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Abstract
Due to the promising performance of distribution linguistic preference relations (DLPRs) in eliciting the comparison

information coming from decision makers (DMs), linguistic decision problems of this type of preference relations have

attracted considerable research interest in recent years. However, to our best knowledge, there is little research on the

personalized individual semantics of linguistic terms when dealing with computing with words (CWW) in the process of

solving linguistic decision problems with DLPRs. As is well known, one statement about CWW in linguistic decisions is

that words might exhibit different meanings for different people. Words need to be individually quantified when dealing

with CWW. Hence, the objective of this study is to fill this gap by applying the idea of personalizing numerical scales of

linguistic terms for different DMs in linguistic decision with DLPRs to manage the statement about CWW. First, this study

connects DLPRs to fuzzy preference relations and multiplicative preference relations by using different types of numerical

scales. Then, definitions of expected consistency for DLPRs are presented. On the basis of expected consistency, some goal

programming models are built to derive personalized numerical scales for linguistic terms from DLPRs. Finally, a

numerical study concerning football player evaluation is analyzed by using the proposed method to demonstrate its

applicability in practical decision scenarios. A discussion and a comparative study highlight the validity of the proposed

method in this paper.
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1 Introduction

Preference relations provide a useful tool for decision

makers (DMs) to record their preference information over

decision alternatives in decision making. There are two

typical forms of preference relations: one is the fuzzy

preference relations (FPRs) [35], and the other is the

multiplicative preference relations (MPRs) [17, 33], both

of which belong to the category of numerical preference

relations. As decision problems may present qualitative

aspects for which it is difficult for DMs to get numerical

preference degrees of an alternative over another. DMs are

generally more inclined to use linguistic variables (terms)

[15] instead of using numerical entries to depict their

preference information. Thus, linguistic decision problems

with such preference relations as linguistic preference

relations (LPRs) [15] and hesitant fuzzy linguistic prefer-

ence relations (HFLPRs) [11, 24, 32, 39, 52] have attracted

considerable research interest [1, 3, 14, 26, 40, 42, 44].

With HFLPRs, DMs can use multiple successive lin-

guistic terms to represent their outcomes of pairwise

comparisons. Recently, by considering the different pro-

portions of the multiple linguistic terms in HFLPRs, Zhang

et al. [47] and Zhang et al. [48] presented the concepts of

distribution LPRs (DLPRs) and probabilistic LPRs,

respectively. When the proportional information is com-

plete, both the two forms of preference relations are indeed

mathematically consistent [31]. For this reason, we uni-

formly call them DLPRs in this paper. Compared with

LPRs and HFLPRs, the DLPRs not only allow DMs to

describe their outcomes using multiple linguistic terms, but

also reveal the terms’ proportional information. Due to the

good performance and superiority of DLPRs in represent-

ing the outcomes of pairwise comparisons coming from

DMs, this study focusses on the linguistic decision prob-

lems with this kind of preference relations.

Solving linguistic decision problems implies the need

for invoking the principles of computing with words

(CWW) [19, 27]. As is well known, a key point about

CWW is that words might exhibit different meanings for

different people [16, 28]. The existing methods presented

in Refs. [18, 27, 29] are quite useful for solving multiple

meanings of words, but they cannot represent the specific

semantics of each individual. Different DMs may have

different understandings of the same word. Let us provide

an example to illustrate this point. When two teachers

evaluate the academic performance of a student, they both

are sure that the student is good. However, with respect to

the linguistic term of ‘‘Good’’ academic performance, it

often has different numerical meanings to the two teachers.

Moreover, even for the same teachers, their understandings

to this linguistic term may be different with the change in

decision problem and decision environment, etc. It is nat-

ural that a word should be individually quantified when

dealing with CWW. To deal with the point about CWW,

several personalized individual semantics (PIS) models

[5, 6, 21, 23] have been studied by considering numerical

scale models [4, 8].

Although a large number of studies [10, 20, 49, 50] have

been reported to discuss the decision making with DLPRs

[47, 48], to our knowledge, no studies consider the PIS of

linguistic terms among DMs when recording the prefer-

ences by way of DLPRs. Hence, the objective of this study

is to address the point about CWW by applying the idea of

setting personalized numerical scales (PNSs) of linguistic

terms for different DMs in decision problems with DLPRs.

To achieve that, the proposal of this study consists of two

steps:

(a) Definitions of expected consistency for DLPRs are

presented. With the use of numerical scales, the

numerical expectation of linguistic distribution pref-

erences is introduced, thereby facilitating the link-

ages between DLPRs and numerical preference

relations (i.e., FPRs and MPRs). Similar to the

definitions of consistency for the numerical prefer-

ence relations, the expected consistency definitions

for DLPRs are presented.

(b) Based on the expected consistency definitions, some

goal programming models to derive PNSs from

DLPRs by improving their expected consistencies

are proposed.

The use of the proposed models to set PNSs of linguistic

terms for different DMs is investigated. By using PNSs, the

differences in the understanding of the meaning of words

by different individuals can be covered. Overall, the design

study described in this paper exhibits two facets of origi-

nality: the presentation of expected consistency definitions

for DLPRs and the investigation of goal programming

approaches to derive PIS of linguistic terms from DLPRs.

The structure of this study reads below: We give a

compact review of CWW literature in Sect. 2. Section 3

reviews some basic knowledge. Section 4 introduces the

expected consistency of DLPRs, based on which, some

goal programming models are constructed for deriving

PNSs from DLPRs in Sect. 5. Section 6 illustrates the

applications of the aforesaid theoretical results to group

decision-making scenarios by solving a numerical exam-

ple. A discussion and a comparative analysis are also

reported in Sect. 6 to demonstrate the validity of the pro-

posed method in this study. Finally, we conclude this study

in Sect. 7.
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2 Literature review

Over the past few decades, various linguistic computational

models have been proposed for CWW [19, 27]. Repre-

sentative models include two-tuple linguistic representa-

tion model [16, 25], linguistic hierarchy model [9, 18] and

proportional two-tuple linguistic model [36, 37]. Particu-

larly, the model proposed in [16] provides an effective

computation technique for tackling linguistic terms that are

symmetrically and uniformly distributed. The linguistic

terms are sometimes not symmetrically and uniformly

distributed; then, the linguistic hierarchy model [18] and

the proportional two-tuple linguistic model [36, 37] have

been developed for dealing with such situations. Following

that, the numerical scale model which integrates the above

two classic models was recently investigated in [4, 8].

These linguistic computational models have been suc-

cessfully applied to handle CWW in decision making with

linguistic information.

As is well known, one statement about CWW in lin-

guistic decisions is that words might exhibit different

meanings for different people [16, 28]. Namely, the

semantics of linguistic terms for DMs are usually specific

and personalized. Although many existing methods

[18, 27, 29] provide some useful ways for addressing

multiple meanings of words, they fail to manage the

specific semantics of each individual in linguistic decision

problems. Since the numerical scale model can yield the

computational models in [4, 8] by setting different

numerical scales [6, 8], several PIS models [5, 6, 21, 23]

have recently been studied by considering this scale model

to manage the statement about CWW. For example, Li

et al. [22, 23] developed some consistency-driven models

to set PNSs for linguistic terms in decision making with

HFLPRs. With the use of an interval numerical scale, Dong

and Herrera-Viedma [6] and Li et al. [21], respectively,

presented a consistency-driven automatic methodology and

a PIS model to personalize numerical scales in group

decision making with LPRs.

Because of the promising performance of DLPRs in

expressing DMs’ preference information, linguistic deci-

sion problems of this type of preference relations have

attracted considerable research interest in recent years

[49, 50]. For instance, by using DLPRs, Gao et al. [10]

presented an emergency decision support method to

enhance emergency management. Zhang et al. [47]

explored the consensus process in group decision problems

with DLPRs. Zhang et al. [48] studied an investment risk

evaluation problem by means of DLPRs. Although there

are a large number of studies to discuss the decision

making with DLPRs, according to the research data we

have now, no studies consider the PIS of linguistic terms

among DMs when recording the preferences by way of

DLPRs. Namely, how to quantify the linguistic terms used

in DLPRs individually when dealing with CWW is an

interesting topic.

To fill the gap as outlined above, this study develops an

expected consistency-based goal programming approach to

derive PIS for linguistic terms in decision making with

DLPRs. This study extends the current literature in three

ways. First, when addressing the statement about CWW,

the comparative linguistic expressions are in the form of

DLPRs instead of LPRs or HFLPRs. Second, by using

numerical scales, DLPRs are connected into numerical

preference relations (i.e., FPRs and MPRs), which facili-

tates the presentation of the expected consistency defini-

tions for DLPRs. As the last extension, some expected

consistency-based models to derive PNSs from DLPRs by

improving their expected consistencies are proposed.

3 Preliminaries

The relevant knowledge used in the following discussion

will be briefly reviewed in this section.

3.1 Linguistic variables and linguistic preference
relations

Fuzzy linguistic approaches model the preference infor-

mation of DMs with the use of linguistic variables [15, 45].

Suppose there is a finite linguistic term set L = {la|a =

- T, …, - 1, 0, 1, …, T} whose odd cardinality is 2T ? 1;

then, the linguistic variable’s possible value la should sat-

isfy the conditions below:

1. L is defined in an ordered structure: la\ lb if and only

if a\ b.
2. There is a negation operator: Neg(la) = l-a.

It is obvious that the midterm represents a preference of

‘‘indifference’’ and the other terms are distributed sym-

metrically around it. Note that the set L is discrete, which

can be extended to a continuous one L = {la|a [ [- q, q]},

where q C T [42]. The operational laws of linguistic terms

read below [42]:

1. la � lb = la?b;

2. la � lb = lb � la;

3. kla = lak;

4. (k1 ? k2)la = k1la � k2la;
5. k(la � lb) = kla � kla,

where la, lb [ L and k, k1, k2 [ [0, 1].

When DMs make pairwise comparisons of alternatives

using linguistic terms to express their own outcomes, LPRs

can be constructed.
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Definition 1 [1, 3, 44] Given an alternative set X = {x1,

x2,…, xn}, a LPR matrix on X comes as A , X 9 X,

A = (aij)n9n with element aij indicating the preference

degree of the alternative xi over xj and satisfying aii = l0
and Neg(aij) = aji for all i, j [ {1, 2,…, n}. If aij [ L, then

we call the matrix A a discrete LPR; if aij [ L, then the

matrix A is called a continuous LPR.

3.2 Distribution linguistic preference relations
(DLPRs)

Similar to LPRs, if DMs are allowed to represent their

outcomes of pairwise comparisons by using some linguistic

distribution assessments, the concept of DLPR comes into

being [47].

Definition 2 [47] Given an alternative set X = {x1, x2,…,

xn} and a linguistic term set L = {la|a = - T, …, - 1, 0, 1,

…, T}, a DLPR matrix on X comes as D , X 9 X,

D = (dij)n9n with a linguistic distribution assessment dij-
= {(la, pij(la)), a = - T, …, - 1, 0, 1, …, T} that is called

a linguistic distribution preference of L, indicating the

preference degrees of the alternative xi over xj and satis-

fying dii = {(l0, 1)} and Neg(dij) = {(la, pij(l-a)), a = - T,

…, - 1, 0, 1, …, T} = dji = {(la, pji(la)), a = - T, …, - 1,

0, 1, …, T}, namely pij(la) = pji(l-a) for all i, j [ {1, 2,…,

n}, in which pij(la) represents the symbolic proportion

associated with the linguistic term la in the relation

between xi and xj, 0 B pij(la) B 1 and
P

a=-T
T pij(la) = 1.

Note that the linguistic distribution preference not only

can be used to model the linguistic preference of an indi-

vidual but also can be employed to portray the preference

information of a group [51]. To aggregate multiple lin-

guistic distribution assessments, two aggregation operators

along with their desirable properties have been discussed in

[47].

Definition 3 [47] Given an alternative set X = {x1, x2,…,

xn}, a linguistic term set L = {la|t = - T, …, - 1, 0, 1, …,

T} and a linguistic distribution preference of L, namely

dij = {(la, pij(la)), t = - T, …, - 1, 0, 1, …, T}, where

0 B pij(la) B 1 and
PT

a¼�T pijðlaÞ = 1, as defined before,

the expectation of dij is defined in the form:

EðdijÞ ¼
XT

a¼�T

pijðlaÞla: ð1Þ

It is apparent that the expectation of dij is a linguistic

term. Herein, we refer to it as linguistic expectation. For

two linguistic distribution preferences d1ij and d2ij, if

Eðd1ijÞ\Eðd2ijÞ, then d1ij is smaller than d2ij, and vice versa; if

Eðd1ijÞ ¼ Eðd2ijÞ, then the linguistic expectation of d1ij is

identical to that of d2ij.

Theorem 1 [47] Suppose that D = (dij)n9n with dij = {(la,

pij(la)), a = - T, …, - 1, 0, 1, …, T} is a DLPR matrix,

and E(dij) is the linguistic expectation of dij, as defined

before. Then, E = (E(dij))n9n is a LPR matrix.

This theorem has been proved in [47].

3.3 Numerical scale model

Quantifying such qualitative information as linguistic

assessments is an open research issue in fuzzy linguistic

decision making. The numerical scale model introduced in

[4] is a useful tool to facilitate the transformations between

linguistic terms and real numbers.

Definition 4 [4] Given a linguistic term set L = {la|-

a = - T, …, - 1, 0, 1, …, T} and a real number set R, the

monotonically increasing function NS: L ? R is defined as

a numerical scale of L and NS(la) is called the numerical

index of la.

One can see from Definition 4 that the numerical scale

NS on L is ordered. By setting an appropriate NS for L,

linguistic representation of preference information can be

quantified. In other words, linguistic pairwise comparisons

can be connected into numerical pairwise comparisons.

Two commonly used types of scale functions are additive

scale functions and multiplicative scale functions.

Definition 5 [3] Given a linguistic term set L = {la|-

a = - T, …, - 1, 0, 1, …, T} and a monotonically

increasing function g: L ? [0, 1] as defined before, the

function g is called an additive scale function if g(la)-

? g(l-a) = 1, where g(la) C 0.

For example, the linear scale presented in [41] is a

typically additive numerical scale and the corresponding

scale function comes as follows:

gðlaÞ ¼ 0:5þ a=2T; where a ¼ �T ; . . .;�1; 0; 1; . . .; T:

By identifying an additive scale function to quantify a

LPR [3, 41], one can construct such a numerical pairwise

comparison as FPR [35].

Definition 6 [35] Given an alternative set X = {x1, x2,…,

xn}, a FPR matrix on X comes as R , X 9 X, R = (rij)n9n

with rij [ [0, 1] representing the preference degree of the

alternative xi over xj and satisfying rij ? rji = 1 for all i,

j [ {1, 2,…, n}.

Definition 7 [2, 3] Given a linguistic term set L = {la|-

a = - T, …, - 1, 0, 1, …, T} and a monotonically

increasing function q: L ? R? as defined before, the
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function q is called a multiplicative scale function if

q(la) 9 q(l-a) = 1, where q(la)[ 0.

Several representative multiplicative scale functions

have been reported in [33, 34]. When selecting certain q to

character a LPR, one can obtain such a numerical pairwise

comparison as MPR [17, 33].

Definition 8 [17, 33] Given an alternative set X = {x1,

x2,…, xn}, a MPR matrix on X comes as F , X 9 X,

F = (fij)n9n with fij C 0 representing the preference degree

of the alternative xi over xj and satisfying fij 9 fji = 1 for all

i, j [ {1, 2,…, n}.

4 Expected consistency of DLPRs

The basic components of a DLPR matrix are actually lin-

guistic distribution assessments, thereby increasing the

difficulty of direct consistency analysis. So the consistency

of DLPR is usually indirectly discussed by means of other

transformed preference relations. As recalled earlier, the

consistency of DLPR is defined through the consistency of

its associated LPR in [47]. This section analyzes the con-

sistency of DLPR from its associated numerical preference

relations such as FPR and MPR, based on the numerical

scale model.

4.1 Expected consistency based on fuzzy
preference relation

Before presenting the definition of expected consistency

for the DLPRs, we first introduce the numerical expectation

of linguistic distribution preference.

Definition 9 Given an alternative set X = {x1, x2,…, xn}, a

linguistic term set L = {la|t = - T, …, - 1, 0, 1, …, T}

and a linguistic distribution preference of L, namely dij-
= {(la, pij(la)), t = - T, …, - 1, 0, 1, …, T}, where

0 B pij(la) B 1 and
PT

a¼�T pijðlaÞ = 1, the numerical

expectation of dij is designed below:

NEðdijÞ ¼
XT

a¼�T

pijðlaÞ � NSðlaÞ; ð2Þ

in which NS(la) denotes the numerical index of la.

For convenience, NE(dij) is referred to simply as NEij in

this paper. It is obvious from this definition that the value

of NEij is a real number, which differs from the linguistic

expectation defined in [47] that is a linguistic term. Thus,

the linguistic distribution preference dij can be quantified as

a numerical preference NEij with the use of certain

numerical scale NS. Of course, by using different types of

numerical scales, a linguistic distribution preference can be

transformed into different numerical preferences. This will

be discussed in detail later.

Based on the concept of NE(dij), different linguistic

distribution preferences can be compared as well. Namely,

for two linguistic distribution preferences d1ij and d2ij, if

NE1
ij \NE2

ij , then d1ij is smaller than d2ij, and vice versa; if

NE1
ij = NE2

ij, then the numerical expectation of d1ij is equal

to that of d2ij. As function NS is monotonically increasing,

one can easily verify that for different linguistic distribu-

tion preferences, their comparison results generated by the

numerical expectation are consistent with the ones by the

linguistic expectation.

If the function NS in (2) is an additive scale function,

namely g: L ? [0, 1] as defined in Definition 5, DLPRs

can be transformed into FPRs.

Theorem 2 Suppose that D = (dij)n9n with dij = {(la, pij(-

la)), a = - T,…,- 1, 0, 1,…, T} is a DLPR matrix, g is an

additive scale function andNEij is the numerical expectation

of dij defined based on g. Then, NE = (NEij)n9n is a FPR

matrix.

Proof From Definitions 5 and 9, we can reason that

NEij ¼
XT

a¼�T

pijðlaÞ � gðlaÞ 2 0; 1½ �:

In virtue of Neg(dij) = {(la, pij(l-a)), a = - T, …, - 1,

0, 1, …, T} = dji = {(la, pji(la)), a = - T, …, - 1, 0, 1, …,

T}, we have

NEij þ NEji ¼
XT

a¼�T

pijðlaÞ � gðlaÞ þ
XT

a¼�T

pjiðlaÞ � gðlaÞ

¼
XT

a¼�T

pijðlaÞ � gðlaÞ þ
XT

a¼�T

pijðlaÞ � gðl�aÞ

¼
XT

a¼�T

pijðlaÞ � gðlaÞ þ gðl�aÞð Þ

¼
XT

a¼�T

pijðlaÞ

¼ 1 for all i; j 2 1; 2; . . .; nf g:

Consequently, according to Definition 6, we can prove

that NE is a FPR. h

DMs are expected to be neither illogical nor random in

their pairwise comparisons. In other words, DLPRs offered

by the DMs should meet some pre-established transitive

properties, such as additive transitivity and multiplicative

transitivity [35]. However, due to a variety of reasons, DMs

are not necessarily logical. They may offer inconsistent

preference relations. Consistency analysis for verifying the

logicality of their preference relations therefore needs to be

done. In what follows, we first recall the concept of
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additive consistency [13, 35, 43] as the basis for the con-

sistency analysis associated with the DLPRs.

Definition 10 [13, 35, 43] Given an alternative set

X = {x1, x2,…, xn} and a FPR matrix R = (rij)n9n with rij-
[ [0, 1] on X, as defined before, then R is called additive

consistent if the additive transitivity, namely rij ? rjk-
? rki = rkj ? rji ? rik for all i, j, k [ {1, 2,…, n}, is sat-

isfied, and such a FPR can be expressed by the following

expression:

rij ¼ 0:5ðxi � xjÞ þ 0:5 for all i; j 2 1; 2; . . .; nf g ð3Þ

where x = (x1, x2,…, xn)
T is the priority vector of R,

satisfying 0 B xi B 1 and
Pn

i¼1 xi ¼ 1.

Based on Theorem 2 and Definition 10, the expected

additive consistency for DLPRs is defined.

Definition 11 Given an alternative set X = {x1, x2,…, xn}

and a DLPR matrix D = (dij)n9n with dij = {(la, pij(la)),

a = - T, …, - 1, 0, 1, …, T} on X, as defined before, then

D is called expectedly additive consistent if the additive

transitivity, namely NEij ? NEjk ? NEki = NEkj ? NEji-

? NEik for all i, j, k [ {1, 2,…, n}, is fulfilled, which can

be given as follows:

NEij ¼
XT

a¼�T

pijðlaÞ � gðlaÞ ¼ 0:5ðxi � xjÞ þ 0:5

for all i; j 2 1; 2; . . .; nf g
ð4Þ

where NEij is the numerical expectation of dij defined based

on an additive scale function g and x is the corresponding

priority vector of D.

In a way similar to the presentation of the expected

additive consistency for DLPRs, the definition of expected

multiplicative consistency for DLPRs can be deduced

based on the concept of multiplicative consistency

[13, 35, 43].

Definition 12 [13, 35, 43] Given an alternative set

X = {x1, x2,…, xn} and a FPR matrix R = (rij)n9n with rij-
[ [0, 1] on X, as defined before, then R is called multi-

plicative consistent if the multiplicative transitivity,

namely rij � rjk � rki = rkj � rji � rik for all i, j, k [ {1, 2,…, n},

is satisfied, and such a FPR can be expressed by the fol-

lowing expression:

rij ¼
xi

xi þ xj

for all i; j 2 1; 2; . . .; nf g ð5Þ

where x = (x1, x2,…, xn)
T is the priority vector of R,

satisfying 0 B xi B 1 and
Pn

i¼1 xi ¼ 1.

Based on the description of multiplicative consistent

FPRs, the definition of expected multiplicative consistency

for DLPRs is therefore presented.

Definition 13 Given an alternative set X = {x1, x2,…, xn}

and a DLPR matrix D = (dij)n9n with dij = {(la, pij(la)),

a = - T, …, - 1, 0, 1, …, T} on X, as defined before, then

D is called expectedly multiplicative consistent if the

multiplicative transitivity, namely NEij � NEjk � NEki-

= NEkj � NEji � NEik for all i, j, k [ {1, 2,…, n}, is fulfilled,

which can be given as follows:

NEij ¼
XT

a¼�T

pijðlaÞ � gðlaÞ ¼
xi

xi þ xj

for all i; j 2 1; 2; . . .; nf g
ð6Þ

where NEij is the numerical expectation of dij defined based

on an additive scale function g and x is the corresponding

priority vector of D.

Note that the foresaid consistency of a DLPR is defined

based on the consistency of the corresponding FPR.

4.2 Expected consistency based
on multiplicative preference relation

Section 4.1 discusses the situation where the function NS

in (2) is an additive scale function, thereby establishing the

connection between DLPRs and FPRs. In this section, we

consider a different situation where certain multiplicative

scale function is selected to build the relation between

DLPRs and MPRs, then based on which we define the

expected consistency of DLPRs.

If the function NS in (2) is a multiplicative scale func-

tion, namely q: L ? R?, as defined in Definition 7, DLPRs

can be transformed into MPRs.

Theorem 3 Suppose that D = (dij)n9n with dij = {(la,

pij(la)), a = - T, …, - 1, 0, 1, …, T} is a DLPR matrix, q

is a multiplicative scale function and NEij is the numerical

expectation of dij defined based on q. Then, NE = (NEij)-

n9n is a MPR matrix.

Proof As per Definitions 8 and 9, this theorem can be

easily proved and thus omitted here. h

Before defining the consistency of DLPRs, a consistency

definition for MPRs is presented [33].

Definition 14 [33] Given an alternative set X = {x1, x2,…,

xn} and a MPR matrix F = (fij)n9n with fij C 0 on X, as

defined before, then F is considered to be consistent if the
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equation fik = fij � fjk for all i, j, k [ {1, 2,…, n} holds, and

such a MPR can be expressed as follows:

fij ¼ xi=xj for all i; j 2 1; 2; . . .; nf g ð7Þ

where x = (x1, x2,…, xn)
T is the priority vector of F,

satisfying 0\xi and
Pn

i¼1 xi ¼ 1.

Analogous to the foresaid definition of consistency, the

following expected consistency definition for DLPRs is

therefore proposed.

Definition 15 Given an alternative set X = {x1, x2,…, xn}

and a DLPR matrix D = (dij)n9n with dij = {(la, pij(la)),

a = - T, …, - 1, 0, 1, …, T} on X, as defined before, then

D is considered to be expectedly consistent if the equation

NEik = NEij � NEjk for all i, j, k [ {1, 2,…, n} holds, which

can be expressed as follows:

NEij ¼
XT

a¼�T

pijðlaÞ � qðlaÞ ¼ xi=xj

for all i; j 2 1; 2; . . .; nf g
ð8Þ

where NEij is the numerical expectation of dij defined based

on a multiplicative scale function q and x is the corre-

sponding priority vector of D.

In accordance with the earlier consistency definitions for

FPRs and MPRs, this section defines the expected consis-

tency of DLPRs.

5 Goal programming models to derive
personalized numerical scales from DLPRs

From the above analysis, we know that when quantifying

DLPRs, one needs to set certain numerical scales. Though

several common numerical scales have been reported in

previous studies [3, 33, 34, 41], the problem of setting a

numerical scale is still an open research issue. In practical

fuzzy linguistic decision situations, for different DMs, the

linguistic term set may have different numerical meanings

that cannot be totally characterized by those common

numerical scale functions. Therefore, in this section, some

programming models for deriving PNSs are established

based on the expected consistency of DLPRs.

5.1 Programming model construction using
expected additive consistency of DLPRs

As analyzed in the previous sections, due to the limitation

of objective and subjective conditions, DMs may offer

inconsistent DLPRs. As a result, by improving the expected

consistency of the DLPRs, one can get the PNSs. Given

that g(la) [ [(a?T - 1)/2T, (a?T?1)/2T], a = - T ?

1,…, 1, 0, 1,…, T - 1, then based on the assumption that

the personalized scale function is additive but unknown,

the following programming model can be constructed with

the use of the expected additive consistency of DLPRs:

Minimize Jij ¼ 0:5ðxi � xjÞ þ 0:5� NEij

�
�

�
�

¼ 0:5ðxi � xjÞ þ 0:5�
XT

a¼�T
pijðlaÞ � gðlaÞ

�
�
�

�
�
�

s:t:

gðl�TÞ ¼ 0 and gðlTÞ ¼ 1

gðlaþ1Þ � gðlaÞ� d; a ¼ �T; . . .; T � 1

gðl�aÞ þ gðlaÞ ¼ 1; a ¼ �T ; . . .; T

ðaþ T � 1Þ=2T � gðlaÞ� ðaþ T þ 1Þ=2T ; a ¼ �T þ 1; . . .; T � 1

0�xi � 1;
Pn

i¼1 xi ¼ 1; i ¼ 1; 2; . . .; n

i; j ¼ 1; 2; . . .; n

8
>>>>>>>><

>>>>>>>>:

ð9Þ

where g is an additive scale function as described in Def-

inition 5 and d is a constant used to restrict the distance

between g(la) and g(la?1), and 0\ d\ 1. In this model,

the first four constraints guarantee g is an additive scale

function and the middle one is the normalization constraint

on the priority vector x.
One can reason from Definition 2 and Theorem 2 that:

0:5ðxi � xjÞ þ 0:5�
PT

a¼�T pijðlaÞ�
�
� gðlaÞj = 0:5ðxj�

�
�

xiÞþ 0:5�
PT

a¼�T pjiðlaÞ � gðlaÞj for i, j = 1, 2,…, n,

i = j; and 0:5ðxi � xjÞ þ 0:5�
PT

a¼�T pijðlaÞ � gðlaÞ
�
�

�
� =

0 if i = j. This demonstrates that the deviation examination

can be just done for the upper diagonal elements of the

DLPRs. As a consequence, (9) can be simplified into the

following model:

Minimize Jij ¼ 0:5ðxi � xjÞ þ 0:5� NEij

�
�

�
�

¼ 0:5ðxi � xjÞ þ 0:5�
XT

a¼�T
pijðlaÞ � gðlaÞ

�
�
�

�
�
�

s:t:

gðl�TÞ ¼ 0 and gðlTÞ ¼ 1

gðlaþ1Þ � gðlaÞ� d; a ¼ �T ; . . .;T � 1

gðl�aÞ þ gðlaÞ ¼ 1; a ¼ �T ; . . .;T

ðaþT � 1Þ=2T � gðlaÞ� ðaþT þ 1Þ=2T ; a ¼ �T þ 1; . . .;T � 1

0 �xi � 1;
Pn

i¼1 xi ¼ 1; i ¼ 1; 2; . . .; n

i; j ¼ 1; 2; . . .; n; j[ i

8
>>>>>>>><

>>>>>>>>:

:

ð10Þ

The model of (10) is a multiprogramming model. To

simplify the calculation of (10), we suppose the negative

deviation and the positive deviation with respect to the goal

Jij are, respectively, denoted by p�ij and pþij , where p�ij �
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pþij = 0 for i, j = 1, 2,…, n, j[ i, and their corresponding

weights are, respectively, fij and eij. To this end, one can

get the solution to model (10) by resolving the optimization

model below:

Minimize J ¼
Xn�1

i¼1

Xn

j¼iþ1

ðfijp�ij þ eijp
þ
ij Þ

s:t:

0:5ðxi � xjÞ þ 0:5�
PT

a¼�T pijðlaÞ � gðlaÞ þ fijp
�
ij � eijpþij ¼ 0

p�ij ; p
þ
ij � 0

gðl�TÞ ¼ 0 and gðlTÞ ¼ 1

gðlaþ1Þ � gðlaÞ� d; a ¼ �T ; . . .;T � 1

gðl�aÞ þ gðlaÞ ¼ 1; a ¼ �T ; . . .; T

ðaþT � 1Þ=2T � gðlaÞ� ðaþT þ 1Þ=2T ; a ¼ �T þ 1; . . .;T � 1

0 �xi � 1;
Pn

i¼1 xi ¼ 1; i ¼ 1; 2; . . .; n

i; j ¼ 1; 2; . . .; n; j[ i

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

:

ð11Þ

In the case where all goal functions Jij (i = 1, 2,…,

n - 1, j = i ? 1,…, n) are equally important, (11) can be

equivalently expressed as:

Minimize J ¼
Xn�1

i¼1

Xn

j¼iþ1

ðp�ij þ pþij Þ

s:t:

0:5ðxi � xjÞ þ 0:5�
PT

a¼�T pijðlaÞ � gðlaÞ þ p�ij � pþij ¼ 0

p�ij ; p
þ
ij � 0

gðl�TÞ ¼ 0 and gðlTÞ ¼ 1

gðlaþ1Þ � gðlaÞ� d; a ¼ �T ; . . .;T � 1

gðl�aÞ þ gðlaÞ ¼ 1; a ¼ �T ; . . .;T

ðaþT � 1Þ=2T � gðlaÞ� ðaþT þ 1Þ=2T ; a ¼ �T þ 1; . . .;T � 1

0 �xi � 1;
Pn

i¼1 xi ¼ 1; i ¼ 1; 2; . . .; n

i; j ¼ 1; 2; . . .; n; j[ i

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

:

ð12Þ

By solving this linear model, one can get a PNS for the

given set of linguistic terms. Moreover, it is also possible to

obtain a priority vector x = (x1, x2,…, xn)
T. In individual

decision making with DLPRs, the vector x can be used to

produce a ranking of the pairwise comparison alternatives.

Theorem 4 For the linear programming model (12), if

J = 0, then the DLPR is expectedly additive consistent.

Proof If J = 0 in (12), then one can get p - ij = p ?

ij = 0 for i, j = 1, 2,…, n, j[ i. Namely,

XT

a¼�T

pijðlaÞ � gðlaÞ ¼ 0:5ðxi � xjÞ þ 0:5 for i; j

¼ 1; 2; . . .; n; j[ i:

Further, we can reason from Definition 2 and Theorem 2

that 0:5ðxi � xjÞ þ 0:5�
PT

a¼�T pijðlaÞ � gðlaÞ
�
�

�
� =

0:5ðxj � xiÞ þ 0:5�
PT

a¼�T pjiðlaÞ � gðlaÞ
�
�

�
� for i, j = 1,

2,…, n, i = j; and 0:5ðxi � xjÞ þ 0:5�
�
�

PT
a¼�T pijðlaÞ � gðlaÞj = 0 if i = j.

Thus, we have
PT

a¼�T pijðlaÞ � gðlaÞ = 0.5(xi - xj)-

? 0.5 for all i, j [ {1, 2,…, n}, which demonstrates the

preference relation can be represented by (4).

Consequently, we can conclude that the DLPR is expect-

edly additive consistent according to Definition 11. h

Example 1 Consider a DLPR D = (dij)494, based on a nine

linguistic terms set L = {l - |a = - 4,…,- 1, 0, 1,…, 4}:

By (12), we can build the following goal programming

model:

Minimize J ¼ p�12 þ pþ12 þ p�13 þ pþ13 þ p�14 þ pþ14 þ p�23 þ pþ23
þ p�24 þ pþ24 þ p�34 þ pþ34

s:t:

0:5ðx1 � x2Þ þ 0:5� ð0:4� 0:5þ 0:6gðl1ÞÞ þ p�12 � pþ12 ¼ 0

0:5ðx1 � x3Þ þ 0:5� ð0:3gðl1Þ þ 0:5gðl2Þ þ 0:2gðl3ÞÞ þ p�13 � pþ13 ¼ 0

0:5ðx1 � x4Þ þ 0:5� ð0:5gðl2Þ þ 0:2gðl3Þ þ 0:3gðl4ÞÞ þ p�14 � pþ14 ¼ 0

0:5ðx2 � x3Þ þ 0:5� ð0:2� 0:5þ 0:6gðl1Þ þ 0:2gðl2ÞÞ þ p�23 � pþ23 ¼ 0

0:5ðx2 � x4Þ þ 0:5� ð0:1� 0:5þ 0:5gðl1Þ þ 0:4gðl2ÞÞ þ p�24 � pþ24 ¼ 0

0:5ðx3 � x4Þ þ 0:5� ð0:2gðl�2Þ þ 0:8� gðl1ÞÞ þ p�34 � pþ34 ¼ 0

p�12; p
þ
12; p

�
13; p

þ
13; p

�
14; p

þ
14; p

�
23; p

þ
23; p

�
24; p

þ
24; p

�
34; p

þ
34� 0

gðl�4Þ ¼ 0 and gðl4Þ ¼ 1

gðlaþ1Þ � gðlaÞ� 0:05; a ¼ �4; . . .; 3

gðl�aÞ þ gðlaÞ ¼ 1; a ¼ �4; . . .; 4

ðaþ3Þ=8� gðlaÞ� ðaþ5Þ=8; a ¼ �3; . . .; 3

0 �xi � 1;
P4

i¼1 xi ¼ 1; i ¼ 1; 2; . . .; 4

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

:

ð13Þ

Solving the above model, we obtain

D ¼

fðl0; 1Þg fðl0; 0:4Þ; ðl1; 0:6Þg fðl1; 0:3Þ; ðl2; 0:5Þ; ðl3; 0:2Þg fðl2; 0:5Þ; ðl3; 0:2Þ; ðl4; 0:3Þg
fðl�1; 0:6Þ; ðl0; 0:4Þg fðl0; 1Þg fðl0; 0:2Þ; ðl1; 0:6Þ; ðl2; 0:2Þg fðl0; 0:1Þ; ðl1; 0:5Þ; ðl2; 0:4Þg

fðl�3; 0:2Þ; ðl�2; 0:5Þ; ðl�1; 0:3Þg fðl�2; 0:2Þ; ðl�1; 0:6Þ; ðl0; 0:2Þg fðl0; 1Þg fðl�2; 0:2Þ; ðl1; 0:8Þg
fðl�4; 0:3Þ; ðl�3; 0:2Þ; ðl�2; 0:5Þg fðl�2; 0:4Þ; ðl�1; 0:5Þ; ðl0; 0:1Þg fðl�1; 0:8Þ; ðl2; 0:2Þg fðl0; 1Þg

0

B
B
@

1

C
C
A
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p�12 ¼ pþ12 ¼ p�13 ¼ pþ13 ¼ pþ14 ¼ p�23 ¼ pþ23 ¼ p�24 ¼ p�34
¼ pþ34 ¼ 0; p�14 ¼ 0:0504; pþ24 ¼ 0:0313, J = 0.0817; x =

(x1, x2,…, xn)
T = (0.5167, 0.3617, 0.1217, 0.0000)T; and

g(l-4) = 0, g(l-3) = 0.2375, g(l-2) = 0.2875, g(l-1) =

0.3708, g(l0) = 0.5, g(l1) = 0.6292, g(l2) = 0.7125,

g(l3) = 0.7625, g(l4) = 1.

Based on the resulting numerical scales, the FPR R,

associated with D, is obtained:

R ¼

0:5 0:5775 0:6975 0:6859
0:4225 0:5 0:62 0:6496
0:3025 0:38 0:5 0:5609
0:3142 0:3504 0:4391 0:5

0

B
B
@

1

C
C
A:

5.2 Programming model construction using
expected multiplicative consistency of DLPRs

As per Definition 13, DLPRs are expectedly multiplicative

consistent if they can be expressed by (6). However, DMs

may provide inconsistent DLPRs because of the limitation

of objective and subjective conditions. That is to say,

Eq. (6) does not always hold in practical decision contexts.

As such, the personalized scale function can be obtained by

improving the expected multiplicative consistency of the

DLPRs. By relaxing Eq. (6), the following programming

model can be built:

Minimize Zij ¼ ðxi þ xjÞ � NEij � xi

�
�

�
�

¼ ðxi þ xjÞ �
XT

a¼�T

pijðlaÞ � gðlaÞ � xi

�
�
�
�
�

�
�
�
�
�

s:t:

gðl�TÞ ¼ 0 and gðlTÞ ¼ 1

gðlaþ1Þ � gðlaÞ� d; a ¼ �T ; . . .;T � 1

gðl�aÞ þ gðlaÞ ¼ 1; a ¼ �T ; . . .;T

ðaþT � 1Þ=2T � gðlaÞ� ðaþT þ 1Þ=2T ; a ¼ �T þ 1; . . .;T � 1

0 �xi � 1;
Pn

i¼1 xi ¼ 1; i ¼ 1; 2; . . .; n

i; j ¼ 1; 2; . . .; n

8
>>>>>>>><

>>>>>>>>:

ð14Þ

where g is an additive scale function as described in Def-

inition 5 and d is a constant used to restrict the distance

between g(la) and g(la?1), and 0\ d\ 1. In the above

model, the first four constraints guarantee g is an additive

scale function and the middle one is the normalization

constraint on the priority vector x.
As per Definition 2 and Theorem 2, we have

that: ðxi þ xjÞ
�
� �

PT
a¼�T pijðlaÞ � gðlaÞ � xij = ðxj þ xiÞ

�
� �

PT
a¼�T pjiðlaÞ � gðlaÞ � xjj for i, j = 1, 2,…, n, i = j; and

ðxi þ xjÞ �
PT

a¼�T pijðlaÞ � gðlaÞ � xi

�
�

�
� = 0 if i = j. For this

reason, (14) can be simplified into the model below:

Minimize Zij ¼ ðxi þ xjÞ � NEij � xi

�
�

�
�

¼ ðxi þ xjÞ �
XT

a¼�T
pijðlaÞ � gðlaÞ � xi

�
�
�

�
�
�

s:t:

gðl�TÞ ¼ 0 and gðlTÞ ¼ 1

gðlaþ1Þ � gðlaÞ� d; a ¼ �T ; . . .;T � 1

gðl�aÞ þ gðlaÞ ¼ 1; a ¼ �T ; . . .; T

ðaþT � 1Þ=2T � gðlaÞ� ðaþT þ 1Þ=2T ; a ¼ �T þ 1; . . .;T � 1

0 �xi � 1;
Pn

i¼1 xi ¼ 1; i ¼ 1; 2; . . .; n

i; j ¼ 1; 2; . . .; n; j[ i

8
>>>>>>>><

>>>>>>>>:

:

ð15Þ

Analogous to the considerations in Sect. 5.1, we assume

that the negative deviation and the positive deviation with

regard to the goal Zij are, respectively, denoted by g�ij and

gþij , where g�ij • gþij = 0 for i, j = 1, 2,…, n, j[ i. As a

result, model of (15) is rewritten as the linear optimization

model:

Minimize Z ¼
Xn�1

i¼1

Xn

j¼iþ1

ðg�ij þ gþij Þ

s:t:

ðxi þ xjÞ �
PT

a¼�T pijðlaÞ � gðlaÞ � xi þ g�ij � gþij ¼ 0

g�ij ; g
þ
ij � 0

gðl�TÞ ¼ 0 and gðlTÞ ¼ 1

gðlaþ1Þ � gðlaÞ� d; a ¼ �T ; . . .;T � 1

gðl�aÞ þ gðlaÞ ¼ 1; a ¼ �T ; . . .; T

ðaþT � 1Þ=2T � gðlaÞ� ðaþT þ 1Þ=2T ; a ¼ �T þ 1; . . .;T � 1

0 �xi � 1;
Pn

i¼1xi ¼ 1; i ¼ 1; 2; . . .; n

i; j ¼ 1; 2; . . .; n; j[ i

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

:

ð16Þ

By solving the model above, one can get a PNS for the

given set of linguistic terms as well as a priority vector

x = (x1, x2,…, xn)
T associated with the given DLPR. Of

course, the DLPR is expectedly multiplicative consistent if

Z = 0. This conclusion is presented in the following

theorem.

Theorem 5 For the linear programming model (16), if

Z = 0, then the DLPR is expectedly multiplicative

consistent.

Proof This theorem is easily demonstrated based on

Definitions 2 and 13 and Theorem 2. Therefore, we omit it

here. h

Example 2 Let us proceed with the earlier DLPR

D = (dij)494, provided in Example 1. One can construct the

following goal programming model using (16):
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Minimize Z ¼ g�12 þ gþ12 þ g�13 þ gþ13
þ g�14 þ gþ14 þ g�23 þ gþ23 þ g�24 þ gþ24 þ g�34 þ gþ34
s:t:

ðx1 þ x2Þ � ð0:4� 0:5þ 0:6gðl1ÞÞ � x1 þ g�12 � gþ12 ¼ 0

ðx1 þ x3Þ � ð0:3gðl1Þ þ 0:5gðl2Þ þ 0:2gðl3ÞÞ � x1 þ g�13 � gþ13 ¼ 0

ðx1 þ x4Þ � ð0:5gðl2Þ þ 0:2gðl3Þ þ 0:3gðl4ÞÞ � x1 þ g�14 � gþ14 ¼ 0

ðx2 þ x3Þ � ð0:2� 0:5þ 0:6gðl1Þ þ 0:2gðl2ÞÞ � x2 þ g�23 � gþ23 ¼ 0

ðx2 þ x4Þ � ð0:1� 0:5þ 0:5gðl1Þ þ 0:4gðl2ÞÞ � x2 þ g�24 � gþ24 ¼ 0

ðx3 þ x4Þ � ð0:2gðl�2Þ þ 0:8gðl1ÞÞ � x3 þ g�34 � gþ34 ¼ 0

g�12; g
þ
12; g

�
13; g

þ
13; g

�
14; g

þ
14; g

�
23; g

þ
23; g

�
24; g

þ
24; g

�
34; g

þ
34 � 0

gðl�4Þ ¼ 0 and gðl4Þ ¼ 1

gðlaþ1Þ � gðlaÞ� 0:05; a ¼ �4; . . .; 3

gðl�aÞ þ gðlaÞ ¼ 1; a ¼ �4; . . .; 4

ðaþ3Þ=8� gðlaÞ� ðaþ5Þ=8; a ¼ �3; . . .; 3

0 �xi � 1;
P4

i¼1 xi ¼ 1; i ¼ 1; 2; . . .; 4

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

:

ð17Þ

By solving the model above, we get

g�12 ¼ gþ12 ¼ g�13 ¼ gþ13 ¼ g�14 ¼ g�23 ¼ gþ23 ¼ gþ24 ¼ g�34
¼ gþ34 ¼ 0; gþ14 ¼ 0:0638; g�24 ¼ 0:0181, Z = 0.0245; x =

(x1, x2,…, xn)
T = (0.5342, 0.2876, 0.1125, 0.0657)T; and

g(l-4) = 0, g(l-3) = 0.1056, g(l-2) = 0.1556, g(l-1) =

0.25, g(l0) = 0.5, g(l1) = 0.75, g(l2) = 0.8444, g(l3) =

0.8944, g(l4) = 1.

Similar to Example 1, according to the resulting

numerical scales, the FPR R, associated with D, is derived.

R ¼

0:5 0:65 0:8261 0:8122
0:35 0:5 0:7189 0:7628

0:1739 0:2811 0:5 0:6311
0:1878 0:2372 0:3689 0:5

0

B
B
@

1

C
C
A:

5.3 Programming model construction using
multiplicative preference-based expected
consistency of DLPRs

Sections 5.1 and 5.2 present some programming models to

personalize numerical scales for the used sets of linguistic

terms in DLPRs, under which the unknown scale functions

are assumed to be certain additive scale functions. In a way

similar to the foregoing two sections, this section develops

the programming models to address the same issue under

the assumption that the scale functions are multiplicative

scale functions.

As per Definition 15, if the DLPR D = (dij)n9n with

dij = {(la, pij(la)), a = - T, …, - 1, 0, 1, …, T} can be

expressed by:

NEij ¼
XT

a¼�T

pijðlaÞ � qðlaÞ ¼ xi=xj

for all i; j 2 1; 2; . . .; nf g
ð18Þ

where NEij is the numerical expectation of dij defined based

on a multiplicative scale function q, and x = (x1, x2,…,

xn)
T is the priority vector of D, satisfying 0\xi and

Pn
i¼1 xi ¼ 1. Then, D is expectedly consistent. Due to the

fact that the preference information expressed as DLPRs by

DMs may not always be consistent, Eq. (18) does not

always hold. As such, relaxing (18) by allowing some

deviation and improving the expected consistency of D,

one can build a multiobjective programming model to

deduce a PNS from D. Unless otherwise specified, it is

given that q(l–T) = 1/(T ? 1), q(lT) = (T ? 1) and q(la)-

[ [a, a?2], if a = 1,…, T - 1 and q(la) [ [1/(2 - a), 1/
(- a)], if a = - T ? 1,…, - 1. Thus, the multiobjective

programming model reads as follows:

Minimize Mij ¼ xj � NEij � xi

�
�

�
�

¼ xj �
XT

a¼�T

pijðlaÞ � qðlaÞ � xi

�
�
�
�
�

�
�
�
�
�

s:t:

qðl�TÞ ¼ 1=ðT þ 1Þ
qðlTÞ ¼ ðT þ 1Þ
qðlaþ1Þ=qðlaÞ� d; a ¼ �T ; . . .; T � 1

qðl�aÞ � qðlaÞ ¼ 1; a ¼ �T; . . .; T

a� qðlaÞ� aþ 2; a ¼ 1; . . .; T � 1

1=ð2� aÞ� qðlaÞ� 1=ð�aÞ; a ¼ �T þ 1; . . .;�1

0\xi� 1;
Pn

i¼1 xi ¼ 1; i ¼ 1; 2; . . .; n

i; j ¼ 1; 2; . . .; n

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð19Þ

where q is a multiplicative scale function as described in

Definition 7, d is a constant and d[ 1. In this model, the

first six constraints guarantee q is a multiplicative scale

function and the seventh one is the normalization constraint

on the priority vector x.
Reasoning from Definition 2 and Theorem 3, we have

that: xj �
PT

a¼�T pijðlaÞ � qðlaÞ�
�
� xij = xi �

PT
a¼�T pjiðlaÞ�

�
�

qðlaÞ � xjj for i, j = 1, 2,…, n, i = j; and

xj �
PT

a¼�T pijðlaÞ � qðlaÞ � xi

�
�

�
� = 0 if i = j. Therefore,

model (19) can be simplified into the following model by

only considering the upper diagonal elements of the

DLPRs:
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Minimize Mij ¼ xj � NEij � xi

�
�

�
�

¼ xj �
XT

a¼�T

pijðlaÞ � qðlaÞ � xi

�
�
�
�
�

�
�
�
�
�

s:t:

qðl�TÞ ¼ 1=ðT þ 1Þ
qðlTÞ ¼ ðT þ 1Þ
qðlaþ1Þ=qðlaÞ� d; a ¼ �T ; . . .; T � 1

qðl�aÞ � qðlaÞ ¼ 1; a ¼ �T ; . . .; T

a� qðlaÞ� aþ 2; a ¼ 1; . . .; T � 1

1=ð2� aÞ� qðlaÞ� 1=ð�aÞ; a ¼ �T þ 1; . . .;�1

0\xi � 1;
Pn

i¼1 xi ¼ 1; i ¼ 1; 2; . . .; n

i; j ¼ 1; 2; . . .; n; j[ i

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

:

ð20Þ

In order to simplify the calculation of (20), we assume

that the negative deviation and the positive deviation with

regard to the goal Mij are, respectively, denoted by

k�ij and kþij ; where k
�
ij � kþij ¼ 0 for i, j = 1, 2,…, n, j[ i,

and all goals are fair. Therefore, one can find the solution to

model (20) by resolving the optimization model (21):

Minimize M ¼
Xn�1

i¼1

Xn

j¼iþ1

ðk�ij þ kþij Þ

s:t:

xj �
PT

a¼�T pijðlaÞ � qðlaÞ � xi þ k�ij � kþij ¼ 0

k�ij ; k
þ
ij � 0

qðl�TÞ ¼ 1=ðT þ 1Þ
qðlTÞ ¼ ðT þ 1Þ
qðlaþ1Þ=qðlaÞ� d; a ¼ �T ; . . .;T � 1

qðl�aÞ � qðlaÞ ¼ 1; a ¼ �T ; . . .; T

a� qðlaÞ� aþ 2; a ¼ 1; . . .; T � 1

1=ð2� aÞ� qðlaÞ� 1=ð�aÞ; a ¼ �T þ 1; . . .;�1

0\xi � 1;
Pn

i¼1 xi ¼ 1; i ¼ 1; 2; . . .; n

i; j ¼ 1; 2; . . .; n; j[ i

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

: ð21Þ

Finally, by solving (21), a PNS together with a priority

vector x = (x1, x2,…, xn)
T of the given DLPR can be

obtained.

Theorem 6 For the linear programming model (21), if

M = 0, then the DLPR is expectedly consistent.

Proof If M = 0 in (21), then we have k - ij = k ? ij = 0

for i, j = 1, 2,…, n, j[ i. That is to say,

xj �
XT

a¼�T

pijðlaÞ � qðlaÞ ¼ xi for i; j ¼ 1; 2; . . .; n; j[ i:

h

As per Definition 2 and Theorem 3, we have:

xj �
PT

a¼�T pijðlaÞ�
�
� qðlaÞ � xij = xi �

PT
a¼�T pjiðlaÞ�

�
�

qðlaÞ � xjj for i, j = 1, 2,…, n, i = j; and

xj �
PT

a¼�T pijðlaÞ � qðlaÞ � xi

�
�

�
� = 0 if i = j.

Moreover, 0\xi and
Pn

i¼1 xi ¼ 1. Hence, the fol-

lowing conclusion is obtained:
PT

a¼�T pijðlaÞ � qðlaÞ = xi/xj for all i, j [ {1, 2,…, n},

which shows the preference relation can be represented by

(8).

Therefore, we can conclude from Definition 15 that the

DLPR is expectedly consistent. h

Example 3 Consider another DLPR D = (dij)494, based on

a nine linguistic terms set L = {la|a = - 4, …, - 1, 0, 1,

…, 4}.

As per (19), one can build the following model:

Minimize M ¼ k�12 þ kþ12 þ k�13 þ kþ13 þ k�14
þ kþ14 þ k�23 þ kþ23 þ k�24 þ kþ24 þ k�34 þ kþ34
s:t:

x2 � ð0:4qðl0Þ þ 0:4qðl1Þ þ 0:2qðl3ÞÞ � x1 þ k�12 � kþ12 ¼ 0

x3 � ð0:3qðl1Þ þ 0:4qðl2Þ þ 0:3qðl3ÞÞ � x1 þ k�13 � kþ13 ¼ 0

x4 � ð0:2qðl3Þ þ 0:8qðl4ÞÞ � x1 þ k�14 � kþ14 ¼ 0

x3 � ð0:8qðl0Þ þ 0:2qðl2ÞÞ � x2 þ k�23 � kþ23 ¼ 0

x4 � ð0:3qðl0Þ þ 0:6qðl1Þ þ 0:1qðl2ÞÞ � x2 þ k�24 � kþ24 ¼ 0

x4 � ð0:6qðl0Þ þ 0:4qðl1ÞÞ � x3 þ k�34 � kþ34 ¼ 0

k�12; k
þ
12; k

�
13; k

þ
13; k

�
14; k

þ
14; k

�
23; k

þ
23; k

�
24; k

þ
24; k

�
34; k

þ
34 � 0

qðl�4Þ ¼ 1=5 and qðl4Þ ¼ 5

qðlaþ1Þ=gðlaÞ� 1:05; a ¼ �4; . . .; 3

qðl�aÞ � qðlaÞ ¼ 1; a ¼ �4; . . .; 4

a� qðlaÞ� ðaþ2Þ; a ¼ 1; . . .; 3

1=ð2� aÞ� qðlaÞ� 1=ð�aÞ; a ¼ �3; . . .;�1

0\xi � 1;
P4

i¼1xi ¼ 1; i ¼ 1; 2; . . .; 4

8
>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>:

: ð22Þ

D ¼

fðl0; 1Þg fðl0; 0:4Þ; ðl1; 0:6Þg fðl1; 0:3Þ; ðl2; 0:5Þ; ðl3; 0:2Þg fðl2; 0:5Þ; ðl3; 0:2Þ; ðl4; 0:3Þg
fðl�1; 0:6Þ; ðl0; 0:4Þg fðl0; 1Þg fðl0; 0:2Þ; ðl1; 0:6Þ; ðl2; 0:2Þg fðl0; 0:1Þ; ðl1; 0:5Þ; ðl2; 0:4Þg

fðl�3; 0:2Þ; ðl�2; 0:5Þ; ðl�1; 0:3Þg fðl�2; 0:2Þ; ðl�1; 0:6Þ; ðl0; 0:2Þg fðl0; 1Þg fðl�2; 0:2Þ; ðl1; 0:8Þg
fðl�4; 0:3Þ; ðl�3; 0:2Þ; ðl�2; 0:5Þg fðl�2; 0:4Þ; ðl�1; 0:5Þ; ðl0; 0:1Þg fðl�1; 0:8Þ; ðl2; 0:2Þg fðl0; 1Þg

0

B
B
@

1

C
C
A
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By solving (22), one can obtain

k�12 = kþ12 = k�13 = kþ13 = k�14 = kþ14 = k�23 = kþ23 = k�24 =

kþ24 = k�34 = 0, kþ34 = 0.0073, M = 0.0073; x = (x1, x2,…,

xn)
T = (0.4886, 0.2342, 0.1712, 0.1061)T; and

q(l-4) = 0.2, q(l-3) = 0.3308, q(l-2) = 0.3521, q(l-1) =

0.3697, q(l0) = 1, q(l1) = 2.7047, q(l2) = 2.84, q(l3) =

3.0231, q(l4) = 5.

Based on the resulting numerical scales, the MPR F,

associated with D, is obtained:

F ¼

1 2:0865 2:8543 4:6046
0:4793 1 1:368 2:2068
0:3503 0:731 1 1:7523
0:2172 0:4531 0:5707 1

0

B
B
@

1

C
C
A

6 An application of the proposal
and analysis

This section first reconsiders the football player evaluation

problem investigated in [47] to show how the proposals

work in practice. Then, a discussion and a comparative

analysis are conducted to demonstrate the validity of the

developed method.

6.1 Application to the football player evaluation
problem

Football player evaluation is the most significant activity of

building excellent football team [7, 38, 46, 47]. Suppose

that three football coaches (t1, t2, t3) are invited to assess

the overall level of four football players (x1, x2, x3, x4). The

coaches provide their opinions over the players using

DLPRs based on the following linguistic term set:

L = {l-5 = absolutely poorer, l-4 = very much poorer, l--

3 = much poorer, l-2 = moderately poorer, l-1 = slightly

poorer, l0 = indifferent, l1 = slightly better,

l2 = moderately better, l3 = much better, l4 = very much

better, l5 = absolutely better}, because of the uncertainty of

all players’ past performances.

The original DLPRs {D1, D2, D3} over the players are

listed in Matrices 1–3. For example, when comparing the

performances of player x1 with those of x3 in their past ten

matches, Coach t1 feels that player x1 is moderately better

than x3 in eight matches and very much better than x3 in the

remaining two matches. Then, the comparison information

of x1 and x3 coming from Coach t1 can be recorded as {(l2,

0.8), (l4, 0.2)}, which is represented by cell13 in Matrix D1:

Suppose that the scale functions of D1 and D2 are

additive and the scale function of D3 is multiplicative, but

all of them are personalized and unknown. In the case of

the first DLPR D1, one can establish the following opti-

mization model using (12):

Minimize J1 ¼ p�12 þ pþ12 þ p�13 þ pþ13 þ p�14
þ pþ14 þ p�23 þ pþ23 þ p�24 þ pþ24 þ p�34 þ pþ34
s:t:

0:5ðx1 � x2Þ þ 0:5� ð0:6gðl1Þ þ 0:4gðl2ÞÞ þ p�12 � pþ12 ¼ 0

0:5ðx1 � x3Þ þ 0:5� ð0:8gðl2Þ þ 0:2gðl4ÞÞ þ p�13 � pþ13 ¼ 0

0:5ðx1 � x4Þ þ 0:5� ð0:3gðl3Þ þ 0:3gðl4Þ þ 0:4gðl5ÞÞ þ p�14 � pþ14 ¼ 0

0:5ðx2 � x3Þ þ 0:5� ð0:7gðl1Þ þ 0:3gðl2ÞÞ þ p�23 � pþ23 ¼ 0

0:5ðx2 � x4Þ þ 0:5� ð0:4gðl1Þ þ 0:4gðl2Þ þ 0:2gðl3ÞÞ þ p�24 � pþ24 ¼ 0

0:5ðx3 � x4Þ þ 0:5� ð0:8gðl�2Þ þ 0:1gðl�1Þ þ 0:1gðl0ÞÞ þ p�34 � pþ34 ¼ 0

p�12; p
þ
12; p

�
13; p

þ
13; p

�
14; p

þ
14; p

�
23; p

þ
23; p

�
24; p

þ
24; p

�
34; p

þ
34� 0

gðl�5Þ ¼ 0 and gðl5Þ ¼ 1

gðlaþ1Þ � gðlaÞ� 0:05; a ¼ �5; . . .; 4

gðl�aÞ þ gðlaÞ ¼ 1; a ¼ �5; . . .; 5

ðaþ4Þ=10� gðlaÞ� ðaþ6Þ=10; a ¼ �4; . . .; 4

0�xi � 1;
P4

i¼1 xi ¼ 1; i ¼ 1; 2; . . .; 4

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

ð23Þ

By solving (23), one can get that:

D1 ¼

fðl0; 1Þg fðl1; 0:6Þ; ðl2; 0:4Þg fðl2; 0:8Þ; ðl4; 0:2Þg fðl3; 0:3Þ; ðl4; 0:3Þ; ðl5; 0:4Þg
fðl�2; 0:4Þ; ðl�1; 0:6Þg fðl0; 1Þg fðl1; 0:7Þ; ðl2; 0:3Þg fðl1; 0:4Þ; ðl2; 0:4Þ; ðl3; 0:2Þg
fðl�4; 0:2Þ; ðl�2; 0:8Þg fðl�2; 0:3Þ; ðl�1; 0:7Þg fðl0; 1Þg fðl�2; 0:8Þ; ðl�1; 0:1Þ; ðl0; 0:1Þg

fðl�5; 0:4Þ; ðl�4; 0:3Þ; ðl�3; 0:3Þg fðl�3; 0:2Þ; ðl�2; 0:4Þ; ðl�1; 0:4Þg fðl0; 0:1Þ; ðl1; 0:1Þ; ðl2; 0:8Þg fðl0; 1Þg

0

B
B
@

1

C
C
A

D2 ¼

fðl0; 1Þg fðl0; 0:5Þ; ðl2; 0:4Þ; ðl3; 0:1Þg fðl1; 0:6Þ; ðl4; 0:4Þg fðl4; 0:3Þ; ðl5; 0:7Þg
fðl�3; 0:1Þ; ðl�2; 0:4Þ; ðl0; 0:5Þg fðl0; 1Þg fðl0; 0:2Þ; ðl1; 0:3Þ; ðl2; 0:5Þg fðl1; 0:4Þ; ðl2; 0:1Þ; ðl3; 0:5Þg

fðl�4; 0:4Þ; ðl�1; 0:6Þg fðl�2; 0:5Þ; ðl�1; 0:3Þ; ðl0; 0:2Þg fðl0; 1Þg fðl�1; 0:1Þ; ðl1; 0:9Þg
fðl�5; 0:7Þ; ðl�4; 0:3Þg fðl�3; 0:5Þ; ðl�2; 0:1Þ; ðl�1; 0:4Þg fðl�1; 0:9Þ; ðl1; 0:1Þg fðl0; 1Þg

0

B
B
@

1

C
C
A

D3 ¼

fðl0; 1Þg fðl1; 0:2Þ; ðl2; 0:4Þ; ðl3; 0:4Þg fðl2; 0:2Þ; ðl3; 0:3Þ; ðl4; 0:5Þg fðl4; 0:2Þ; ðl5; 0:8Þg
fðl�3; 0:4Þ; ðl�2; 0:4Þ; ðl�1; 0:2Þg fðl0; 1Þg fðl1; 0:3Þ; ðl2; 0:7Þg fðl2; 0:7Þ; ðl3; 0:3Þg
fðl�4; 0:5Þ; ðl�3; 0:3Þ; ðl�2; 0:2Þg fðl�2; 0:7Þ; ðl�1; 0:3Þg fðl0; 1Þg fðl�1; 0:1Þ; ðl0; 0:5Þ; ðl1; 0:4Þg

fðl�5; 0:8Þ; ðl�4; 0:2Þg fðl�3; 0:3Þ; ðl�2; 0:7Þg fðl�1; 0:4Þ; ðl0; 0:5Þ; ðl1; 0:1Þg fðl0; 1Þg

0

B
B
@

1

C
C
A
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p�12 ¼ pþ12 ¼ p�13 ¼ pþ13 ¼ pþ14 ¼ p�23 ¼ pþ23 ¼ p�24 ¼ pþ24
¼ p�34 ¼ 0; p�14 ¼ 0:1725; pþ34 ¼ 0:1229, J1 = 0.2954; x1 =

(x1, x2,…, xn)
T = (0.4475, 0.2992, 0.1608, 0.0925)T, and

g(l-5) = 0, g(l-4) = 0.2, g(l-3) = 0.3, g(l-2) = 0.3958,

g(l-1) = 0.4458, g(l0) = 0.5, g(l1) = 0.5542, g(l2) =

0.6042, g(l3) = 0.7, g(l4) = 0.8, g(l5) = 1.

For the second DLPR D2, one can build a similar opti-

mization model using (12) and get that:

p�12 ¼ pþ12 ¼ p�13 ¼ pþ13 ¼ pþ14 ¼ p�23 ¼ pþ23 ¼ p�24 ¼ pþ24
¼ p�34 ¼ pþ34 ¼ 0; p�14 ¼ 0:1898, J2 = 0.1898; x2 = (x1,

x2,…, xn)
T = (0.5074, 0.3451, 0.1475, 0.0000)T; and

g(l-5) = 0, g(l-4) = 0.1885, g(l-3) = 0.2571, g(l-2) =

0.3578, g(l-1) = 0.4078, g(l0) = 0.5, g(l1) = 0.5922,

g(l2) = 0.6422, g(l3) = 0.7429, g(l4) = 0.8115, g(l5) = 1.

In the case of the third DLPR D3, one can build the

following optimization model using (21):

Minimize M3 ¼ k�12 þ kþ12 þ k�13 þ kþ13 þ k�14
þ kþ14 þ k�23 þ kþ23 þ k�24 þ kþ24 þ k�34 þ kþ34
s:t:

x2 � ð0:2qðl1Þ þ 0:4qðl2Þ þ 0:4qðl3ÞÞ � x1 þ k�12 � kþ12 ¼ 0

x3 � ð0:2qðl2Þ þ 0:3qðl3Þ þ 0:5qðl4ÞÞ � x1 þ k�13 � kþ13 ¼ 0

x4 � ð0:2qðl4Þ þ 0:8qðl5ÞÞ � x1 þ k�14 � kþ14 ¼ 0

x3 � ð0:3qðl1Þ þ 0:7qðl2ÞÞ � x2 þ k�23 � kþ23 ¼ 0

x4 � ð0:7qðl2Þ þ 0:3qðl3ÞÞ � x2 þ k�24 � kþ24 ¼ 0

x4 � ð0:1qðl�1Þ þ 0:5qðl0Þ þ 0:4qðl1ÞÞ � x3 þ k�34 � kþ34 ¼ 0

k�12; k
þ
12; k

�
13; k

þ
13; k

�
14; k

þ
14; k

�
23; k

þ
23; k

�
24; k

þ
24; k

�
34; k

þ
34 � 0

qðl�5Þ ¼ 1=6 and qðl5Þ ¼ 6

qðlaþ1Þ=gðlaÞ� 1:05; a ¼ �5; . . .; 4

qðl�aÞ � qðlaÞ ¼ 1; a ¼ �5; . . .; 5

a� qðlaÞ� ðaþ2Þ; a ¼ 1; . . .; 4

1=ð2� aÞ� qðlaÞ� 1=ð�aÞ; a ¼ �4; . . .;�1

0\xi � 1;
P4

i¼1xi ¼ 1; i ¼ 1; 2; . . .; 4

8
>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð24Þ

By solving (24), one can obtain that:

k�12 ¼ kþ12 ¼ k�13 ¼ kþ13 ¼ k�14 ¼ kþ14 ¼ k�23 ¼ kþ23 ¼ k�24
¼ kþ24 ¼ kþ34 ¼ 0; k�34 ¼ 0:029, M3 = 0.029; x3 = (x1,

x2,…, xn)
T = (0.5519, 0.2268, 0.1284, 0.0929)T; and

q(l-5) = 0.1667, q(l-4) = 0.175, q(l-3) = 0.2879,

q(l-2) = 0.5, q(l-1) = 0.8188, q(l0) = 1, q(l1) = 1.2212,

q(l2) = 2, q(l3) = 3.4732, q(l4) = 5.7131, q(l5) = 6.

Based on the resulting numerical scales, the FPRs R1

and R2 and the MPR F3, associated with D1, D2 and D3,

respectively, are obtained.

R1 ¼

0:5 0:5742 0:6434 0:85

0:4258 0:5 0:5692 0:6034

0:3566 0:4308 0:5 0:4112

0:15 0:3966 0:5888 0:5

0

B
B
B
@

1

C
C
C
A
;

R2 ¼

0:5 0:5812 0:6799 0:9435

0:4188 0:5 0:5988 0:6726

0:3201 0:4012 0:5 0:5738

0:0566 0:3275 0:4262 0:5

0

B
B
B
@

1

C
C
C
A
;

F3 ¼

1 2:4335 4:2985 5:9426
0:4109 1 1:7664 2:442
0:2326 0:5661 1 1:0704
0:1683 0:4095 0:9343 1

0

B
B
@

1

C
C
A:

Suppose that by using the direct assessment method in

[30], the relative weights of the coaches are determined as

W = (w1, w2, w3)
T = (0.25, 0.35, 0.40)T. Then, the fol-

lowing ranking matrix is obtained:

x1 x2 x3 W xc

x1 !
x2 !
x3 !
x4 !

0:4475

0:2992

0:1608

0:0925

0:5074

0:3451

0:1475

0:0000

0:5519

0:2268

0:1284

0:0929

2

6
6
6
4

3

7
7
7
5
�

0:25

0:35

0:40

2

6
4

3

7
5 ¼

0:5102

0:2863

0:1432

0:0603

2

6
6
6
4

3

7
7
7
5

ð25Þ

In accordance with the collective priority vector xc-

= (0.5102, 0.2863, 0.1432, 0.0603)T, a final ranking of the

players is generated as x1 	 x2 	 x3 	 x4, signifying that

x1 is the best football player and x4 the worst one.

6.2 Further discussion

In the above analysis, (12) is employed for the DLPRs D1

and D2 to derive the PNSs and the corresponding priority

vectors during the process of solving the football player

evaluation problem. We call it the first situation. In what

follows, let us consider the other three situations.

In the second situation, (16) is used for the same two

preference relations to address this problem. As such, the

following optimization model is constructed for D1 by

using (16):

Neural Computing and Applications (2019) 31:8769–8786 8781

123



Minimize Z1 ¼ g�12 þ gþ12 þ g�13
þ gþ13 þ g�14 þ gþ14 þ g�23 þ gþ23 þ g�24 þ gþ24 þ g�34 þ gþ34
s:t:

ðx1 þ x2Þ � ð0:6gðl1Þ þ 0:4gðl2ÞÞ � x1 þ g�12 � gþ12 ¼ 0

ðx1 þ x3Þ � ð0:8gðl2Þ þ 0:2gðl4ÞÞ � x1 þ g�13 � gþ13 ¼ 0

ðx1 þ x4Þ � ð0:3gðl3Þ þ 0:3gðl4Þ þ 0:4gðl5ÞÞ � x1 þ g�14 � gþ14 ¼ 0

ðx2 þ x3Þ � ð0:7gðl1Þ þ 0:3gðl2ÞÞ � x2 þ g�23 � gþ23 ¼ 0

ðx2 þ x4Þ � ð0:4gðl1Þ þ 0:4gðl2Þ þ 0:2gðl3ÞÞ � x2 þ g�24 � gþ24 ¼ 0

ðx3 þ x4Þ � ð0:8gðl�2Þ þ 0:1gðl�1Þ þ 0:1gðl0ÞÞ � x3 þ g�34 � gþ34 ¼ 0

g�12; g
þ
12; g

�
13; g

þ
13; g

�
14; g

þ
14; g

�
23; g

þ
23; g

�
24; g

þ
24; g

�
34; g

þ
34 � 0

gðl�5Þ ¼ 0 and gðl5Þ ¼ 1

gðlaþ1Þ � gðlaÞ� 0:05; a ¼ �5; . . .; 4

gðl�aÞ þ gðlaÞ ¼ 1; a ¼ �5; . . .; 5

ðaþ 4Þ=10� gðlaÞ� ðaþ 6Þ=8; a ¼ �4; . . .; 4

0�xi � 1;
P4

i¼1 xi ¼ 1; i ¼ 1; 2; . . .; 4

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

ð26Þ

By solving (26), one can obtain that:

g�12 ¼ gþ12 ¼ gþ13 ¼ g�14 ¼ g�23 ¼ gþ23 ¼ g�24 ¼ gþ24 ¼ gþ34
¼ 0; g�13 ¼ 0:0463; gþ14 ¼ 0:0139; g�34 ¼ 0:0464, Z1 =

0.1066; x1 = (x1, x2,…, xn)
T = (0.6304, 0.2215, 0.0819,

0.0662)T; and g(l-5) = 0, g(l-4) = 0.1, g(l-3) = 0.15,

g(l-2) = 0.2, g(l-1) = 0.3, g(l0) = 0.5, g(l1) = 0.7,

g(l2) = 0.8, g(l3) = 0.85, g(l4) = 0.9, g(l4) = 1.

Similarly, for the DLPR D2, one can construct one

corresponding optimization model using (16) and obtain

that:

g�12 ¼ gþ12 ¼ g�13 ¼ gþ13 ¼ g�14 ¼ g�23 ¼ gþ23 ¼ gþ24 ¼ g�34
¼ gþ34 ¼ 0; gþ14 ¼ 0:0579; g�24 ¼ 0:002,Z2 = 0.0599; x1 =

(x1, x2,…, xn)
T = (0.5173, 0.2868, 0.1293, 0.0666)T; and

g(l-5) = 0, g(l-4) = 0.05, g(l-3) = 0.1, g(l-2) = 0.2416,

g(l-1) = 0.3, g(l0) = 0.5, g(l1) = 0.7, g(l2) = 0.7584,

g(l3) = 0.9, g(l4) = 0.95, g(l5) = 1.

According to the resulting numerical scales, the FPRs R1

and R2, associated with D1 and D2, respectively, are

obtained.

R1 ¼

0:5 0:74 0:82 0:925

0:26 0:5 0:73 0:77

0:18 0:27 0:5 0:24

0:075 0:23 0:76 0:5

0

B
B
B
@

1

C
C
C
A
;

R2 ¼

0:5 0:6434 0:8 0:985

0:3566 0:5 0:6892 0:8058

0:2 0:3108 0:5 0:66

0:015 0:1942 0:34 0:5

0

B
B
B
@

1

C
C
C
A
:

As a result, one can get the following ranking matrix:

x1 x2 x3 W xc

x1 !
x2 !
x3 !
x4 !

0:6304

0:2215

0:0819

0:0662

0:5173

0:2868

0:1293

0:0666

0:5519

0:2268

0:1284

0:0929

2

6
6
6
4

3

7
7
7
5
�

0:25

0:35

0:40

2

6
4

3

7
5 ¼

0:5594

0:2465

0:1171

0:0770

2

6
6
6
4

3

7
7
7
5

ð27Þ

As per the collective priority vector xc = (0.5594,

0.2465, 0.1171, 0.0770)T, a final ranking of the players is

generated as x1 	 x2 	 x3 	 x4, showing that x1 is still the

best choice and x4 the worst one.

Let us consider the third situation where (12) is used for

the DLPR D1 while (16) is employed for the DLPR D2 to

derive the PNSs and the corresponding priority vectors

during the process of addressing the problem. Then, the

ranking matrix is obtained below:

x1 x2 x3 W xc

x1 !
x2 !
x3 !
x4 !

0:4475

0:2992

0:1608

0:0925

0:5173

0:2868

0:1293

0:0666

0:5519

0:2268

0:1284

0:0929

2

6
6
6
4

3

7
7
7
5
�

0:25

0:35

0:40

2

6
4

3

7
5 ¼

0:5137

0:2659

0:1368

0:0836

2

6
6
6
4

3

7
7
7
5

ð28Þ

Based on the collective priority vector xc = (0.5137,

0.2659, 0.1368, 0.0836)T, one can get a final ranking of the

players as x1 	 x2 	 x3 	 x4 which indicates that x1 is the

best choice and x4 the worst one.

Consider the fourth situation where (16) is applied for

the DLPR D1 while (12) is used for the DLPR D2 to handle

this problem. The associated ranking matrix is presented as

follows:

x1 x2 x3 W xc

x1 !
x2 !
x3 !
x4 !

0:6304

0:2215

0:0819

0:0662

0:5074

0:3451

0:1475

0:0000

0:5519

0:2268

0:1284

0:0929

2

6
6
6
4

3

7
7
7
5
�

0:25

0:35

0:40

2

6
4

3

7
5 ¼

0:5560

0:2669

0:1235

0:0537

2

6
6
6
4

3

7
7
7
5

ð29Þ

In accordance with the collective priority vector xc-

= (0.5560, 0.2669, 0.1235, 0.0537)T, a final ranking of the

players is produced as x1 	x2 	x3 	x4 which is the same as

the results generated in the first three situations.

When comparing the first situation with the second sit-

uation, one can find that the numerical scales derived from

D1 (or D2) by using (12) are totally different from the ones

by using (16). This is because that (12) is developed based

on the expected additive consistency of DLPRs while (16)

is based on the expected multiplicative consistency. In

addition, to clearly show the individual differences of the
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three coaches in understanding the used linguistic terms,

their PNSs are shown in Table 1 and Fig. 1.

In-depth research and analysis Table 1 and Fig. 1 make

it clear that for different coaches, there are individualized

numerical scales with different linguistic terms, so even the

same words have different meanings for different coaches.

6.3 Comparative study

Now the proposal is compared with the method developed

by Zhang et al. [47] to highlight its feasibility and validity.

The method in [47] is based on a consensus model which

includes two rules over DLPRs, namely identification rule

(IR) and adjustment rule (AR). Below, we use that method

to analyze the football player evaluation problem.

One can obtain the consensus level based on the pro-

cedures of the method:

CL D1;D2ð Þ ¼ 0:5875;CL D1;D3ð Þ ¼ 0:625;CL D2;D3ð Þ
¼ 0:6875;CL D1;D2;D3f g ¼ 0:7555:

Given a pre-established consensus level CL = 0.8,

because CL{D1, D2, D3} = 0.7555\CL = 0.8, we iden-

tify the coach whose DLPR needs to be adjusted by cal-

culating the index IR:

IR1 ¼ 0:7375; IR2 ¼ 0:7583; IR3 ¼ 0:7708:

Thus, min{IR1, IR2, IR3} = IR1. That is to say, the

Coach t1 needs to adjust his/her DLPR D1. Given the

adjustment parameter 0.55, then the adjusted DLPR D1 is

presented in Table 2.

As per the consensus level, we can get:

CLðD1;D2Þ ¼ 0:7209;CLðD1;D3Þ
¼ 0:7544;CL D2;D3ð Þ
¼ 0:6875;CLfD1;D2;D3g ¼ 0:814:

Because CL{D1, D2, D3} = 0.814[CL = 0.8, the

consensus reaching process ends.

The DLPRs D1, D2 and D3 are combined by utilizing the

aggregation operator in [47] to form a collective one. The

resulting collective DLPR Dc is presented in Table 3.

By using (1), the following expectation matrix Ec

associated with Dc is obtained:

Ec ¼

l0 l1:6431 l2:7294 l4:6631
l�1:6431 l0 l1:4825 l2:15
l�2:7294 l�1:4825 l0 l0:2281
l�4:6631 l�2:15 l�0:2281 l0

0

B
B
@

1

C
C
A

Next, the following expectation values are obtained:

Table 1 PNSs of linguistic

terms for different coaches
Model l-5 l-4 l-3 l-2 l-1 l0 l1 l2 l3 l4 l5

t1 (12) 0 0.2 0.3 0.3958 0.4458 0.5 0.5542 0.6042 0.7 0.8 1

t2 0 0.1885 0.2571 0.3578 0.4078 0.5 0.5922 0.6422 0.7429 0.8115 1

t3 (21) 0.1667 0.175 0.2879 0.5 0.8188 1 1.2212 2 3.4732 5.7131 6

t1 (16) 0 0.1 0.15 0.2 0.3 0.5 0.7 0.8 0.85 0.9 1

t2 0 0.05 0.1 0.2416 0.3 0.5 0.7 0.7584 0.9 0.95 1

Fig. 1 PNSs of linguistic terms for Coaches t1 and t2

Table 2 Adjusted DLPR D1 adjusted by Coach t1

D1 x1 x2 x3 x4

x1 {(l0,1)} {(l0,0.1125), (l1,0.375),

(l2,0.4), (l3,0.1125)}

{(l1,0.135), (l2,0.485),

(l3,0.0675), (l4,0.3125)}

{(l3,0.165), (l4,0.2775),

(l5,0.5575)}

x2 {(l-3,0.1125), (l-2,0.4), (l-1,0.375),

(l0,0.1125)}

{(l0,1)} {(l0,0.0455), (l1,0.52),

(l2,0.435)}

{(l1,0.31), (l2,0.4), (l3,0.29)}

x3 {(l-4,0.3125), (l-3,0.0675),

(l-2,0.485), (l-1,0.135)}

{(l-2,0.435), (l-1,0.52),

(l0,0.0455)}

{(l0,1)} {(l-2,0.44), (l-1,0.1),

(l0,0.1675), (l1,0.2925)}

x4 {(l-5,0.5575), (l-4,0.2775),

(l-3,0.165)}

{(l-3,0.29), (l-2,0.4),

(l-1,0.31)}

{(l-1,0.2925), (l0,0.1675),

(l1,0.1), (l2,0.44)}

{(l0,1)}
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E x1ð Þ ¼ l3:0119;E x2ð Þ ¼ l0:6631;E x3ð Þ ¼ l�1:3279;E x4ð Þ
¼ l�2:3471:

Finally, according to the expectation values, a ranking of

the players is generated as x1 	 x2 	 x3 	 x4, showing

that x1 is the best alternative and x4 the worst one.

We can see that the proposed method and the one in [47]

generate the same ranking order of the four players, which

shows the validity of the developed method. But the

method in [47] can only be suitable to handle situations

where linguistic terms have identical numerical scales for

different DMs. The proposed method allows DMs to hold

their individual differences in understanding the linguistic

terms used in DLPRs. In this sense, the proposed method is

more flexible compared with the one in [47]. Furthermore,

the computing complexity of the developed approach is

lower than that of the approach of Zhang et al.

7 Conclusions

This paper applies the idea of setting PNSs of linguistic

terms for different DMs in decision making with DLPRs to

manage the statement about CWW that words might

exhibit different meanings for different people. First, using

different types of numerical scales, this paper connects

DLPRs to FPRs and MPRs. This link allows us to define

the expected consistency for a DLPR from the perspective

of its associated numerical preference relations. Then,

based on the expected consistency, some goal program-

ming models are proposed to derive PNSs from DLPRs.

Finally, the applications of the aforesaid theoretical results

to practical decision situations are demonstrated by solving

a problem of evaluating and selecting football players. It is

clear from the results that there are differences in the way

people understand the meaning of words.

Overall, the study fills the gap that no studies consider

the PIS of linguistic terms among DMs when dealing with

CWW in the process of solving linguistic decision prob-

lems with DLPRs. It exhibits two facets of novelty: (1) the

definition of expected consistency for DLPRs and (2) the

exploration of goal programming approaches to derive PIS

of linguistic terms from DLPRs. In the future, personaliz-

ing individual semantics in large-scale group decision

problems [12, 51] with multigranular linguistic information

[16, 29] and unbalanced linguistic information [7, 8] is still

worth examining to enrich the related studies in group

decision making.
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