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Abstract
This paper considers the problem of leveraging multiple sources of information or data modalities (e.g., images and text) in

neural networks. We define a novel model called gated multimodal unit (GMU), designed as an internal unit in a neural

network architecture whose purpose is to find an intermediate representation based on a combination of data from different

modalities. The GMU learns to decide how modalities influence the activation of the unit using multiplicative gates. The

GMU can be used as a building block for different kinds of neural networks and can be seen as a form of intermediate

fusion. The model was evaluated on two multimodal learning tasks in conjunction with fully connected and convolutional

neural networks. We compare the GMU with other early- and late-fusion methods, outperforming classification scores in

two benchmark datasets: MM-IMDb and DeepScene.

Keywords Multimodal learning � Representation learning � Information fusion � GMU

1 Introduction

Representation learning methods have received a lot of

attention by researchers and practitioners because of their

successful application to complex problems in areas such

as computer vision, speech recognition and text processing

[40]. Most of these efforts have concentrated on data

involving one type of information (images, text, speech,

etc.), despite data being naturally multimodal. Multi-

modality refers to the fact that the same real-world concept

can be described by different views or data types. Col-

laborative encyclopedias (such as Wikipedia) describe a

famous person through a mixture of text, images and, in

some cases, audio. Users from social networks comment

about events like concerts or sport games with small

phrases and multimedia attachments (images/videos/au-

dios). Patient’s medical records are represented by a col-

lection of images, text, sound and other signals. The

increasing availability of multimodal databases from dif-

ferent sources has motivated the development of automatic

analysis techniques to exploit the potential of these data as

a source of knowledge in the form of patterns and struc-

tures that reveal complex relationships [7, 11]. In recent

years, multimodal tasks have received attention by the

representation learning community. Strategies for visual

question answering [5] or image captioning [31, 67, 72]

have developed interesting ways of combining different

representation learning architectures.

Most of these models are focused on mapping from one

modality to another or solving an auxiliary task to create a

common representation with the information of all

modalities. In this work, we design a novel module that

combines multiple sources of information, which is opti-

mized with respect to the end goal objective function. Our

proposed module is based on the idea of using gates for

combining input modalities giving a higher importance to

the ones that are more likely to contribute for correctly
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generating the desired output. We use multiplicative gates

that assign importance to various features simultaneously,

creating a rich multimodal representation that does not

require manual tuning, but instead it learns directly from

the training data. We show in the experimental evaluation

that our gated model can be reused in different network

architectures for solving different tasks, and can be opti-

mized end-to-end with other modules in the architecture

using standard gradient-based optimization algorithms.

Such behavior was evidenced in the experimental analysis

that suggested that the gain is based on giving more weight

to specific modalities for specific problems.

We explored two application use cases: genre movie

prediction, and image segmentation. On the one hand,

genre prediction has several application areas like docu-

ment categorization [32], recommendation systems [47],

and information retrieval systems, among others. On the

other hand, image segmentation is heavily used in auton-

omous drive systems [62], medical imaging [30] and other

computer vision tasks. The motivation to chose the above

tasks is twofold: (1) to evaluate the model in different and

unrelated scenarios in order to support that the model is

suitable for different multimodal learning tasks, and (2) to

integrate the proposed unit in the most popular network

architectures: convolutional and fully connected.

The main contribution of this work is a new deep neural

network building block, the gated multimodal unit (GMU),

which is able to learn an input-dependent gate-activation

pattern that determines how each modality contributes to

the output of hidden units. This generalizes conventional

multimodal late- and early-fusion architectures to a mod-

ular intermediate fusion that can be used in different stages

of a neural network, combined with other layer types (e.g.,

convolutional or recurrent), and trained in an end-to-end

fashion.

The rest of this paper is organized as follows: Sect. 2

gives an overview of previous related work. Section 3

presents the gated multimodal unit (GMU) and empirically

evaluates its behavior with synthetic experiments. Sec-

tion 4 presents a systematic evaluation in two supervised

learning tasks. Finally, Sect. 5 summarizes the main

aspects of this work and presents its main conclusions.

2 Related work

Different reviews [7, 11, 17, 41] have summarized strate-

gies that addressed multimodal analysis. Most of the

reviewed works claimed the superiority of multimodal over

unimodal approaches for automatic analysis tasks. A con-

ventional multimodal analysis system receives as input two

or more modalities that describe a particular object. The

most common multimodal sources are video, audio, images

and text. In recent years there has been a consensus with

respect to the use of representation learning models to

characterize the information of this kind of sources [40].

However, the way that such extracted features are com-

bined is still in exploration.

Multimodal combination seeks to generate a single

representation that eases automatic analysis tasks when

building classifiers or other predictors. A basic approach is

to concatenate features to get a final representation

[34, 55, 61]. Although it is a straightforward strategy, given

that the nature of data for each modality is different, their

statistical properties usually are not shared across modali-

ties [59], and thus the predictor needs to model complex

interactions between them. Instead, more elaborated com-

bination strategies have been proposed, in which prior

knowledge is exploited, additional information is included

or multimodal interactions are explicitly modeled. Some of

those strategies include Restricted Boltzmann Machines

(RBMs) and autoencoders [53] was one of the first multi-

modal methods based on deep architectures. The model

concatenated higher level representations and trained two

RBMs to reconstruct the original audio and video repre-

sentations, respectively. Additionally, they trained a model

to reconstruct both modalities given only one of them as

input. In an interesting result, Ngiam et al. [53] were able

to mimic a perceptual phenomenon that demonstrates an

interaction between hearing and vision in speech percep-

tion known as McGurk effect. However, notice that RBMs

limits its scalability because a Monte Carlo Markov chain

is required during training stage. A similar approach was

proposed by Srivastava and Salakhutdinov [59]. They

modified feature learning and reconstruction phases with

Deep Boltzmann Machines. Authors claimed that such

strategy is able to exploit unlabeled data by improving the

performance in retrieval and annotation tasks. Other similar

strategies propose to fuse modalities using neural network

architectures [4, 19, 33, 37, 45, 50, 63, 70] with two input

layers separately and including a final supervised layer

such as softmax regression classifier.

An alternative approach involves an objective or loss

function suited for the target task [1, 21, 38, 50, 57, 58, 78].

These strategies usually assume that there exists a common

latent space where modalities can express the same

semantic concept through a set of transformations of the

raw data. The semantic embedding representations are such

that two concepts are similar if and only if their semantic

embeddings are close [54]. In [57] a multimodal strategy to

perform zero-shot classification was proposed. They

trained a word-based neural network model [24] to repre-

sent textual information, while use unsupervised feature

learning models proposed in [16] to get image represen-

tation. The fusion was done by learning an image linear

mapping to project images into the semantic word space
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learned in the neural network model. Additionally a

Bayesian framework was included to decide whether an

image is of a seen or unseen class. Frome et al. [21] learn

the image representation using a CNN trained with the

Imagenet dataset and a word-based neural language model

[52] to represent the textual modality. To perform the

fusion they re-train the CNN using the text representation

as target. This work outperforms the scalability of [57]

from 2 to 20,000 unknown classes in the zero-shot learning

task. A modified strategy of Frome et al. [21] was pre-

sented by Norouzi et al. [54]. Instead of re-training the

CNN network, they built a convex combination with

probabilities estimated by the classifier and semantic

embedding vector of the unseen label. This simple strategy

outperforms state-of-the-art results. Because the cost

function involves both multimodal combination and

supervision, these family of models are tied to the task of

interest. Thus, if the domain or task conditions change, an

adaptation of the model is required.

Bayesian alternatives to combine information also have

been explored. In particular, Bayesian fusion has been

applied to multispectral images as proposed in [68, 69].

Despite their interesting results, it should be noticed that

this family of methods require a Monte Carlo Markov

chain process to train the model, making it harder to scale

in comparison with gradient-based methods. This approach

also requires additional adaptation when is applied in a

different task.

The proposed model is closely related to the mixture of

experts (MoE) approach [29]. However, the common usage

of MoE is focused on performing decision fusion, i.e.,

combining predictors to address a supervised learning

problem [76]. Similar late-fusion models have been

extended to deep architectures with bagging methods [2].

Our model is devised as a new component in the repre-

sentation learning scheme, making it independent from the

final task (e.g., classification, regression, unsupervised

learning, etc) provided that the defined cost function be

differentiable. On the other hand, It is noteworthy that

extending current models to deal with more than two

modalities is a complex challenge [77]. Our proposed

method addressed this multimodal challenge by general-

izing the gate approach with independent parameters per

modality.

GMUs were presented for the first time at [6] as a

working paper that was not formally published. This paper

extends such work by performing a more systematic

experimental evaluation and introducing a new use case in

a computer vision task where GMUs are integrated in a

convolutional architecture.

Movie genre prediction is a multilabel task since most of

the movies belong to more than one genre, (e.g., Matrix

(2000) is a Sci-fi/Action movie). In this setup, Anand [3]

explores the efficiency of using keywords and users’ tags to

perform multilabeling using the movies from MovieLens

1M dataset which contains 1700 movies. Also Ivasic-Kos

et al. [27, 28] performed multilabel classification using

handcrafted features from posters, with 1500 samples for

six genres. Makita and Lenskiy [47, 48] use movie ratings

matrix and genre correlation matrix to predict the genre. It

used a smaller version of the Movielens dataset with 18

movie genres. Most of the above works have used the

publicly available MovieLens datasets. However, there is

not a single experimental setup defined so that all methods

can be systematically compared. Also, to the best of our

knowledge, none of the previous works contain more than

10, 000 samples. With this work we released a dataset

created with the movies of the MovieLens 20M dataset.

We include not only genre, poster and plot information

used in this work, but also the poster of the movie as well

as more than 50 characteristics taken from the IMDb

website.

Multimodal image segmentation has been addressed

with representation learning techniques using RGB and

depth images. Pei et al. [55] learned a dictionary from

concatenated patches from RGB and depth images to

extract features from small regions, then those features are

used to train a pixel-based classifier. In a similar setup,

Valada et al. [64] integrated a mixture of experts model in a

convolutional neural network to segment six concepts in

outdoor images. They explored different modalities,

obtaining their best results when RGB and depth images

were combined. Our work is similar because it is also an

end-to-end convolutional neural network, trained with

gradient-based algorithms, but differs in the way the

modalities are fused. While [64] used two predictors to

combine the information, we instead used gates to combine

intermediate representations. This allows our model to be

applied also in unsupervised tasks such as image genera-

tion or feature learning, provided that the model can be

trained with gradient-based approaches.

3 Methods

This paper presents a neural-network-based strategy for

addressing supervised tasks with multimodal data. The key

component of such strategy is a novel type of hidden unit,

the Gated Multimodal Unit (GMU), which learns to decide

how modalities influence the activation of the unit using

gates. The first part of this section exposes the details of the

GMU, while the second part analyzes its behavior in a

synthetic scenario.
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3.1 Gated multimodal unit

Multimodal learning is closely related to data fusion. Data

fusion looks for optimal ways of combining different

information sources into an integrated representation that

provides more information than the individual sources [11].

This fusion can be performed at different levels and can be

categorized into two broad categories: feature fusion and

decision fusion. Feature fusion, also called early fusion,

looks for a subset of features from different modalities, or

combinations of them, that better represent the information

needed to solve a particular problem. On the other hand,

decision fusion, or late fusion, combines decisions from

different systems, e.g., classifiers, to produce consensus.

This consensus may be reached by a simple average, a

voting system or a more complex Bayesian framework.

In this work we present a model, based on gated neural

networks, for data fusion that combines ideas from both

feature and decision fusion. The model, called Gated

Multimodal Unit (GMU), is inspired by the control flow in

recurrent architectures like gated recurrent units [14] or the

long short-term memory unit [23]. A GMU is intended to

be used as an internal unit in a neural network architecture

whose purpose is to find an intermediate representation

based on a combination of data from different modalities.

Figure 1a depicts the structure of a GMU. Each xi corre-

sponds to a feature vector associated with modality i. Each

feature vector feeds a neuron with a tanh activation func-

tion, which is intended to encode an internal representation

feature based on the particular modality. For each input

modality, xi, there is a gate neuron (represented by r nodes

in the diagram), which controls the contribution of the

feature calculated from xi to the overall output of the unit.

When a new sample is fed to the network, a gate neuron

associated to modality i receives as input the feature vec-

tors from all the modalities and uses them to decide the

degree of contribution of the modality i to the internal

encoding of the particular input sample.

Figure 1b shows a simplified version of the GMU for

two input modalities, xv (visual modality) and xt (textual

modality). It should be noted that models from Fig. 1a, b

are not completely equivalent, since in the bimodal case the

gates are tied. Such weight tying constraints the model, so

that the units control the trade-off between both modalities

while they use less parameters than the multimodal case.

For sake of clarity, below we detailed the equations gov-

erning a single GMU. Notice that in practice is common to

have multiple units in the same layer.

Let xv 2 Rdv , xt 2 Rdt be the column vectors represent-

ing the visual and textual modalities, respectively. The

GMU extracts hidden features for each modality as

follows:

hv ¼ tanh Wvx
>
v

� �

ht ¼ tanh Wtx
>
t

� �

where Wv 2 Rdv and Wt 2 Rdt are the learnable weights,

tanh is the default activation function and, ht; hv 2 R are

the resultant hidden representations. The GMU contains a

third internal feature z 2 R, calculated as follows:

z ¼ r Wz xv; xt½ �>
� �

where �; �½ � denotes the concatenation operator, Wz 2 Rdvþdt

are the learnable weights and r represents the sigmoid

activation function. The output activation, h 2 R, of the

GMU is given by a convex combination of ht and hv
weighted by the z activation:

x1

σ

tanh

x2

σ

tanh · · ·

xk

σ

tanh

+

h

z1

h1

z2

h2

zk

hk

(a) The model to use with more than two
modalities.

xv xt

σ

tanh tanh

1−

+

h

z

hthv

(b) A simplification for the bimodal
approach.

Fig. 1 Illustration of a single

gated unit for bimodal and [ 2

modalities. x; z; h 2 R, yellow

boxes represent the activation

functions f : R ! R. Red

circles with cross sign represent

element-wise multiplication, red

circles with þ sign represent

summation of all the inputs and

red circle with ‘‘1�’’ represents

the function f ðsÞ ¼ 1� s

(colour figure online)
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h ¼ zhv þ 1� zð Þht

This formulation allows the GMU to decide how each

modality affects the unit’s output. This also means that

each different input will have different weights in such

convex combination due to the dependency of z on xv and

xt. Since all are differentiable operations, this model can be

easily coupled with other neural network architectures and

trained with stochastic gradient descent.

3.2 Noisy channel model

In order to analyze the behavior of the GMU, we built a

synthetic scenario to determine which modality carries the

most relevant information. Consider the channel model

illustrated in Fig. 2. There is an original source signal that

is transformed by two independent components T1 and T2.

The signals from T1 and T2 are transmitted by two chan-

nels, C1 and C2, respectively, that have two operation

modes. In mode one, the channel transmits the original

signal, in mode two, it transmits noise. A switch controls

which channel will carry the signal. In one position, C1

carries the signal and C2 carries noise, in the other position,

the situation is inverted. The switch may change its posi-

tion at any time. The goal is to get the information of the

original signal from the combination of the signals C1 and

C2 without knowing which one is carrying the information

and which one is carrying noise at a given time.

We implemented the noisy channel scenario through the

generative model depicted in Fig. 3. In this model we

define the random binary variable C as the target and

xv; xt 2 R as the input features. M is a random binary

variable that decides which modality will contain the rel-

evant information that determines the class. The input

features of each modality can be generated by a random

source, ŷv and ŷt, or by an informed source, yv and yt. The

generative model is specified as follows:

C�BernoulliðpCÞ
M�BernoulliðpMÞ
yv �NðcCv Þ
ŷv �NðĉvÞ
xv ¼ Myv þ ð1�MÞŷv
yt �NðcCt Þ
ŷt �NðĉtÞ
xt ¼ Mŷt þ ð1�MÞyt

We trained a model with a single GMU and applied a

sigmoid function over h, then the binary cross entropy

(BCE) was used as loss function:

Original
signalOriginal
signal

T1

T2

C1

C2

g

D1

D2

Original
signal

Fig. 2 Noisy channel model. There is an original source signal that is

transformed by two independent components T1 and T2. The signals

from T1 and T2 are transmitted by two channels, C1 and C2,

respectively, that have two operation modes. In mode one, the

channel transmits the original signal, in mode two, it transmits noise.

A switch controls which channel will carry the signal. In one position,

C1 carries the signal and C2 carries noise, in the other position, the

situation is inverted. The switch may change its position at any time

C

M

yv yt

xv

ŷv

γ̂v γ0
v , γ1

v γ0
t , γ1

t

ŷt

γ̂t

xt

Fig. 3 Generative model for the synthetic task. Grayed nodes

represent observed variables, the other nodes represent hidden

variables. The goal is to estimate P Cjxv; yvð Þ. M is a random binary

variable that decides whether xv or xt will contain the relevant

information that determines C. c’s are the parameters for noisy and

relevant modalities
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BCEsynthetic

¼
Xn

i

ci log r hið Þð Þ þ 1� cið Þ log 1� r hið Þð Þ

where r is the sigmoid function, n is the number of samples

and ci the label for a given input pair ðxv; xtÞi. Using the

generative model, n ¼ 200 samples per class were gener-

ated for each experiment. We ran 1000 synthetic experi-

ments with different random seeds and the GMU

outperformed a logistic regression classifier in 370 of them,

while obtaining equal results in the remainder ones. Our

goal in these simulations was to show that the model was

able to learn a latent variable that determines which

modality carries the useful information for the classifica-

tion. An interesting result is that between M and the acti-

vations of the gate z there is a correlation of 1. This means

the model was capable of learning such latent variable by

only observing the xv and xt input features.

We also wanted to project back the z activations to the

feature space in order to visualize regions depending on the

modality. Figure 4 shows the activations in a synthetic

experiment generated by the setup of Fig. 3 for xv; xt 2 R.

Each axis represents a modality, red and blue dots are the

samples generated for the two classes, and black Gaussian

curves represent the ĉv and ĉt noises. The gray (white)

regions of the left figure represent the activation of z. No-

tice that in the white region (z ¼ 1), the model gives more

importance to the xv modality while in gray regions (z ¼ 0)

the xt modality is more relevant; i.e., the z gate is isolating

the noise. The contour of the right figure (blue–red) rep-

resents the model prediction. It is noteworthy that the

boundary defined by the gates still holds when the model

solves the task. This also encourages the inclusion of

nonlinearities to the z gate so that it is able to discriminate

more complex interactions between modalities.

4 Experiments

This section details the evaluation of GMU networks and

other multimodal learning baseline methods for two

supervised tasks: Genre classification (Sect. 4.1) using text

and images, and image segmentation (Sect. 4.2) using

RGB and depth images. Early fusion, late fusion and GMU

were evaluated for both tasks.

4.1 GMU for genre classification

The Multimodal IMDb (MM-IMDb)1 dataset [6] was built

with the IMDb id’s provided by the Movielens 20M

dataset2 that contains ratings of 25, 959 movies along with

their plot, poster, genres and other 50 additional metadata

fields such as year, language, writer, director, and aspect

ratio. Notice that one movie may belong to more than one

genre. Each plot contains on average 92.5 words, while the

longest one contains 1431 words and the average of genres

per movie is 2.48. In this work, we defined the task of

movie genre prediction based on its plot and image poster.

Nevertheless, the additional metadata information

γ0
v γ1

v
γ̂v

xv

xt

γ0
t

γ1
t

γ̂t

γ0
v γ1

v
γ̂v

xv

xt

γ0
t

γ1
t

γ̂t

Fig. 4 Activations of z (left) and prediction (right) for a synthetic experiment with xv; xt 2 R For a single bimodal GMU. Each axis represents a

modality (for interpretation of the references to color in this figure legend, the reader is referred to the web version of this article)

1 http://lisi1.unal.edu.co/mmimdb/.
2 http://grouplens.org/datasets/movielens/.
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encourages other interesting tasks such as rating prediction

and content-based retrieval, among others.

The proposed model for genre classification is presented

in Fig. 5. Both modalities are represented with pretrained

models. Then the feature vectors are fused using the GMU.

Finally a multilayer perceptron (MLP) with maxout units is

stacked on top.

4.1.1 Data representation

Given that the nature of data for each modality is different,

their statistical properties usually are not shared across

modalities [59]. Thus, an evaluation of different strategies

for representing visual and textual content are required. For

text information, we evaluated word2vec models, n-grams

models and RNN models. For processing visual data, we

evaluated two different convolutional neural networks. The

details of each representation are discussed below.

4.1.2 Text representation

Text representation is a critical step when classification

tasks are addressed using machine learning methods. Tra-

ditional approaches are based on counting frequencies of n-

gram occurrences such as words or sequences of characters

(e.g., bag-of-words models). The main drawback of such

approaches is the difficulty to model relationships between

words and their context. An alternative approach was ini-

tially proposed by Bengio et al. [9], by building a neural

network language model (NNLM). The NNLM was able to

learn distributed representations of words that capture

contextual information. Later, this model was simplified to

deal with large corpora by removing hidden layers in the

neural network architecture (word2vec) [51]. This is a fully

unsupervised model that takes advantage of large sets of

unlabeled documents. Herein, three text representations

were evaluated:

N-grams Following the strategy proposed by Kanaris and

Stamatatos [32], we used the character 3-gram strategy for

representing text. Despite their simplicity, n-gram models

have shown to be a competitive baseline.

Word2Vec Word2vec is an unsupervised learning algo-

rithm that finds a vector representation for each word based

on its context [51]. It has been shown that this model is

able to find semantic and syntactic relationships using

arithmetic operations between the vectors. Based on this

property, we represent a movie as the average of the vec-

tors of words in the plot outline. The main motivation to

aggregate word2vec vectors is the property of additive

compositionality that this representation has exposed over

different sets of tasks such as word analogies. The usual

way to aggregate the word vectors to represent a document

is to perform arithmetic operations over the vectors. We

take the average to avoid large input values to the neural

network.

We used the pretrained Google Word2vec3 embedding

space composed by 300 dimensions. There were 41, 612

words from the MM-IMDb plots that are in the Google

word2vec vocabulary. Other than lowercase, no text pre-

processing nor stop word removal was applied. This textual

representation obtained comparable state-of-the-art results

[32] in two publicly available datasets: 7genre dataset that

comprises 1400 web pages with 7 disjoint genres and ki-04

dataset that comprises 1239 samples classified under 8

genres. Notice that the state-of-the-art model [32] used

character n-grams with structured information from the

HTML tags to predict the genre of web pages, while ours

only used the plain text.

Recurrent neural network This model takes as input a

sequence of words to train a supervised recurrent neural

network. Two variants were evaluated: (1) RNN_w2v, a

transfer learning model that takes as input the word vectors

of word2vec as representations; (2) RNN_end2end, which

learns the word vectors from scratch.

4.1.3 Visual representation

In computer vision tasks, convolutional neural networks

have become the de facto standard. It has been shown that

CNN models trained with a huge amount of data are able to

learn common features shared across different domains.

This characteristic is usually exploited by transfer learning

approaches. For visual representation, we explored 2

strategies: transfer learning and end-to-end training.

VGG Transfer VGG [56] is a neural network trained with

the ImageNet dataset to classify natural images. We

removed the classification layer from the VGG and prop-

agated the images through it to get the last hidden layer

activations as the visual representation.

End2End CNN Here, a CNN with 5 convolutional layers

and an MLP (see Sect. 4.1.2) on top was trained from

scratch. The first visual approach, VGG_Transfer, uses

VGG network as feature extractor. The second approach

takes as input the raw RGB images to a CNN. Since all the

images do not have the same size, all images were scaled,

and cropped when required, to 160� 256 pixels keeping

the aspect ratio. This CNN comprises 5 CNN layers of

5, 3, 3, 3, 3 squared filters and 2� 2 pool sizes. Each

convolutional layer has 16 hidden units. The convolutional

layers are connected with the MaxoutMLP classifier on top.

3 https://code.google.com/archive/p/word2vec/.

Neural Computing and Applications (2020) 32:10209–10228 10215

123

https://code.google.com/archive/p/word2vec/


4.1.4 Classification model

For classification stage, two methods to map from feature

vectors to genre classification were explored: (1) Logistic

regression and (2) a multilayer perceptron (MLP) with

fully connected layers and maxout activation function. The

maxout activation function hi : R
n ! R is a defined as:

hi sð Þ ¼ max
j2 1;k½ �

zi;j

where s 2 Rn is the input vector, zi;j ¼ sTW���ij þ bij is the

output of the jth linear transformation of the ith hidden

unit, and W 2 Rd�m�k and b 2 Rm�k are learned parame-

ters. It has been shown that maxout models with just 2

hidden units behave as universal approximators, while are

less prone to saturate units [22]. Since our intention is to

measure how the network’s depth affects the model per-

formance, we evaluate the architecture with one and two

fully connected layer.

4.1.5 Multimodal fusion baselines

We evaluate five different ways to combine both modalities

as baselines.

Average probability This can be seen as a late-fusion

strategy. The probabilities obtained by the best model of

each modality are averaged and thresholded.

Concatenation Different works have found that a simple

concatenation of representations of different modalities are

good for combining the information [34, 55, 61]. Herein,

we concatenated both representations to train the Max-

outMLP architecture.

Linear sum Following the way Vinyals et al. [67] combine

text and images representation into a single space, this

model adds a linear transformation for each modality so

that both outputs have the same size to be summed up and

then followed by the MaxoutMLP architecture.

MoE The mixture of experts (MoE) [29] model was

adapted for multilabel classification. Two gating strategies

were explored: tied, where a single gate multiplies all the

logistics outputs, and untied where every logistic output

has its own gate. Logistic regression and MaxoutMLP were

evaluated as experts.

DeepCCA Deep canonical correlation analysis [4] is

another way to perform information fusion. In this

approach, the goal is to maximize the correlation between

the modalities to later use the new correlated representation

as input to the classifier.

4.1.6 Experimental setup

The MM-IMDb dataset has three subsets: Train, develop-

ment and test subsets contain 15,552, 2608 and 7799,

respectively. The sample was stratified so that training, dev

and test sets comprise 60%, 10%, 30% samples of each

genre, respectively.

In the multilabel classification, the performance evalu-

ation can be more complex than traditional multi-class

classification and the differences can be significant among

several measures [46]. Herein, four averages of the f-score

Fig. 5 Integration of the GMU

in a multilayer perceptron for

genre classification. Movie

posters and movie plots were

represented by the pretrained

VGG network and the average

of the Google word vectors,

respectively. A layer with

GMUs is used to combine both

representations; finally, a

multilabel classifier is stacked

on top
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(f1) are reported: samples computes the f-score per sample

and then averages the results, micro computes the f-score

using all predictions at once, macro computes the f-score

per genre and then averages the results. weighted is the

same as macro with a weighted average based on the

number of positive samples per genre. F-scores are cal-

culated as follows [46]:

pmicro ¼
PQ

j¼1 tpj
PQ

j¼1 tpj þ
PQ

j¼1 fpj
rmicro

¼
PQ

j¼1 tpj
PQ

j¼1 tpj þ
PQ

j¼1 fnj

fmicro
1 ¼ 2� pmicro � rmicro

pmicro þ rmicro

f macro1 ¼ 1

Q

XQ

j¼1

2� pj � rj

pj þ rj

f
sample
1 ¼ 1

N

XN

i¼1

2� ŷi \ yij j
ŷij j þ yij j f

weighted
1

¼ 1

Q2

XQ

j¼1
Qj

2� pj � rj

pj þ rj

With N the number of examples; Q the number of labels;

Qj the number of true instances for the jth label; p the

precision, r the recall; ŷi; yi 2 0; 1ð ÞQ the prediction and

ground truth binary tuples, respectively; tpj; fpjandfnj the

number of true positives, false positives and false negatives

for the jth label, respectively.

4.1.7 Neural network training

Neural network models were trained using batch normal-

ization scheme [26]. This strategy applies a normalization

step across samples that belong to the same batch, so that

each hidden unit in the network receives a zero-mean and

unit variance vector. Stochastic gradient descent with

ADAM optimization [36] was used to learn the weights of

the neural network. Dropout and max-norm regularization

were used to control overfitting. Hidden size

(f64; 128; 256; 512g), learning rate (½10�3; 10�1�), dropout
([0.3, 0.7]), max-norm ([5, 20]) and initialization ranges

(½10�3; 10�1�) parameters were explored by training 25

models with random (uniform) hyperparameter initializa-

tions and the best was chosen according to validation

performance. It has been reported that this strategy is

preferable over grid search when training deep models

[10]. All the implementation was carried on with the

Blocks framework [66] and our source code is available.4

During the training process, we noticed that batch nor-

malization considerably helped in terms of training time

and convergence, resulting in less sensitivity to hyperpa-

rameters such as initialization ranges or learning rate. Also,

dropout and max-norm regularization strategies helped to

increase the performance at test time.

Overall, the neural network parameters were optimized

using stochastic gradient descent. Notice that the learnable

parameters in the GMU, Wv;Wt;Wzf g, are used in con-

junction with differentiable operations. This allows to

seamlessly integrate the GMU with automatic differentia-

tion toolkits such as PyTorch or Tensorflow. In particular,

the loss function for multilabel classification is defined as

follows,

BCEmmimdb ¼
1

n

Xn

i

jci � log fH ðxv; xtÞi
� �� ��� ��j1

where n is the number of movies, H is the set of learnable

parameters, ci and ŷi ¼ fH ðxv; xtÞi
� �

are vectors represent-

ing the ground truth and the fH model predictions of the ith

movie, respectively, ci; ŷi 2 Rk, k is the number of genres,

� denotes the Hadamard product and j�j jj1 denotes the L1-

norm.

4.1.8 Results

The McNemar test is used to determine whether the dif-

ferences between the GMU and the second best model have

statistical evidence (p\0:01). This test is preferable over

other options because it presents low Type I error when the

algorithms are computationally expensive and can be

executed only once [12, 18].

Table 1 shows the results in the proposed dataset. For

the textual modality, the best performance is obtained by

the combination of the word2vec representation with an

MLP classifier. The behavior of all representation methods

is consistent across the performance measures. Learning

from scratch the RNN model performed the worst. We

hypothesize this has to do with the lack of data to learn

meaningful relations among words. It has been shown that

millions of words are required to train a model such as

word2vec that is able to exploit common regularities

between word co-occurrences.

For the visual modality, the usage of pretrained models

works better than training the model from scratch. It seems

it is still a small dataset to learn all the complexities of the

posters. Now, comparing the performance independently

per genre, as in Table 2, it is interesting to notice that in

Animation the visual modality outperforms the textual one.

In the multimodal scenario, by adding the GMU as

building block to learn the fusion we obtained the best

performance, improving independent modalities in the
4 https://github.com/johnarevalo/gmu-mmimdb.
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averaged measures and in 16 of out 23 genres and out-

performing all other evaluated fusion strategies. The con-

catenation or the linear combination approaches were not

enough to model the correlation between the modalities

and MoE models did not perform better than simpler

approaches. This is an expected behavior for MoE in a

relatively small dataset because the data is fractionated

over different experts, and thus it doesn’t make an efficient

use of the training samples. DeepCCA did not show

promising results in this dataset. Since both modalities

contain noisy samples, it seems DeepCCA forced to cor-

relate information from one modality with the noise in the

second one, downgrading the discriminative power, and

thus the performance of single modality approaches.

GMU outperformed the best unimodal result. This result

indicates that, unlike the other multimodal approaches, the

GMU is not only robust to non-informative modalities in

combination with a good one, but also manages to learn

how to take advantage from the ‘‘noisy’’ modality to

improve classification in some cases. The remainder

models were not able to take advantage of the non-infor-

mative modality.

Results for the McNemar test are presented in Table 2.

Statistical evidence showed that there is a significant dif-

ference between the GMU and the second best model for

Drama, Crime, Action, Horror, Family, and Short genres.

In the remainder genres the GMU shares the first place with

another method.

When designing the network architecture, we explored

the number of required layers in the MLP classifier, finding

that 2 fully connected layers were sufficient to achieve the

best performance. On the GMU side, since the unit does

not contain multiple components, the only operation that

could be removed is the gating mechanism. By doing so the

fusion would be equivalent to the LinearSum baseline. We

also explored ReLU (f ðsÞ ¼ maxð0; sÞ) as nonlinearity for

the hv and ht activations, finding negligible variations in the

final performance.

In order to evaluate which modality influences the

model more when assigning a particular label, we averaged

the activations of a subset of z gates of the test samples to

which the model assigned them such label. We counted the

number of samples that pays more attention to the textual

modality (z� 0:5) or to the visual modality (z[ 0:5). The

units were chosen taking into account the mutual infor-

mation between the predictions and the z activations. The

result of this analysis is depicted in Fig. 6. As expected, the

model is generally more influenced by the textual modality.

But, in some specific genres such as Animation or Family,

the visual modality affects more the model. This is also

consistent with results of Table 2 that reports better per-

formances for visual modality.

Table 1 Summary of

classification results on the

MM-IMDb dataset

Modality Representation F-score

Weighted Samples Micro Macro

Multimodal GMU 0.624 0.634 0.636 0.549

Linear_sum 0.606 0.617 0.617 0.520

Concatenate 0.599 0.607 0.609 0.520

AVG_probs 0.604 0.616 0.615 0.491

MoE_MaxoutMLP 0.592 0.593 0.601 0.516

MoE_MaxoutMLP (tied) 0.579 0.579 0.587 0.489

MoE_Logistic 0.541 0.557 0.565 0.456

MoE_Logistic (tied) 0.483 0.507 0.518 0.358

DeepCCA 0.259 0.333 0.345 0.095

Text MaxoutMLP_w2v 0.604 0.607 0.612 0.528

RNN_transfer 0.570 0.580 0.580 0.480

MaxoutMLP_w2v_1_hidden 0.540 0.540 0.550 0.440

Logistic_w2v 0.530 0.540 0.550 0.420

MaxoutMLP_3grams 0.510 0.510 0.520 0.420

Logistic_3grams 0.510 0.520 0.530 0.400

RNN_end2end 0.490 0.490 0.490 0.370

Visual VGG_Transfer 0.416 0.436 0.449 0.284

CNN_end2end 0.370 0.350 0.340 0.210

Text, visual and multimodal refers to models that used only the movie plot, only the movie poster and both

modalities, respectively. Performance is reported using 4 types of F-score: micro-, macro-samples and

weighted. Best results are shown in bold typeface
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Notice that the proposed model outperformed 13 out of

18 genres and obtained competitive results in Adventure,

Fantasy History and Sport genres. Biography genre per-

formed the worst in both GMU and visual-only models. We

hypothesize this behavior is expected due to the noisy input

in the images. Figure 7 illustrates posters in which could be

challeging, even for a human, to associate it with the

Biography genre. In these scenarios the GMU may require

more data to better learn to filter such noisy modalities.

Overall, in terms of macro-performance measures the

proposed model outperformed single and multimodal

baselines.

We did a qualitative analysis of instances where per-

formance improved by a relatively large margin. Table 3

illustrates cases where the model takes advantage of the

most accurate modality, and in some cases removes false

positives. It is noteworthy that some of these examples can

be confusing for a human if one modality is missing, or

additional information is not given.

4.2 GMU for image segmentation

The proposed unit is easily adaptable to other architectures

different from the traditional ‘‘Fully connected’’. Since the

GMU is a differentiable operator, it can be applied to part

of the input and still be optimized with gradient-based

methods. This is the basic idea of convolutional architec-

tures. This section adapts the GMU to convolutional neural

networks for addressing image segmentation. The model

learns to fuse RGB and depth information to outperform

standard early- and late-fusion strategies. An analysis to the

learned model highlights correlations between modalities

and semantic concepts.

Convolutional architectures are widely used in image

processing scenarios. Shortly after the Imagenet success

[39], CNN became the de facto standard architecture when

using neural networks for image representation. In CNN,

there are convolution and pooling transformations to the

input image. Consider the input image M 2 Rp�p, the first

transformation applies a convolution with a filter K 2 Rk�k

to obtain a feature map S 2 R p�kþ1ð Þ� p�kþ1ð Þ, followed by a
nonlinearity activation function a : R ) R applied in an

element-wise fashion. The second transformation reduces

the dimension of the feature map by applying a local

subsampling function over the output feature map a Sð Þ.

4.2.1 Deep scene dataset

The convolutional architecture is evaluated in the DeepS-

cene dataset5 [65]. The dataset was collected using an

Table 2 Macro F-score reported per genre for single and multimodal

approaches

Genre Textual Visual GMU

Drama 0.75 0.68 0.77*

Comedy 0.63 0.59 0.67

Romance 0.52 0.32 0.52

Thriller 0.58 0.41 0.61

Crime 0.63 0.27 0.65*

Action 0.58 0.38 0.62*

Adventure 0.53 0.32 0.51

Horror 0.65 0.43 0.70*

Documentary 0.75 0.18 0.76

Mystery 0.39 0.12 0.39

Sci-Fi 0.66 0.31 0.67

Fantasy 0.45 0.22 0.44

Family 0.51 0.47 0.58*

Biography 0.40 0.01 0.25

War 0.65 0.16 0.66

History 0.41 0.06 0.37

Music 0.57 0.04 0.57

Animation 0.43 0.61 0.65

Musical 0.22 0.19 0.27

Western 0.64 0.33 0.68

Sport 0.69 0.14 0.68

Short 0.29 0.20 0.30*

Film-Noir 0.20 0.09 0.30

Best results are shown in bold typeface

*Marks scores with evidence of difference between the GMU and the

second best model (p\0:01)

Drama 88.7% 11.3%
Comedy 80.6% 19.4%
Romance 83.9% 16.1%
Thriller 88.2% 11.8%
Crime 90.3% 9.7%
Action 87.9% 12.1%

Adventure 70.3% 29.7%
Horror 87.8% 12.2%

Documentary 91.1% 8.9%
Mystery 89.7% 10.3%

Sci-Fi 84.6% 15.4%
Fantasy 67.8% 32.2%
Family 36.3% 63.7%

Biography 93.6% 6.4%
War 93.1% 6.9%

History 92.8% 7.2%
Music 94.6% 5.4%

Animation 23.0% 77.0%
Musical 55.5% 44.5%
Western 96.8% 3.2%

Sport 91.8% 8.2%
Short 53.7% 46.3%

Film-Noir 98.4% 1.6%
Textual Visual

Fig. 6 Percentage of gates activations (z[ 0:5: visual; z� 0:5:
textual) per modality for a subset of the GMUs. The units were chosen

using the mutual information between the predictions and the

z activations. All predictions for each genre in the test set were used

in this analysis (i.e., correct and incorrect predictions)

5 http://deepscene.cs.uni-freiburg.de/.
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autonomous mobile robot platform equipped with a stereo

vision camera and a modified dashcam for acquiring RGB

and near-Infrared (NIR) data, respectively. Both cameras

were time synchronized and frames were captured at 20Hz.

Additional image post-processing was applied to match

both images. Figure 8 shows the autonomous robot plat-

form and one example with the available modalities.

The data was collected on three different days to have

variability in lighting conditions as shadows and sun angles

play a crucial role in the quality of acquired images. The

DeepScene dataset comprises 366 images with pixel-level

ground-truth annotations which were manually annotated

with 1 out of the 6 concepts: {grass, obstacle, tree, vege-

tation, road and sky}. It also provides train and test sets

with 230 and 135 scenes, respectively.6

DeepScene dataset authors also computed Global-based

vegetation indices such as Normalized Difference Vege-

tation Index (NDVI) and Enhanced Vegetation Index (EVI)

to extract consistent spatial and global information [25].

Depth images were obtained using the approach from Liu

et al. [42] that employs a deep convolutional neural field

model for depth estimation by constructing unary and

pairwise potentials of conditional random fields. The

Multispectrum channel fusion NRG (near-Infrared, red,

green) image was also computed and included as another

modality. We choose RGB and Depth images as input to

the proposed multimodal approach because these are the

most common and general modalities. The remainder ones

are specific for environments with abundant presence of

vegetation.

4.2.2 Convolutional GMU for segmentation

Some tasks involve multimodal sources that are suitable to

be represented by a convolutional architecture. This is the

case of image segmentation using RGB and depth images.

Both of them represent the same scene, but using different

information. Also, both of them can be naturally repre-

sented by a CNN. This is a convenient scenario to apply the

GMU and let the model learn which parts of the image are

more relevant to the classification.

We integrated the GMU in a convolutional architecture

as depicted in Fig. 9, where the GMU layer takes Srgb and

Sdepth feature maps as inputs and outputs a combined fea-

ture map. A convolutional neural network is used to learn

directly from the pixels the representation for each

modality. Convolutional filters are 3� 3 with padding of 1,

except the last convolutional layer which has a kernel size

4� 4 with zero-padding. Then a set of deconvolutional

layers are stacked to reconstruct the original resolution of

Fig. 7 Posters picked from the test set with Biography genre. For most of these movies, their visual appearance is not sufficient to determine the

topic

6 We discarded the image with ID b275-311 from test set because it

is incorrectly annotated.
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the image. A convolutional GMU layer is applied to fuse

both RGB and depth feature maps. Finally, a softmax layer

is stacked on top. Notice that parameters of both convo-

lutional networks are shared.

Let g : R300�300�3 ! R300�300�32 be the function rep-

resenting the convnet depicted in Fig. 9. This convnet is

applied to each input modality to get Srgb; Sdepth features

maps. Then, the convolutional GMU is applied as follows:

hrgb ¼ tanh Wrgb 	 Srgb
� �

hdepth ¼ tanh Wdepth 	 Sdepth
� �

z ¼ r Wz 	 Srgb; Sdepth
� �� �

h ¼ z� hv þ 1� zð Þ � ht

where 	 denotes the convolutional operator, � denotes the

Hadamard product, �; �½ � the concatenation operator, h 2
R300�300� q is the fused representation and q the number of

hidden units in the GMU layer, which is later used as input

to the softmax classifier.

4.2.3 Experimental setup

We took 46 scenes from train as our validation set to tune

hyperparameters of the model. Hyperparameters were

explored by training 25 models with random (uniform)

hyperparameter initializations and the best was chosen

according to validation performance.

Following the dataset authors’ approach [65], images

were preprocessed by resizing the original image to 300�
300 pixels keeping the aspect ratio and cropping them

when necessary. During training, images were oversampled

by applying random rotations between ½� 30; 30� degrees,
random flipping and random cropping the images. Previous

works [39] have reported this as a convenient way to

artificially increase the number of training samples, which

in turn helps to better generalization during the model

training.

The convolutional architecture used in these experi-

ments is detailed in Fig. 9. The pixel-based classification

Table 3 Qualitative evaluation of predictions in test set

The World According to Sesame Street
a documentary which examines the creation and co - produc-
tion of the popular children’s television program in three
developing countries: bangladesh,kosovo and south africa
Ground Truth Documentary
Textual Documentary, History

Visual Comedy, Adventure, Family,
Animation

GMU Documentary
Letters from Iwo Jima

the island of iwo jima stands between the american military
force and the home islands of japan. (. . . ) when the american
invasion begins,both kuribayashi and saigo find strength,
honor,courage,and horrors beyond imagination
Ground Truth Drama, War, History
Textual Drama, Action, War, History
Visual Thriller, Action, Adventure, Sci-Fi
GMU Drama, War, History

Babar: the movie
in his spectacular film debut,young babar,king of the
elephants,must save his homeland from certain destruction
by rataxes and his band of invading rhinos

Ground Truth Adventure, Fantasy, Family,
Animation, Music

Textual Adventure, Documentary, War, Music

Visual Comedy, Adventure, Family,
Animation

GMU Adventure, Family, Animation

Bold and italic genres are true positives and false positives respectively. In these examples, the GMU model was able to take advantage of both

modalities to remove false positives and to include non-predicted genres by the single-modality approaches
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layer after this deep model varies depending on the model

used. For single-modality approaches, the last layer is a

convolution with 6 filters of 3� 3 with padding of 1 to

keep the 300� 300 size followed by a Softmax activation

function. For the multimodal approach there is an addi-

tional layer with 32 filters for each modality, then the

ConvGMU layer that merges those 32 pairs of feature

maps, followed by a Softmax activation layer. Experiments

are supported by the McNemar statistical test to determine

whether the differences have statistical evidence (p\0:01).

4.2.4 Baseline

A natural way to perform the fusion in a convolutional

architecture is to stack the depth image as a fourth channel

in the RGB image. We named it as the concatenation

approach. Similarly to the IMDb setup, we also included

the LinearSum and the AvgProb as early and late fusions,

respectively. In the LinearSum approach we applied an

element-wise summation over the last feature map of each

modality, the resultant map is the input for the Softmax

classifier. In the AvgProb approach, the probability maps

are averaged in a pixel-wise manner.

RGB NIR NDVI

NRG EVI DEPTH

Fig. 8 Left: Robot used to capture the images. Right: sample from the

Deep scene dataset with the available modalities. Acquisition

involved two cameras for RGB and near-Infrared (NIR) images.

Normalized Difference Vegetation Index (NDVI), Enhanced

Vegetation Index (EVI), Multispectrum channel fusion NRG (near-

Infrared, red, green) and depth images were computed based on the

RGB and the NIR images. (Image taken from Valada et al. [65])
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Fig. 9 Integration of the proposed GMU in convolutional architec-

tures. Light gray, dark gray and cyan represent convolutional,

deconvolutional and pooling layers, respectively. Output dimensions

are denoted inside each layer. Convolutional filters are 3� 3 with

padding of 1, except the last convolutional layer which has a kernel

size 4� 4 with zero-padding. Parameters of both convolutional

networks are shared (colour figure online)
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4.2.5 Results

Firstly, it is noteworthy that some inconsistencies in the

ground truth were highlighted when visualizing the pre-

dictions. Figure 10 depicts that obstacle and tree concepts

are correctly annotated in training set, but are wrongly

annotated in the test set. Due to such inconsistencies, in this

experimentation those two concepts were discarded when

methods were compared.

Following the original paper, Intersection over union

(IoU), accuracy (ACC), false positive rate (FPR) and false

negative rate (FNR) are used as performance measures.

Table 4 summarizes the results for unimodal and multi-

modal approaches. Results showed RGB outperformed the

depth modality for all classes. Also, the behavior of other

multimodal approaches is consistent with the results for the

MM-IMDb dataset. Here, again the GMU approach out-

performed both unimodal and multimodal methods. We

applied the McNemar statistical test for paired data in a

pixel-wise manner. The statistical evidence showed that the

differences between GMU and the remainder models are

significant (p\0:01) for all the classes.

As noted in Table 5, IoU of road and sky concepts

increased the most with the convolutional GMU model.

This is consistent with the nature of the data, since closest

and farthest concepts are closely related with the kind of

information that depth images provide.

Likewise in the MM-IMDb task, an analysis of z acti-

vations with respect to the predictions is reported in

Fig. 11. For road, grass and vegetation the RGB modality

is more dominant. In contrast, for tree, sky and obstacle the

depth modality gives more information for the classifier.

We believe this is consistent with the nature of the data,

since concepts such as sky and obstacle would be easier to

detect when additional information like distance to camera

is provided.

4.3 Discussion

Our results show that the GMU is a feasible multimodal

fusion strategy to boost the performance in different neural

network architectures. This improvement has been con-

sistently supported by the scientific community: Yan and

Zhao [74] and Yao et al. [73] integrated the GMU in a

recurrent architecture to generate short texts for conversa-

tional systems. Kiela et al. [35] proposed a simplification of

the GMU by tying the weights of the gate. Fernando et al.

[20] integrated the GMU in a memory network architecture

for pedestrian trajectory prediction. In [44], the GMU was

used as baseline to introduce a new task called multimodal

attribute extraction and Ye et al. [75] used the GMU as

fusion module to grade glioma in magnetic resonance

images.

In the previously mentioned scenarios the application of

the GMU assumes the multimodal input is fully paired, i.e.,

each sample is a tuple of multiple representations of the

same object. Notice this pairing is not always available and

thus the immediate application of the GMU is not possible.

There exists weakly-paired approaches such as [43, 49]

which deal with input modalities as group of multiple

objects.

In contrast, the GMU is intended to deal with noisy

inputs as motivated in the synthetic scenario. Such noisy

scenario is also present in the movies experiment where

either the image or the text could be non-informative to

describe the genre of the movie. Qualitative examples in

Table 3 depict how this phenomenon affects the predic-

tions of single-modality models and the benefit of using the

GMU. Notice that in such cases, the modalities are not

important alike to detect the movie genre, so for some

instances one modality is more informative than another.

For all the problems explored in this work, we used the

same strategy for initialization: random sampling from

independent uniform distributions in the � d; d½ � range,

being d a hyperparameter explored in the range of

10�3; 10�1½ �. Similarly, the learning rate was explored in

the 10�5; 10�2
� �

range, with Adam [36] as the default

optimizer. Similarly to the baseline methods, experiments

showed that 400 is a sufficient number of epochs for

convergence of GMU networks. As consequence, it is

reasonable to conclude that, regarding optimization and

hyperparameter exploration, the GMUs showed the com-

mon behavior of other gradient-based models during the

training process [8].

The experimental evaluation for all architectures herein

implemented did not have troubles achieving perfect

accuracy in the training set while obtaining a close-to-zero

value in the training loss function. This supports the find-

ings of Choromanska et al. [15] where it is stated that

despite recovering the global minimum is harder in neural

networks with large sizes, in practice is irrelevant as global

minimum often leads to overfitting. Thus, as in others deep

learning models, the challenge is not the convergence but

to achieve a low generalization error. In this matter we

used two regularization strategies: dropout and max-norm

regularization. We did not find any particular consideration

on the application of such regularizers when they were

integrated with GMU networks.

The batch size mainly affects the convergence time, but

not the performance. For vectorized implementations (e.g.,

linear algebra libraries or GPU) The bigger the batch size

the shorter the training time. In particular, we set the batch

size so that maximizes the usage of the GPU memory. That

is, for small input size like word2vec or VGG vector rep-

resentations we used batch sizes of 128 samples, for larger
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input sizes like two images in the DeepScene dataset, the

GPU was able to host up to 32 samples in each batch.

The GMU is closely related to other architectures that

use gates to control the information flow such as LSTMs,

Mixture of experts and attention mechanisms. GMU is

related to the mixture-of-experts (MoE) model in the usage

of multiplicative gates to control the information flow.

Fig. 10 Segmentation results for

the convolutional network with

GMU. Concepts for the first

(ground truth) and fourth

(prediction) columns are

colored as follows: sky: blue,

grass: light green, vegetation:

olive, road: light gray, obstacle:

black, tree: dark green. Note

that obstacle and tree concepts

are correctly annotated in the

training set, but at test set are

absent. (For interpretation of the

references to color in this

figure legend, the reader is

referred to the web version of

this article) (colour

figure online)

Table 4 Summary of image segmentation results using single (RGB

and Depth) and multimodal (AvgProb, Concatenate, LinearSum and

ConvGMU) approaches in the test set

Method IoU ACC FPR FNR

RGB 0.840 0.964 0.029 0.083

Depth 0.630 0.914 0.064 0.239

AvgProb 0.818 0.964 0.028 0.097

Concatenate 0.851 0.969 0.025 0.084

LinearSum 0.855 0.970 0.025 0.082

ConvGMU 0.861 0.971 0.022 0.077

Intersection over union (IoU), accuracy (ACC), false positive rate

(FPR) and false negative rate (FNR) are reported. Best results are

shown in bold typeface

Table 5 Intersection over union per class for unimodal (RGB and

depth) and multimodal (ConvGMU) approaches

Method Road Grass Vegetation Sky

RGB 0.784 0.822 0.891 0.863

Depth 0.392 0.574 0.774 0.780

ConvGMU 0.828 0.842 0.893 0.880

Best results are shown in bold typeface

Road 61.0% 39.0%
Grass 74.1% 25.9%

Vegetation 62.4% 37.6%
Tree 34.5% 65.5%
Sky 26.4% 73.6%

Obstacle 43.3% 56.7%
RGB Depth

Fig. 11 Percentage of gates activations in the image segmentation

task (z[ 0:5: RGB; z� 0:5: depth) per modality for a subset of the

GMUs. The units were chosen using the mutual information between

the predictions and the z activations. All predictions for each concept

in the test set were used in this analysis (i.e., correct and incorrect

predictions)
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However the MoE includes gates after the inference step of

multiple predictors. This differs from GMU in two aspects:

(1) the MoE explicitly requires supervision to be used,

whilst GMU can be used also in unsupervised approaches,

and (2) In the MoE the data is ultimately fractionated over

different experts, and thus it doesn’t make an efficient use

of the training samples in a relatively small dataset. This

was evidenced in the results where MoE models did not

perform better than simpler unimodal approaches, while

GMU took advantage of both modalities to boost the

performance.

The GMU design is influenced by the way that gated

recurrent networks, such as LSTMs and GRUs, work.

Gated recurrent networks process input sequences by

controlling the information flow using multiplicative

operations, which is the same approach followed by the

GMU. The difference lies in the assumption of temporal

dependencies in the input, GMU is not intended to deal

with temporal or sequential data. Instead, it combines

multiple inputs in a single operation. It is noteworthy, that

both models can be integrated. Indeed, Yao et al. [74] used

our GMU to fuse the hidden states of two recurrent

networks.

Highway networks [60] are also gated-based models that

control the information flow using sigmoid activation

functions. The difference with respect to the GMU is

twofold: (1) the GMU expects multiple inputs, corre-

sponding to multiple modalities, to be merged while

highway networks expect a single input, calculate the

hidden representation of the merged inputs and then merge

it with the original input, and (2) the gate function only

attends the original input, while the GMU is able to attend

all of the multimodal inputs.

Attention-based mechanisms have been proposed in

other multimodal problems such as visual question

answering (VQA). In VQA, the system receives an image

and a text-free question statement related to the input

image. The goal is to generate a text-free answer for the

question. Wu et al. [71] built a comprehensive review on

VQA research classifying the recent approaches in four

categories: compositional models, knowledge-based

enhanced, joint embedding and attention mechanisms.

Compositional models aim to divide the problem in mul-

tiple tasks such as to question parsing, image representa-

tion, and answer generation. Some models includes an end-

to-end approach, while others use isolated tools/methods.

Knowledge-based enhanced approaches uses external

databases to add priors that ease question parsing or answer

generation steps. Joint embedding and attention models are

mostly based in end-to-end approaches. Joint embedding

learns a common feature spaces for representing both

modalities. Attention mechanisms enhance the joint

embeddings by focusing in specific parts of the image and

the question. The GMU differs from these approaches in

that it is agnostic to the task, i.e., it can be used in any

neural network that involves a fusion step. GMU also is not

assuming a common space across modalities, in contrast it

maps their inputs to a new feature space built by a weighted

combination of multimodal features.

Chen et al. [13] proposed an attention mechanism for

image segmentation. They fused the output probability map

of multiple classifiers, each one feed with a different scaled

version of the input image. In order to train the model with

gradient-based optimizers, its architecture requires differ-

entiable bilinear interpolations to have the same output size

for all the scales. Notice that this is equivalent to a mixture

of experts model across multi-scale classifiers. The parallel

between GMU and MoE models was previously discussed

in the GMU definition in Sect. 3 and the performance

analysis in Sect. 4.

5 Conclusions

This work presented a strategy to learn fusion transfor-

mations from multimodal sources. Similarly to the way

recurrent models control the information flow, the pro-

posed model is based on multiplicative gates. The Gated

Multimodal Unit (GMU) receives two or more input

sources and learns to determine how much each input

modality affects the unit activation. This contrasts the

traditional fusion methods that adjust weights for each

modality and are fixed for all instances, while the GMU

weights are determined by the input. In synthetic experi-

ments the GMU was able to learn hidden latent variables,

and in two real scenarios it outperformed the single-

modality, early- and late-fusion approaches. A key prop-

erty of the GMU is that, being a differentiable operation, it

was easily coupled in different neural network architec-

tures and trained with standard gradient-based optimization

algorithms. The model was integrated with convolutional

and fully connected networks for two different supervised

tasks. In the movie genre classification task, the gated

multimodal network involved a fully connected architec-

ture taking as input the plot of the movie and the image

poster to annotate (multilabel) 23 genres. Experimental

evaluation showed the model learned to weight the

modalities based on the input features, and outperformed

early- and late-fusion approaches by 3% in terms of

F-score. In the image segmentation task, the gated multi-

modal network involved an end-to-end convolutional

architecture taking as input the RGB and depth images and

output the segmented image with 6 semantic concepts.

Likewise, the model outperformed other single and multi-

modal approaches measuring the Intersection-over-union

score. The activations of the GMU layer were mapped to
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the output concepts finding correlations between input

modalities and output concepts, e.g., depth information was

more correlated with ‘‘sky’’ and ‘‘tree’’ while RGB is more

correlated with ‘‘grass’’ and ‘‘vegetation’’. It should be

noted that even though the model is capable of combining

information, the content representation is critical to cor-

rectly take advantage of the different modalities.

Interesting directions for future work include more

complex transformations in the gate. As shown in the

synthetic experiment, the proposed gate learned a linearity

function to determine which modality has more informa-

tion. This can be extended so that the gate applies nonlinear

transformations to increase its flexibility. Another open

challenge in multimodal representation learning is to deal

with missing modalities. One alternative is to include a

new learnable initial state for each modality. At test time,

such state would be used as default value for absent

modalities. The inclusion of other generative models such

as adversarial networks are also interesting paths to deal

with missing data.
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