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Abstract
Exoskeleton as a real-time interaction with the wearer’s intelligent robot, in recent years, becomes a hot topic mouth class

research in the field of robotics. Wearable exoskeleton outside the body, combined with the organic body, plays a role in

the protection and support. By wearing an exoskeleton robot, it is possible to expand the wearer’s athletic ability, increase

muscle endurance, and enable the wearer to complete tasks that he or she cannot perform under natural conditions. Based

on the above advantages, the exoskeleton robot in military medical care and rehabilitation has broad application prospects.

This paper describes the multimodal model of machine learning research status and research significance of the text on the

exoskeleton robot applications, and on the basis of a detailed study of gait. It mainly involves: analysis and planning and

obtaining motion information processing, pattern recognition and analysis of gait and the gait conversion process, and the

EEG and joint position, foot pressure, such as different modes of data as input to machine learning models to improve the

timeliness, accuracy and safety of gait planning. Since the common movement process involves the transformation process

of gait, this paper studies the gait transformation process including squatting, walking on the ground and standing.
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1 Introduction

Driven by electronic information technology [1], sensor

technology [2] and computer technology [3] for more than

half a century, robotics [4–6] is moving from traditional

industrial manufacturing to educational entertainment,

rescue exploration, military applications, family services,

and even emerging fields such as medical care and inclu-

sive finance have come to the forefront of robotics research

and development. The development of network technology

has also peaked in the past two decades. Similarly, the

information technology revolution has reached an

unprecedented climax under the global popularity of the

Internet. Exoskeleton robot technology [7–9] is a com-

prehensive technology that integrates sensing, control,

information, fusion, and mobile computing to provide a

wearable mechanical mechanism for people who are

operators, also known as ‘‘wearable robots.’’ The

exoskeleton is a mechanical structure that is worn outside

the operator’s body to provide power to assist the person’s
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movements and enhance the ability and speed of move-

ment. In recent years, with the increasing use of lower

extremity exoskeletons in military and medical prosthetics,

how to achieve better coordination and fine control of this

system is particularly important. Although the concept of

exoskeleton has been around for decades in American

science fiction movies, it has never been a practical concept

given the limitations of basic technology. Energy supply is

a major obstacle. The energy source of the human extra-

corporeal bone must be mobile and provide sufficient

energy for the task assigned by the wearer. The energy

source US military’s practical exoskeleton booster robot

should not be attenuated during missions. Exercise is

another issue. The human body can walk, run and bend

freely forward and backward. These complex movements

have proven to be difficult to simulate by machinery. The

human in vitro skeletal assist robot originated from the

vision and research and development of the 1982 Hardman

power-assisted robot in the USA. Today, the whole is still

in the research and development stage; the energy supply

device and the control system and force transmission

device meet the requirements of agile and accurate human

body motion. There is a need to invest heavily in research

and development and experimentation. Future exoskeleton

boosters can be applied in many aspects including military

[10], minerals [11], industry [12], medical [13], etc.,

because the future needs the human body’s function to

continuously improve, even far beyond its limits.

Exoskeleton booster equipment will be particularly

important and will eventually become an essential product.

Although the exoskeleton robot is intelligent and it can

adapt to a specific environment, there is still a certain

deviation in the human motion recognition [14–16] and

behavior pre-judgment [17], and the inevitable hysteresis is

recognized in the pre-judgment. For exoskeleton robots,

there are still many obstacles and problems in human–

machine systems and artificial intelligence. However, in

order to overcome the complexity and the harshness of the

environment, more scholars have carried out motion

recognition on this exoskeleton robot through research and

practice, and behavioral pre-judgment to improve the

synergy between the follow-up of the exoskeleton robot

and the human movement and the stability of the

exoskeleton system during design. The domestic

exoskeleton robot [18–21] started relatively late and began

in the early twentieth century. Among them are Zhejiang

University, Harbin Engineering University, Hefei Intelli-

gent Machinery Institute of Chinese Academy of Sciences

and China University of Science and Technology. Zhejiang

University developed a power-assisted robot for the med-

ical rehabilitation field. The driver of the pith joint and the

knee joint was designed as a circular cylinder, and the

pressure sensor of the sole and the displacement signal of

the cylinder were combined to judge the wearer’s intention

of motion. Yang Canjun of Zhejiang University also pro-

posed an adaptive neuro-fuzzy inference technique to learn

and train the external bone marrow robots by collecting the

motion information of the human gait training process.

Pattern recognition [22–24] is a technique that uses a

computer to classify a series of physical objects on the

basis of observations so that the recognition results are in

good agreement with the objects. With this technology

applied, much of the work can be performed by machines

instead. For decades, robotics has grown rapidly as an

emerging field. Applying pattern recognition to robot

technology enables the robot to accurately identify various

objects [25, 26], analyze and process the acquired infor-

mation, so that the robot has more powerful recognition

and processing functions. Humans provide more conve-

nient services to meet demand. Intelligent robots equipped

with pattern recognition technology have shown great

development prospects. The human body’s movement

pattern refers to different movement states according to

different terrains, such as walking on the ground, uphill,

and downhill. It is important that the movement mode of

the exoskeleton robot can automatically and smoothly

change. In daily research and practical application, it is

necessary to accurately identify the movement mode of the

exoskeleton robot so that the robot can better perform the

corresponding action. The gait pattern recognition study

can be distinguished by identifying different sources, such

as classification based on EMG signals and classification

based on joint kinematics/kinetic signals.

This paper designs a brain–computer interface system

based on steady-state vision, collects EEG signals to

identify the wearer’s motion intention, and then combines

EEG signals and motion mechanics as input to the machine

learning model to improve the overall gait planning. The

real time, global and security of the system, the gait

planning algorithm is improved, and the validity and

accuracy of the multimodal machine learning model are

verified by experiments.

2 Proposed method

2.1 Exoskeleton robot

The exoskeleton is a human–computer interaction intelli-

gent mechanical device for human wear. It can protect and

support the wearer by combining the intelligence of the

human and the power of the robot. The movement of the

exoskeleton robot can be controlled by human thinking and

assist the human body in completing the movement, even

completing tasks that humans cannot accomplish. As a

branch of the biped robot, the exoskeleton robot not only
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has a complex dynamic system, but also involves the

knowledge of many disciplines such as mechanism, gait

control, information processing, human–computer interac-

tion, communication network technology team and control

theory. The primary function of the exoskeleton robot is to

assist the wearer’s walking. After the human wears the

exoskeleton, the corresponding path planning and gait

control are performed according to the environment.

Exoskeleton robots do not need to perform the complex

gait planning required by ordinary biped robots and only

need to combine the intelligence of the human body for

simplified gait planning. After being able to coordinate

with the human body, the main role of the exoskeleton

robot is to provide power to the human body to help the

human body to walk, improve the speed and endurance of

walking, and at the same time reduce the weight of the

human body through the robot’s own power system, so that

the human body can cope with the long time. Walking with

weights: These excellent characteristics of exoskeleton

robots have broad application prospects. In order to assist

the wearer to bear the heavier load, the exoskeleton robot

can effectively enhance the individual combat capability of

the military. Due to physical limitations, individual soldiers

cannot carry too many weapons during the combat process,

and they cannot perform long-term combat operations.

After wearing the exoskeleton, they can not only provide

the soldiers with the exoskeleton power system, the power

of complex terrain walking can also replace the weapons of

the soldiers, so that soldiers can carry more weapons and

equipment than usual, reduce the fatigue of the soldiers,

and effectively improve the time and efficiency of combat.

In addition, in the event of a disaster such as an earthquake,

many rescue equipments are often unable to arrive at the

scene in the first time. Rescuers are required to walk on

foot. This requires the rescue personnel to carry a variety of

rescue equipment and may need to help rescuers heavy

objects, carrying the injured. At the same time, work such

as field surgery and geological exploration in complex and

remote areas also requires exoskeleton robots to help

researchers carry more research equipment for a broader

and more in-depth research work.

In the military field, the exoskeleton is very attractive

because it can effectively improve the individual combat

capability. The US Army’s successful ‘‘Human General

Weight Bearing Bracket’’ (HULC) is an exoskeleton robot

that can greatly increase the soldier’s ability to carry

weight, making it easy for soldiers to carry heavy loads of

90 kg. Putting on the fully charged UHLC, soldiers car-

rying a weight of 90 kg can march for 1 h at a speed of

4.8 km/h, with a maximum march speed of 16 km/h. In

addition to military, exoskeleton robots can also be applied

to various fields of social life, such as assisting disabled

people to complete normal human body movements.

Among them, the more famous one is the Hybird Assistive

Leg series of lower extremity exoskeletons developed by

cybemiesLab led by Prof. Shanhai Jiazhi of the University

of Tsukuba in Japan. It is mainly used to assist patients

with gait disorders to walk. HAL uses sensor devices such

as angle sensors, EMG signal sensors and ground contact

force sensors to obtain the state information of the

exoskeleton and the operator. The operator’s motion

intention is calculated by the computer, and finally the

motor is driven to assist the human body motion. Although

no soldiers have seen mechanical legs walking yet, military

exoskeleton robots are gradually becoming a reality. Of

course, due to some technical parameters, such as work

continuity, size, weight, and reaction speed, it is far from

‘‘universal.’’ For the requirements of the soldiers, it takes a

certain amount of time to make the exoskeleton robots

really use for marching.

2.2 Motion pattern recognition

Motion recognition systems are widely used in medical,

health care, sports, military, and entertainment. Therefore,

data need to be processed, identified, and applied according

to the needs of the system. The devices are mainly PCs or

mobile phones. The main functions that need to be

implemented are: it is necessary to receive and dynamically

display data collected by the sensor terminal, as well as

data query and storage, etc., in real time. However,

depending on the occasion of its use, the research methods

are also very different, and the application of its develop-

ment is also different. Sports pattern recognition is a very

interesting and challenging problem, which is widely used

in sports, running, ball games and other fields. The usual

implementation is a computer vision-based approach. The

vision-based method captures the user’s motion through the

camera and then recognizes different motion patterns

through computer vision-related methods. At present, there

are two main types of data that rely on the study of human

gait: one is to use sensors to collect speed, displacement,

bioelectrical signals and pressure signals, etc., and the other

is based on computer vision. The gait is analyzed by col-

lecting images or screens of the motion process. In the

research of exoskeleton robots, considering the application

of exoskeleton robots, most of them use sensor-based

motion information acquisition. There are many mechani-

cal sensors in the research, such as goniometers and sole

pressure switches. Although such simple sensors cannot

provide a large amount of data for gait analysis, they study

key events in gait and some quantification. Analysis can

play a certain role. Secondly, the measuring force sensors

are the sole pressure sensor and the contact force sensor,

etc.; because the foot is the only body part that is in contact

with the ground during the movement, the sensor can
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detect the relationship between the pressure and the

moment of the sole and the ground, and analyze the sole of

the foot. The force situation provides a lot of useful

information for gait analysis.

In recent years, with the rapid development of sensor

technology, data signal processing technology and hard-

ware circuit technology, many parameters of the human

body can be expressed by collecting some sensor data. For

example, the temperature of the human body can be rep-

resented by temperature sensor data information; the pulse

of the human body can pass the pulse sensor which is used

to indicate that some movements of the human body can be

expressed by the acceleration sensor, the data information

of the gyro sensor, and the like. The sensors currently used

to collect human motion data information mainly include

pressure sensors, acceleration sensors, and gyro sensors.

Different researchers place sensor nodes at different loca-

tions to collect data information of different movements of

the human body. Human motion gait is a complex process

that involves multiple, multi-type data. It is difficult to

accurately identify the movement gait and the movement

intention of the exoskeleton wearer by relying on a single

type of data, and relying on a single type of biosignal to

make gait recognition; if it is affected by external uncer-

tainties, it may cause erroneous recognition results, which

may affect subsequent control. The use of two aspects of

motion information, namely inertial data and MG data, is

designed to provide high accuracy, reliability and versa-

tility in the research results by relying on the motion

information provided by the two types of data. The sensor

module is mainly responsible for collecting data informa-

tion of effective human motion.

2.3 Multimodal

The source or form of each type of information can be

called a modality. For example, people have tactile, audi-

tory, visual, and olfactory; media of information, voice,

video, text, etc.; a variety of sensors, such as radar, infrared

and accelerometers. Each of the above can be referred to as

a modality. At the same time, the modality can also be

defined very broadly. For example, two different languages

can be regarded as two modalities, and even data sets

collected in two different situations can be considered as

two modalities. Multimodal representation there are two

types: shows a combined characteristic map to different

modalities of the same space, the representative methods

neural network method, the method of FIG sequence model

the model method. The coordination method features are

still in the original space, but are coordinated by similarity

or structural features. Multimodal feature translation is

divided into sample-based and generative: sample-based

method is to find the best translation from the feature

dictionary. Sample-based methods are divided into search-

based and merged methods. The generative method is to

train a translation model through the sample and use the

translation model to complete the transformation of the

feature. The generative methods are grammar-based,

encoder–decoder models, and continuous models. Multi-

modal feature alignment is the finding of the relationship

between different modal features of the same instance.

Explicit alignment methods include supervised models and

unsupervised models. Unsupervised models are CCA and

DTW (dynamic warping). Implicit alignment methods

include graph models and neural networks. Characterized

in multimodal fusion multimodal fusion wherein it means

different from the modal features integrated together,

together to complete a task, such as classification. Model-

free fusion methods are divided into early models (based

on features), late models (based on decision-making), and

hybrid models with model fusion methods such as kernel

methods, graph model methods, and neural network model

methods.

In theory, due to the relationship between different

modalities, the information contained in two or more

modal data is larger than the information contained in any

one of the modalities. Therefore, when processing data

with multimodal information, if only one of the modal

information is analyzed and utilized, it is equivalent to

discarding the useful information contained in the

remaining modalities, which is a waste of existing data. If

the traditional data mining model is used to mine the data

of each modality, it may not only cause repeated analysis

of different modal data with common information, increase

the amount of calculation, but also ignore different modal

information. The relationship between the two is still dif-

ficult to avoid information waste. In order to fully utilize

the information of the respective modalities of multimodal

data and make full use of the inter-modal correlation

information, academics and industry have been eager to

obtain more effective multimodal learning algorithms to

improve multimodality. The performance of tasks such as

classification, retrieval, etc.

2.4 Machine learning model

The algorithms used in machine learning fall into three

categories: supervised learning, unsupervised learning and

reinforcement learning. Supervised learning provides

feedback to indicate whether the prediction is correct or

not, while unsupervised learning does not respond: the

algorithm only attempts to classify the data based on the

implicit structure of the data. Reinforcement learning is

similar to supervised learning because it receives feedback,

but feedback is not necessary for every input or state.

People and animals perceive and learn through visual,
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listening, speaking, etc., and are essentially multimodal

learning. In recent years, due to the development of deep

learning, multimodal machine learning has become a

research hotspot of artificial intelligence. People’s per-

ceptions in life are diverse, including sight, hearing, touch,

taste, smell and so on. Any lack of sensory ability can

cause an abnormality in intelligence or ability. Based on

this, multimodal machine learning provides multimodal

data processing capabilities for machines. For example,

look at the picture and watch the movie translation. The

long-term goal of multimodal learning is to make the

machine fully aware of the environment, such as perceiving

human emotions, words, expressions, and interacting more

intelligently with the environment. Multimodal machine

learning, the full English name MultiModal Machine

Learning (MMML), aims to realize the ability to process

and understand multi-source modal information through

machine learning. At present, the more popular research

direction is multimodal learning between images, video,

audio and semantics. Multimodal learning started in the

1970s and went through several stages of development.

After 2010, it fully entered the deep learning phase. Single-

modal representation learning is responsible for repre-

senting information as a numerical vector that a computer

can process or further abstracting into a higher-level

eigenvector, while multimodal representation learning

refers to culling between modes by exploiting the com-

plementarity between multimodalities. Redundancy to

learn a better representation of features. It mainly includes

two research directions: joint representations and coordi-

nated representations. The joint representation maps mul-

tiple modal information together into a unified multimodal

vector space; the cooperative representation is responsible

for mapping each modality in the multimodality to its

respective representation space, but the mapped vectors

satisfy Certain correlation constraints (such as linear

correlation).

At present, academically mature is multimodal learning

between vision and semantics. For example, generate a text

description for an image, or answer the corresponding text

question for the content of a picture. Visual information is

usually processed by CNN, and text information is pro-

cessed smoothly using RNN. The way to align multi-di-

mensional data is the attention mechanism, for example, to

see which object in the figure corresponds to the noun in

the picture. Moreover, multimodal learning is superior to

single-modal machine learning in many traditional

machine learning tasks. For example, the text translation

effect of assisting visual information is better than using

only text information. Multimodal machine learning refers

to the establishment of a model that allows the machine to

learn the information of each modality from multimodality

and to achieve the exchange and conversion of information

of each modality. From early audio-visual speech recog-

nition research to recent language and visual model

research, multimodal machine learning enhances the

machine’s cognitive ability to various modes, deepens the

cognitive depth of the machine to each mode, and realizes

information in the machine environment. Significant results

have been achieved in terms of communication and inter-

operability. The multimodality gives the modal ability

outside the machine learning database, that is, the modal

generalization ability, and the multimodal representation

and multimodal model learned on the existing modal can

be generalized to the unmodality. Multimodal deep learn-

ing is an inevitable outcome of the development of mul-

timodal machine learning to the present stage. Multimodal

deep learning inherits the learning tasks and learning

objectives of previous multimodal machine learning and

promotes multimodal machines with deep learning meth-

ods. The progress and development of learning have made

remarkable progress. Multimodal machine learning

research originates from life and also serves life. Multi-

modal research is divided into four developmental periods,

namely multimodality study of human behavior, multi-

modal computer processing research, multimodal interac-

tion research and multimodal deep learning research.

3 Experiments

Taking into account the steady-state visually evoked

potentials (steady-state visual evoked potential, SSVEP)

having distinct cycle characteristics, the shorter the time

required for stimulation, easily extracted feature data, the

higher classification accuracy, etc., this thesis-based

SSVEP’s EEG. Determine the appropriate stimulation

frequency by dividing the refresh rate of the display.

f ¼ 60

N
; N ¼ 2; 3; . . .; 10 ð1Þ

where f represents the stimulation frequency, as shown

in Table 1.

For a common LCD display, the 60 Hz corresponding

time length is 1000 ms, so the stimulus time period t is:

t ¼ 1000

f
¼ 50N

3
f ð2Þ

Therefore, the time periods corresponding to the two

frequencies selected in this paper are 117 ms and 100 ms,

Table 1 The stimulation frequency of LCD display

N 2 3 4 5 6 7 8 9 10

f (Hz) 30 20 15 12 10 8.57 7.5 6.67 6
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respectively. The SSVEP-based brain–computer interface

system designed in this paper is shown in Fig. 1. It mainly

includes visual stimulator, ActiveTwo system, feature

extraction and algorithm processing, and execution equip-

ment. When the human brain receives the predetermined

evoked source stimuli, the cerebral cortex will generate

corresponding characteristic EEG signals, and the EEG

signals will be collected by the ActiveTwo system, and the

EEG data will be transmitted to the computer through

conversion. The computer undergoes data preprocessing,

data feature extraction, control conversion algorithm, and

finally performs corresponding actions on the exoskeleton

robot system.

The experiments selected four average age of 25 years

old in good health, after normal vision or corrected by the

normal male volunteers participated in EEG acquisition

experiments. Before the experiment, first explain the pur-

pose and requirements of this experiment to each subject in

detail, and let each subject do 2 min of preparatory stim-

ulation before the official start, so that they can adapt to the

experiment, try to stay relaxed and reduce ocular, myo-

electric and other interference. Then, the subject wearing

the electrode cap, and the conductive paste on the target

injection electrode active plug electrode, the reference

electrode is provided, the sampling frequency, amplitude

scales and the like. Set the ActiveTwo system to a sam-

pling frequency of 256 Hz and a total of 6 s of visual

stimulation time per experiment.

4 Discussion

When the typical correlation analysis method is used to

identify the motion intention corresponding to the EEG

signal, the selected data length has an important influence

on the recognition result. Therefore, this paper selects the

EEG signals of different time lengths as input and calcu-

lates the recognition accuracy of CCA.

It can be seen from Fig. 2 that SSVEP signals of dif-

ferent time lengths have an important influence on the

recognition result of CCA. When the time length is

increased from 1 to 4 s, the recognition accuracy is higher

and higher. However, considering that too long acquisition

time will affect the performance of real-time experiments;

this paper selects the acquisition data with a length of 3 s as

input, which not only ensures better accuracy (more

than 90%), but also shortens visual stimulation time,

reduces visual fatigue in the subject and increases the speed

at which the system resolves the intent of the movement.

In this off-line experiment, each volunteer received 20

rounds of tasks, each round consisted of 5 experiments, so

each volunteer produced a total of 100 visual stimulation

experiments. The results are shown in Table 2.

The off-line experiments of these four volunteers have a

relatively high correct recognition rate, and the average

accuracy rate is over 90%, which also shows that the fre-

quency corresponding to the SSVEP signal can be well

recognized by using CCA. At the same time, the recogni-

tion rates of different subjects are different, the smallest is

Fig. 1 Brain–computer interface system based on SSVEP

1874 Neural Computing and Applications (2020) 32:1869–1877

123



89%, and the largest is 95%, indicating that the ‘‘quality’’

of EEG signals of different subjects is different, and some

can be well recognized. The possible features are not

obvious, and the recognition rate is relatively low. To

verify the effectiveness of the gait planning algorithm

based on the multimode input machine learning model, we

further conducted an online experiment, as shown in Fig. 3.

The experimenter needs to complete three actions in

sequence: squatting ? walking ? standing.

The experimenter has to accept a visual stimulus signal

generating SSVEP. At this time, BCI system will carry out

the current SSVEP signal analysis processing to identify

the motion intent volunteers. Figures 4 and 5 show the

experimental results of the experimenters 1 and 2,

respectively.

It can be seen from the experimental results that the

average correct rate of this experiment is more than 90%,

and all the false positive rates are less than 5%, which

again shows that CCA can effectively identify the SSVEP

signal. Command and can reduce the error rate too,

demonstrate the effectiveness of the proposed outer mul-

timodal machine learning pattern recognition algorithms

motion robot bone.

5 Conclusions

In today’s era, robotics has shown tremendous develop-

ment potential in various fields and played an important

role. It can be expected that with the development of the

times, robotics will be applied more widely, reasonably and

effectively, and further move toward intelligence and

autonomy. At the moment of rapid development of deep

learning, artificial intelligence has gradually embarked on

the historical stage, and giving machines the ability to

accept, synthesize, and process various external

Fig. 2 The effect of time length on recognition accuracy

Table 2 Experimental result
Volunteer Number of experiments Number of stimuli Correct recognition times Accuracy (%)

1 20 100 90 90.00

2 20 100 91 91.00

3 20 100 95 95.00

4 20 100 89 89.00

Total 80 400 365 91.25

Fig. 3 Squat station traveling

operation Li
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information and reflect the accepted information is the

basic requirement for artificial intelligence. Multimodal

deep learning is an effective means to achieve this basic

requirement. As an important branch of biped robot,

exoskeleton robot not only has broad application prospects

in the military field, but also has important application

value in disability, rehabilitation and other aspects. At the

same time, exoskeleton robots are also a complex and

multidisciplinary robotic system that has many problems to

solve.

An important feature of the exoskeleton robot is the

close interaction with the wearer. The exoskeleton needs to

be able to understand the movement intention and move-

ment state of the human body in real time, and realize the

movement coordinated with the wearer through the control

of the controller itself, thereby enabling the wearer to the

role of support and protection. In order to understand the

movement state of the human body, it is necessary to

obtain specific information on human movement through

certain methods. In this paper, the combination of motion

mechanics and EEG signals is used as the input of machine

learning model, comprehensive decision making, judgment

of the wearer’s motion intention and execution of relevant

instructions after analysis. The experimental results have

high accuracy and demonstrate multimodal machine

learning. The validity of the model.
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