and improve man-

agement or service level. They can adjust their bus

schedules by applying a higher or lower speed in advance

and ultimately achieve the goal of reducing the waste of

bus resources.

At the same time, the availability of accurate bus

information can also help passengers to efficiently schedule

their departure time, reduce their waiting time and make

smart choices for their travel [2, 3]. Given the bus arrival

time information, passenger can choose suitable travel

mode for their journeys. Figure 1 shows an example for

illustrating the effect on providing accurate bus informa-

tion at bus stop. In the example, a passenger attempts to

travel from Stop A to Stop B. He/she actually has three

choices on this trip. If the passenger has enough time, he/

she can choose any one of the two bus routes (i.e., route no.

1 and no. 2). However, if the time is short, the passenger

can take a taxi to the destination. Furthermore, if the pas-

senger knows the bus arrival times of the next buses of the

two bus routes (e.g., 09:00 and 09:05, respectively), he/she

will wait for the next bus of route no. 2 rather than that of

& Baozhen Yao

yaobaozhen@dlut.edu.cn

1 State Key Laboratory of Structural Analysis for Industrial

Equipment, School of Automotive Engineering, Dalian

University of Technology, Dalian 116024, People’s Republic

of China

2 Urban Planning Group, Department of the Built

Environment, Eindhoven University of Technology,

PO Box 513, Vertigo 8.16, 5600MD Eindhoven, The

Netherlands

123

Neural Computing and Applications (2020) 32:10435–10449
https://doi.org/10.1007/s00521-019-04579-x(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0003-2867-2549
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-019-04579-x&amp;domain=pdf
https://doi.org/10.1007/s00521-019-04579-x


route no. 1. As a result, the waiting time of the passenger

will be reduced.

As the objective of bus travel time prediction is to

provide such information, this problem has been one of the

hottest issues in ITSs. It should be noted that providing bus

travel time prediction precisely in areas with litter external

influence, such as rural areas, is easy in a way. However,

the problem becomes much more complex in urban areas.

The motivation of this paper is to improve the accuracy of

prediction yielded by current bus travel time prediction

models.

In the past decades, by using historical data or online

data (obtained by the global positioning system), various

forecasting models and techniques have been proposed to

predict bus travel time. These techniques include historical

average model [4–6], statistical model [7–11], nonpara-

metric regression model [2, 12–14], machine learning

model [2, 3, 15–24] and hybrid model [20, 25, 26].

Historical average model is used to predict the current

and future bus travel time within a given period of time by

averaging the historical travel times. Chung and Shalaby

[6] presented a school bus arrival time prediction model,

which combined historical moving average model with an

operational strategy. Their results indicated the proposed

model was powerful in real-life application. However, a

noteworthy feature of this type of model is the requirement

of stable traffic pattern. The reliability of the model would

greatly decrease if the traffic pattern has large variations

[27, 28]. It should be noted that in recent research, this type

of model is presented only for comparison purposes.

Statistical model can be further divided into two main

categories: time-series model and regression model. With

respect to time-series model, such model assumes that the

future state of a bus depends on the trend of past several

states of the same bus. This model usually causes a short

time lag between the prediction value and real data. The

commonly used time-series models include autoregressive

moving average (ARMA) [29], generalized autoregressive

conditional heteroscedasticity model [7] and seasonal

ARIMA model [8, 30]. Williams and Hoel [4] compared

the performances of several methods for traffic flow rate

prediction. These methods include seasonal ARIMA, ran-

dom walk, historical average and deviation from historical

average. Their results showed the seasonal ARIMA could

provide the best forecasts for all performance statistics. It

should be noted that the prediction accuracy also decreases

significantly when the relationship between real-time and

historical data is complicated [16]. The other kind of sta-

tistical model is the regression model. This kind of model

is developed to verify the effect of different factors on bus

travel time. In the model, factors such as bus dwell time,

traffic conditions and travel distance are treated as inde-

pendent variables, while bus travel time is the dependent

variable. Observed that the travel times in current and

future status have linear relationship, at the same time, the

slope and intercept of this relationship change subject to

the time of day, Rice and Van Zwet [9] proposed a linear

regression with time-varying coefficients to predict travel

time on freeways. However, the prediction accuracy of

regression model heavily depends on the selection of

independent variables [16].

Recently, due to the absence of estimating parameters,

k-NN has been extensively employed in travel time pre-

diction. It is actually a kind of nonparametric regression

model. Based on k-NN, You and Kim [12] proposed a

hybrid travel time forecasting model to predict link travel

times in congested road networks. By using historical and

real-time data, Chang et al. [14] developed a dynamic

model to predict bus multi-interval path travel time.

Results in their paper showed that k-NN method was

effective in the aspects of both accuracy and computing

time. Yu et al. [2] proposed four models, including SVM,

ANN, k-NN and linear regression, to predict bus arrival

time at the bus stop with multiple routes. Their results also

indicated k-NN was an effective method for bus travel time

prediction. However, nonparametric regression model

becomes costly in execution time when the sample size is

large [2, 14].

As a subfield of artificial intelligence, machine learning

methods are widely used in transportation. Of various

machine learning methods, ANN and SVM are the most

widely used models in bus travel time prediction. The

ability of ANN for solving complex nonlinear problems has

been proved in many applications [31, 32]. Chien et al. [16]

developed two ANN-based models to predict bus arrival

time, namely link-based ANN and stop-based ANN. To

further improve the prediction accuracy of both models, an

adaptive algorithm was developed. Results indicated that

the adaptive algorithm could actually improve the perfor-

mances. Mazloumi et al. [17] proposed an integrated

framework that consists of two ANNs to predict both the

average and variance of travel times. The proposed method

Bus Stop A Bus Stop B
1 2 12

2 1 2 1 TaxiTaxi
Bus route nos.

9:05

9:00

Fig. 1 An example for accurate

bus information at bus stop
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was validated by using the data collected in Melbourne,

Australia. However, the structure of ANN (i.e., input

variables, hidden-layer size, learning rate, etc.) depends on

the experience of researchers [33–36].

Characterized by the capacity control of the decision

function, the use of the kernel functions and the sparse

solution, SVM has also been widely used in the field of

prediction. By using SVM-based model and the data of

preceding buses, Yu et al. [18] predicted the bus arrival

time for a bus route. Their results showed SVM was a

powerful method for bus arrival time prediction. To further

improve the performance of the SVM, Yu et al. [19] firstly

applied the Grubbs’ test method to remove outliers from

the input data. Then, an SVM-based model with forgetting

factors was introduced. Results showed that the improved

SVM model outperformed the standard SVM.

However, ANN and SVM are complicated because of

the large number of parameters needed to be adjusted [3].

In considering coping with the bad effect of parameters

selection, attention has been focused on an emerging type

of machine learning method, RFs. As an ensemble learning

algorithm, RFs model can easily explain the importance of

thousands of variables. Through the procedure of random

selection of features and training samples, it has been

proved to be efficient in avoiding overfitting. Some appli-

cations of RFs can be found in bus travel time prediction.

Gal et al. [20] proposed a combination method of queuing

theory and RFs to predict bus travel time. In their paper,

RFs were used to detect the outliers in historical data. Yu

et al. [3] developed a RFs model to predict bus travel time.

To avoid the influence of massive data, a preselection

method for the training set, near neighborhoods, was pro-

posed in their paper. Finally, their model was calibrated

and validated by using the data of two bus routes in China.

To avoid the drawback of single prediction model,

several types of hybrid models have also been studied.

These methods include ANN model with Kalman filter-

based algorithm [25], SVM model with Kalman filter-

based algorithm [26], queuing theory with RFs algorithm

[20] and so on. Results showed that hybrid models could

certainly obtain better performances than those single

prediction models.

Among all varieties of prediction models, the accuracy

of the bus travel time prediction heavily depends on his-

torical and real-time traffic data. Nowadays, these traffic

data are now undergoing rapid growth with the widespread

of traffic sensor technologies. In addition, factors, which

have influences on bus travel time, commonly have com-

plicated relationships. Finding a reliable method that can

identify the relationship among these influencing factors is

a challenging problem. However, the above-mentioned bus

travel time prediction methods are mainly based on shallow

learning architecture. It is difficult for them to easily and

precisely identify the relationship among these influencing

factors with the boom of information.

In recent years, deep learning models have drawn a lot

of attentions. By adopting multilayer or deep architectures,

deep learning models can extract inherent features of data

from the lowest level to the highest level even if the data

set is large. Currently, there are some applications of deep

learning models in traffic flows or travel time prediction

[37–46]. The first traffic flow prediction model based on

deep architecture was proposed by Lv et al. [37]. In their

paper, a stacked autoencoder model was developed to learn

traffic features from the data collected in California free-

way systems. Experimental results showed the prediction

method based on deep architecture was superior to BPNN,

SVM and RBFNN models [37]. Siripanpornchana et al.

[38] developed an urban freeway travel time prediction

model based on deep learning architectures. Different from

Lv et al. [37] that used autoencoder model, the concept of

DBN, which comprises a stack of restricted Boltzmann

machines (RBM), was used in their paper. However, to our

knowledge, literature about bus travel time prediction using

deep learning models is relatively scarce. In addition, the

relationship among factors affecting the bus travel time is

usually more complex than that affecting the traffic flows.

Concerning the good features learning ability of deep

learning models, this paper attempts to propose a new bus

travel time prediction model based on the concept of DBN.

In the aspect of model inputs, previous studies indicate that

the traffic condition is regarded as the main factor influ-

encing the accuracy of bus travel time prediction. Data that

can reflect the traffic condition can be summarized as: (1)

travel speed; (2) travel time; (3) distance; (4) emergency

situation; and (5) dwell time. In this paper, due to data

availability, both bus running time and bus dwell time (the

number of passengers waiting to board) of the preceding

vehicles (temporal and spatial data) are used to reflect the

traffic condition and to predict the travel time of next bus.

DBN is one of the widely used deep learning-based

methods. It has been proved for its capacity to extract

nonlinear characteristics [42, 47]. However, the classical

DBN is developed to learn features from binary data rather

than continuous data. Considering the data used in this

paper are continuous, a variation of RBM in DBN, called

Gaussian–Bernoulli RBM (GBRBM), is employed. The

basic units of DBN are improved to make the model have

the ability of extracting and learning continuous data fea-

tures. To further improve the performance of DBN, a

shallow learning architecture, named BP neural network

model, is also adopted to predict bus travel time in a

supervised fashion.

This paper seeks to make three contributions to previous

literature. Firstly, this paper attempts to develop a bus

travel time prediction model based on the concept of DBN.
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It is expected that an accurate prediction of bus travel time

can be obtained. By using the prediction results, the anxiety

and waiting time of passengers can be effectively reduced.

Secondly, the basic units of DBN are improved to make the

model have the ability of extracting and learning continu-

ous data (traffic) features. Thirdly, to improve the perfor-

mance of DBN, a shallow learning architecture, named BP

neural network model, is also adopted to predict bus travel

time in a supervised fashion. Experimental results show

that the proposed method has superior performance in

prediction accuracy.

The remainder of this paper is organized in the fol-

lowing way. Section 2 presents the bus travel time pre-

diction model and the deep learning method based on the

concept of DBN. Section 3 describes the details of our

experiments and results. Finally, conclusions and future

works are given in Sect. 4.

2 Methodologies

2.1 Bus travel time prediction model

Bus travel time prediction model is to predict the bus travel

time between two consecutive bus stops. The framework of

the prediction is illustrated in Fig. 2. The bus travel time on

the target segment i (distance between bus stop B and C)

need to be predicted when the target bus k arrives at the bus

stop B. To obtain accurate prediction results, it is essential

to find the appropriate factors that have influence on the

travel time. As described in the literature, bus travel time

between bus stops has relations with the bus dwell time and

traffic conditions [3]. Yu et al. [3, 18] pointed out the traffic

condition can be reflected by the running time of preceding

buses and the most recent data provides the most reliable

information. However, the number of passengers waiting to

board (bus dwell time) also has effect on the bus running

time since buses need more time to speed up or slow down.

There are two general approaches to forecast bus travel

time in previous studies. The first one is only to use the bus

running time of preceding buses (dwell time is not

explicitly expressed) [3, 18, 26], and the other approach is

to use both bus running time and bus dwell time [27]. In

addition, in an urban road network, road links do not exist

in isolation. Traffic speed on both upstream and down-

stream links can affect the traffic speed of the current road.

Therefore, in this paper, the average bus travel times of

preceding buses on the current segment, upstream segment

and downstream segment are all considered. Similarly, to

find the appropriate factors to estimate bus dwell time and

avoid the errors brought by unpredictable factors, the dwell

time, the average dwell time and the variance of dwell time

of targeted bus at the starting stop are also considered. It

should be noted that the preceding buses in this paper only

refer to the buses that just finished the travel between two

consecutive stops and leave for the next stop.

Assuming that k represents the target bus for predicting,

i represents the segment of target bus route. The input

variables considered in this paper are illustrated as follows:

t̂i;k ¼ f ti�1;k; ti;k�1; tiþ1;k�1; dti;k; dti; r dtð Þ2
i

� �
ð1Þ

where t̂i;k is the predicted travel time of bus k on segment i

and ti�1;k represents the running time of bus k on segment

i - 1. It shows the traffic conditions on the upstream of

segment i. ti;k�1 means the running time of bus k - 1 (i.e.,

the preceding bus) on segment i, expressing the traffic

conditions on the current segment i, tiþ1;k�1 is the running

time of bus k - 1 (i.e., the preceding bus) on segment

i ? 1, which represents the traffic conditions on the

downstream of segment i, dti;k shows the dwell time of bus

k at the starting stop of segment i and dti and r dtð Þ2
i rep-

resent the average and variance of dwell time at the starting

stop of segment i, respectively. The prediction model

proposed in this paper is to find the relationship among

these influencing factors.

2.2 Deep belief network

DBN is a kind of artificial neural network inspired by

imitating the process of cognition and inference of human

brain [41]. It has become one of the most universal deep

learning models and has been widely used in many fields.

As an arbitrary undirected graphical model, DBN can be

described as a generative energy-based model that has

random multilayer units connecting the input layer and the

output layer. It is constituted by a stack of RBMs, which

provide DBN with the capacity of feature learning and

AVI

k
Bus Stop B

The preceding bus

Bus Stop A Bus Stop C

AVI

k-1
The target bus

AVI
kit ,ˆ

Bus Stop D
k k-1

AVI

The upstream segment (i-1) The target segment (i) The downstream segment (i+1)

Fig. 2 The framework of bus travel time prediction
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feature extraction. There are two layers existing in the

RBM. One layer is constituted by visible units, while the

other is composed of hidden units [42]. Visible units are

used to represent observable data, while hidden units are

used to capture dependencies among observed variables.

An illustration of an RBM is shown in Fig. 3.

In this figure, vi i ¼ 1; . . .; 3ð Þ is the unit in the visible

layer, while hi i ¼ 1; . . .; 4ð Þ is the unit in the hidden layer,

and W represents the weight matrix.

However, the classical RBM was developed to solve

problems only with binary data, limiting the applications

for problem solving. Considering the traffic data are con-

tinuous and several variations of RBM have been presented

in previous literature, in this paper, a variation of RBM that

can deal with continuous data, called GBRBM, is intro-

duced. In this model, the binary visible units are replaced

by linear units with Gaussian noise [40]. Note that

GBRBM is an energy-based model, in which hidden-layer

variables are used to describe the probabilistic distribution

of visible-layer variables. Thus, given m visible units and k

hidden units, the probabilistic distribution over variables

can be defined as follows [47]. It is actually a derivation of

the energy function of a standard RBM.

E v; h hjð Þ ¼ �
Xm
i¼1

vi � aið Þ2

2r2
i

�
Xk
j¼1

bjhj �
Xm
i¼1

Xk
j¼1

vi
ri
Wijhj

ð2Þ

where h ¼ W ; a; bf g is the structure parameter of GBRBM,

ai and bj are the bias vectors for visible and hidden units,

respectively, wij is the weight related to the connection

between visible unit vi and hidden unit hj and ri is the

standard deviation of Gaussian noise, which corresponds to

the visible unit vi.

Based on Eq. (2), the probabilistic distribution for each

pair of visible unit and hidden unit v; hð Þ can be described as:

P v; h hjð Þ ¼ e�E v;h hjð Þ
P

v;h e�E v;h hjð Þ ð3Þ

Thus, the probability of the vector in visible layer can be

calculated by summing all probabilities of the vector in

hidden layer, and the process can be described by:

p vð Þ ¼
P

h e�E v;hð Þ
P

v;h e�E v;hð Þ ð4Þ

Since units in a layer only have connections to the units

in another layer, the events are independent of each other.

The conditional probabilities can be calculated by:

P vi h; hjð Þ ¼ N ai þ ri
Xk
j¼1

Wijhj; r
2
i

 !
ð5Þ

P hj ¼ 1 v; hj
� �

¼ r bj þ
Xm
i¼1

vi
ri
Wij

 !
ð6Þ

where r xð Þ ¼ 1
1þexp �xð Þ is the most used activation function

named sigmoid function. N l; r2ð Þ stands for the Gaussian

distribution with mean l and variance r2. In GBRBM, the

deviation is also known as noise level, and in practice, it is

usually set to 1.

For a given training data X ¼ x tð Þ� �
; t ¼ 1; 2. . .;C (C is

the number of sample size), data should be firstly stan-

dardized due to the disunity of weights and measures. After

that, the structure parameters of GBRBM can be estimated

by minimizing the negative log-likelihood. In this paper, a

stochastic approximation method, namely contrastive

divergence (CD) algorithm, is introduced to estimate the

expected values. The structure parameters of GBRBM can

be updated by the following equations:

C ¼ log
Y

m
p vmð Þ ð7Þ

Dwij ¼ e
oC
oWij

¼ e
vihj
r2
i

� 	

d

� vihj
r2
i

� 	

m

ð8Þ

Dai ¼ e
oC
oai

¼ e
vi
r2
i

� 	

d

� vi
r2
i

� 	

m

ð9Þ

Dbj ¼ e
oC
obj

¼ e
hj
r2
i

� 	

d

� hj
r2
i

� 	

m

ð10Þ

where e is the learning rate and :h id and :h im represent the

expected values of the training data and model, respec-

tively. Details of how GBRBM is derived from the clas-

sical RBM are given in ‘‘Appendix.’’

In the DBN model, features of the observation data are

extracted from the hidden units, and the obtained features

then served as the input of another GBRBM. After stacking

GBRBMs in such way, a high-dimensional feature vector

can be obtained in the final GBRBM. However, GBRBM is

originally used for unsupervised learning. One method for

considering the supervised learning is to combine an

additional supervised learning algorithm. In this paper, the

output of the final GBRBM (i.e., high-dimensional feature

1v 2v 3v

3h2h1h 4h

W

Fig. 3 The structure of RBM
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vector) is used as the input of a BP neutral network, and the

output of the BP neutral network is used as the final result

(i.e., predicted bus travel time). The multilayer structure of

the proposed model makes it can process highly structured

data and learn features automatically. We report hereafter

the pseudo-code of the procedure of training the DBN

model. And we use the following symbols: T is the number

of layers; m and k are, respectively, the number of visual

units and hidden units; N is the number of iterations; e is

learning rate; W is the set of weights of GBRBMs to be

estimated; h ¼ W ; a; bf g is the structure parameter of

GBRBM; W represents the inherent features of data;

ETF datað Þ extracts and transforms the features across the

hidden layers; UWE Wð Þ is the procedure which updates the

weights of GBRBM; w is the prediction results of DBN

model; w� is the best results of DBN model; BP w�ð Þ is the

procedure of BP neural network; and D denotes the final

solutions. In addition, the structure of DBN model for bus

travel time prediction is shown in Fig. 4.

3 Case study

3.1 Data descriptions

In this paper, the proposed model is tested by real-world

data collected in Shenyang, the capital city of Liaoning

Province in China. Shenyang has a highly developed urban

transit network that comprises more than 222 bus routes.

Providing accurate bus information is vital for transit

agencies to attract more passengers. In Shenyang, each bus

stop is equipped with a video detector. It is originally used

to identify abnormal conditions. However, by using video

recognition technology, the data of bus travel time and

dwell time can also be obtained.

The selected bus route for testing is route No. 232,

which spans 10.7 km. The operation time of route No. 232

is from 4:50 am to 10:00 pm, and the departure interval is

approximately 2.5 min. The reason for selecting this route

is that there is a large passenger demand on the route every

day. It connects Santaizi bus stop, located in the suburb of

Shenyang, to Wanda plaza, the city center. It has 19 bus

stops and the location of the selected route is illustrated in

Fig. 5. The detailed information is also given in Table 1.

Note that the two directions of the route are considered

separately in this paper.

To obtain the data of bus running time and dwell time,

vehicle recognition has been carried out on the video data

during every whole day of July 17–21, 2017 (Monday to

Friday). By using vehicle recognition technology, the bus

no., bus dwell time and bus running time can be acquired.

However, sometimes, several buses reach the bus stop at

the same time, making vehicle recognition difficult to

implement. To reduce the influence of recognition errors,

automatic vehicle location (AVL) data obtained by the

GPS unit of buses are also used. By mapping the bus

location [48] with the vehicle video records and filtering

out the outliers, 50,876 valid observations of bus route, No.

232, are finally obtained. Then, based on the running

directions, these valid observations are divided into two
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groups. And for each group, data are also divided into two

subsets: 80 percent of the data are used as the training set,

while remaining 20 percent are used as testing data. The

descriptive statistics for each route segment are given in

Table 2.

Note that the north direction is the direction in which

buses move from the city center to suburb, while the south

direction is from suburb to city center. From Table 2, it can

be observed that the bus travel time in the south direction

varies from 30 to 392 s and the travel time in the north

direction is from 58 to 343 s. The average bus travel time

for both directions is almost the same, while the standard

deviation (SD) of the north direction is less than that of the

south direction. The comparisons arise because passenger

demand in the south direction is obviously more volatile

than that in the north direction.

3.2 Performance indexes

The performance of the prediction model is evaluated with

three metrics: mean absolute error (MAE), mean absolute

percent error (MAPE) and root mean squared error

(RMSE). The three metrics could measure the differences

between the predicted and actual observed value in dif-

ferent aspects. They are defined as follows:

MAE ¼ 1

n

Xn
i¼1

ti;k � t̂i;k


 

 ð11Þ

MAPE ð%Þ ¼ 1

n

Xn
i¼1

ti;k � t̂i;k


 



ti;k
� 100% ð12Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n� 1

Xn
i¼1

ti;k � t̂i;k
� �2

s
ð13Þ

where ti;k is the observed travel time and n is the number of

observations.

3.3 Model identification

In model identification, observations of the first four days,

i.e., July 17–20, 2017, are set as the training set and the

observations on July 21, 2017, are selected as the testing

set. Firstly, sensitivity tests are conducted to select rational

input variables. To reduce the effect of different units of

Input 
Vectors

Output
Vectors

Fine-tuning

Fine-tuning

Fine-tuning

Fine-tuning

Fine-tuning

Back-propagation

GBRBM1

BP

Visible unit

GBRBM3

Hidden unit

Visible and Hidden unit

GBRBM2

Fig. 4 The structure of DBM for bus travel time prediction
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measurement, data normalization is conducted and the

normalization method is shown in Eq. (14).

xnormal
i ¼ xi � xmin

xmax � xmin

ð14Þ

where xnormal
i is the normalized travel time, xi is the raw

sample data and xmin and xmax are the minimum and

maximum value of sample data, respectively.

In this paper, six models with different input variables

are calibrated and listed in Table 3. Table 3 also provides

the average MAEs of the prediction results for both

directions. It can be seen that the performance of the sixth

model is the best. This indicates that taking different

aspects of traffic conditions into consideration can truly

improve the accuracy of bus running time prediction. Thus,

the variables, ti�1;k; ti;k�1; tiþ1;k�1; dti;k; dti; r dtð Þ, are all

selected as the input variables of the DBN model in this

paper.

Finding a DBN with well features learning capacity is

difficult since several numerical parameters, such as the

number of layers (T), the number of units (m for visual

units, k for hidden units), the number of iterations (N) and

the learning rate (e), need to be predetermined. In this

paper, the range of these parameters is set as T 2 ½1; 4�,
m 2 ½150; 200�, k 2 ½150; 200�, N 2 ½100; 500� and

e 2 ½0:0005; 0:005�, respectively. Then, a tenfold cross-

validation [3] and a grid search are used to identify the

optimal parameter values. The results of T;m; k;N; eð Þ are

3; 160; 180; 340; 0:001ð Þ. Finally, a three-layer BP neural

network with six hidden units is used to predict bus travel

time. Since the data have been processed through stan-

dardization, the final predicted bus travel time should be

obtained according to Eq. (15).

xinv
i ¼ xnormal

i � xmax � xminð Þ þ xmin ð15Þ

3.4 Numerical results

In this section, to validate the proposed DBN model, four

other prediction models, including k-NN, ANN, SVM and

RFs, are also employed. To have an equitable comparison,

the same training and testing sets are used for all prediction

models, and the input variables of all four models are the

same as the ones of the DBN model. By sensitivity tests,

the value of the parameter k is set as 3 for the k-NN model.

In addition, in the ANN model, a standard three-layer ANN

is used and the number of hidden units is set as 5. There are

two hyper parameters, C and e, existing in the SVM model.

By using a tenfold cross-validation [3] and a grid search

method, the value of the two parameters is set as 25 and

0.2, respectively. Beyond that, the radial basis function

(RBF) kernel function is also used in the SVM model.

Fig. 5 The location of bus route No. 232
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There are also two hyperparameters, while using RFs: mtry

and ntree. By using the same parameter selection method as

SVM model, the two parameters in RFs are set as 4 and

1000, respectively. Finally, the results are summarized in

Fig. 6 and the details are given in Table 4.

Figure 6 shows the performance of all five prediction

models for both directions of the selected bus route in

terms of MAE, RMSE and MAPE. With respect to MAE,

the DBN model outperforms other four prediction models

by 46.01%, 67.47%, 24.17% and 17.91% in the south

direction and 49.64%, 50.79%, 0% and 4.12% in the north

direction, respectively. In terms of MAPE, the DBN model

outperforms other four prediction models by 43.01%,

71.15%, 30.67% and 23.25% in the south direction and

50.77%, 43.73%, 8.53% and 10.65% in the north direction,

respectively. Moreover, regarding the RMSE, the DBN

model outperforms other four prediction models by

41.72%, 56.03%, 14.73% and 11.39% in the south direc-

tion. However, in the north direction, the performance of

SVM model is the best. In summary, the DBN model has

the best performance except the north direction in RMSE.

It demonstrates that the DBN model is more effective than

shallow learning architectures in extracting inherent fea-

tures from massive data. In terms of MAE and MAPE,

though the performances of SVM and RFs models are

worse than that of the DBN model, the results of the two

models are still better than k-NN and BP network model. It

is mainly because the structure risk minimization principle

of SVM and feature reduction principle of RFs can effec-

tively avoid overfitting problem. It also illustrates why the

two types of prediction model are widely used in the

forecast field. Moreover, though the performance of k-NN

model is worse than that of SVM, RFs and DBN models, it

performs better than BP network model and the perfor-

mance of BP network model is the worst. Thus, consider-

ing the simple structure and easy implement, k-NN is still a

satisfying model for bus travel time prediction.

As to computation time, all models were coded in

MATLAB of version R2012a and executed on a PC

equipped with 4 GB of RAM and a dual-core 3.2 GHz

processor. The results are listed in Table 5. In Table 5, it is

obvious that the computation time of RFs is the least

among all bus travel time prediction models while the k-

NN model has the maximum running time. Specifically, the

computation time of k-NN is almost 20 times that of RFs. It

could be contributed to the process of similarity measure-

ment in the k-NN model. Compared with the k-NN model,

the shallow learning methods, BP network and SVM

models, have relatively shorter running time. Moreover,

due to the property of multilayer, it takes more computa-

tion time to establish a trained DBN model. However, with

the help of cloud and parallel computing, the DBN model

can be easily applied to the real-time bus travel time pre-

diction. Considering the trade-off of accuracy and com-

putation time, DBN model is the best approach among the

five bus travel time prediction models and RFs is also a

competitive method.

Since bus travel time is affected by time and space vari-

ables, there are significant differences in the bus travel time

between peak hours and off-peak hours and between different

Table 1 Detailed information

of the selected bus route
Stop no. Stop name Distance between bus stops (m) Cumulative distance (m)

1 Santaizi – –

2 Songling Cultural Palace 861 861

3 Songshan Road 769 1630

4 Armed Police Corps 858 2488

5 Lingxi Road 851 3339

6 Xinle Dorm 874 4213

7 Xinle Site 787 5000

8 Liaoning Building 894 5894

9 Experimental Middle School 797 6691

10 Ningshan Road 794 7485

11 Qishan road 866 8351

12 Fourth Hospital 816 9167

13 Huangshi Square 858 10,025

14 North Market 862 10,887

15 Shenyi Second Hospital 824 11,711

16 Beiliuma Road 870 12,581

17 Taiyuan Road 794 13,375

18 Shenyang Railway Station 807 14,182

19 Wanda Plaza 820 15,002
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driving directions. The reliability of predicted bus travel time

would decrease in peak hours because at this time, traffic

conditions are more complex and the number of passengers

waiting to board is larger. Thus, in this paper, to further

validate the proposed DBN model, the bus travel time pre-

dictions for both south and north directions in peak hours (i.e.,

7 am–9 am and 5 pm–7 pm) on July 21, 2017, are also

conducted. The prediction results of the five models in peak

hours in terms of MAPE are shown in Fig. 7.

For all prediction models, it can be seen from Fig. 7 that

the results of the north direction are better than those of the

south direction. Traffic conditions and the number of pas-

sengers waiting to board in the south direction are always

more complex than those in the north direction since the south

direction is from the suburb to city center, while the north

direction is from the city center to suburb. This indicates that

prediction accuracy decreases as the traffic conditions become

more complex. Nonetheless, compared with other four pre-

diction models, the performance of DBN model in peak hours

remains to be the best. In summary, the prediction results

obtained by DBN model are shown to be more reliable than

those obtained by other prediction models.

Table 2 Descriptive statistic for

the valid observation
Segment no. Route direction Sample size (vehicle) Descriptive statistics

Min (s) Max (s) Ave (s) SD

1 South 1561 65 87 80 5.56

North 1470 101 139 126 11.32

2 South 1481 120 148 136 8.99

North 1190 121 154 140 11.04

3 South 1561 30 73 62 8.86

North 1381 183 218 205 10.93

4 South 1545 135 191 167 20.67

North 1323 117 151 136 11.97

5 South 1497 120 157 144 9.56

North 1176 116 155 138 13.65

6 South 1481 30 75 57 11.11

North 1367 147 186 171 12.86

7 South 1384 105 147 130 12.51

North 1396 83 121 104 12.95

8 South 1497 74 115 101 10.7

North 1381 305 343 329 11.93

9 South 1432 215 313 274 32.74

North 1249 71 123 103 18.57

10 South 1400 210 340 297 44.51

North 1572 58 97 80 13.46

11 South 1484 160 250 216 31.81

North 1293 98 164 142 18.79

12 South 1416 190 248 226 19.26

North 1381 217 259 242 13.98

13 South 1545 90 130 117 10.01

North 1264 61 97 80 13.29

14 South 1560 165 197 181 11.24

North 1367 171 207 191 12.98

15 South 1465 85 115 104 8.63

North 1220 68 110 93 13.87

16 South 1610 80 127 116 10.91

North 1278 188 232 213 14.55

17 South 1352 90 128 115 9.5

North 1352 195 239 222 14.18

18 South 1593 220 392 316 55.41

North 1352 120 162 143 14.79
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Finally, the detailed prediction results for both south and

north directions in peak hours on July 21, 2017, are illus-

trated in Fig. 8. It can be seen that, in both directions, the

maximum error of all segments is less than 12.19. Figure 8

also shows that the prediction errors of segments 9, 10 and

11 in the south direction are the largest, while in the north

direction, the segments are 5 and 7. In Table 2, the stan-

dard deviations of the segments 9, 10 and 11 in the south

direction and segments 5 and 7 in the north direction are

32.74, 44.51, 31.81, 13.65 and 12.95, respectively, which

are obviously larger than those of other segments in each

direction. The results give a further verification of that the

prediction accuracy decreases as the increase in the

uncertainty of traffic conditions.

4 Conclusion

This paper proposed a bus travel time prediction model

based on the concept of deep belief network. Since the

input variables of the proposed model are continuous data,

the basic units of DBN were improved by introducing

Table 3 Prediction models with different input variables

Model Input variables Average

MAE(s)
Upstream traffic conditions Current traffic conditions Downstream traffic conditions Bus dwell time at bus

stop

ti�1;k ti;k�1 tiþ1;k�1 dti;k dti r dtð Þ2
i

South North

1 H H H H 3.49 3.82

2 H H H H 3.07 2.98

3 H H H H 3.34 3.39

4 H H H H 3.15 2.95

5 H H H H H 3.54 2.91

6 H H H H H H 2.98 2.79

Fig. 6 The performance of the five models

Table 4 The average results of the five different prediction models

Direction South North

MAE k-NN 5.52 5.54

BP network 9.16 5.67

SVM 3.93 2.79

RFs 3.63 2.91

DBN 2.98 2.79

MAPE k-NN 3.65 3.92

BP network 7.21 3.43

SVM 3.00 2.11

RFs 2.71 2.16

DBN 2.08 1.93

RMSE k-NN 8.94 7.49

BP network 11.85 7.36

SVM 6.11 4.17

RFs 5.88 4.26

DBN 5.21 4.33
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Gaussian–Bernoulli RBMs. In addition, a BP neutral net-

work algorithm was also used to predict bus travel time in a

supervised fashion. To validate the proposed model, real-

world data from bus route No. 232 in Shenyang, China,

were collected. Four other models, including k-NN, ANN,

SVM and RFs, were also introduced. Results showed that

the performance of DBN model was the best among all five

travel time prediction models. The performance of the

proposed model was also quite good in peak hours. The

maximum errors in such a case, in terms of MAE, were

only 12.19 in the south direction and 10.22 in the north

direction, respectively.

In this paper, only the bus data from a single route are

considered as the input variables. Further study should

consider more factors that might affect prediction accu-

racy, such as weather conditions, the running time of other

bus routes or vehicles on the same segment, and the

environment of signalized intersections to enhance the

performance of the proposed bus travel time prediction

model. In addition, with the development of computer

technology, multiple types of deep learning models have

been proposed. In the future, the comparison among dif-

ferent deep learning models will be conducted to further

prove the validity of the proposed method.
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Appendix

Classical RBM

RBM is a special kind of generative energy-based model

that can learn a probability distribution over a set of inputs.

A classical RBM has binary valued hidden and visible

units. And the energy of a joint configuration v; hð Þ of the

visible and hidden units can be obtained by:

E v; hð Þ ¼ �
Xm
i¼1

aivi �
Xk
j¼1

bjhj �
Xm
i¼1

Xk
j¼1

vihjwij ð16Þ

where vi and hj are the binary states of visible unit i and

hidden unit j, ai and bj are their biases and wij is the weight.

Then, the probability that is assigned to every possible pair

of a visible and a hidden vector is calculated via the energy

function:

p v; hð Þ ¼ e�E v;hð Þ
P

v;h e�E v;hð Þ ð17Þ

Then, the probability of a particular visible state con-

figuration v is derived by summing over all possible hidden

vectors:

p vð Þ ¼
X
h

p v; hð Þ ¼
P

h e�E v;hð Þ
P

v;h e�E v;hð Þ ð18Þ

Similarly, the formula of p hð Þ is entirely analogous to

that of p vð Þ:

p hð Þ ¼
X
v

p v; hð Þ ¼
P

v e�E v;hð Þ
P

v;h e�E v;hð Þ ð19Þ

Table 5 Computation time of all prediction models (unit: s)

Direction k-NN BP network SVM RFs DBN

South direction 41,778 4215 9754 2012 18,301

North direction 50,847 5103 10,369 2394 19,267

Fig. 7 Prediction results of the five models in peak hours

Fig. 8 Prediction errors of the DBN model of different segments
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Some other conditional expressions can also be derived

as follows:

p v hjð Þ ¼ p v; hð Þ
p hð Þ ¼ e�E v;hð Þ

P
v e�E v;hð Þ ð20Þ

p h vjð Þ ¼ p v; hð Þ
p vð Þ ¼ e�E v;hð Þ

P
h e�E v;hð Þ ð21Þ

Thus, the probability of a particular visible unit being on

given a hidden configuration, i.e., the state of a visible

node, given a hidden vector, is derived by:

p vi ¼ 1 hjð Þ ¼ p vi ¼ 1; hð Þ
p hð Þ ¼ 1

1 þ e
� aiþ

Pk

j¼1
hjwij

� � ð22Þ

Similarly, for randomly selected training input v, the bin-

ary state hj of each hidden unit j is set to 1 with probability:

p hj ¼ 1 vj
� �

¼
p hj ¼ 1; v
� �

p hð Þ ¼ 1

1 þ e� bjþ
Pm

i¼1
viwijð Þ ð23Þ

Given r xð Þ ¼ 1
1þe�x, formulas (22) and (23) can be

rewritten as follows:

p vi ¼ 1 hjð Þ ¼ r ai þ
Xk
j¼1

hjwij

 !
ð24Þ

p hj ¼ 1 vj
� �

¼ r bj þ
Xm
i¼1

viwij

 !
ð25Þ

Given a set of C training cases vc c 2 1; . . .;Cf gjf g, the

goal is to maximize the average log probability of the set

under the model’s distribution:

XC
c¼1

log p vcð Þ ¼
XC
c¼1

log

P
h e�E vc;hð Þ

P
v;h e�E v;hð Þ ð26Þ

Then, the gradient or the derivative of the log proba-

bility of the training vector with respect to a weight wij has

the following form:

o

owij

XC
c¼1

log p vcð Þ ¼ o

owij

XC
c¼1

log
X
h

e�E vc;hð Þ � log
X
v;h

e�E v;hð Þ

 !

ð27Þ

The first term of formula (26) can be written as:

o

owij

XC
c¼1

log
X
h

e�E vc;hð Þ ¼ �
XC
c¼1

P
h e�E vc;hð Þvci hjP

h e�E vc;hð Þ ð28Þ

Notice that the term

P
h
e�E vc ;hð Þvci hjP
h
e�E vc ;hð Þ is just the expected

value of vci hj given that v is clamped to the data vector vc.

This is easy to compute since we know vci and we can

compute the expected value of hj using formula (25).

The second term of formula (27) can also be written as:

o

owij

XC
c¼1

log
X
v;h

e�E v;hð Þ ¼ �
XC
c¼1

P
v;h e�E v;hð ÞvihjP

v;h e�E v;hð Þ ð29Þ

Here, the term

P
v;h

e�E v;hð ÞvihjP
v;h

e�E v;hð Þ is the expected value of vihj

under the model’s distribution. This expectation can be

approximated well in finite time by the contrastive diver-

gence (CD) algorithm.

By using :h id and :h im to represent the expected values

of the training data and model, respectively, formula (27)

can be rewritten.

o

owij
log p vð Þ ¼ vihj

� 

d
� vihj
� 


m
ð30Þ

Thus, the update rule for weight wij is shown as follows:

Dwij ¼ e vihj
� 


d
� vihj
� 


m

� �
ð31Þ

where e is the learning rate.

The update rules for the biases are similarly derived to

be:

Dvi ¼ e vih id� vih im
� �

ð32Þ

Dhj ¼ e hj
� 


d
� hj
� 


m

� �
ð33Þ

Gaussian–Bernoulli RBM

The classical RBM was developed only using binary

logistic units for visible and hidden units; in this paper for

the traffic data that are continuous, a conversion to con-

tinuous-valued inputs is used as described in Refs. [42, 47].

To model continuous data, the binary visible units of RBM

are replaced by linear units with Gaussian noise, and then

the energy function of GBRBM becomes:

E v; hð Þ ¼ �
Xm
i¼1

vi � aið Þ2

2r2
i

�
Xk
j¼1

bjhj �
Xm
i¼1

Xk
j¼1

vi
ri
Wijhj

ð34Þ

where ri is the standard deviation of the Gaussian noise for

visible unit i.

Given the energy function (34), the distribution p v hjð Þ
can be derived as follows:

p v hjð Þ ¼ e�E v;hð Þ
R
v e�E v;hð Þdv

¼ e
�
Pm

i¼1

vi�aið Þ2

2r2
i

þ
Pk

j¼1
bjhjþ

Pm

i¼1

Pk

j¼1

vi
ri
Wijhj

R
v e

�
Pm

i¼1

vi�aið Þ2

2r2
i

þ
Pk

j¼1
bjhjþ

Pm

i¼1

Pk

j¼1

vi
ri
Wijhj

dv

¼
Ym

i¼1

1

ri
ffiffiffiffiffiffi
2p

p � e

� 1

2r2
i

vi�ai�ri

Pk

j¼1
Wijhj

� �� �2

ð35Þ

Thus, p hk ¼ 1 vjð Þ is computed as follows.
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p hk ¼ 1 vjð Þ ¼
P

hj 6¼k p v; hk ¼ 1; hj6¼k

� �

p vð Þ

¼
P

hj 6¼k e

Pm

i¼1

vi
ri
wikþbj

� �
þ
Pm

i¼1

Pk

j6¼k

vi
ri
Wijhjþ

Pm

i¼1

vi�aið Þ2

2r2
i

þ
Pk

j6¼k
hjbj

� �

P
h e�E v;hð Þ

¼ 1

1 þ e
�
Pm

i¼1

vi
ri
wikþbj

� �

ð36Þ

Note that Eq. (36) is the same as in the classical RBM

except the vi scaled by the reciprocal of its standard

deviation ri.
The training procedure for a GBRBM is identical to that

of an RBM. As in that case, we take the derivative shown

in formula (27). We find that

o

owij

XC
c¼1

log
X
h

e�E vc;hð Þ ¼ �
XC
c¼1

P
h e�E vc ;hð Þ oE vc;hð Þ

owijP
h e�E vc;hð Þ

¼ � 1

ri

XC

c¼1

P
h e�E vc;hð Þvci h

c
jP

h e�E vc;hð Þ

ð37Þ

Similarly,

o

owij

XC
c¼1

log
X
v

X
h

e�E v;hð Þ ¼ � 1

ri

XC

c¼1

P
v

P
h e�E v;hð ÞvihjP

v

P
h e�E v;hð Þ

ð38Þ

which we estimate, as before, using CD algorithm.
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