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Abstract
Traditional plane-based clustering methods measure the within-cluster or between-cluster scatter by linear, quadratic or

some other unbounded functions, which are sensitive to the samples far from the cluster center. This paper introduces the

ramp functions into plane-based clustering and proposes a ramp-based twin support vector clustering (RampTWSVC).

RampTWSVC is very robust to the samples far from the cluster center, because its within-cluster and between-cluster

scatters are measured by the bounded ramp functions. Thus, it is easier to find the intrinsic clusters than other plane-based

clustering methods. The nonconvex programming problem in RampTWSVC is solved efficiently through an alternating

iteration algorithm, and its local solution can be obtained in a finite number of iterations theoretically. In addition, its

nonlinear manifold clustering formation is also proposed via a kernel trick. Experimental results on several benchmark

datasets show the better performance of our RampTWSVC compared with other plane-based clustering methods.

Keywords Clustering � Plane-based clustering � Ramp function � Twin support vector clustering � Nonconvex programming

1 Introduction

Clustering that discovers the relationship among data

samples has been applied to many real-world problems,

e.g., marketing, text mining and web analysis [1–7]. In

particular, the partition-based clustering methods [1, 8, 9]

are widely used in real applications for their simplicity,

e.g., the classical kmeans [10]. The partition-based clus-

tering supposes there are k clusters and each cluster has a

cluster center. Then, the data samples are assigned to these

clusters according to the distances from the cluster centers.

Kmeans supposes the cluster centers are some points in the

sample space, but the cluster centers may be some other

types in the datasets, e.g., planes in the ‘‘cross-planes’’

dataset [11–13]. As an extension of point center, the plane

center is able to discover comprehensive structures in the

sample space. Therefore, the partition-based clustering

with planes as cluster centers, called plane-based cluster-

ing, has been studied widely [14–20].

In plane-based clustering, starting from an initialization,

the clustering result is obtained iteratively through the

cluster assignment and cluster update steps. In the cluster

assignment step, the samples are assigned to the clusters by

the distances from the cluster center planes. In the cluster

update step, the cluster center planes are the solutions of

k optimization problems, where different plane-based

methods have different optimization problems. In general,

the optimization problems consist of two aspects: within-

cluster compactness and between-cluster separation. The

first proposed k-plane clustering (kPC) [14] measured the

within-cluster scatter by a quadratic function, and another

proximal planes clustering (PPC) [15, 16] measured the

within-cluster and between-cluster scatters by the same

quadratic function. Subsequently, twin support vector

clustering (TWSVC) [17] improved the between-cluster

scatter by hinge function [12, 21], robust twin support

vector clustering (RTWSVC) [18] and fast robust twin

support vector k-plane clustering (FRTWSVC) [18]

improved them by absolute function. Figure 1 exhibits the

metric functions used in these methods. Since these plane-

based clustering methods measure the within-cluster and/or

between-cluster scatter by some unbounded functions,

some samples may influence the cluster center planes
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significantly, e.g., the samples far from their corresponding

cluster center.

To further reduce the influence of the samples far from

the cluster center, a better choice is to hire some bounded

functions to measure the within-cluster and between-clus-

ter scatters instead of unbounded functions. Therefore, we

consider to hire the ramp functions [22] into the plane-

based clustering, where the ramp functions are bounded

piecewise linear functions and have been applied in semi-

supervised and supervised learning successfully [23–25]. In

this paper, a ramp-based twin support vector clustering

method, called RampTWSVC, is proposed by introducing

the ramp functions for the measurement of the within-

cluster and between-cluster scatters (see Fig. 1).

RampTWSVC reduces the influence of the samples far

from the cluster centers to obtain the stable cluster center

planes. The optimization problems in our RampTWSVC

are some more complicated nonconvex programming

problems than other plane-based clustering methods. These

problems are recast to some mixed-integer programming

problems with the same formation. Then, an iterative

algorithm is proposed to solve the mixed-integer pro-

gramming problem, and we prove that the iterative algo-

rithm terminates in a finite number of iterations at a local

solution. In addition, RampTWSVC is extended to non-

linear case via a kernel trick to cope with the manifold

clustering [26, 27]. Experimental results on the benchmark

datasets show the better performance of the proposed

RampTWSVC compared with other plane-based clustering

methods.

2 Review of plane-based clustering

In this paper, we consider m data samples fx1; x2; . . .; xmg
in the n-dimensional real vector space Rn. Assume these m

samples belong to k clusters with their corresponding labels

y 2 f1; 2; . . .; kg, and they are represented by a matrix

X ¼ ðx1; x2; . . .; xmÞ 2 Rn�m. We further organize the

samples from X with the current label i into a matrix Xi and

those with the rest labels into a matrix X̂i with

i ¼ 1; 2; . . .; k. For readers’ convenience, the symbols X,

Xi, and X̂i will also refer to the corresponding sets,

depending on the specific context they appear. For exam-

ple, the symbol X can be comprehended as a matrix

belonging to Rn�m or a set that contains m samples. The

cluster center planes are defined as

fiðxÞ ¼ w>
i xþ bi ¼ 0; i ¼ 1; . . .; k; ð1Þ

where wi 2 Rn is the weight vector and bi 2 R is the bias.

The following plane-based clustering methods share the

same clustering procedures. Starting from an initial

assignment of the m samples into k clusters, the cluster

center planes (1) are constructed by the current cluster

assignment. Once the cluster center planes are obtained, the

m samples are reassigned by

y ¼ arg
i

min jw>
i xþ bij; ð2Þ

where j � j denotes the absolute value. The cluster center

planes and the sample labels are updated alternately until

some termination conditions are satisfied. In the following,

we briefly describe the different constructions of the cluster

center planes in kPC, PPC, TWSVC and RTWSVC.

(a) Within-cluster cost (b) Between-cluster cost

Fig. 1 Metric functions used in

kPC, PPC, TWSVC, RTWSVC,

FRTWSVC and RampTWSVC

to measure the within-cluster

and between-cluster scatters.

The horizontal axis denotes the

deviation of a sample from the

cluster center, and the vertical

axis denotes the cost to fit that

sample. When a cost value is

negative, the cost becomes a

reward
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2.1 kPC and PPC

kPC [14] wishes each cluster center plane close to the

current cluster samples. Further on, PPC [15] considers that

it should also be far away from different cluster samples.

Therefore, the ith (i ¼ 1; . . .; k) cluster center plane in PPC

is constructed by considering the problem

min
wi;bi

jjX>
i wi þ biejj2 � cjjX̂>

i wi þ biejj2

s:t: jjwijj ¼ 1;
ð3Þ

where jj � jj denotes the L2-norm, e is a column vector of

ones with an appropriate dimension and c[ 0 is a user-set

parameter, while the optimization problem in kPC does not

have the second term in the objective of (3).

From the objective of (3), it is obvious that the samples

from the within-cluster receive quadratic costs, and the

samples from the between-cluster receive quadratic

rewards. Therefore, the samples far from the cluster center

will have great impact on the potential cluster center

planes, and PPC may obtain a cluster center plane which is

far from the current cluster.

2.2 TWSVC and RTWSVC

In contrast, TWSVC [17] degrades the rewards of the

samples from different clusters by considering the problem

with i ¼ 1; . . .; k as

min
wi;bi

1

2
kX>

i wi þ biek2 þ ce>ðe� jX̂>
i wi þ biejÞþ; ð4Þ

where ð�Þþ replaces the negative parts by zeros.

From the second part of (4), it is clear that the samples

from the between-cluster would have a certain impact on

the cluster center plane only with deviation in [0, 1). Thus,

TWSVC is more robust than PPC [17]. However, the issue

of within-cluster also exists because of the quadratic

function in the first part of (4). Thus, RTWSVC [18] was

proposed to decrease its influence by replacing the L2-norm

in (4) with the L1-norm. Note that the metric function of

within-cluster of RTWSVC is unbounded from Fig. 1. In

order to eradicate the influence of the samples far from the

cluster center, it is reasonable to hire a bounded metric

function for the within-cluster, whose principle is similar to

the metric function for the between-cluster used in

TWSVC.

3 RampTWSVC

Similar to the above plane-based clustering methods

mentioned in Sect. 2, our RampTWSVC starts with initial

sample labels and then computes each cluster center plane

and the sample labels alternately, until some termination

conditions are satisfied. In the following, we consider to

obtain one of the cluster center planes for the given sam-

ples with their labels.

3.1 Formation

To obtain the ith (i ¼ 1; . . .; k) cluster center plane, our

RampTWSVC considers the following problem

min
wi;bi

c1
P

xj2Xi

R1ðxjÞ þ c2
P

xj2X̂i

R2ðxjÞ þ
1

2
ðjjwijj2 þ jjbijj2Þ;

ð5Þ

where c1; c2 [ 0 are the trade-offs. R1ðxÞ and R2ðxÞ are two
piecewise linear functions w.r.t. the deviation jfiðxÞj ¼
jw>

i xþ bij (see Fig. 1) as

R1ðxÞ ¼
0 if jfiðxÞj� 1� D;

1� s if jfiðxÞj� 2� D� s;

jfiðxÞj � 1þ D otherwise;

8
><

>:

ð6Þ

and

R2ðxÞ ¼
2þ 2D if jfiðxÞj � � s;

1þ D� s if jfiðxÞj � 1þ D;

�jfiðxÞj þ 2þ 2D� s otherwise;

8
><

>:

ð7Þ

where D 2 ½0; 1Þ and s 2 ð�1; 0� are two constants to

control the function form (for instance, D ¼ 0:3 and s ¼
�0:2 [23]). jjwijj and jjbijj are the regularization terms to

control the problem complexity.

It is obvious that both of the functions R1ðxÞ (for the

within-cluster Xi) and R2ðxÞ (for the between-cluster X̂i)

have upper and lower bounds. Thus, the samples much

further from the cluster center plane do not have greater

impact on the cluster center plane. The above property

indicates our RampTWSVC is more robust than PPC,

TWSVC and RTWSVC.

In the following, we extend our RampTWSVC to non-

linear manifold clustering, and the solutions to the linear

and nonlinear RampTWSVC are elaborated in the next

subsection.

The plane-based clustering methods can be extended to

nonlinear manifold clustering easily via kernel tricks

[13, 28]. For instance, by introducing a pre-defined kernel

function Kð�;XÞ [11, 17, 21], the plane-based nonlinear

clustering seeks k cluster center manifolds in the kernel-

generated space as
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giðxÞ ¼ Kðx;XÞ>wi þ bi ¼ 0; i ¼ 1; . . .; k: ð8Þ

Then, the nonlinear RampTWSVC considers introducing

the ramp functions into the plane-based nonlinear cluster-

ing. By replacing fiðxÞ with giðxÞ in (6) and (7), and sub-

stituting them into (5), one can easily obtain the

optimization problems to construct the cluster center

manifolds (8). When we obtain the k cluster centers (8), a

sample x is assigned to a cluster given by

y ¼ arg
i

min jKðx;XÞ>wi þ bij: ð9Þ

The procedure of the nonlinear case is the same as the

linear one, so the details are omitted.

3.2 Solution

In this subsection, we study the solution to problem (5).

The corresponding problem in nonlinear RampTWSVC is

similar to the one in linear case. For convenience, let

ui ¼ ðw>
i ; biÞ

>
, Zi be a matrix whose jth column zj is xj

with an additional feature 1 (where the corresponding xj

belongs to the ith cluster), and let Ẑi be a matrix whose

column is similar to zj (where the corresponding xj does not

belongs to the ith cluster). After some algebra, problem (5)

is recast to

min
ui

1

2
jjujjj2 þ c1e

>ð�1þ D� Z>
i uiÞþ þ c1e

>ð�1þ D

þ Z>
i uiÞþ þ c2e

>ð1þ D� Ẑ
>
i uiÞþ þ c2e

>ð1þ D

þ Ẑ
>
i uiÞþ � c1e

>ðs� 2þ D� Z>
i uiÞþ � c1e

>ðs� 2þ D

þ Z>
i uiÞþ � c2e

>ðs� Ẑ
>
i uiÞþ � c2e

>ðsþ Ẑ
>
i uiÞþ:

ð10Þ

It is easy to see that the above problem is a nonconvex

programming problem because of the concave part �ð�Þþ.
By introducing two auxiliary vectors p1 2 f�1; 0; 1gmi and

p2 2 f�1; 0; 1gm�mi (where mi is the sample number of the

current ith cluster), the above problem is equivalent to the

following mixed-integer programming problem

min
ui;p1;p2

1

2
jjuijj2 þ c1e

>ð�1þ D� Z>
i uiÞþ

þ c1e
>ð�1þ Dþ Z>

i uiÞþ þ c2e
>ð1þ D� Ẑ

>
i uiÞþ

þ c2e
>ð1þ Dþ Ẑ

>
i uiÞþ þ c1p

>
1 Z

>
i ui þ c2p

>
2 Ẑ

>
i ui

s:t: p1ðjÞ ¼
�1 if z>j ui [ 2� D� s;

1 if z>j ui\� 2þ Dþ s;

0 otherwise;

8
><

>:
8zj 2 Zi

p2ðjÞ ¼
�1 if z>j ui [ � s;

1 if z>j ui\s;

0 otherwise;

8
><

>:
8zj 2 Ẑi

ð11Þ

where p1ðjÞ and p2ðjÞ are the corresponding jth elements of

p1 and p2, respectively.

Here, we propose an alternating iteration algorithm to

solve mixed-integer programming problem (11). Starting

with an initialized u
ð0Þ
i , it is easy to calculate p

ð0Þ
1 and p

ð0Þ
2

by the constraints of (11). For fixed p
ðt�1Þ
1 and p

ðt�1Þ
2

(t ¼ 1; 2; . . .), (11) becomes an unconstrained convex

problem and its solution can be obtained by many algo-

rithms easily (e.g., sequential minimal optimization (SMO)

[29] and fast Newton-Amijio algorithm [30]). Once u
ðtÞ
i is

obtained, p
ðtÞ
1 and p

ðtÞ
2 are updated again. The loop will be

continued until the objective of (11) does not decrease any

more.

Theorem 3.1 The above alternating iteration algorithm

terminates in a finite number of iterations at a local opti-

mal point, where a local optimal point of the mixed-integer

programming problem (11) is defined as the point

ðu�i ; p�1; p�2Þ if u�i is the global solution to problem (11) with

fixed ðp�1; p�2Þ and vice versa.

Proof From the procedure of the alternating iteration

algorithm, it is obvious that the global solutions to (11)

with fixed ui or ðp1; p2Þ are obtained in iteration. Since

Table 1 Details of the benchmark datasets, where m is the number of

samples, n is the number of dimensions and k is the number of classes

Data m n k

(a) Arrhythmia 452 278 13

(b) Dermatology 366 34 6

(c) E. coli 336 7 8

(d) Glass 214 9 6

(e) Iris 150 4 3

(f) Libras 360 90 15

(g) Seeds 210 7 3

(h) Wine 178 13 3

(i) Zoo 101 16 7

(j) Bupa 345 6 2

(k) Echocardiogram 131 10 2

(l) Heartstatlog 270 13 2

(m) Housevotes 435 16 2

(n) Ionosphere 351 33 2

(o) Sonar 208 60 2

(p) Soybean 47 35 2

(q) Spect 267 44 2

(r) Wpbc 198 34 2

(s) Biodeg 1055 41 2

(t) Cnae 1080 856 9

(u) Dna 2000 180 3

(v) Tic 5822 85 2
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Table 2 Linear clustering on

benchmark datasets
Data kmeans kPC PPC TWSVC RTWSVC FRTWSVC Ours

AC (%) AC (%) AC (%) AC (%) AC (%) AC (%) AC (%)

MI (%) MI (%) MI (%) MI (%) MI (%) MI (%) MI (%)

(a) 65.72 ± 0.53 32.31 65.20 32.31 32.31 32.31 79.42

19.55 ± 0.99 5.49 6.70 5.49 5.49 5.49 10.10

(b) 69.76 ± 0.77 60.50 70.36 71.93 60.50 60.50 72.67

11.47 ± 2.15 29.65 3.48 27.40 28.95 28.95 24.42

(c) 82.19 ± 2.68 33.11 66.46 85.74 34.33 34.33 79.42

56.84 ± 4.42 8.61 9.65 33.43 10.42 10.42 43.35

(d) 65.58 ± 3.22 57.73 66.75 66.62 57.59 57.40 62.77

35.76 ± 2.23 22.55 8.54 35.40 17.69 18.20 20.95

(e) 84.57 ± 6.86 67.54 60.95 91.24 92.67 94.95 86.79

70.47 ± 9.10 25.41 12.04 85.59 82.31 86.97 71.71

(f) 90.84 ± 0.41 89.42 87.93 89.97 89.42 89.42 87.11

57.50 ± 2.28 56.40 15.84 56.40 56.40 56.40 44.47

(g) 87.35 ± 0.15 71.80 62.39 63.40 72.24 76.16 74.07

69.77 ± 0.68 42.43 18.33 51.27 43.17 52.09 45.74

(h) 71.06 ± 1.29 52.73 57.49 66.90 72.20 70.26 69.45

41.97 ± 1.44 7.33 4.70 35.48 45.35 41.08 35.16

(i) 87.49 ± 1.96 54.12 84.06 88.83 54.12 54.12 90.22

71.93 ± 3.15 34.23 55.56 73.33 32.15 32.15 76.98

(j) 50.39 ± 0.03 50.31 51.13 51.22 53.34 52.10 55.82

0.09 ± 0.02 0.22 0.23 0.42 3.73 1.86 7.07

(k) 66.41 ± 7.92 52.81 56.66 56.10 75.01 75.01 71.84

24.79 ± 17.27 0.54 2.99 36.87 39.64 39.64 35.46

(l) 51.45 ± 0.07 50.04 50.35 50.81 51.40 51.40 51.82

1.87 ± 0.07 0.02 0.15 13.11 1.63 1.67 2.40

(m) 78.83 ± 0.15 63.77 68.77 75.83 71.40 71.40 79.61

48.07 ± 0.38 34.16 27.27 45.19 39.36 39.36 50.15

(n) 58.89 ± 0.00 61.76 53.23 53.85 67.64 66.63 61.76

13.12 ± 0.00 13.00 3.26 21.13 23.04 21.26 12.91

(o) 50.22 ± 0.18 49.80 49.99 50.43 51.26 50.06 51.62

0.74 ± 0.28 0.01 0.23 0.01 2.06 0.67 4.05

(p) 93.41 ± 13.90 91.67 100.0 50.05 91.67 91.67 100.0

86.95 ± 27.53 78.05 100.0 1.70 78.05 78.05 100.0

(q) 52.97 ± 0.00 65.86 50.67 65.86 50.88 50.58 67.17

8.48 ± 0.00 0.51 0.51 0.51 0.35 0.34 1.15

(r) 56.03 ± 0.00 52.95 57.95 56.03 53.48 57.15 64.15

0.08 ± 0.00 0.21 0.27 0.05 0.01 2.95 1.33

(s) 51.52 ± 0.00 50.28 54.14 54.82 50.28 50.28 55.68

0.02 ± 0.00 5.24 0.02 0.43 5.24 5.24 1.66

(t) 76.20 ± 4.19 11.61 75.38 66.85 11.61 11.61 75.82

21.67 ± 8.05 1.00 2.17 7.16 1.00 1.00 20.12

(u) 59.46 ± 23.10 64.75 70.53 71.18 64.75 64.75 76.71

31.52 ± 28.71 30.23 34.99 37.83 30.23 30.23 47.71

(v) 50.72 ± 0.03 49.89 51.24 49.88 49.88 49.88 54.54

1.27 ± 0.01 0.08 2.03 0.50 2.29 2.29 6.83
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Table 3 Nonlinear clustering on

benchmark datasets
Data kmeans kPC PPC TWSVC RTWSVC FRTWSVC Ours

AC (%) AC (%) AC (%) AC (%) AC (%) AC (%) AC (%)

MI (%) MI (%) MI (%) MI (%) MI (%) MI (%) MI (%)

(a) 47.32 ± 3.08 62.17 64.82 46.89 62.17 62.17 62.19

10.76 ± 1.24 10.14 6.51 9.65 10.14 10.14 8.93

(b) 71.66 ± 1.26 72.60 70.62 72.60 72.60 72.60 72.90

17.84 ± 3.67 18.00 3.65 18.00 18.00 18.00 26.79

(c) 79.93 ± 1.24 82.49 69.13 88.29 82.49 82.68 83.01

49.31 ± 2.28 57.79 16.46 62.21 57.79 57.57 49.97

(d) 69.27 ± 1.45 69.04 66.82 70.10 69.04 69.04 70.77

37.50 ± 2.09 41.42 7.35 23.42 41.42 41.42 0.2918

(e) 87.63 ± 8.09 91.24 59.47 91.24 91.24 91.24 94.95

76.26 ± 9.85 79.15 13.93 79.15 79.15 79.15 86.23

(f) 90.60 ± 0.42 85.67 88.04 90.08 86.38 86.38 89.60

54.86 ± 1.24 17.95 17.79 56.98 22.28 22.28 51.18

(g) 87.02 ± 0.77 78.41 68.48 81.54 79.03 78.41 87.14

69.74 ± 0.55 58.81 26.95 63.48 54.07 58.81 69.98

(h) 52.07 ± 4.07 60.75 72.55 44.89 60.75 60.75 64.06

13.84 ± 3.04 20.35 41.23 6.12 20.35 20.35 25.98

(i) 87.14 ± 3.39 90.63 89.52 90.63 90.63 90.63 91.25

70.79 ± 5.39 77.99 72.90 77.99 77.99 77.99 79.70

(j) 51.08 ± 0.35 51.22 53.04 51.98 51.22 51.22 53.04

0.46 ± 0.42 0.37 2.90 1.60 0.37 0.37 4.54

(k) 71.14 ± 0.82 55.04 56.66 56.66 55.04 55.04 71.84

32.41 ± 0.53 0.85 2.73 2.73 0.85 0.85 28.53

(l) 50.83 ± 0.41 53.00 51.54 50.92 53.00 53.00 54.91

1.88 ± 0.54 3.79 1.64 0.81 3.79 3.79 6.98

(m) 79.79 ± 0.94 75.50 75.83 91.21 75.50 75.50 80.68

46.91 ± 1.87 42.09 46.38 72.31 42.09 42.09 48.86

(n) 62.32 ± 0.00 59.14 59.89 60.67 59.14 59.14 82.92

22.24 ± 0.00 23.79 10.87 13.60 23.79 23.79 52.32

(o) 50.16 ± 0.28 51.62 52.66 52.22 51.62 51.62 54.52

0.39 ± 0.39 4.24 4.08 5.43 4.24 4.24 6.64

(p) 100.0 ± 0.00 100.0 100.0 100.0 100.0 100.0 100.0

100.0 ± 0.00 100.0 100.0 100.0 100.0 100.0 100.0

(q) 60.68 ± 4.79 66.73 68.06 68.06 66.73 66.73 68.98

3.38 ± 3.72 0.17 2.35 2.35 0.17 0.17 17.69

(r) 63.40 ± 0.52 63.08 64.15 63.08 63.08 63.08 63.61

0.58 ± 0.52 0.25 1.42 0.25 0.25 0.25 0.25

(s) 58.54 ± 1.01 56.21 62.35 61.69 63.41 59.68 66.17

5.42 ± 1.91 5.31 15.95 11.13 13.81 10.38 18.60

(t) 79.31 ± 1.84 78.75 79.98 74.14 80.64 78.75 80.64

12.76 ± 2.03 21.11 2.98 11.55 9.32 21.11 9.32

(u) 64.65 ± 4.15 66.28 65.48 62.53 66.28 66.28 67.03

20.23 ± 3.43 30.39 25.33 16.90 30.39 30.39 24.23

(v) 50.79 ± 0.00 53.26 76.22 51.50 53.67 53.67 73.21

1.37 ± 0.00 5.05 42.33 2.39 5.74 5.74 40.01
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Table 4 Linear clustering rank

in Table 2
Data kmeans kPC PPC TWSVC RTWSVC FRTWSVC Ours

AC AC AC AC AC AC AC

MI MI MI MI MI MI MI

(a) 2 4 3 4 4 4 1

1 4 3 4 4 4 2

(b) 4 5 3 2 5 5 1

6 1 7 4 2 2 5

(c) 2 6 4 1 5 5 3

1 7 6 3 4 4 2

(d) 3 5 1 2 6 7 4

1 3 7 2 6 5 4

(e) 5 6 7 3 2 1 4

5 6 7 2 3 1 4

(f) 1 3 6 2 3 3 7

1 2 7 2 2 2 6

(g) 1 5 7 6 4 2 3

1 6 7 3 5 2 4

(h) 2 7 6 5 1 3 4

2 6 7 4 1 3 5

(i) 3 5 4 2 5 5 1

3 5 4 2 6 6 1

(j) 6 7 5 4 2 3 1

7 6 5 4 2 3 1

(k) 4 7 5 6 1 1 3

5 7 6 3 1 1 4

(l) 2 7 6 5 3 3 1

3 7 6 1 5 4 2

(m) 2 7 6 3 4 4 1

2 6 7 3 4 4 1

(n) 5 3 7 6 1 2 3

4 5 7 3 1 2 6

(o) 4 7 6 3 2 5 1

3 6 5 6 2 4 1

(p) 3 4 1 7 4 4 1

3 4 1 7 4 4 1

(q) 4 2 6 2 5 7 1

1 3 3 3 6 7 2

(r) 4 7 2 4 6 3 1

5 4 3 6 7 1 2

(s) 4 5 3 2 5 5 1

6 1 6 5 1 1 4

(t) 1 5 3 4 5 5 2

1 5 4 3 5 5 2

(u) 7 4 3 2 4 4 1

4 5 3 2 5 5 1

(v) 3 4 2 5 5 5 1

5 7 4 6 2 2 1

MeanAC 3.27 5.23 4.36 3.64 3.73 3.91 2.09

MeanMI 3.18 4.82 5.23 3.55 3.55 3.27 2.77
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Table 5 Nonlinear clustering

rank in Table 3
Data kmeans kPC PPC TWSVC RTWSVC FRTWSVC Ours

AC AC AC AC AC AC AC

MI MI MI MI MI MI MI

(a) 6 3 1 7 3 3 2

1 2 7 5 2 2 6

(b) 6 2 7 2 2 2 1

6 2 7 2 2 2 1

(c) 6 4 7 1 4 3 2

6 2 7 1 2 4 5

(d) 3 4 7 2 4 4 1

4 1 6 5 1 1 7

(e) 6 2 7 2 2 2 1

6 2 7 2 2 2 1

(f) 1 7 4 2 5 5 3

2 6 7 1 4 4 3

(g) 2 5 7 3 4 5 1

2 4 7 3 6 4 1

(h) 6 3 1 7 3 3 2

6 3 1 7 3 3 2

(i) 7 2 6 2 2 2 1

7 2 6 2 2 2 1

(j) 7 4 1 3 4 4 1

4 5 2 3 5 5 1

(k) 2 5 3 3 5 5 1

1 5 3 3 5 5 2

(l) 7 2 5 6 2 2 1

5 2 6 7 2 2 1

(m) 3 5 4 1 5 5 2

3 5 4 1 5 5 2

(n) 2 5 4 3 5 5 1

5 2 7 6 2 2 1

(o) 7 4 2 3 4 4 1

7 3 6 2 3 3 1

(p) 1 1 1 1 1 1 1

1 1 1 1 1 1 1

(q) 7 4 2 2 4 4 1

2 5 3 3 5 5 1

(r) 3 4 1 4 4 4 2

2 3 1 3 3 3 3

(s) 6 7 3 4 2 5 1

6 7 2 4 3 5 1

(t) 4 5 3 7 1 5 1

3 1 7 4 5 1 5

(u) 6 2 5 7 2 2 1

6 1 4 7 1 1 5

(v) 7 5 1 6 3 3 2

7 5 1 6 3 3 2

MeanAC 4.77 3.86 3.73 3.55 3.23 3.55 1.36

MeanMI 4.18 3.14 4.64 3.55 3.05 2.95 2.41
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there are a finite number of ways to select p1 and p2, there

are two finite numbers 0\r1\r2 such that

ðpðr1Þ1 ; p
ðr1Þ
2 Þ ¼ ðpðr2Þ1 ; p

ðr2Þ
2 Þ. Thus, we have uðr1Þi ¼ u

ðr2Þ
i . That

is to say, the objective values are equal in the r1th and r2th

iterations. Since p>1 Z
>
i ui � 0 and p>2 Ẑ

>
i ui � 0 always hold,

the objective value of (11) keeps nonincreasing in iteration.

Therefore, the objective is invariant after the r1th iteration,

and then the algorithm would terminate at the r1th iteration.

Let us consider the point ðuðr1Þi ; p
ðr1Þ
1 ; p

ðr1Þ
2 Þ. From the

above proof, we have Gðuðr1Þi ; p
ðr1Þ
1 ; p

ðr1Þ
2 Þ ¼ Gðuðr1Þi ;

p
ðr1þ1Þ
1 ; p

ðr1þ1Þ
2 Þ, where Gð�Þ is the objective value of (11).

If there is more than one global solution to (11) with fixed

ui, we always select the same one for the same ui. Thus, we

have ðpðr1Þ1 ; p
ðr1Þ
2 Þ ¼ ðpðr1þ1Þ

1 ; p
ðr1þ1Þ
2 Þ, which indicates

ðuðr1Þi ; p
ðr1Þ
1 ; p

ðr1Þ
2 Þ is a local optimal point. h

4 Experimental results

In this section, we analyze the performance of our

RampTWSVC compared with kmeans [10], kPC [14], PPC

[15], TWSVC [17], RTWSVC [18] and FRTWSVC [18]

on several benchmark datasets [31, 32]. All the methods

were implemented by MATLAB 2017a on a PC with an

Intel Core Duo Processor (double 4.2 GHz) with 16GB

RAM. The parameters c in PPC, TWSVC, RTWSVC,

FRTWSVC and c1, c2 in RampTWSVC were selected from

f2iji ¼ �8;�7; . . .;�1g. For nonlinear case, the Gaussian

kernel Kðx1; x2Þ ¼ expf�ljjx1 � x2jj2g [28] was used, and

its parameter l was selected from f2iji ¼ �10;�9; . . .; 1g.
The random initialization was used on kmeans, and the

nearest neighbor graph (NNG) initialization [17] was used

on other methods. In the experiments, we used the metric

accuracy (AC) [17] and mutual information (MI) [33] to
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Fig. 2 Illustration of parameter influence of linear RampTWSVC on four datasets, where the parameters include c1 and c2
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measure the performance of these methods. We ran kmeans

ten times on each dataset and recorded its mean value and

standard deviation.

Table 1 shows the details of the benchmark datasets.

Tables 2 and 3 exhibit the linear and nonlinear clustering

results on the benchmark datasets, respectively. The high-

est metrics among these methods on each dataset are in

bold. From Table 2, it can be seen that our linear

RampTWSVC performs better than other linear methods

on seven datasets in terms of both AC and MI, and it is

more accurate than other methods on other six datasets. On

the rest of nine datasets, our linear RampTWSVC is also

competitive with the best one. From Table 3, it is obvious

that our nonlinear RampTWSVC has much higher AC and

MI over other methods on most of the datasets. More

precisely, we reported the rank of each method on these

datasets in Tables 4 and 5 from Tables 2 and 3,

respectively, where the numbers represent the ranks of

these seven methods, the same number implies the same

performance and the smaller number implies the higher

performance. The mean metrics were also reported at the

last two columns in these tables. It is obvious that our

RampTWSVC owns the smallest mean metrics among

these methods, which indicates that our RampTWSVC

performs better than other methods on these datasets. It is

worth to notice that there are several datasets on which

other methods perform better than RampTWSVC. For

example, kmeans obtains a much higher performance than

others on dataset (g) in Table 2, which implies the cluster

centers in dataset (g) are more suitable for points than

planes. In these plane-based methods, our RampTWSVC

cut off the influence of the samples far from the cluster

centers, and the bounds are decided by the parameters. So
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Fig. 3 Illustration of parameter influence of nonlinear RampTWSVC on four datasets, where the parameters include c1, c2 and l, and we set

c1 ¼ c2
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the parameter selection is very important in our

RampTWSVC.

To evaluate the parameter influence in our

RampTWSVC, as examples, we reported the metric ACs

with different parameter settings on four datasets. Figure 2

exhibits the results of linear RampTWSVC with parame-

ters c1 and c2. It can be seen that the above two parameters

play an important role in this method. Thence, we should

be very careful about the parameter selection. Figure 3

exhibits the results of nonlinear RampTWSVC with

parameters c1, c2 and l, where c1 ¼ c2 for simplicity. From

Fig. 3, it is obtained that we cannot obtain a desired result

if l is improper, which indicates the parameter l is more

important that the other two parameters for nonlinear

RampTWSVC. This is obviously because the kernel map-

ping plays an more important role in the nonlinear case.

5 Conclusions

A plane-based clustering method (RampTWSVC) has been

proposed in this paper. RampTWSVC hires the bounded

ramp functions to reduce the influence of the samples far

from the cluster centers, and it performs well in a robust

manner. The nonconvex programming problems in

RampTWSVC are recast to a series of mixed-integer pro-

gramming problems and solved by a proposed alternating

iteration algorithm. The local solutions of the nonconvex

problems are guaranteed in theory. RampTWSVC contains

both the linear and nonlinear formations. Experimental

results on several benchmark datasets have indicated that

our RampTWSVC performs much better than other plane-

based clustering methods on many benchmark datasets. For

practical convenience, the corresponding RampTWSVC

MATLAB code has been uploaded upon http://www.opti

mal-group.org/Resources/Code/RampTWSVC.html.

Future work includes the parameters regulation and effi-

cient solver design for our RampTWSVC.
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