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Abstract
In this paper, a deep Q-learning (DQL)-based energy management strategy (EMS) is designed for an electric vehicle.

Firstly, the energy management problem is reformulated to satisfy the condition of employing DQL by considering the

dynamics of the system. Then, to achieve the minimum of electricity consumption and the maximum of the battery

lifetime, the DQL-based EMS is designed to properly split the power demand into two parts: one is supplied by the battery

and the other by supercapacitor. In addition, a hyperparameter tuning method, Bayesian optimization (BO), is introduced

to optimize the hyperparameter configuration for the DQL-based EMS. Simulations are conducted to validate the

improvements brought by BO and the convergence of DQL algorithm equipped with tuned hyperparameters. Simulations

are also carried out on both training dataset and the testing dataset to validate the optimality and the adaptability of the

DQL-based EMS, where the developed EMS outperforms a previously published rule-based EMS in almost all the cases.

Keywords Energy management strategy (EMS) � Electric vehicle (EV) � Deep Q-learning (DQL) � Bayesian optimization

(BO)

1 Introduction

Development and deployment of electric vehicles (EVs)

have gained tremendous momentum nowadays mainly due

to concerns over petroleum shortages and environmental

pollution [1]. Nevertheless, the batteries in the EVs suffer

severe battery degradation under high-rate charge or dis-

charge operation mode caused by frequent and peak power

demands [2–4]. On the other hand, another available

energy storage, supercapacitor, is characterized by high

power density and exceptionally long cycle lifespan [5], so

it is much more robust in handling peak power and current

requirements. Therefore, hybrid energy storage systems

(HESS), where battery serves as a persistent energy source

and supercapacitor is employed to share power load, are

widely adopted [6–9]. The introduction of an additional

energy source increases the complexity of power flow;

therefore, an energy management strategy (EMS) should be

carried out to coordinate the power distribution between

the two energy sources.

Previously published EMSs can be generally classified

into three categories: the rule-based EMSs (such as the

deterministic rule-based control strategies [10] and fuzzy

logic control strategies [11]), the optimization-based EMSs

(such as the dynamic programming algorithm [12] and the

Pontryagin’s minimum principle [13]) and the learning-

based EMSs (such as strategies based on reinforcement

learning [14–16]). Rule-based EMSs are easy to implement

for real-time applications. Nevertheless, all these strategies

cannot obtain the global optimum. In contrast, theoretically

optimal control results can be found by optimization-based

EMSs. However, these EMSs are often based on awareness

of future information in advance, so they cannot be

implemented in real time. Although real-time optimization-

based EMSs such as model predictive control (MPC) is

employed in [17], an accurate estimation on battery

degradation is still absent.

EMSs based on reinforcement learning (RL) can be

treated as a trade-off between real-time application and
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solution optimality. Q-learning, as a well-known and

effective RL algorithm, has been applied in EMS for HESS

recently. For example, an EMS using Q-learning is pre-

sented in the literature [14] and shows less energy con-

sumption than a rule-based strategy. In Q-learning, a

discretized lookup table is used to represent all the Q-

values, which represents the favorable level of control

action taken by agent and leads the learning progress into

the desired direction. However, it is necessary to adopt

continuous state space to accurately represent the complex

dynamics of HESS and EV, in which case the growing

computational load and poor convergence (i.e., the ‘‘curse

of dimensionality’’) can be caused by the discretized table.

Therefore, a deep neural network (DNN) is applied to

represent the Q-function and deep Q-learning (DQL)

algorithm is proposed in [18].

Directly influencing the performance of deep RL,

hyperparameters require careful tuning. In existing works

on deep reinforcement learning (DRL)-based EMS

[15, 16], hyperparameters tuning is often manually done

mainly because, as of yet, there is no analytical way to

determine the optimal configuration for deep networks [19]

and parameters for DRL algorithm. Manually choosing the

hyperparameters can be time-consuming, so several

strategies are proposed like grid search, random search [20]

and gradient-based methods, which are characterized by

large execution time and not suitable for most RL tasks

[21]. Bayesian optimization, on the other hand, is an effi-

cient strategy in optimizing functions expensive to query,

so it is widely applied in hyperparameter tuning tasks

[22–24].

In this paper, a DQL-based EMS of a HEES for an EV is

developed. Firstly, the DQL algorithm and Bayesian opti-

mization are all introduced and the considered system is

modeled. Then the energy management problem is

described as a Markov decision process to employ deep

reinforcement learning approaches, followed by the details

and some theoretical analyses of the method. Furthermore,

the hyperparameters of DQL are tuned using Bayesian

optimization. Finally, to evaluate the optimality and

adaptability of the developed EMS, it is compared with a

published rule-based strategy on both the training dataset

and the testing dataset.

Our contributions in this paper are summarized as

follows:

• A deep Q-learning-based EMS of a HESS for EV is

developed;

• Bayesian optimization is introduced in the deep Q-

learning process to automatically obtain the best

hyperparameter configuration;

• Simulations are conducted to validate the effectiveness

of the developed EMS.

The remainder of this paper is organized as follows. In

Sect. 2 we introduce the background of this work. The

detailed DQL-based EMS is presented in Sect. 3. The

simulation results are reported in Sect. 4, followed by

conclusion given in Sect. 5.

2 Background

In this section, the background of this work is introduced,

including overviews of the deep Q-learning Algorithm in

Sect. 2.1, the introduction of Bayesian optimization in Sect.

2.2, and a description of the system modeling in Sect. 2.3.

2.1 Reinforcement learning and deep Q-learning

Reinforcement learning (RL) is a model-free strategy, and

it is based on the Markov decision process (MDP). RL is

described by a tuple S; A; P; Rh i, where S and A are state

space and action space, respectively, P : S� A� S!
½0; 1� denotes the transition probability among all states and

R : S� A! R is the reward. The basic objective of RL is

to find an optimal policy p : S! A which maximizes the

long-term accumulative reward R ¼
P1

t¼0 c
trðtÞ, where c 2

ð0; 1Þ is the discount factor.

This objective is realized through the interaction

between agent and environment, that is, trials of agent and

response from the environment.

The interaction of reinforcement learning is illustrated

in Fig. 1. At decision time step tk, the agent is presented

with a state sk, and after an action ak is selected and exe-

cuted, the next state skþ1 and a reward rk are obtained. The

optimal Q-value, Q�ðst; atÞ, represents the maximum

accumulative reward, and it is calculated using the Bellman

equation:

Q�ðst; atÞ ¼ E rtþ1 þ cmax
atþ1

Q�ðstþ1; atþ1Þjst; at
� �

ð1Þ

Fig. 1 Interaction between a reinforcement learning agent and the

environment [14]
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Q-learning is an effective RL algorithm to update the

value estimation, and its one-step update rule is formulated

as follows:

Qðst; atÞ  Qðst; atÞ

þ g rtþ1 þ cmax
atþ1

Qðstþ1; atþ1Þ � Qðst; atÞ
� �

ð2Þ

where g denotes the learning rate. Such an algorithm

converges to the optimal Q-value, i.e., Qt ! Q� as t!1.

However, the above method is impractical due to the lack

of generalization [25]. In deep Q-learning algorithm, a deep

neural network called deep Q-network (DQN) with parame-

ters h is introduced to estimate Q-value, Qðst; at; hÞ �
Q�ðst; atÞ. The training process of DQN aims to minimize

the loss function LðhÞ, which is defined as follows:

LðhÞ ¼ E ðr þ cmax
atþ1

Qðstþ1; atþ1; h�Þ � Qðst; at; hÞÞ2
� �

ð3Þ

where the target Q-value is represented by

r þ cmaxatþ1 Qðstþ1; atþ1; h�Þ, calculated by previous

network parameters h�, Qðst; at; hÞ denotes the Q-value

estimated by DQN parameterized by h. Parameters h are

updated using a gradient descent performed on LðhÞ:

rhLðhÞ ¼ E

�

ðr þ cmax
atþ1

Qðstþ1; atþ1; h�Þ

� Qðst; at; hÞÞrhQðst; at; hÞ
� ð4Þ

2.2 Bayesian optimization and tree-structured
Parzen estimator

Consider f : X! R as an implicit function to be opti-

mized, where X � Rd is a compact and convex set [24], d

represents the dimension of the input space. The objective

of Bayesian optimization is to find an optimal solution of f

through queries x1; x2; . . . 2 X. To achieve this, one

surrogate model M of f is built and the optimal solution is

selected according to M.

In this work, the query xi represents the hyperparameter

configuration at ith iteration and xi ¼ ½xi1; xi2; . . .; xin�T
where x is one of the hyperparameters. yi ¼ f ðxiÞ is

selected as the final episodic training reward of DQL

equipped with hyperparameters xi. Tree-structured Parzen

estimator approach (TPE) [26] algorithm is employed as

hyperparameter tuning method. In TPE, expected

improvement (EI) [27] is selected as the optimization

objective, which represents the expectation under model M

that y will exceed a threshold y�:

EIy� ðxÞ ¼
Z 1

�1
maxðy� � y; 0ÞpðyjxÞdy

¼
Z y�

�1
ðy� � yÞpðyjxÞdy

¼
Z y�

�1
ðy� � yÞ pðxjyÞpðyÞ

pðxÞ dy

ð5Þ

where pðxÞ and pðyÞ denote the probability of x and y

having specific values, respectively, pðxjyÞ is the surrogate
model representing the relationship between y and every

hyperparameter x. pðxjyÞ is built as an alternative density

estimate which is conditional on the value of y relative to a

threshold y�:

pðxjyÞ ¼
lðxÞ if y\y�

gðxÞ if y	 y�

(

ð6Þ

where lðxÞ is the density built from all the x that its corre-

sponding y is less than y�, gðxÞ is the density formed by the

remaining x and y� is chosen as the c-quantile of all the

corresponding y obtained so far. Intuitively speaking, this

creates two probabilistic density estimators lðxÞ and gðxÞ for
hyperparameters doing ‘‘good’’ and ‘‘poor,’’ respectively [28].

On the other hand, EIy� ðxÞ is proved to satisfy the fol-

lowing expression [26]:

EIy� ðxÞ / cþ gðxÞ
lðxÞ ð1� cÞ

� ��1
: ð7Þ

Therefore, EIy� ðxÞ can be maximized by generating many

candidate queries x randomly and picking one query min-

imizing the ratio
gðxÞ
lðxÞ .

For every hyperparameter x, lðxÞ and gðxÞ are estimated

using Parzen estimator (also known as kernel density

estimator), which provides the probability density function

(PDF) of a random variable in a nonparametric way. Let

ðz1; z2; . . .; znÞ represents the samples of one hyperpa-

rameter drawn from an unknown distribution; the Parzen

estimator uses samples to estimate the function f by:

f̂hðzÞ ¼
1

nh

Xn

i¼1
K

z� zi
h

� �
i ¼ 1; . . .; n ð8Þ

where Kð�Þ is the kernel function and h is the bandwidth.

In addition, in TPE, the hyperparameter configuration

space is defined in a form of a tree structure, where some

leaf node variables (e.g., number of neurons of second

layer of DQN) are valid only if roof node variables (e.g.,

number of layers) take particular values. In this case, we

call leaf node variables are conditional on roof node vari-

ables, and other leaf nodes can be conditional on these leaf

nodes, causing a tree-structured space [26]. For each node

in the tree structure, a 1-D Parzen estimator is built to

estimate PDF. For a given hyperparameter configuration x
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that is added to either l or g, only the 1-D estimators of

valid hyperparameters in x are updated.

For continuous hyperparameters, firstly, the hyperpa-

rameter is specified by a prior distribution. Secondly, these

estimators are constructed by assuming the density as

Gaussian (i.e., Gaussian kernel K z�zi
h

� 	
¼

1ffiffiffiffi
2p
p exp � 1

2
z�zi
h

� 	2
� �

[29], with the bandwidth h set to the

greater of the distances to the left and right neighbors of

each data point [26]. Finally, the distribution substitutes an

equally weighted mixture of these Gaussians and the prior

distribution.

For discrete hyperparameters, the prior is a vector of N

probabilities pj where N is the number of choices of the

hyperparameter’s value and the posterior vector elements

are proportional to pj þ Cj, where Cj counts the occur-

rences of choice j. The leaf nodes are mutually indepen-

dent; so, the dependence of y on hyperparameter

configuration x as well as the joint density function f ðxÞ
can be computed by multiplying the individual density

estimations of every hyperparameter in x.

2.3 System modeling

The structure of considered EV and its powertrain config-

uration is sketched in Fig. 2. As shown, the vehicle mainly

consists of a single-speed transmission, an electrical bus, a

HESS and an electric drive system containing a bidirec-

tional DC–AC inverter and a motor. In the HESS, the

supercapacitor is connected to the electrical bus via a

bidirectional DC–DC converter while the battery is directly

connected. Both the energy sources can power the vehicle

or receive regenerative energy either separately or together.

In this study, we similarly adopt the configuration of EV

discussed in [30].

The powertrain of the HESS can be in one of the six

power flow modes listed in Table 1, where Pdem is the total

power demand drawn from the wheel, A and Psc are output

power of the battery and supercapacitor, respectively. A

positive value of power represents that the vehicle is being

propelled or the corresponding energy source is providing

power, while a negative one means the vehicle is in

regenerative braking mode or the energy source is being

charged. In modes 1 and 6, both the energy storages are

powering the vehicle or being charged simultaneously. In

the other four modes, one storage is providing power to or

being charged by the other.

2.3.1 Vehicle dynamics

In this paper, the longitudinal dynamics of the vehicle are

formulated as follows [15]:

Pdem ¼ ðFa þ Fr þ FwÞv

Fa ¼ ma; Fr ¼ mgf ; Fw ¼
CdA

21:15
v2

ð9Þ

where Pdem is the power demanded to drive the vehicle, Fa

is the inertial force, Fr is the rolling resistance, Fw is the

aerodynamic drag, v is the vehicle speed, Cd is the aero-

dynamic coefficient, A is the fronted area of HEV, v is the

speed and a is the acceleration, m is the curb weight of

vehicle, f is the rolling resistance coefficient and g is the

acceleration of the gravity.

The relationship between total power demand and the

electric drive power is formulated as follows, during

propelling:

Pe ¼
1

gmgTginv
Pdem ð10Þ

for generating:

Pe ¼ grPdem ð11Þ

where Pe is the electric drive power, gm and gT denote the

efficiency of motor and transmission, respectively, ginv

Fig. 2 Configuration and

structure of EV
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denotes the DC–AC inverter efficiency and gr is the

average efficiency of the regenerative braking.

As the considered HESS in EV contains two energy

sources, the electric drive power should be provided by

them together; when supercapacitor is discharging:

Pe ¼ Pbat þ Pscgconv ð12Þ

and when supercapacitor is charging:

Pe ¼ Pbat þ
Psc

gconv
ð13Þ

where Psc and Pbat are the output power from superca-

pacitor and battery, respectively. gconv is the DC–DC

converter efficiency.

Basic parameters of the vehicle are given in Table 2.

2.3.2 Supercapacitor model

The supercapacitor can be modeled as a series combination

of an ideal capacitor and resistance Rsc [32]. The state of

charge (SOC) of supercapacitor is determined by [33]:

SOCsc ¼
Voc
sc

Voc
scmax

ð14Þ

where Voc
sc and Voc

scmax are the open-circuit voltage across

the capacitor and the maximum voltage across the capac-

itor, respectively. According to the dynamic characteristic

of the ideal capacitor, Voc
sc satisfies the following equation:

_Voc
sc ¼ �

Isc
Csc

ð15Þ

where Isc and Csc are the output current and capacitance of

the supercapacitor, respectively. Isc can be calculated by:

Isc ¼
Voc
sc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVoc

sc Þ
2 � 4RscPsc

q

2Rsc
ð16Þ

where Voc
sc , Rsc and Psc are the supercapacitor’s voltage,

equivalent resistance and charging/discharging power,

respectively. Hence, the variation of SOCsc is given by:

S _OCsc ¼ �
SOCscV

oc
scmax �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSOCscVoc

scmaxÞ
2 � 4RscPsc

q

2RscCscVoc
scmax

ð17Þ

2.3.3 Battery model

A Li-ion battery is considered as the traction battery for

electric vehicles, and it is modeled as an ideal open-circuit

voltage module connecting an internal resistance in series.

The battery’s state of charge (SOCbat) is determined by:

S _OCbat ¼ �
Ibat
Qbat

ð18Þ

where Qbat is the nominal capacity of battery and Ibat is the

output current of battery and can be calculated by [10]:

Table 1 Operation mode

options of the HESS [31]
Mode Power demand Pdem Battery output powerPbat Supercapacitor output power Psc

1 Pdem	 0 Pbat 	 0 Psc	 0

2 Pdem	 0 Pbat\0 Psc	 0

3 Pdem	 0 Pbat 	 0 Psc\0

4 Pdem\0 Pbat\0 Psc	 0

5 Pdem\0 Pbat 	 0 Psc\0

6 Pdem\0 Pbat\0 Psc\0

Table 2 Parameters of the

considered electric vehicle [30]
Items Parameters

Vehicle Curb weight m: 2184 kg

Frontal area A: 2.35 m2

Rolling resistance coefficient f : 0.0092

Aerodynamic coefficient Cd : 0.24

Battery 420 Saft 10.8 V, 12 Ah Li-ion modules, 12 strings of 35 modules in series

capacity: 59.6 kWh

Supercapacitor 139 Maxwell BCAP1200 in series

capacity: 0.168 kWh
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Ibat ¼
Voc
bat �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVoc

batÞ
2 � 4RbatPbat

q

2Rbat
ð19Þ

where Voc
bat, Rbat and Pbat are the battery’s open-circuit

voltage, internal resistance and charging/discharging

power, respectively. Considering the different battery

dynamics of charging and discharging, we have:

Rbat ¼ Rbat;ch ð20Þ

for charging and:

Rbat ¼ Rbat;disch ð21Þ

for discharging, where Rbat;ch and Rbat;disch are internal

resistances of battery while charging and discharging,

respectively. From Eq. (18) and Eq. (19), we can obtain

that:

S _OCbat ¼ �
Voc
bat �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVoc

batÞ
2 � 4RbatPbat

q

2RbatQbat
: ð22Þ

Also, a dynamic semi-empirical battery degradation

model in [34] is introduced to represent battery capacity

loss. It is assumed that the battery degradation model in

[34] can also be applied to describe dynamic battery

capacity loss on the basis of cumulative damage theory

[35]. Based on the original battery degradation model, a

discrete version is adopted [10]:

Qloss;pþ1 � Qloss;p ¼ DAhzB
1
ze
�EaþA�Crate

zRTbat Q
z�1
z

loss;p ð23Þ

where Qloss;pþ1 and Qloss;p are total accumulated battery

capacity loss at instants tpþ1 and tp ranging from 0 to 1, B is

the pre-exponential factor, Ea is the activation energy

ðJ mol�1Þ, Crate is the battery discharge rate, while A is the

compensation factor of Crate, R is the gas constant in

J ðmol�1=kÞ�1, Tbat is the battery absolute temperature in

K, z is the power law factor, and DAh is defined as:

DAh ¼
1

3600

Z tpþ1

tp

Ibatj j dt: ð24Þ

Values of the parameters in this model are provided in

[34].

2.3.4 Energy management model

The central objective of the EMS in this work is to

minimize the cost function J involving the accumulated

battery capacity loss and the electricity consumption for

a complete driving cycle, and it can be expressed as

follows:

J ¼
XN

k¼1
JðkÞ ¼

XN

k¼1
ðuJbat; lossðkÞ þ wJenergyðkÞÞ

Jbat; lossðkÞ ¼
jIbatðkÞjTs
3600

zB
1
ze
�EaþA�Crate

zRTbat Q
z�1
z

loss; k�1

JenergyðkÞ ¼
1

3600
ðPbatðkÞ þ PscðkÞ þ PlossðkÞÞ

k ¼ 1; 2; . . .; N

ð25Þ

where Jbat;lossðkÞ denotes the battery capacity loss occurring
at discrete k th time step and Ts is the simulation time step

size set as 1 s, JenergyðkÞ represents the energy consumption

during k th time step, while Ploss is the power loss of the

HESS, including resistance loss of battery and superca-

pacitor and DC/DC efficiency loss, u and w are weighting

coefficients, p : S! A is the number of time steps during

one driving cycle. Then the energy management problem

can be considered as a temporally limited optimization

problem with the following constraints:

0:5
 SOCxðkÞ
 0:9

� 247
PbatðkÞ
 247 ðkWÞ
� 208
PscðkÞ
 208 ðkWÞ

ð26Þ

for x ¼ bat; sc:

3 Energy management strategy

In this section, key concepts of DQL-based EMS are

defined by considering the system dynamics in 3.1, fol-

lowed by the algorithm design of the EMS in 3.2 and

theoretical analyses on the algorithm in 3.3.

3.1 Key concepts of DQL-based EMS

In this part, key concepts of the DQL-based EMS are

defined. To describe a reinforcement problem as a MDP,

the problem statement has to satisfy Markov property

[36]. The state signal retaining all the important infor-

mation for the agent’s behavior in the future is said to

have Markov property. In other words, in this case, the

agent’s behavior should be independent of the history.

Here, we define the state space by considering the system

dynamics.

Firstly, according to Eq. (9), the power needed to

drive the vehicle Pdem is determined by the velocity and

the acceleration, which are strongly dependent on the

previous moving state. Therefore, current Pdem is related

to previous Pdem, so Pdem should be concluded in the state

space.
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Secondly, SOCbat and SOCsc are calculated based on

the previous remaining energy of battery and superca-

pacitor, and they are also used to judge the energy

consumption, which is one of the optimization objec-

tives and directly influences the immediate reward.

Therefore, SOCbat and SOCsc should be concluded in

the state space.

Thirdly, according to Eq. (23) of the battery degradation

model, the degradation happened in the next time step is

related to the current aging state of the battery, so Jbat; loss
should also be concluded.

Hence, the definition of state variables can be deter-

mined as:

sðkÞ ¼ ½PdemðkÞ; SOCbatðkÞ; SOCscðkÞ; Jbat; lossðkÞ�T

ð27Þ

Since the basic idea of EMS for HESS is to properly

allocate power in demand between energy sources to

alleviate battery degradation, we select output power of

battery as the action variable, and it is denoted as:

aðkÞ ¼ PbatðkÞ ð28Þ

The action space includes 17 options representing dis-

cretized PbatðkÞ in kW, and it is defined as:

A ¼ f�60; �42; �30; �20; �10; �7; �4; �2; 0;
. . .; 2; 4; 7; 10; 20; 30; 42; 60g

ð29Þ

The immediate reward is defined as:

rass0 ¼ aJðkÞ ð30Þ

where a is the weight factor of the optimization objective J

defined in Eq. (25) with a\0.

3.2 Algorithm design of DQL-based EMS

The details of DQL algorithm are described in Algorithm

1. In this algorithm, the hyperparameter optimization pro-

cess using BO and TPE is set as the outer loop [26]. The

second outer loop is performed during one training episode,

while the inner loop represents the control and learning

process at each time step. Inspired by [25], a target Q-

network Q̂ with weights h� is used to output the Q-value.

For the balance between exploration and exploitation, e�
greedy policy is adopted in step 4, i.e., the action with the

maximum Q-value is chosen with probability 1� e and a

random action is selected with probability e. To get rid of

the correlations between the training samples, experience

replay [25] is applied to store the experience of time step tk
as ðsk; ak; rk; skþ1Þ in an experience memory D in step 6.

For each training time step, D is randomly sampled as

ðsj; aj; rj; sjþ1Þ to form a minibatch to update the weights

of deep Q-network.

The complete process of DQL-based EMS is illustrated

in Fig. 3, which demonstrates that the developed EMS can

autonomously learn the optimal control policy only based

on real-time data, without any prior knowledge.

3.3 Theoretical analyses on the algorithm
of DQL-based EMS

By describing the problem in the above way, the deep Q-

network in DQL algorithm is supposed to be able to finally

map all the states into optimal Q-values. The ability to deal

with states with various dynamics (e.g., the internal resis-

tance of battery varying with operating modes and SOCbat,

the battery degradation having an exponential relationship

with energy loss in the battery and various real-time
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velocity of driving cycles representing complicated traffic

conditions, etc.) is called adaptability.

The reason behind this ability is the ‘‘experience replay’’

mechanism introduced to achieve stability in DQL [25]. In

this mechanism, a ‘‘replay buffer’’ is created to store his-

torical experience tuples, and at every time step, a group of

independent transitions are sampled from the buffer as

training samples for DQN.

By doing this, the training process of agent involves

more efficient use of previous experience, because theo-

retically, all the experience can be used for training the

Q-network. Therefore, the network is supposed to deal with

any possible, various dynamics of the system, as long as

training iterations are sufficient. So we can conclude that:

Remark 3.1 It is the ‘‘experience replay’’ mechanism that

empowers the network with the adaptability to generate

optimal Q-values under various states, representing dif-

ferent traffic conditions and complicated dynamics of

vehicle and battery.

In addition, as mentioned in Sect. 2.1, the updating

process of Q-network is led by the error between the real

Q-value Qðs; a; hiÞ and the target Q-value yis;a in i th

iteration, where yis;a ¼ r þ cmaxa0 Qðs0; a0; h�i Þ. This error
is called target approximation error (TAE), denoted by Zi

s;a,

which is supposed to be a random process with E½Zi
s;a� ¼ 0

and Var½Zi
s;a� ¼ r2s , and it’s defined as:

Zi
s;a ¼ Qðs; a; hiÞ � yis;a: ð31Þ

In [37], the considered reinforcement learning problem

is first assumed to be an M-state unidirectional MDP,

where the agent starts at s0 and ends at sM�1, and then for

i[M, the variance of DQN is analyzed. Inspired by [37],

we analyze the convergence of the EMS in the final

learning episodes, where the choice of action of Q-network

does not involve exploration and a single episode can be

seen as an M-state unidirectional MDP. Here the Q-value

Qðs0; a0; hiÞ is expressed as follows:

Qðs0; a0; hiÞ ¼ Zi
s0;a0
þ yis0;a0

¼ Zi
s0;a0
þ cQðs1; a1; h�i Þ

: ð32Þ

It is worth noting that, firstly, we consider the reward to

be zero ðr ¼ 0Þ everywhere since it has no effect on vari-

ance [37]; secondly, since there is no exploration in action,

Fig. 3 Process of DQL-based energy management strategy
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a1 is exactly the action to maximize target Q-value. Then,

we have:

Var½Qðs0; a0; hiÞ� ¼ Var½Zi
s0;a0
� þ Var½yis0;a0 �

¼ r2s1 þ cVar½Qðs1; a1; h�i Þ�
: ð33Þ

That is, the variance of Q-value consists of variance of

TAE and variance of target Q-value. When c ¼ 1, we can

deduce that the variance of Q-value in s1 is smaller than

that in s0, and this can easily be extended to other states in

the same episode. Then we have:

Remark 3.2 Assume the discount factor c to be 1, the

variance of Q-value decreases with the agent passing along

every state in a single learning episode without exploration,

which would benefit DQN’s convergence in the last few

stages of the learning process.

4 Simulation results and discussion

In this section, the effectiveness of the DQL-based EMS is

evaluated on the considered HESS and electric vehicle.

Firstly, the effectiveness of the hyperparameter tuning

method is validated by comparison with random search.

Then, DQL-based EMS is compared with a previously

published rule-based EMS [10] under both the training

dataset and the testing dataset, respectively.

Urban Dynamometer Driving Schedule (UDDS) cycle is

applied as the training dataset. New York City Cycle

(NYCC), West Virginia University Suburban (WVUSUB)

and Highway Fuel Economy Test (HWFET), representing

urban, suburban and highway driving cycle, respectively,

are employed to constitute a combined testing driving

cycle.

The combined cycle is employed as the testing dataset.

The combined cycle is depicted in Fig. 4. In addition, some

characteristics of UDDS and combined cycle are compared

in Table 3. Differences in velocity and acceleration of two

cycles indicate that they represent different driving

conditions; therefore, the combined testing driving cycle is

suitable for validating the adaptability of the developed

strategy.

We employ GTX 1080 as well as AMD Ryzen 7 1700

processor running at 3.0 GHz as our hardware platform.

The DQL-based EMS is implemented using Tensorflow

1.11.0. As for the hyperparameter tuning process, we apply

hyperopt library [38] to implement TPE algorithm. We

set all the hidden layers as fully connected tanh layers, and

the output layer is chosen as a fully connected sigmoid

layer with 17 neurons representing Q-values of all possible

options of discrete Pbat. The exploration rate e is set as

initial exploration at the beginning of the training process,

and then it decreases at a constant speed with iterations and

finally reaches the final exploration rate.

Then both the architecture of the deep network and

parameters of the learning process are all optimized. The

search spaces for hyperparameters, i.e., the intervals that

the hyperparameters fall into or options the hyperparame-

ters choose, are shown in Table 4, where the top 5 best

trails of hyperparameters of BO with TPE are also

exhibited.

Despite the fact that it is tough to figure the relationship

between settings and the performance of a neural network,

the five results are sharing some features following some

laws or previous studies on hyperparameters.

Firstly, the discount factor c determines to what extent

future rewards are taken into consideration by the agent.

We can find that in Table 4, all the c are more than 0.6 and

close to 1, which is beneficial to the optimization in the

long run. Secondly, compared with RMSProp optimizer,

the gradient descent optimizer is characterized by higher

training time and more likely to fall into a local minimum,

and it is shown in Table 4 that RMSProp is applied in all

the results. Next, the best learning rate is neither valued too

high nor too low but at around 0.04–0.05 in order not to

skip over the global minimum or fall into a local minimum.

Finally, the network is not oversized and its depth and

width are similar to the network sizes in other works using

reinforcement learning [16], whose performance has been

validated.

For comparison, random search (RS) [20] is imple-

mented and allocated the same time budget with BO, and

the best result of RS is also shown in Table 4. It can be
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Fig. 4 Combined testing driving cycle

Table 3 Statistic comparison between UDDS and combined testing

driving cycle

Driving cycle UDDS Combined cycle

Maximum velocity (m/s) 25.458 26.895

Average velocity (m/s) 8.790 10.069

Maximum acceleration (m/s2) 1.482 2.694
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seen that the best performer of BO with TPE (trail 5 in bold

type) achieves reward at -1137 when the learning process

ends, while the best reward of RS is -1304. Although RS

performs very well especially in some complicated search

problems [39], the hyperparameter tuning method outper-

forms RS in this problem. A further comparison between

the best results of both the hyperparameter tuning

approaches is made during the learning process.

4.1 Learning performance

In this part, the Q-network with hyperparameters tuned by

both BO and RS algorithm is trained with training dataset.

A total of 300 episodes are used during the training pro-

cess, and each episode means a complete UDDS cycle. The

track of average loss defined in Eq. (3) in every episode is

demonstrated in Fig. 5. It is apparent that the average loss

with hyperparameters tuned by BO continuously decreases

at first and then fluctuates around 0.055, which indicates

that the training loss has been reduced effectively. In

contrast, the counterpart using RS is often less satisfying.

Figure 6 records the trend of total reward of each episode.

In both tracks, violent fluctuations at the beginning indicate

that the RL agent cannot make favorable decisions and

exploration is frequently used. However, the track opti-

mized by BO ascends with training episodes, and after

about 100 episodes the value of total reward becomes

significantly improved and stabilized at a historical high

position, representing the effectiveness of learning. In

contrast, fluctuations are not relieved in the result of RS,

indicating a poor convergence performance.

Table 4 Results of hyperparameter optimization using two methods

Hyperparameters Search space BO with TPE Random Search

Trial 1 Trail 2 Trial 3 Trail 4 Trail 5 Trail 1

Discount factor c [0, 1] 0.65 0.62 0.81 0.73 0.73 0.90

Optimizer RMSProp, gradient descent RMSProp RMSProp RMSProp RMSProp RMSProp RMSProp

Learning rate [0.00001, 0.1] 0.0721 0.0838 0.0434 0.0441 0.0453 0.097

Memory size ND [50, 10,000] 4386 3476 1087 1492 1398 9692

Minibatch size [1, 50] 26 44 30 25 26 18

Initial exploration e [0.5, 1] 0.89 0.72 0.87 0.87 0.89 0.93

Final exploration e [0, 0.5] 0.1 0 0.13 0.07 0.07 0.05

Replay period C [100, 500] 320 259 499 285 286 367

Hidden layers’ number [1, 5] 3 2 4 3 3 2

Neurons in layer 1 [1, 100] 16 28 72 17 21 5

Neurons in layer 2 [1, 100] 19 19 69 23 19 5

Neurons in layer 3 [1, 100] 91 41 88 86

Neurons in layer 4 [1, 100] 45

Neurons in layer 5 [1, 100]

Final reward of this configuration - 1168 - 1165 - 1162 - 1151 - 1137 - 1304
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4.2 Optimality

In this part, the DQL-based algorithm is compared with a

previous work [10] to validate both optimality and adapt-

ability. The rule-based strategy proposed in [10] is con-

trolled by four fixed parameters, i.e., Phd and Pmin are two

values deciding the operation mode of HESS, Phigh is the

maximum output power of the battery and finally Pch is the

charging power from battery to supercapacitor in some

cases. It is worth noting that in [10], Pdem denotes power-

train power demand draw from the inverter, so it is equal to

Pe in this work. These parameters should be adjusted well

to fit specific vehicle model and driving environment in this

study. Motivated by [40], we set the parameters with all

possible values to search for the best performance. The

determined values are listed in Table 5.

In practice, the two EMSs finish UDDS with different

terminal SOCsc, which may indicate a diverse amount of

battery electricity used. For a fair comparison, equivalent

battery capacity loss Qeq loss, as a measure of efficiency of

prolonging battery life, is defined as battery capacity loss

per kilowatt battery power and it is formulated as:

Qeq loss ¼
Qloss; N

PN
k¼1 jPbatðkÞj

k ¼ 1; . . .;N ð34Þ

The comparison results between the two EMSs are

presented in Table 6. The rule-based EMS achieves

97.62% battery life prolonging and 99.14% energy econ-

omy when the DQL-based one is seen as a 100% bench-

mark, that is, DQL-based EMS performs 2.38% and 0.86%

better than the rule-based EMS, respectively. It is worth

noting that the rule-based EMS is extracted from DP results

and it can be seen as a near-optimal strategy [10], so the

optimality of DQL-based EMS is validated.

The detailed power allocations of the DQL-based and

the rule-based strategy under training dataset are exhibited

in Fig. 7a, b, respectively, and SOCsc trajectories of both

EMS are shown in Fig. 7c. As shown, whether in instan-

taneous peak power demand or in long-term normal use,

the rule-based EMS obtains higher battery peak power and

severe fluctuation of battery power than the DQL-based

EMS.

For example, when the power demand reaches the

highest value at around 200 s, the supercapacitor cannot

afford positive output due to low remaining electricity, so

the battery has to fully provide all the driving power. In

contrast, the DQL-based method successfully protects

battery from the highest power. Another example appears

in 800–1000 s, where the DQL-based EMS keeps battery

power load in a smaller range compared with the rule-

based EMS. The reason of the improvements is that in

DQL-based EMS, agent tends to charge supercapacitor

from battery when the SOCsc is in a low level and the

electric drive system is either idle or coping with low

power load; for example, when it is 0–25 s in Fig. 7a, c,

battery charges the supercapacitor when the vehicle is

stationary. Therefore, SOCsc is kept in a relatively high

position to share possible peak power in the future. In this

way, battery life is extended in the developed method.

4.3 Adaptability

Although the optimality of the DQL-based EMS has been

validated, it could be faced with uncertainty in an unfa-

miliar scenario or untrained environments. Therefore, in

this part, both EMSs are implemented on the testing dataset

to validate the adaptability. Comparisons are made in

Fig. 8, where the distributions of the battery power Pbat of

different cases are plotted. The distribution of Pbat in EV

equipped with the same battery considered by the DQL-

based EMS as the single energy source, i.e., the battery-

only configuration, is also plotted. The vertical axis rep-

resents the frequency that Pbat appears with in defined

intervals.

Firstly, it is seen that compared with battery-only con-

figuration, Pbat of both EMSs avoid intervals on both sides

and gather in the central area which is characterized by low

power load and alleviative current stress on the battery. In

addition, compared with rule-based EMS, frequencies that

battery power of DQL-based EMS falls in intervals

ð21;þ1Þ,ð12; 21� and ð�1; 1� in Fig. 8a, b are smaller than

those of the rule-based EMS. This phenomenon indicates

that DQL-based strategy tends to spread the power load on

daily operation and peak power demands can be shared

more equally, and this character is kept under distinct

conditions.

Detailed statistic results are recorded in Table 7. It is

seen that the DQL-based EMS performs almost the same as

the rule-based EMS in battery life prolonging, and the

electricity economy improvement brought by DQL-based

method reaches 10.78% (from 89.22 to 100%). Since the

rule-based strategy is adjusted again to obtain the best

performance, it can be concluded that the optimality of

DQL-based EMS is still guaranteed under testing envi-

ronments and the adaptability is also confirmed.

Table 5 Values of parameters in rule-based EMS after adjustment

Parameters of rule-based EMS Training dataset Testing dataset

Pch 1 1

Pmin 3 7

Phigh 11 11

Phd 13 15
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Table 6 Comparison between DQL-based EMS and rule-based EMS under training dataset

Energy management

strategy

Equivalent battery capacity loss (%/

kW)

Battery life prolonging

(%)

Energy consumption

(kWh)

Energy economy

(%)

DQL-based 0.1436 100 1.3197 100

Rule-based 0.1471 97.62 1.3312 99.14
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4.4 Time consumption

Time consumption of DQL-based EMS can be classified

into two parts: training time and inference time. Firstly, it

takes 2 h and 57 min to optimize hyperparameters for DQL

algorithm because every query of Bayesian optimization is

time-consuming. Secondly, inference times of DQL-based

EMS are 5.661089 s on training dataset and 7.91536 s on

testing dataset, respectively.

As for rule-based EMS, it costs 1 h and 3 min to adjust

parameters shown in Table 5, and the inference time is

0.009772 s on training dataset and 0.011598 s on training

dataset, respectively. The cause of the difference between

the two methods is that computations on neural networks

are much more complicated than those on simple rule-

based programs.

It seems that the rule-based EMS is more time-saving;

however, it is worth noting that rules in the rule-based

method are extracted from dynamic programming results,

which requires knowledge on the environment in advance

and human expertise, so it is tough to realize in real

applications. In contrast, the DQL-based EMS is an effi-

cient autonomous learning method without prior knowl-

edge and manual intervention.

5 Conclusion

In this paper, a deep Q-learning-based energy management

strategy of the hybrid energy storage system has been

developed for electric vehicles. In addition, in order to

properly tune the hyperparameters of the DQL algorithm,

we have employed Bayesian optimization (BO) with tree-

structured Parzen estimator (TPE) algorithm as the hyper-

parameter optimization approach. Simulation results have

shown that the DQL algorithm with hyperparameters tuned

by Bayesian optimization has a better learning performance

than the DQL using random search. It has also been vali-

dated that the developed EMS outperforms a previously

published near-optimal rule-based EMS in terms of both

battery life prolonging and energy economy on both the

training dataset and the testing dataset. For future devel-

opment, the application of more advanced reinforcement

learning technologies that are trained with higher efficiency

and can reduce both training time and inference time will

be accomplished.
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Fig. 8 Battery power distribution of both EMSs and battery-only

configuration under a training dataset and b testing dataset

Table 7 Comparison between DQL-based EMS and rule-based EMS on the testing dataset

Energy management

strategy

Equivalent battery capacity loss (%/

kW)

Battery life prolonging

(%)

Energy consumption

(kWh)

Energy economy

(%)

DQL-based 0.1006 99.90 2.6291 100

Rule-based 0.1005 100 2.9468 89.22
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