
EXTREME LEARNING MACHINE AND DEEP LEARNING NETWORKS

An experimental evaluation of extreme learning machines on several
hardware devices

Liang Li1 • Guoren Wang2 • Gang Wu1,3 • Qi Zhang2

Received: 31 December 2018 / Accepted: 29 August 2019 / Published online: 12 September 2019
� Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
As an important learning algorithm, extreme learning machine (ELM) is known for its excellent learning speed. With the

expansion of ELM’s applications in the field of classification and regression, the need for its real-time performance is

increasing. Although the use of hardware acceleration is an obvious solution, how to select the appropriate acceleration

hardware for ELM-based applications is a topic worthy of further discussion. For this purpose, we designed and evaluated the

optimized ELM algorithms on three kinds of state-of-the-art acceleration hardware, i.e., multi-core CPU, Graphics Processing

Unit (GPU), and Field-Programmable Gate Array (FPGA) which are all suitable for matrix multiplication optimization. The

experimental results showed that the speedup ratio of these optimized algorithms on acceleration hardware achieved 10–800.

Therefore, we suggest that (1) use GPU to accelerate ELM algorithms for large dataset, and (2) use FPGA for small dataset

because of its lower power, especially for some embedded applications. We also opened our source code.

Keywords Extreme learning machine � Hardware � Multi-core � GPU � FPGA

1 Introduction

As machine learning technologies (e.g., Support Vector

Machine [35], Neural Networks [6, 26], and Random

Forest [21]), especially deep learning [2, 3, 27], are applied

in a continuously wider range of scenarios, people are

paying more and more attention to the performance of

these algorithms. However, the learning speed of tradi-

tional machine learning algorithms is widely criticized

[14]. The main reason for the slow speed is that parameters

of machine learning algorithms usually need to be updated

iteratively in a gradient method. Hence, traditional machine

learning methods are difficult to meet the real-time learning

needs for large-scale data applications.

Extreme learning machine (ELM) [9–12, 14–16] is a

feedforward neural network whose design objective is to

ensure a high accuracy, least user intervention, and real-time

learning [14]. In practical applications, ELM is usually

superior to the traditional machine learning algorithms, such

as SVM and back propagation (BP) in both classification

accuracy and learning speed when fed with adequate training

samples [11]. Therefore, ELM has found application sce-

narios in medical healthcare [23, 28, 29, 31–33], query

processing [4, 19], location-based social networks (LBSNs)

[22, 42], Geographic Information System (GIS) [18], etc.

As a matter of fact, ELM is also hard to escape the

mantra of performance scalability. As the dataset scale

increases, the efficiency of learning gradually declines. Our

preliminary investigation shows that for scales like classi-

cal UCI Forest CoverType dataset,1 time cost on each step

of the standard ELM single-core CPU implementation for

& Guoren Wang

wanggr@bit.edu.cn

Liang Li

liliang@stumail.neu.edu.cn

Gang Wu

wugang@mail.neu.edu.cn

Qi Zhang

2120161078@bit.edu.cn

1 Computer Science and Engineering, Northeastern University,

Shenyang, China

2 Computer Science and Technology, Beijing Institute of

Technology, Beijing, China

3 State Key Laboratory for Novel Software Technology,

Nanjing University, Nanjing 210023, China 1 http://archive.ics.uci.edu/ml/datasets/Covertype.

123

Neural Computing and Applications (2020) 32:14385–14397
https://doi.org/10.1007/s00521-019-04481-6(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-019-04481-6&domain=pdf
http://archive.ics.uci.edu/ml/datasets/Covertype
https://doi.org/10.1007/s00521-019-04481-6

supervised classification tasks becomes so significant that

they cannot be ignored. Thus, ELM needs an efficient

acceleration solution to adapt to AI applications for big

data. Although the use of hardware acceleration is an

obvious solution, there is no research on the applicability

of various hardware acceleration platforms. To sum up, the

motivation and contribution of this work are as follows.

1.1 Motivation

1. Can ELM keep running well in large-scale application

scenario? As we know, real-time learning is one of the

essential considerations of ELM. The learning speed

under large-scale datasets becomes a severe test for the

practicality of ELM.

2. Is the ELM training phase suitable for hardware

acceleration? What is the key factor to affect the

scalability of ELM learning speed? And how to rewrite

the ELM algorithm based on this key factor to adapt it

to various hardware acceleration platforms?

3. If ELM training can be accelerated, then how to select

appropriate hardware acceleration platforms for different

scales of datasets? There are several kinds of acceleration

hardware available including multi-core CPU, GPU,

FPGA, etc. The answer to the question will be instructive

to the application of ELM in large-scale AI scenarios.

1.2 Contributions

In this work, we made the following contributions.

1. We validated that the standard implementation of ELM

has poor learning speed scalability on large-scale

dataset. We fully implemented the single-core CPU

version of ELM algorithm as a baseline and evaluated

the training time cost of each step in detail on a

classical large-scale dataset as shown in Table 1. The

evaluation shows that the training time cost of ELM

and the size of dataset are linearly related.

2. The study reveals that ELM is a hardware-friendly

algorithm. The algorithm and the evaluation of the

baseline implementation both show that ELM training

process is dominated by matrix multiplication opera-

tions which, as is known, are easily to be paralleled.

For CoverType dataset, matrix multiplication accounts

for roughly 97% of the training time (see Sect. 2).

Hence, we were motivated to carry out substantial

research on adapting the standard ELM algorithm to

several types of acceleration hardware that support

parallelization, such as Field-Programmable Gate

Arrays (FPGAs) [5, 25, 40] and Graphic Processing

Units (GPUs) [1, 17, 36], and specialized multi-core

CPU with architecture optimized for multiple compu-

tational operations (see Sect. 3).

3. GPU and FPGA are suitable devices for ELM. We

suggest that (1) use GPU to accelerate ELM algorithms

for large dataset, and (2) use FPGA for small dataset

considering its lower power consumption, especially

for those embedded systems. To support these conclu-

sions, the source code of the proposed hardware

acceleration platforms related with ELM algorithms

was implemented and opened. Experiments were

performed on three datasets, namely Covertype, Iono-

sphere, and Sonar. Experimental results further con-

firmed our opinion that ELM training algorithm is

suitable for hardware acceleration. Specifically, in our

experiments, multi-core CPU with SIMD optimization

can get about 10� speedup. GPU’s speedup is larger

than 800�, and FPGA’s speedup is about 40�.

The rest of this paper is organized as follows: in Sect. 2,

the basic ELM algorithm is discussed and its performance

is evaluated to show the bottleneck. In Sect. 3, the opti-

mization methods of ELM algorithm on different hardware

devices are elaborated. In Sect. 4, the performance of those

different ELM implementations is evaluated and compared.

Section 5 elaborates related work, and the conclusion is

shown in Sect. 6.

2 Preliminary

2.1 Extreme learning machine

Given N arbitrary distinct samples ðxi; tiÞ 2 Rn�m, where

xi ¼ ½xi1; xi2; . . .; xin�T 2 Rn and ti ¼ ½ti1; ti2; . . .; tim�T 2 Rm.

xi is the sample vector; ti is the target label. Standard

Single-hidden Layer Feedforward neural Networks

(SLFNs) are shown in Fig. 1 and can be modeled mathe-

matically as Eq. 1:

XL

j¼1

bjgjðxiÞ ¼
XL

j¼1

bjgðwj � xi þ bjÞ ¼ oi; i ¼ 1; . . .;N

ð1Þ

where L is the number of hidden layer nodes, wj ¼ ½wj1;wj2;

. . .;wjn� is the input weight vector, bj ¼ ½bj1; bj2; . . .; bjm�T is

the output weight vector, bj is the bias of the jth hidden node,

and oj is the output of the jth node. Generally,

gðxÞ ¼ 1

1 þ ex
ð2Þ

To approximate these samples with zero errors means

that
PL

i¼1 kti � oik ¼ 0, where bj, wj and bj exist, satis-

fying that

14386 Neural Computing and Applications (2020) 32:14385–14397

123

XL

j¼1

bjgðwjxi þ bjÞ ¼ ti; i ¼ 1; . . .;N ð3Þ

which can be rewritten in terms of

Hb ¼ T ð4Þ

where

Hðw1; . . .;wL; b1; . . .; bL; x1; . . .; xNÞ

¼

gðw1x1 þ b1Þ . . . gðwLx1 þ bLÞ

..

. . .
. ..

.

gðw1xN þ b1Þ . . . gðwLxN þ bLÞ

2
6664

3
7775

N�L

ð5Þ

b ¼

bT1
bT2

..

.

bTL

2

666664

3

777775

T

m�L

; and T ¼

tT1
tT2

..

.

tTN

2
66664

3
77775

T

m�N

ð6Þ

H is the ELM feature space to map the N-dimensional

input data space into L-dimensional hidden nodes space.

Unlike the most common algorithms that all parameters

need to be iteratively adjusted to, once the input weight wi

and hidden layer bias bi are randomly determined, the

output matrix of hidden layer nodes will be ensured.

Training SLFNs can be transformed into solving a linear

system.

In most cases, H is a non-square matrix (L � N); the

output weights b are computed by b ¼ HyT , where Hy is

the Moore–Penrose generalized inverse of matrix H.

Equation 7 gives the steps about how to compute Hy.

Hb ¼ T
HTHb ¼ HTT
b ¼ ðHTHÞ�1HTT

ð7Þ

The training phase of ELM algorithm is described in

Algorithm 1, which includes 7 steps in all. Algorithm 2 is

able to classify unknown data D based on trained W, B, and

b. The matrix H2 is computed in the same way as in the

training phase. The output o represents predicted values.

Table 1 Baseline evaluation

(single-core implementation):

which gives the execution time

distribution with different N and

L.

N L rand(w) (s) rand(bias) (s) H (s) g(H) (s) A (s) b (s) Solving (s)

250,000 200 0.000679 1.22e-05 47.4303 10.4087 146.5 6.7185 0.032932

300,000 200 0.000679 1.22e-05 56.7862 12.4688 176.063 8.27493 0.033314

350,000 200 0.000683 1.25e-05 66.4569 14.6103 204.562 9.42965 0.033097

400,000 200 0.000685 1.22e-05 75.6422 16.6199 234.503 10.7515 0.032972

450,000 200 0.000685 1.22e-05 85.3575 18.8 263.049 12.116 0.033029

500,000 100 0.000355 9.03e-06 47.6114 10.4667 73.9813 6.72915 0.00656

500,000 200 0.000721 1.31e-05 95.163 20.9783 296.22 13.5306 0.032887

500,000 300 0.001025 2.06e-05 142.003 32.5244 658.06 20.1207 0.093655

500,000 400 0.001337 2.77e-05 188.898 43.5225 1168.49 26.7123 0.205492

500,000 500 0.001682 3.16e-05 236.566 52.165 1815.57 33.8406 0.377687

The columns 3 to 9 record the running time of each step in Algorithm 1. Step 3 (column 5) and step 5

(column 7) in Algorithm 1 consume a large amount of execution time. Under the condition that N ¼
500; 000 and L ¼ 500, all the matrix multiplication operations take up about 97.5% of the total time cost in

training algorithm

1x1

nxn

L

wi

m tm

1 t1

βii

1

bi

Input Layer Hidden Layer Output Layer

Fig. 1 An example of Standard Single-hidden Layer Feedforward

neural Networks (SLFNs)

Neural Computing and Applications (2020) 32:14385–14397 14387

123

2.2 Bottleneck analysis

In general, large datasets are provided in training phase in

order to compute the parameters b of ELM, namely the

weight vectors connecting the hidden nodes and the output

nodes. Although the learning speed of ELM is much faster

than most classic learning algorithms, it is still slow due to

the large amount of the training dataset.

To further clarify the time cost of ELM algorithm, we

focus on the training phase of ELM and perform a detailed

measure of the execution time for each step in Algorithm 1.

The algorithm is implemented on single-core CPU with

Intel(R) Xeon(R) CPU E7-4820 v4 @ 2.00 GHz in Ubuntu

16.04 LTS. The dataset used in our experiment is Cover-

type,2 which includes 581,012 samples, and each sample

contains 54 data attributes. All samples are divided into 7

classes. That is to say, the number of input nodes of SLNFs in

our ELM algorithm is 54, and the number of output nodes is

7. We change the number of nodes in the hidden layerL or the

number of training samples N to measure the time cost.

Table 1 illustrates the execution time distribution with

different N and L. Columns 3 to 9 record the running time

of each step in Algorithm 1. Note that all of the time cost

we measured has been tested 10 times, and it is the mean

value that is recorded in the result. We can get the fol-

lowing 2 findings.

1. For each instance, step 3 and step 5 in Algorithm 1

consume a significant amount of execution time, and

they are both corresponding to matrix multiplication

operations. Under the condition that N or L is large, all

the matrix multiplication operations will take up about

97.5% of the total time cost in training algorithm,

which is the critical bottleneck of ELM algorithm.

2. The time cost of matrix multiplication is linearly

related to N and L. With the increase of N or L, the

execution time will be longer.

To sum up, matrix multiplication occupies a lot of execution

time in ELM training phase, especially when the training

dataset is large. In fact, the main cost of ELM predicting

phase also incurs in the matrix multiplication on the verifi-

cation dataset described in Algorithm 2. Hence, the effi-

ciency of ELM algorithm is seriously affected by that of the

matrix multiplication’s implementation. How to efficiently

calculate large-scale matrix multiplication is the key point of

ELM acceleration. As we all know, matrix multiplication is

very suitable to be implemented on several hardware devi-

ces; we will discuss the details in next section.

3 Implementations on hardware devices

The above baseline experiment shows that the critical point

of ELM acceleration is how to calculate large-scale matrix

multiplication quickly. With the rapid improvement in

modern hardware’s performance, parallel execution

becomes prevalent, which can greatly reduce the execution

time. Therefore, employing new hardware devices to

accelerate ELM algorithm is a feasible solution.

In this section, we will discuss the performance of ELM

algorithms in three modern hardware devices (multi-core/

SIMD CPU, GPU, FPGA) for accelerating matrix multi-

plication operation which is the key bottleneck of ELM.

The advantages and disadvantages of each computing

device are shown in Table 2.

First of all, we will demonstrate the framework of what

we did in this section. As we can see in Algorithm 1, the

training phase of ELM algorithms has 7 steps in all.

Figure 2 shows the framework of the training phase, in

which we implement step 3 with multi-core (green box)

and offload step 5 with several devices (yellow box), in

short, offloading those time-consuming and hardware-

friendly tasks into the new hardware devices.

3.1 CPU implementation

3.1.1 Baseline

Formally, given an m� k matrix A and an k � n matrix B,

the matrix multiplication C ¼ A� B is an m� n matrix;

the element Cij can be calculated by

Cij ¼
Xk

l¼1

AilBlj ¼ Ai1B1j þ Ai2B2j þ � � � þ AikBkj ð8Þ

A straightforward implementation of the matrix multipli-

cation which is based on a single core is shown in Algo-

rithm 3. Obviously, the computing complexity is

Oðm� k � nÞ. We regard it as a baseline for other modern

hardware implementations.

Table 2 Advantages and disadvantages of each computing device

Device Advantage Disadvantage

CPU Programming-friendly High power consumption

GPU Almost real time in large data High data transform cost

FPGA Low power consumption Difficult programming2 http://archive.ics.uci.edu/ml/datasets/Covertype.

14388 Neural Computing and Applications (2020) 32:14385–14397

123

http://archive.ics.uci.edu/ml/datasets/Covertype

Definition 1 (Speedup Ratio) Suppose the running time of

matrix multiplication on the baseline version is Tbaseline, the

time on device is Tdevice, and the speedup ratio is

speedup ¼ Tbaseline
Tdevice

3.1.2 Multi-core, thread-level parallelism

A multi-core processor, which consists of a single com-

puting component with two or more independent process-

ing units, called cores, can run multiple instructions on

separate cores. Therefore, it can increase overall speed for

programs amenable to parallel computing.

Am�k � Bk�n ¼
A11. . .A1k

..

. . .
. ..

.

Aa1. . .Aak

2
664

3
775�

B11. . .B1b

..

. . .
. ..

.

Bk1. . .Bkb

2
664

3
775 ¼

C11. . .C1b

..

. . .
. ..

.

Ca1. . .Cab

2
664

3
775 ¼ Cm�n

ð9Þ

In order to accelerate ELM algorithm, we take full

advantage of multi-core to accelerate its matrix multipli-

cation which is the most time-consuming operation. As

shown in Eq. 9, matrix C is divided into a� b subblocks,

each of which is a (m=a� n=b) matrix and C will be

derived by the calculation of these subblocks. Due to the

independence of the calculation process between these sub-

matrices, each one can be obtained by a single core. By

computing all of the a� b in parallel, ELM algorithm can

be greatly accelerated. Calculation algorithm for each sub-

matrix is shown in Algorithm 4, where id represents the ID

of threads, id 2 ½0; a� bÞ. Obviously, the computing

complexity of multi-core implementation algorithm for

matrix multiplication is Oðm�n�ka�b Þ.

3.1.3 SIMD, instruction-level parallelism

Single Instruction Multiple Data (SIMD) is an instruction

unit that controls multiple duplicated processing units

simultaneously to perform the same instructions on

Random W & b

Calculating H
acclerating with multi-core

Calculating A
Offloading to CPU,GPU or FPGA

Caculating beta

START

END

Fig. 2 Architecture of the ELM training phase. Calculating H by

multi-core and calculating A with several devices, including CPU,

GPU, and FPGA

Neural Computing and Applications (2020) 32:14385–14397 14389

123

multiple data. Figure 3 illustrates the data processing of

Single Instruction Single Data (SISD) and SIMD and

reveals the excellent data parallelism of SIMD. At present,

the prevalent SIMD instruction sets include MultiMedia

eXtensions (MMX), Streaming SIMD Extensions (SSE),

Intel Advanced Vector eXtensions (AVX), Fused Multiply

Accumulate (FMA), and so on. SIMD is particularly suit-

able for processing continuous dense data. Most modern

CPUs include SIMD instructions which can improve the

performance of the games and multimedia’s application.

Hence, the excellent parallelism of SIMD can also be

applied to accelerate ELM algorithm on matrix multipli-

cation operation which involves mutually independent

multiplication and addition.

GNU Compiler Collection (GCC) provides a native

intrinsic to the above instruction sets. Algorithm 5

describes the implement of matrix multiplication by using

AVX which contains eight duplicated processing units. The

instruction unit manipulates these processing units to per-

form matrix multiplication simultaneously. We take the

calculation of cij as an example to illustrate the workflow of

this algorithm. cij is obtained by multiplying the i row of

matrix A denoted Ai with the j column of matrix B denoted

Bj. Both Ai and Bj have length k. In the calculation process,

every eight pieces of data of Ai and Bj are sent to eight

processing units for matrix multiplication in parallelism

manner. After each of the 8 pairs of multiplication, the

result is added to cij. In other words, the data of matrix A

and matrix B are split into (k / 8) blocks each of which has

a length of eight, as shown in Fig. 3b. The complexity of

SIMD implementation is Oðm�n�k
8

Þ.

3.2 GPU implementation

3.2.1 GPU

Compared with multi-core CPUs, the computation perfor-

mance of GPUs which consist of thousands of cores to

handle multiple tasks at the same time is more efficient,

especially for the array-based workload. Architectural-

level comparisons of CPU and GPU are given in Fig. 4.

GPUs are suitable for computation-intensive procedures

whose running time is mainly spent on the operation of

registers rather than data access. In addition, procedures

that are easy to be parallelized are also applicable to GPUs,

in order to make cores full loaded simultaneously.

3.2.2 Programming model

Compute Unified Device Architecture (CUDA)3 is a par-

allel computing platform and programming model based on

NVIDIA GPUs. GPU-CUDA hardware is built with grids,

blocks, and threads as shown in Fig. 5. In the three-level

hierarchical architecture, the execution is independent

among the entities of the same level. Threads are the

smallest execution unit, controlled by kernel functions to

perform operations independently in parallel. Each thread

has a unique thread ID (threadIdx). Blocks are organized as

a 3D array of threads, and the total size of a block is limited

to 1024 threads. Like thread, each block also has its unique

block ID (blockIdx). Blocks that execute the same opera-

tions independently can form a grid. All the necessary data

on host memory need to be transferred to the allocated

device memory when kernel is executed on the device.

Similarly, resultant data will be transferred back to the

Process
Unit

Instruction

Pool Data Pool

(a) Single Instruction Single Data (SISD)

Process
Unit

Process
Unit

Process
Unit

Process
Unit

Instruction

Pool Data Pool

Vector Unit

(b) Single Instruction Multiple Data (SIMD)

Fig. 3 Comparison of SISD and SIMD. Single Instruction Multiple Data (SIMD) is an instruction unit that controls multiple duplicated

processing units simultaneously to perform the same operations on multiple data

Control
ALU

ALU

ALU

ALU

Cache

DREAM DREAM

CPU GPU

Fig. 4 CPU versus GPU. Compared with multi-core CPUs, the

computation performance of GPUs is more efficient which consists of

thousands of cores to handle multiple tasks at the same time,

especially for the array-based workload

3 https://developer.nvidia.com.

14390 Neural Computing and Applications (2020) 32:14385–14397

123

https://developer.nvidia.com

host, and the device memory will be released after device

execution.

3.2.3 ELM implementation on GPU

In this part, we employ CUDA to design a matrix multi-

plication algorithm on GPU for ELM algorithm accelera-

tion. Given an m� k matrix A and a k � n matrix B, the

matrix multiplication C ¼ A� B is an m� n matrix, each

element Cij can be calculated by a GPU thread, the pro-

gress of the thread is shown in Algorithm 6, and it has

m� n CUDA threads in total. Obviously, the complexity of

the algorithm is O(k).

3.3 FPGA implementation

3.3.1 FPGA

Field-Programmable Gate Array (FPGA) is an integrated

circuit custom designed by a customer or a designer after

manufacturing to perform specific functions. An FPGA

includes Configurable Logic Block (CLB), Input Output

Block (IOB), and Interconnect. CLB module can not only

be used to implement composition logic and timing logic,

but also to configure distributed RAM and distributed

ROM. The interconnect allows CLBs to be ‘‘wired toge-

ther’’ or to connect to IOBs. The architecture of FPGA is

shown in Fig. 6.

FPGA has the following advantages. First, FPGA has

high flexibility. Compared with ASIC manufacturing pro-

cess, FPGA does not need wiring and taping out. There-

fore, the development process is greatly simplified and the

development cycle is shortened. Second, FPGA is of high

parallel computing efficiency, and it can execute multiple

instructions per instruction cycle, while ASIC, DSP, and

even CPU can only handle one instruction. Third, FPGA

has lower power consumption, owing to its lower

frequency.

CPU/Host
GPU/Device

Block(1,0) Block(n,0)

Kernel 1

Block(0,m) Block(1,m) Block(n,m)

Block(0,0)

Thread(0,0,1) Thread(0,1,1) Thread(0,y,1)

Thread(0,0,0) Thread(0,1,0) Thread(0,y,0)

Thread(x,y,0)Thread(x,1,0)Thread(x,0,0)

Block(1,0)

Grid 2

Grid 1

Kernel 2

Fig. 5 CUDA model. Threads are the smallest execution unit controlled by kernel functions to perform operations independently in parallel

Neural Computing and Applications (2020) 32:14385–14397 14391

123

3.3.2 Programming model

High-Level Synthesis (HLS) not only allows engineers to

develop at a high level of abstraction, but also makes it

easy to generate multiple design solutions that can be

deployed on FPGAs. Figure 7 shows the synthesis process.

An algorithm for specific function is designed by C/C??/

System C. Then, C/C??/System C testbench verifies the

correctness of the design algorithm and also for the col-

laborative simulation of RTL and C. The collaborative

simulation also includes verifying the design functionality

of the generated RTL with the C/C??/System C testbench.

The clock period constraint represents the target clock

period which the design algorithm should run. Finally, the

design will be mapped to the target FPGA device.

There are three methods, namely loop pipelining, loop

unrolling, and array partitioning, to improve the per-

formance of the hardware function. They all exploit the

parallelism between loop iterations.

The example of loop pipelining is shown in Fig. 8. In

the mode of serial execution, there are three clock periods

between the two RD operations, and it requires six clock

periods to complete an entire loop. However, with

pipelining, there is only one clock period between the two

RD operations and it needs four clock cycles to finish the

entire loop. In other words, the next iteration of the loop

can start finish of the current iteration; in this way, the

performance of the loop can be improved.

Loop unrolling is another method to accelerate the

performance of hardware. It creates multiple copies of the

loop body and adjusts the loop iteration counter accord-

ingly. For instance, unrolling a loop by creating two copies

of the loop body, the loop variable referenced by each copy

is updated accordingly, and the loop iteration counter is

also updated. Obviously, there are more operations in each

loop iteration, and more parallelism among these opera-

tions can be employed. More parallelism means more

throughput and a higher system performance. As shown in

Fig. 7, the main body of the loop operates 2 elements of

array arr.

Array partitioning By default, there are only has two

data ports for the arrays to read/write data to block RAM,

and HLS carries out the array partition to improve the

bandwidth by splitting the array into several smaller arrays,

which can increase the data ports, as shown in Fig. 9. The

three styles of partitioning are:

– block The original array is divided into same sized

consecutive sub-arrays.

– cyclic The original array is divided into same sized

interleaving sub-arrays.

– complete The original array is divided into individual

elements.

3.3.3 FPGA for ELM

The detail is shown in Algorithm 8; the main architecture is

similar to the baseline version, where the main difference is

IO
B

IO
B

CLB
IOB

IOB

IO
B

IO
B

CLB CLB

CLB
IOB

IOB
CLB CLB

DCM

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

BRAMBRAM

BRAMBRAM

IOB

IOB

IOB

IOB

Fig. 6 FPGA chip. An FPGA includes Configurable Logic Block

(CLB), Input Output Block (IOB), and Interconnect. CLB module can

be used not only to implement composition logic and timing logic, but

also to configure distributed RAM and distributed ROM

HLS ISE

C/C++/System C

Clock Period Constraint

C/C++/System C Testbench

Target FPGA Device

.v/.vhd Design FPGA bitstream

Fig. 7 HLS. The algorithm implemented with System C can be

compiled and bitstreamed to the FPGA device

RD CMP WR RD CMP WR

Initiation Interval = 3 cycles

Latency = 3 cycles

Loop Latency = 6 cycles

RD CMP WR

Initiation Interval = 1 cycles

Latency = 3 cycles

Loop Latency = 4 cycles

RD CMP WR

Loop:for(i=1;i<3;i++){
 op_Read;
 op_Compute;
 op_Write;
}

RD
CMP
WR

Without Pipelining With Pipelining

Fig. 8 Loop pipeline. The 3 operations in the loop can run with

pipeline manner

14392 Neural Computing and Applications (2020) 32:14385–14397

123

that we can take full advantage of the parallelism of FPGA

by using loop unrolling, pipelining, and array partitioning.

Line 5 and line 6 are about the loop pipelining and loop

unrolling preprocessor directives. The internal circuit logic

of ELM training algorithm is shown in Fig. 10.

4 Evaluation

4.1 Benchmark with CPU

Setup The ELM algorithms are evaluated by our high-end

server, which is equipped with 4 Intel Xeon E7-4820 v4

CPUs and 1TB Main Memory. Ubuntu 16.04 LTS and

GCC 5.4 are installed.

Several datasets We exploit the following 3 datasets to

reveal their accelerating performance: CoverType,4 Iono-

sphere,5 and Sonar.6 The source code can be found in

Github.7 The performance comparison of the three data sets

is illustrated in Table 3. For the small training set, the

performance is excellent, while for the large data set, steps

3 and 5 are the critical bottleneck as we have discussed in

Sect. 2.2.

Multi-thread For the first group of evaluation, the

dataset Covertype was used. The variable parameters used

here are N and L. We set N = 500,000 and L ¼ 200. In the

experiment, we adjusted the number of threads to investi-

gate the experimental features. We tested the experimental

data in a similar way to that in Sect. 2.2. Table 4 shows the

result of our multi-core performance under different thread

counts with the same N and L. The result reveals the fol-

lowing findings:

1. The performance is linear with the thread count, i.e.,,

the computing time of columns 3 and 5 decreases when

the thread number increases.

2. As the number of threads increases, this approach will

reach the upper bound of its performance, i.e.,, 32

threads and 64 threads have similar training time.

SIMD For the second group of evaluation, we integrate the

SIMD techniques into the ELM algorithm. Figure 11a, b

shows the training performance (single thread) under dif-

ferent N and L, with or without SIMD optimizations. The

vertical axis represents the training time of the ELM.

Figure11c shows the comparison result of the performance

in multi-thread environment, with and without SIMD

optimization. The following findings are obtained: The

performance with SIMD optimization is better than that of

baseline algorithm under the same experimental parame-

ters. For example, the speedup ratio of SIMD is 1.67 under

the parameters of N = 500,000 and L ¼ 200.

4.2 Benchmark with GPU

Setup In this part, the experiment was on a workstation

which is equipped with an Intel(R) Core(TM) i7 6500U

CPU, a NVIDIA GeForce 940MX, and 8 GB Memory. Our

development environment is Visual Studio 2010 and

CUDA 9.1. To support GPU computing, we used the

library cuBLAS8 and CULA.9 We also used the same

dataset CoverType, Ionosphere, Sonar as in the above

section.

Implementation First, we re-implement the baseline

version of ELM on the Windows platform; then, we

offloading the step 5 to step 7 in Algorithm 1 into the GPU

computing card. In contrast to Sect. 4.1, we need to record

the memory transforming time from host memory to device

memory, because of the low speed of PCI-E. The source

code of this part can be found in Github.10

Fig. 9 FPGA array partition. HLS provides three-array partitioning

method

4 http://archive.ics.uci.edu/ml/datasets/Covertype.
5 https://archive.ics.uci.edu/ml/machine-learning-databases/iono

sphere/.
6 https://archive.ics.uci.edu/ml/machine-learning-databases/undocu

mented/connectionist-bench/sonar/.
7 https://github.com/bombe-org/ELM_exp.

8 https://developer.nvidia.com/cublas.
9 http://www.culatools.com/.
10 https://github.com/bombe-org/ELM_GPU/.

Neural Computing and Applications (2020) 32:14385–14397 14393

123

http://archive.ics.uci.edu/ml/datasets/Covertype
https://archive.ics.uci.edu/ml/machine-learning-databases/ionosphere/
https://archive.ics.uci.edu/ml/machine-learning-databases/ionosphere/
https://archive.ics.uci.edu/ml/machine-learning-databases/undocumented/connectionist-bench/sonar/
https://archive.ics.uci.edu/ml/machine-learning-databases/undocumented/connectionist-bench/sonar/
https://github.com/bombe-org/ELM_exp
https://developer.nvidia.com/cublas
http://www.culatools.com/
https://github.com/bombe-org/ELM_GPU/

Results Table 5 shows the performance comparison

based on 3 different datasets, and Table 6 shows the per-

formance comparison of running ELM under different

parameters. We can find that:

1. The performance of matrix multiplication on GPU is

still proportional to the amount of data. However, the

performance of matrix multiplication on GPU is much

better than that on CPU (Table 5).

2. The performance is approximately 800� faster than

that of the CPU only version. The training process for

ELM can achieve real-time effect (Table 6).

3. GPU has a relatively high data transforming cost,

especially for large datasets (Table 6 column 3).

4.3 Benchmark with FPGA

Setup Same as the previous experiments, the benchmark

was run on a VCU118 FPGA chip, and parameters are

shown in Table 7.

Results Table 8 shows the performance result of the

implementation of step 5 in Algorithm 1 on different

hardware devices, including single-core CPU, GPU, and

FPGA. Since the BRAM on FPGA is small, this part of

evaluation work is based on the small-scale dataset Iono-

sphere. We can find that the speedup is roughly 40�.

4.4 Summary

In this paper, we used several kinds of popular modern

hardware devices to accelerate the original ELM algorithm.

We get the follow findings:

1. Matrix multiplication is the most time-consuming

operation in ELM algorithm; thus, all of the devices

evaluated in this paper can accelerate the processing of

ELM training phase.

2. The speedup order is: SpeedupGPU [SpeedupFPGA [
Speedupmulti�core. Multi-core CPU with SIMD opti-

mization is friendly for ELM and can get about 10�

speedup. GPU’s speedup is larger than 800� and is

more suitable for ELM. FPGA’s speedup is about 40�
and is also suitable for ELM, due to its small energy

consumption.

3. Drawback CPU will have a performance limitation

when the number of threads is large, which was 32

threads in our benchmark. GPU may have a relatively

high data transforming cost, because its chip has a

lower power. FPGA is only suitable for relatively small

datasets since the block RAM is small compared with

host memory.

5 Related works

The extreme learning machine (ELM) [9–12, 14–16] was

introduced by Huang as a classification algorithm with

relatively fast learning speed and good generalization

performance [14]. Because of these advantages, ELM can

be applied in many fields and display significant applica-

tion performance [13, 20, 24, 30, 34, 37, 38, 41, 43, 44].

ELM with parallelism There were several methods

proposed to speed up the ELM algorithm from a parallel

perspective. A parallel incremental extreme SVM classifier

was proposed in [7]. The ELM algorithm for large-scale

regression on GPU was proposed in the paper [1, 17, 36].

Besides, paper [8] described an algorithm that was

designed and implemented on MapReduce framework.

Research has shown that Field-Programmable Gate Array

(FPGA) performs better than General-Purpose Processors

in machine learning algorithms [39]. As the hardware

implementation of ELM for classification is still at an early

stage, and FPGA is a suitable device for its implementa-

tion, we are confronted with emerges the research question

of what performance can be achieved by existing ELM

computational methods and FPGA devices. At present,

there are only a few studies touching upon this topic

[5, 25, 40].

Fig. 10 FPGA logical implementation of ELM. Get_H is the IP kernel about calculating H in Algorithm 1 line 3. Matrix_multiply_itself is the IP

kernel about calculating HTH in Algorithm 1 line 5

14394 Neural Computing and Applications (2020) 32:14385–14397

123

6 Conclusion

In this work, we first evaluated the performance of ELM

algorithm based on the single-core implementation and

concluded that the main cost of ELM was on the matrix

multiplication. Then, we designed and implemented

optimization algorithms for different hardware devices

(multi-core, SIMD, GPU, and FPGA). All of the above

hardware can achieve performance improvement, and the

best performance is obtained by using GPU, especially

under large dataset. We strongly recommend that (1) use

GPU to accelerate ELM algorithms for large dataset, and

Table 3 Several dataset benchmark results

Dataset N L rand(w) (s) rand(bias) (s) H (s) g(H) (s) A (s) b (s) Solving (s)

CoverType 581,012 500 0.00170248 3.21e-05 275.264 63.3346 2113.85 39.475 0.378053

Ionosphere 351 500 0.00173075 4.79e-05 0.134948 0.036379 1.31487 0.008308 0.352429

Sonar 208 500 0.00312803 5.39e-05 0.127082 0.021495 0.797169 0.004891 0.352528

For the small training dataset, the performance is good, while for the large data set, step 3 and 5 are a critical bottleneck as discussed in Sect. 2.2

Table 4 Multi-thread

performance details with

CoverType dataset, which

shows the result of our multi-

core performance under

different thread counts; we set

N = 500,000 and L ¼ 200

Thread rand(w) (s) rand(bias) (s) H (s) g(H) (s) A (s) b (s) Solving (s) Speedup

1 0.000721 1.31e–05 95.163 20.9783 296.22 13.5306 0.032887 1

2 0.000692 1.20e–05 56.0644 20.9961 149.538 14.5034 0.033052 1.7

4 0.000699 1.27e–05 35.8234 21.5315 84.6711 14.7814 0.033429 2.7

8 0.000695 1.23e–05 25.0924 21.0244 48.4229 14.8554 0.033292 3.9

16 0.000695 1.24e–05 20.1657 21.1562 29.7101 14.6505 0.03289 4.9

32 0.000691 1.24e–05 17.3037 21.1233 11.2662 15.0423 0.033092 6.6

64 0.000691 1.26e–05 17.0348 21.1648 11.1566 15.1945 0.033096 6.6

The 1st result is the baseline performance, as we can see, the computing time of column 3 and 5 decreases

when the thread increases

 0

 500

 1000

 1500

 2000

 2500

 100 150 200 250 300 350 400 450 500

Tr
ai

ni
ng

 T
im

e
[s

]

L

Baseline with SIMD
Baseline

(a) Training Time influenced by L,
with N=500000

 100

 150

 200

 250

 300

 350

 400

 450

 250000 300000 350000 400000 450000 500000

Tr
ai

ni
ng

 T
im

e
[s

]

N

Baseline with SIMD
Baseline

(b) Training Time influenced by N,
with L=500

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 10 20 30 40 50 60

Tr
ai

ni
ng

 T
im

e
[s

]

Thread

MultiThread with SIMD
MultiThread

(c) Training Time influenced by
threads number

Fig. 11 CPU performance Analysis. The performance with SIMD optimization is better than that with baseline algorithm under the same

experimental parameters. Besides, the performance is linear with the thread count

Table 5 CPU versus GPU performance on several datasets. ELM is much more suitable for GPU

Dataset Device N L Offload (ms) A b Solving Speedup

Covertype CPU 581,012 200 296.22 s 13.5306 s 0.032887s

Covertype GPU 581,012 200 72.3931 399.949 ms 51.1442 ms 10.0203 ms 740

Sonar CPU 208 200 0.127548 s 0.00242006 s 0.0293581s

Sonar GPU 208 200 0.5825 0.3771 ms 0.1907 ms 4.086 ms 338.3

Ionosphere CPU 351 200 0.209365 s 0.00408718 s 0.0293511 s

Ionosphere GPU 351 200 1.0777 0.4071 ms 0.2031 ms 4.1066 ms 522

Neural Computing and Applications (2020) 32:14385–14397 14395

123

(2) use FPGA for small dataset because of its lower power,

especially for some embedded applications.

Acknowledgements Gang Wu is supported by the NSFC (Grant

No.61872072) and the State Key Laboratory of Computer Software

New Technology Open Project Fund (Grant No.KFKT2018B05).

Guoren Wang is the corresponding author of this paper. Guoren Wang

is supported by the NSFC (Grant No. U1401256, 61732003,

61332006 and 61729201).

Compliance with ethical standards

Conflict of interest The authors declared that they have no conflict of

interest to this work.

References

1. Alia-Martinez M, Antoñanzas J, Antonanzas-Torres F, Pernı́a-

Espinoza A, Urraca R (2015) A straightforward implementation

of a gpu-accelerated ELM in R with NVIDIA graphic cards. In:

International conference on hybrid artificial intelligence systems.

Springer, Berlin, pp 656–667

2. Baldi P, Sadowski P, Whiteson D (2014) Searching for exotic

particles in high-energy physics with deep learning. Nat Commun

5:4308

3. Deng L, Yu D, et al (2014) Deep learning: methods and appli-

cations. Found Trends� Signal Process 7(3–4):197–387

4. Ding L, Xin J, Wang G (2016) An efficient query processing

optimization based on ELM in the cloud. Neural Comput Appl

27(1):35–44. https://doi.org/10.1007/s00521-013-1543-3

5. Frances-Villora JV, Rosado-Muñoz A, Martı́nez-Villena JM,

Bataller-Mompean M, Guerrero JF, Wegrzyn M (2016) Hardware

implementation of real-time extreme learning machine in FPGA:

analysis of precision, resource occupation and performance.

Comput Electr Eng 51:139–156

6. Hagan MT, Demuth HB, Beale MH, De Jesús O (1996) Neural

network design, vol 20. Pws Pub, Boston

7. He Q, Du C, Wang Q, Zhuang F, Shi Z (2011) A parallel

incremental extreme SVM classifier. Neurocomputing

74(16):2532–2540

8. He Q, Shang T, Zhuang F, Shi Z (2013) Parallel extreme learning

machine for regression based on mapreduce. Neurocomputing

102:52–58

9. Huang GB, Chen L (2007) Convex incremental extreme learning

machine. Neurocomputing 70(16–18):3056–3062

10. Huang GB, Chen L (2008) Enhanced random search based

incremental extreme learning machine. Neurocomputing

71(16–18):3460–3468

11. Huang GB, Chen L, Siew CK et al (2006) Universal approxi-

mation using incremental constructive feedforward networks with

random hidden nodes. IEEE Trans Neural Netw 17(4):879–892

12. Huang GB, Ding X, Zhou H (2010) Optimization method based

extreme learning machine for classification. Neurocomputing

74(1–3):155–163

13. Huang GB, Liang NY, Rong HJ, Saratchandran P, Sundararajan

N (2005) On-line sequential extreme learning machine. Comput

Intell 2005:232–237

14. Huang GB, Wang DH, Lan Y (2011) Extreme learning machines:

a survey. Int J Mach Learn Cybern 2(2):107–122

15. Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning

machine for regression and multiclass classification. IEEE Trans

Syst Man Cybern Part B (Cybernetics) 42(2):513–529

16. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine:

theory and applications. Neurocomputing 70(1–3):489–501

17. Jeowicz T, Gajdo P, Uher V, Snáel V (2015) Classification with

extreme learning machine on GPU. In: 2015 international

Table 6 Influence of the change

of N or L on GPU performance
N L Offload (ms) A (ms) b (ms) Sovling (ms) Speedup

250,000 200 32.8578 180.769 24.1119 3.7112 810

300,000 200 39.661 213.661 27.9726 5.4304 824

350,000 200 46.1074 252.592 32.4253 3.8824 810

400,000 200 51.1929 281.807 35.2628 4.0391 832

450,000 200 55.4978 315.737 39.8834 4.0164 833

500,000 100 33.0917 110.176 13.6463 27.7917 672

500,000 200 61.4055 358.525 44.443 302.81 826

500,000 300 92.369 776.261 63.8473 70.9121 848

500,000 400 123.684 1422.512 85.3677 73.5045 821

The performance of matrix multiplication on GPU is still proportional to the amount of data, but GPU has

an extra transforming time to offload dataset (column 3)

Table 7 Parameters of the VCU118 XCVU9P-L2FLGA2104E FPGA

System Logic Cells (K) 2586

DSP Slices 6840

Memory (Mb) 345.9

GTY 32.75 Gb/s transceivers 120

I/0 832

Frequency 250 MHz

Table 8 CPU versus GPU performance on several datasets.

SpeedupGPU [SpeedupFPGA [Speedupmulti�core

Dataset Device N L A (ms) Speedup

Ionosphere CPU 351 200 209.365 1

Ionosphere GPU 351 200 0.4071 514.3

Ionosphere FPGA 351 200 5.3003 39.5

14396 Neural Computing and Applications (2020) 32:14385–14397

123

https://doi.org/10.1007/s00521-013-1543-3

conference on intelligent networking and collaborative systems

(INCOS), pp 116–122. IEEE

18. Li H, Wu G (2014) Map matching for taxi GPS data with extreme

learning machine. In: Advanced data mining and applications—

10th international conference, ADMA 2014, Guilin, China,

December 19–21, 2014. Proceedings, pp 447–460. https://doi.org/

10.1007/978-3-319-14717-8_35

19. Li J, Wang B, Wang G, Zhang Y (2016) Probabilistic threshold

query optimization based on threshold classification using ELM

for uncertain data. Neurocomputing 174:211–219. https://doi.org/

10.1016/j.neucom.2015.05.122

20. Liang NY, Huang GB, Saratchandran P, Sundararajan N (2006) A

fast and accurate online sequential learning algorithm for feed-

forward networks. IEEE Trans Neural Netw 17(6):1411–1423

21. Liaw A, Wiener M et al (2002) Classification and regression by

randomforest. R News 2(3):18–22

22. Ma Y, Yuan Y, Wang G, Bi X, Qin H (2018) Trust-aware per-

sonalized route query using extreme learning machine in loca-

tion-based social networks. Cognit Comput 10(6):965–979.

https://doi.org/10.1007/s12559-018-9600-y

23. Magsi H, Sodhro AH, Chachar FA, Abro SAK, Sodhro GH,

Pirbhulal S (2018) Evolution of 5g in internet of medical things.

In: 2018 international conference on computing, mathematics and

engineering technologies (iCoMET), pp 1–7. IEEE

24. Rong HJ, Huang GB, Sundararajan N, Saratchandran P (2009)

Online sequential fuzzy extreme learning machine for function

approximation and classification problems. IEEE Trans Syst Man

Cybern Part B (Cybernetics) 39(4):1067–1072

25. Safaei A, Wu QJ, Yang Y, Akılan T (2017) System-on-a-chip

(soc)-based hardware acceleration for extreme learning machine.

In: 2017 24th IEEE international conference on electronics, cir-

cuits and systems (ICECS), pp 470–473. IEEE

26. Schalkoff RJ (1997) Artificial neural networks, vol 1. McGraw-

Hill, New York

27. Schmidhuber J (2015) Deep learning in neural networks: an

overview. Neural Netw 61:85–117

28. Sodhro AH, Luo Z, Sangaiah AK, Baik SW (2019) Mobile edge

computing based QOS optimization in medical healthcare

applications. Int J Inf Manag 45:308–318

29. Sodhro AH, Malokani AS, Sodhro GH, Muzammal M, Zongwei

L (2019) An adaptive QOS computation for medical data pro-

cessing in intelligent healthcare applications. Neural Comput

Appl, pp 1–12

30. Sodhro AH, Pirbhulal S, de Albuquerque VHC (2019) Artificial

intelligence-driven mechanism for edge computing-based indus-

trial applications. IEEE Trans Ind Inf 15(7):4235–4243. https://

doi.org/10.1109/TII.2019.2902878

31. Sodhro AH, Pirbhulal S, Qaraqe M, Lohano S, Sodhro GH,

Junejo NUR, Luo Z (2018) Power control algorithms for media

transmission in remote healthcare systems. IEEE Access

6:42384–42393

32. Sodhro AH, Pirbhulal S, Sodhro GH, Gurtov A, Muzammal M,

Luo Z (2018) A joint transmission power control and duty-cycle

approach for smart healthcare system. IEEE Sens J

19(19):8479–8486

33. Sodhro AH, Shaikh FK, Pirbhulal S, Lodro MM, Shah MA

(2017) Medical-QoS based telemedicine service selection using

analytic hierarchy process. In: Handbook of large-scale dis-

tributed computing in smart healthcare. Springer, Berlin,

pp 589–609

34. Sun Y, Yuan Y, Wang G (2011) An OS-ELM based distributed

ensemble classification framework in p2p networks. Neurocom-

puting 74(16):2438–2443

35. Suykens JA, Vandewalle J (1999) Least squares support vector

machine classifiers. Neural Process Lett 9(3):293–300

36. Van Heeswijk M, Miche Y, Oja E, Lendasse A (2011) Gpu-

accelerated and parallelized elm ensembles for large-scale

regression. Neurocomputing 74(16):2430–2437

37. Wang B, Wang G, Li J, Wang B (2012) Update strategy based on

region classification using ELM for mobile object index. Soft

Comput 16(9):1607–1615

38. Wang G, Zhao Y, Wang D (2008) A protein secondary structure

prediction framework based on the extreme learning machine.

Neurocomputing 72(1–3):262–268

39. Woods L, Teubner J, Alonso G (2011) Real-time pattern

matching with FPGAD. In: 2011 IEEE 27th international con-

ference on data engineering (ICDE), pp 1292–1295. IEEE

40. Yeam TC, Ismail N, Mashiko K, Matsuzaki T (2017) FPGA

implementation of extreme learning machine system for classi-

fication. In: Region 10 conference, TENCON 2017-2017 IEEE,

pp 1868–1873. IEEE

41. Zhang R, Huang GB, Sundararajan N, Saratchandran P (2007)

Multicategory classification using an extreme learning machine

for microarray gene expression cancer diagnosis. IEEE/ACM

Trans Comput Biol Bioinform (TCBB) 4(3):485–495

42. Zhang Z, Zhao X, Wang G, Bi X (2018) A new point-of-interest

classification model with an extreme learning machine. Cognit

Comput 10(6):951–964. https://doi.org/10.1007/s12559-018-

9599-0

43. Xg Zhao, Wang G, Bi X, Gong P, Zhao Y (2011) XML document

classification based on ELM. Neurocomputing 74(16):2444–2451

44. Zhu QY, Qin AK, Suganthan PN, Huang GB (2005) Evolutionary

extreme learning machine. Pattern Recognit 38(10):1759–1763

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2020) 32:14385–14397 14397

123

https://doi.org/10.1007/978-3-319-14717-8_35
https://doi.org/10.1007/978-3-319-14717-8_35
https://doi.org/10.1016/j.neucom.2015.05.122
https://doi.org/10.1016/j.neucom.2015.05.122
https://doi.org/10.1007/s12559-018-9600-y
https://doi.org/10.1109/TII.2019.2902878
https://doi.org/10.1109/TII.2019.2902878
https://doi.org/10.1007/s12559-018-9599-0
https://doi.org/10.1007/s12559-018-9599-0

	An experimental evaluation of extreme learning machines on several hardware devices
	Abstract
	Introduction
	Motivation
	Contributions

	Preliminary
	Extreme learning machine
	Bottleneck analysis

	Implementations on hardware devices
	CPU implementation
	Baseline
	Multi-core, thread-level parallelism
	SIMD, instruction-level parallelism

	GPU implementation
	GPU
	Programming model
	ELM implementation on GPU

	FPGA implementation
	FPGA
	Programming model
	FPGA for ELM

	Evaluation
	Benchmark with CPU
	Benchmark with GPU
	Benchmark with FPGA
	Summary

	Related works
	Conclusion
	Acknowledgements
	References

