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Abstract
Protein folding optimization is a very important and tough problem in computational biology. For solving this problem, a

population-based metaheuristic algorithm named chemical reaction optimization (CRO) with HP cubic lattice model has

been proposed in this paper. The proposed algorithm is combined with evolution and H&P compliance mechanisms which

are responsible for increasing the performance of the algorithm. The evolution mechanism improves the performance of

each individual solution. On the other hand, the H&P compliance mechanism tries to place the H monomer close to the

center and place the P monomer as far as possible from the center of the related structure. The algorithm also applies four

reactant operations of typical CRO algorithm decomposition, on-wall ineffective collision, synthesis and inter-molecular

ineffective collision to solve the problem efficiently. The reactants or mechanisms may cause overlapping of the corre-

sponding solutions. The algorithm also includes a repair mechanism which transforms invalid solutions into valid ones by

removing overlapping in cubic lattice points. This algorithm has been tested over some sets of sequences and it shows very

good performance.

Keywords Protein folding optimization � Chemical reaction optimization algorithm � Hydrophobic-polar model �
Cubic lattice � H&P � Evolution mechanism � Repair mechanism

1 Introduction

Protein folding problem is one of the fundamental prob-

lems in computational biology. Simplified HP cubic lattice

model plays an important role in protein structure predic-

tion (PSP) and protein folding optimization (PFO) prob-

lem. The PSP problem represents how to predict the native

structure of a protein from its amino acid sequence. The

PFO problem represents a computational problem for

simulating the protein folding process within the protein

structure prediction. The protein structure is the result of

the so-called protein folding process where the final

structure is obtained from its primary unfolded chain of

amino acids [1]. The primary formation consists of a

sequence of amino acids with a peptide bond which are

interconnected. Secondary structure refers to the coiling or

folding of the primary sequence. There are two types of

secondary structures observed in proteins: alpha (a) helix
and beta (b) pleated sheet. The tertiary structure of a

polypeptide or protein is the three-dimensional arrange-

ment of the amino acids in the form of secondary structure

within a single polypeptide chain. On the contrary, qua-

ternary structure is the arrangement of the amino acids with

multiple polypeptide chains [2]. In general, the length of

the sequence can vary from one protein to another. Par-

ticularly, from the tertiary structure of a protein all func-

tionalities of that protein can be determined. The

functionalities include physical fitness, illness, the aging

process of human body, etc. Moreover, protein structure

changes over time. This can produce infeasible structure of

the protein in human body. Many diseases can take birth
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from this type of wrong folding [3]. By determining the

correct structure, it is possible to understand how protein

does all these tasks. It is also possible to identify the dis-

eases and produce antidotes of the diseases. New drugs can

be invented experimentally with help of the information

associated with the tertiary structure of the protein. The

application of protein folding optimization also includes

the improvement of protein functionality and the particular

modeling of cells [4–6].

The PFO problem can be illustrated with a simple model

such as hydrophobic-polar (HP) model which was pro-

posed by Dill [7]. This PFO problem has been authenti-

cated as an NP-complete problem according to this model

[8]. In this model, amino acids can be classified into two

types, hydrophobic (H) and hydrophilic or polar (P). The

main concern of this model is maximum number of

hydrophobic–hydrophobic interactions in a unit distance

[9, 10]. Because the maximum number of hydrophobic–

hydrophobic (H–H) interactions represents the most

stable protein structure. If S denotes the most stable struc-

ture of a protein, then the objective function ðFsÞ according
to this model can be defined for that protein as follows:

Fs ¼ MaxðH�HÞ ð1Þ

According to the law of thermodynamics, it is considered

that the most stable structure holds the lowest energy value.

Now if Es denotes energy value of the structure, then the

energy function can be shown as

Es ¼ ð�1Þ � Fs ð2Þ

There are some dissimilarities in the hydrophobic-polar

model. The model can be depicted by any of lattice models

such as square, face-centered-cubic (FCC), general crys-

tallographic, triangular and cubic lattices. In our proposed

method, the cubic lattice model has been used to find the

optimal solution for PFO problem. Any protein sequence in

the cubic lattice is converted to a binary string of length l

which can be represented as a string s ¼ fs1; s2; . . .; slg
where si 2 fH;Pg and i ¼ 1; 2; . . .; l [9]. There are six

directions such as left (L), right (R), up (U), down (D),

forward (F) and backward (B) in a cubic lattice [5]. Each

amino acid of a particular structure is represented by

(x, y, z) coordinates in the cubic lattice and also with a set

of directions. A conformation is valid only when no lattice

point is occupied by more than one amino acid [11]. If any

overlapping occurs, the conformation is said to be invalid.

If am and an are two adjacent amino acids and V is a set of

all valid structures, then the energy function ðFvÞ given in

[5, 12] is as follows (Fig. 1):

Fv ¼
Xl

m¼1

Xl

n¼mþ2

gðam; anÞ � hm;n ð3Þ

where

gðam;anÞ

¼
1; if am;an are adjacent and not connected amino acids,

0; otherwise.

�

hm;n ¼
�1; if am and an are hydrophobic amino acids,

0; otherwise.

�

where two hydrophobic amino acids that are adjacent to

each other by lattice points are scored as - 1. The sum-

mation of all H–H contacts is the energy score for the

confirmation [5].

In this paper, a chemical reaction optimization algorithm

ðCROPFOÞ has been applied to HP cubic lattice model to

optimize the tertiary protein folding. In real proteins,

hydrophobic amino acids tend to be in core portion as well

as the hydrophilic amino acids tend to move in the outer

portion of protein structure. The most stable structure of

protein contains maximum hydrophobic amino acids in

core portion. We have redesigned the basic operators of

CRO for solving PFO problem. Besides that, we have

proposed two extra mechanisms, hydrophobic and polar

(H&P) compliance and evolution. The H&P compliance

mechanism visualizes a center of each individual structure

and determines the distance of each H and P monomer

from the center. After determining the distance of the

monomers from core position, this mechanism changes the

direction of each monomer in such a way that the H

monomers tend to the nearest positions of the core and the

P monomers are folded to far positions from the core.

Basically, this mechanism tries to imitate the behavior of

real protein folding. The evolution mechanism tries to

move each monomer in a protein using every possible

direction. In this mechanism, each monomer folded to the

new direction provides better energy value than the exist-

ing one. These two advanced mechanisms improve the

performance of the CROPFO algorithm dramatically. In

Fig. 1 Energy value calculation. Here, the P monomers are shown in

blue and the H monomers in green. The protein energy

value Fv ¼ �4 for sequence S = {H, H, P, H, H, P, H, P, H, P, H}

in the cubic lattice (colour figure online)
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assistance with these two extra mechanisms, the four

operators of CRO algorithm also improve the energy val-

ues of the solutions. While applying these operators and

mechanisms, many invalid structures can be produced. The

invalid structure represents a structure that contains two or

more amino acids in the same position of cubic lattice. If

any invalid structure is created during the execution pro-

cess of the operators or mechanisms, then the repair

mechanism repairs the invalid structure to a valid one.

In recent years, CRO algorithm has become more

familiar among other metaheuristic algorithms. It has been

successfully applied to many familiar problems such as

population transition problem in peer-to-peer live stream-

ing [13], shortest common supersequence problem [14],

standard continuous benchmark functions [15], cognitive

radio spectrum allocation problem [16], network coding

optimization problem [17], probabilistic select grid

scheduling problem [18], stock portfolio selection problem

[19] and artificial neural network training [20]. This

information has inspired us to use CRO algorithm to solve

PFO problem. The particularity of this paper is as follows:

(1) the proposed algorithm for the PFO problem, (2) the

evolution mechanism improves the energy value of each

solution and (3) H&P compliance mechanism places the H

monomer in the core positions and P monomers in the outer

portions produces a stable structure gradually. The algo-

rithm has been examined over some sets of sequences and

also has been compared with the genetic algorithm with

advanced mechanisms [5], which is state of the art.

2 Related work

Since the PFO is an NP-hard optimization problem, a small

mistake in the prediction process can mislead the process

completely. The algorithms that already solved the PFO

problem are reviewed below.

2.1 Particle swarm optimization

A discrete particle swarm optimization ðDPSOHPÞ algo-

rithm was introduced in [21] to solve protein folding

optimization problem in both 2D and 3D lattices. The

discrete PSO method was in accordance with the possi-

bility theory from a set-based PSO (S-PSO). First, the

authors represented the protein sequence in HP model for

avoiding overlapping in the lattice or cubic. In this method,

they introduced special velocity and position updating

processes which represent the overall framework of

DPSOHP. At the beginning of the construction phase, each

particle chooses two middle amino acids and placed them

in the two central cells in the lattice or cubic board. After

that, the particles randomly choose amino acids to fold the

left part or right part of the protein sequence. In path

construction, new amino acids could not be placed on the

lattice replacing old ones. For this reason, the protein could

not be folded anymore during the construction phase and

they called it motionlessness. A path retrieval mechanism

was used to build an infeasible solution into a feasible one

for solving the problem. The whole sequence was divided

into two parts for indicating the two middle amino acids of

the amino acid sequence and then checked which side of

the sequence was motionless. The results of this algorithm

are good for small sequences of the protein, but the results

of the longer sequences of the protein are not efficient for

the search space [22]. Another PSO algorithm was pro-

posed for the prediction of the protein structure by Man-

sour et al. [22]. The algorithm predicted the 3D protein

structure with low energy. To update the velocity, a func-

tion is introduced of the particle and it is the main operator

of this algorithm. The task of this operator is to explore

new areas of the search space to find optimal solutions.

2.2 Genetic algorithm

Khimasia et al. [23] proposed a genetic algorithm for the

prediction of protein structure problem. A method was

launched based on the simple lattice for prediction of the

tertiary structure of the protein in this paper. The study has

two important conclusions: First, they require multi-point

crossovers and second, a local perturbation for any GA is

fully effective. König et al. [24] used systematic crossover

for search strategy by coupling the best individuals. After

that, they have checked every possible crossover point of

the best individuals and has taken two individuals for the

next generation. The difference between two individuals

was used as an information for selecting the best individ-

ual. In 2004 Unger and Ron proposed another genetic

algorithm for the prediction of protein structure problem

[25]. In their paper, arrangements were changed through

mutation, in the form of conventional Monte Carlo steps

and crossovers where parts of the polypeptide chain were

exchanged between conformations. Both genetic operators

were repeated up to the creation of feasible structure. An

upgraded genetic algorithm accompanied by mutation

mechanism was proposed in by Lin and Su [12]. Their

algorithm was designed in accordance with the particle

swarm optimization algorithm. Custódio et al. [26] devel-

oped a structure which was phenotype-based crowding

structure in order to maintain the useful of diversity within

the populations.

2.2.1 Genetic algorithm with advanced mechanism

In 2016 a stochastic, population-based GA was proposed

by Bošković and Brest [5]. They divided the total process
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into crowding, clustering, repair, local search and opposi-

tion-based mechanisms. Here, the population P was gen-

erated by populating a group of individuals

xi ¼ 1; 2; 3; . . .; popSize (i is a subscript and popSize is the

population size) and each individual was encoded with

ultimate encoding. Each solution or individual had a fixed

size (which represents the length of the amino acid

sequence) absolute directions: left (L), right (R), upper (U),

down (D), forward (F) and backward (B). Initial population

P is selected uniform randomly and improved with local

searches at the beginning of the evolutionary process.

Subpopulations from the population P were generated

using compare mechanism with the nearest structures, and

the nearest individual structure was determined by the

Hamming distance between two individuals. For every

generated subpopulation, the algorithm applied one point,

two points or three points (multi-point) crossover randomly

and the segment mutation randomly selected directions of

one, two or three consecutive directions. The mutation

operation improved the quality of the protein structure and

ensured the diversity of the population. The local search

was used to improve convergence speed by trying to

improve the quality of individual structure by applying

local movements within one or two successive monomers

through the entire conformation where one of the consec-

utive monomers was hydrophobic (H). The repair mecha-

nism was used to construct a feasible solution from an

infeasible solution using a backtracking algorithm. Within

the population P, improved structures were then compared

with the nearest structures and the nearest individual

structure was determined by the Hamming distance

between two individuals. An opposition-based mechanism

was used to generate good conformation from both sides

(starting and ending) of the sequence and terminated when

the number of repair method invocations grew up to a

predefined level. The algorithm obtained best results for

most of the cases and reduced the time to acquire the best

native energy.

2.3 Ant colony optimization

ACO follows the foraging behavior of real ants to solve

optimization problems. An improved version of ACO

algorithm was proposed by Shmygelska et al. [27]. Long-

range moves and selective local search improved the per-

formance of this algorithm. Selective local search used in

this algorithm reduced the time complexity of the local

search phase. Thilagavathi and Amudha proposed another

ant colony optimization (ACO) algorithm [28]. In this

paper, the pheromone level of a trail was set to a constant

value and after the end of the construction phase, the value

was updated. The pheromone value was updated in two

stages: local update and global update. In the global update,

the pheromone level was reduced and this reduced the

possibility. As a result, the search is more diversified. The

global update rule was applied in order to deliver a large

amount of pheromone on the suitable path of the optimal

solution. In the course of the construction phase, the next

move was selected based on pheromone matrix value and

heuristic information. The ant colony was initialized with

five ants, and each ant performed the folding process and

gave different folding structures using the energy func-

tions. The initial population was only five ants which could

be proved as an obstacle for getting the best solution. The

performance of this algorithm was appreciable for only

smaller protein sequences, but for real-time proteins or

long-length protein sequences its performance was not

applicable.

3 Chemical reaction optimization

Human beings are closely associated with the nature which

is a very complex system. The complex system operates in

its own way without any obstacle. The way in which nature

operates can be worthy principle to solve real-world

problems. In the field of computer science, the principles

are called algorithms or more precisely nature-inspired

algorithms [29]. CRO is one of the latest optimization

algorithms designed by Lam and Li [30]. Basically, it is a

population-based metaheuristic algorithm that imitates the

behavior of chemical reactions. Furthermore, CRO is a

technique that loosely couples with chemical reactions

[29]. The functions of CRO operate on two laws of ther-

modynamics. The first law declares that energy cannot be

produced or destroyed; energy can be transformed from

one kind to another and transferred from one entity to

another. In a chemical reaction, there are chemical sub-

stances and surroundings around these. Every chemical

substance has potential energy ðPEÞ, kinetic energy ðKEÞ,
and the energy of surroundings is symbolically represented

as the buffer energy. So from the first law of thermody-

namics, we can write

XPopSizeðtÞ

i¼1

ðPEiðtÞ þ KEiðtÞÞ þ bufferðtÞ ¼ Z ð4Þ

where PEiðtÞ and KEiðtÞ denote the potential and kinetic

energy of the molecule i at time t, respectively, buffer(t) is

the energy of the surrounding as well as the energy of the

central buffer at time t and Z is a constant [29].

A chemical reaction can be either endothermic or

exothermic. The initial buffer size ðSBOÞ can characterize

these two types of chemical reactions. If SBO [ 0, then the

reaction is endothermic, and if SBO ¼ 0, then it is

exothermic. The second law says that the entropy of a
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system always tends to increase over time. The energy

stored in a molecule is referred to as potential energy.

When it is converted into kinetic energy, then the system

becomes more disordered and entropy increases. When a

chemical system becomes unstable with excessive energy,

it undergoes some chemical reactions to obtain stable state.

When a chemical substance goes to a stable condition, its

potential energy is minimum. The algorithm is a step-wise

searching process for minimum energy (optimal solution)

[29].

4 Design of CRO for PFO problem

Chemical reaction optimization (CRO) is a population-

based metaheuristic where the number of molecules may

not be same in each iteration. When an ineffective collision

occurs, the number of molecules remains same. On the

other hand, when an effective collision occurs, the number

of molecules may be either increased or decreased. In

CRO, a molecule (M) represents one specific solution of

any optimization problem. Essentially, CRO consists of

three stages: initialization, iteration and the final stage. The

initialization stage begins with the initialization of the

different parameters of CRO algorithm. The iteration stage

consists of some operations between molecules. In the

iteration stage, if any stopping criterion is not met, then the

algorithm proceeds to the final stage. The final stage

determines a globally optimal solution from the local

optimal solutions using its objective function value and

terminates the algorithm [31].

4.1 Population initialization and algorithmic
description

The initial population is selected by creating random

directions. For PFO problem, the population can be termed

as a set of direction arrays. If the length of an amino acid

sequence is l, then the length of the direction array will be

l� 1 because the first position is fixed for the center of the

solution structure. In cubic lattice, there are six directions:

fL, R, U, D, F, Bg where L: left, R: right, U: up, D: down,

F: forward, B: backward. Every array-based solution is

represented by randomly generating a number between 1

and 6. The corresponding direction of the cubic lattice

according to the random value is then taken as an element

of the direction array. The generation process of a solution

structure of sequence fH, H, P, Hg is shown in Fig. 2. In

step 1, we can see that the first position is fixed and no

direction has not been assigned to it. In step 2, upward

direction has been selected randomly and has been

assigned to the resultant array. The same process continues

to step 4. After assigning all the direction values, a

complete structure is formed. After generating a complete

solution, it is checked with the existing solutions. If the

same solution exists in the set, then the solution is dis-

carded; otherwise, it is accepted and added to the set as a

new solution.

Algorithm 1 CROPFO

1: procedure CROPFO(sequence, popSize)
2: Set popSize, KELossRate, molCol, buffer, initialKE,

numHit, minHit, α and β
3: Create popSize number of molecules
4: population = search space creation(sequence, popSize)
5: while initialKE ! = 0 do
6: Generate b ∈ [0, 1]
7: for i = 1 to popSize do
8: if b > molCol then
9: if numHit − minHit > α then

10: {dec1, dec2} = decomposition(
sequence, population[i])

11: dec1 = repair(sequence, dec1)
12: dec2 = repair(sequence, dec2)
13: numHit + +
14: else
15: onWall = onWallIneffective(sequence, population[i])
16: onWall = repair(sequence, onWall)
17: numHit + +
18: end if
19: else
20: Randomly select population[j], j ∈ [0, popSize]
21: if initialKE ≤ β then
22: syn = synthesis(sequence, population[i], population[j])
23: syn = repair(sequence, syn)
24: numHit + +
25: else
26: {in1, in2} =interMolecularInEffective(

sequence, population[i], population[j])
27: in1 = repair(sequence, in1)
28: in2 = repair(sequence, in2)
29: numHit + +
30: end if
31: end if
32: hpcom = HandP Compliance(sequence, population[i])
33: hpcom = repair(sequence, hpcom)
34: eval = evaluate(sequence, population[i])
35: eval = repair(sequence, eval)
36: Check for any new minimum solution
37: newP = popSize + +
38: population[newP ]=

closest(dec1, dec2, onWall, syn, in1, in2)
39: {sequence, population} = OppositePosition

{sequence, population}
40: end for
41: initialKE = initialKE − KELossRate

42: end while
43: Output: the best solution and its energy value
44: end procedure

After the initialization process, a conditional loop starts

executing until the stopping criterion is not satisfied. The

algorithm meets the stopping criterion when the molecule

(solution) has lost its kinetic energy (initialKE) completely.

The molecule has lost its kinetic energy according to

KELossRate that is initialized at very first. A threshold

value (b) is generated between 0 and 1 randomly to

determine whether the reaction will be uni-molecular or
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inter-molecular. Every solution of the population is iterated

and modified by one of the four operators of CRO algo-

rithm. The value of b decides which operator will be used

to modify the solutions. If b[molCol, a uni-molecular

collision is selected; otherwise, inter-molecular collision is

selected. In the case of uni-molecular collision, if the cri-

terion of decomposition is met, the decomposition is exe-

cuted; otherwise, on-wall ineffective collision is

performed. On the other hand, in the case of an inter-

molecular collision if the criterion of synthesis is met, then

synthesis is done; otherwise, inter-molecular ineffective

collision (IMIC) is performed to modify the selected

solutions. When new minimum solution is found, the

solution is placed into the last position of the population

array using a variable, newP.

The strategy of CRO is totally dependent on the

behavior during a chemical reaction. The very first stage of

CRO generates initial population along with the parame-

ters: popSize, KELossRate, molCol, initialKE and two

thresholds ða and bÞ. The parameters and their definitions

are given in Table 1. In the second stage, one particular

elementary reaction out of four occurs in every iteration.

The threshold value a is used to select which uni-molecular

reaction will be triggered. If numHit � minHit� a; then

decomposition reaction is triggered; otherwise, on-wall

ineffective collision reaction is triggered. On the other

hand, the second threshold value b is also used to select

which inter-molecular reaction will be triggered. If

initialKE� b; then synthesis reaction is triggered; other-

wise, inter-molecular ineffective collision reaction is trig-

gered. At the end of each iteration, we have to check the

termination criterion of the algorithm. The algorithm ter-

minates when the molecule (solution) has lost its kinetic

energy completely, which means the initialKE of the

molecule has turned to be 0. In each iteration, the molecule

has lost its kinetic energy according to KELossRate. The

final and the last stage executes when termination criterion

of iteration stage satisfies. In the final stage, the algorithm

terminates and best solution is found. The pseudo-code of

this procedure is given in Algorithm 1.

4.2 Reaction operators

In the proposed algorithm, we have redesigned the basic

four operators of CRO for the PFO problem. Along with

these operators, two extra operators have been designed.

All of these operators are described below.

4.2.1 On-wall ineffective collision

This is a molecular reaction that is invoked frequently in

the initial iteration phase to update the solutions. The

operator selects a solution and takes the length of the

direction array of the solution. Then, the process makes a

copy of the solution and selects a random pointer in the

range of the length that specifies how many positions will

be modified. Another random variable is generated within

range 1–6. The selected position is altered with the corre-

sponding direction value pointed by the new random

variable. When all the positions are updated, the new

Fig. 2 Population initialization

Table 1 Description of parameters of CRO algorithm

Parameters Description

popSize The total population size of the problem that indicates the number of molecules

initialKE Initial kinetic energy

KELossRate Loss rate of kinetic energy (KE)

molCol A parameter to choose whether the chemical reaction is uni-molecular or inter-molecular

buffer Energy of surroundings

a, b Threshold values the intensification and diversification

Number of hits (numHit) The total number of hits a molecule has taken

Minimum structure (MinStruct) The molecule structure that has minimum potential

MinimumPE (MinPE) When a molecule attains its MinStruct, MinPE is its corresponding potential energy value

Minimum hit number (minHit) It is the number of hits when a molecule has MinStruct

3122 Neural Computing and Applications (2020) 32:3117–3134

123



(updated) solution is returned as output. Figure 3 depicts

the process. First, a solution is selected and then positions 2

and 5 are selected randomly and the direction values in the

corresponding positions have been changed to their oppo-

site directions. Here, direction U (up) is changed to

direction D (down) and direction B (backward) is changed

to direction F (forward). The modified solution is the out-

put of this process. Algorithm 2 gives the pseudo-code of

the process.

Algorithm 2 OnWallIneffectiveCollision
1: procedure onWallIneffective(sequence, solution)
2: n = length of sequence

3: Duplicate solution to form newSolution
4: Set nPoint randomly select from 1, 2, 3, ..., n
5: r = Rand(0, (n − nPoint))
6: for i = r to (r + nPoint) do
7: select = Rand(1, 6)
8: newSolution[i] = direction array[select]
9: end for

10: Output: newSolution
11: end procedure

4.2.2 Decomposition

Decomposition process breaks a selected solution into two

new solutions. Since the process produces two new solu-

tions from an existing one, in PFO problem the new

solutions may contain overlapping. Each time a solution is

generated, the solution is repaired immediately. In this

process, a solution is randomly selected. Two duplicate

solutions are produced from the selected solution. Then, a

position is randomly selected that divides the solutions into

two parts. The first half of one new solution is changed to

opposite directions, and the second half of another solution

is modified by opposite directions. In Fig. 4, a pointer has

been set randomly after position 3. The segment before the

pointer is considered as the first portion, and the remaining

part constitutes the second portion. According to rule, the

first portion of the first solution and the second portion of

the second solution are selected. The directions of the

selected portions have been changed to their opposite

directions, such as U to D, L to R, F to B and vice versa.

The remaining portions of the two new solutions remain

same as in their parent. The process generates two new

solutions as output. Algorithm 3 shows the pseudo-code of

the process.

Algorithm 3 Decomposition
1: procedure decomposition(sequence, solution)
2: n = length of sequence
3: Duplicate [(n/2 + 1)...n] values from solution to form

newSolution1
4: Duplicate [0...n/2] values from solution to form

newSolution2
5: Generate [0...n/2] opposite direction values of the solution

and append newSolution1
6: Generate [(n/2 + 1)...n] opposite direction values of the

solution and append newSolution2
7: Output: newSolution1 and newSolution2
8: end procedure

4.2.3 Synthesis

In this process, a new solution is produced from two

existing solutions. First, two solutions are selected ran-

domly. Then, the solutions are divided into parts. How

many parts will be created is selected randomly. Then, the

energy value is calculated for each part of the solutions.

The parts of the two solutions are compared. The portion

that shows the highest energy value is selected as a part of

the new solution. The new solution often shows higher

energy value than the selected solutions. Figure 5 shows

the synthesis process. In the figure, a pointer is set after

position 4 randomly which breaks each solution into two

parts. Then, for each part we have calculated the energy

value. Now if we compare the parts, then the first part of

the second solution and the second part of the first solution

Fig. 3 On-wall ineffective collision

Fig. 4 Decomposition
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are selected due to higher energy values. The combined

solution is then returned as output. Algorithm 4 depicts the

pseudo-code of the synthesis operation.

Algorithm 4 Synthesis
1: procedure synthesis(sequence, solution1, solution2)
2: n = length of sequence

3: Duplicate solution1 to form newSolution

4: Set partitionNum randomly select from 1, 2, 3, ..., n
5: partitionLen = (n/partitionNum)
6: for i = 1 to partitionNum do
7: for j = i∗partitionLen to i∗partitionLen+partitionLen

do
8: if solution1 has larger number of HH contacts than

solution2 then
9: newSolution[j] = solution1[j]

10: else
11: newSolution[j] = solution2[j]
12: end if
13: end for
14: end for
15: Output: newSolution
16: end procedure

4.2.4 Inter-molecular ineffective collision

The nature of this process is to select two solutions that

collide with each other. The collision produces two new

solutions by changing some positions. The structural view

of the two new solutions may be hugely different from their

parents. The difference depends on the decision that how

many positions will be changed during this process. The

process selects an increment value randomly. Each of the

two solutions is selected sequentially. Starting from the

first position, some positions are selected by the increment

value. The selected positions are then changed to their

opposite directions. A pictorial view of this process is

shown in Fig. 6. First, 2 has been chosen randomly as an

increment value. Starting from the first position, every

position according to the increment value is selected,

which are colored by deep blue and deep green for the first

solution and second solution of the figure, respectively.

The selected positions are then changed to their opposite

directions such as U to D, L to R, F to B and vice versa.

Algorithm 5 shows the pseudo-code of this process.

Algorithm 5 Inter-molecular Ineffective Collision
1: procedure interMolecularInEffective(sequence, solution1, solution2)
2: n = length of sequence

3: Duplicate solution1 to form newSolution1
4: Duplicate solution2 to form newSolution2
5: Set nPoint randomly select from 1, 2, 3, ..., n
6: r = Rand(0, (n − nPoint))
7: for i = r to (r + nPoint) do
8: newSolution1[i] = opposite Direction[solution1[i]]
9: newSolution2[i] = opposite Direction[solution2[i]]

10: i = i + incrementV alue

11: end for
12: Output: newSolution1 and newSolution2
13: end procedure

4.3 H&P compliance

The hydrophobic and polar (H&P) compliance mechanism

determines the center of each individual structure and the

distance of each H and P monomer from the center. It

checks whether the hydrophobic (H) amino acids are in the

core positions and the polar (P) amino acids are in the

remote portion of the core or not. If H amino acids are not

in the core positions, it restructures the conformation such

that the hydrophobic amino acid remains in the core

position. Similarly, it reforms the conformation such that

the polar amino acid remains in the remote part of the core

of the structure. If ðPc;Qc;RcÞ represents the core position

and ðPd;Qd;RdÞ represents dth amino acid, then H&P

compliance is calculated as follows:

HPs ¼
Plength

d¼1 ðPc � PdÞ2 þ ðQc � QdÞ2 þ ðRc � RdÞ2

Ns

ð5Þ

where Ns ¼ number of amino acids in a structure and

Fig. 5 Synthesis

Fig. 6 Inter-molecular ineffective collision
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Pc ¼ ðPmax � PminÞ=2
Qc ¼ ðQmax � QminÞ=2
Rc ¼ ðRmax � RminÞ=2

HPs calculates the closeness of any amino acid from the

core position. After determining distance, this mechanism

changes the direction of each monomer in such a way that

the H monomers tend to small distance from the core

position and P monomers are folded to far distance from

the center of the specific structure. Essentially, this mech-

anism tries to mimic the behavior of real protein folding.

The H&P compliance process is depicted in Fig. 7.

Here, the last monomer is hydrophobic amino acid and it

locates on the outer side. According to H&P compliance, H

monomer tends to be inner part and P monomer tends to be

in the outer part. Now if we change the direction of 13th

monomer from right to left, then we can see that all the H

monomers seem to be inner part and P monomers in the

outer part. The energy value has also increased 3–4 due to

this movement. Algorithm 6 gives the pseudo-code of the

process.

Algorithm 6 H&P Compliance
1: procedure HandP Compliance(sequence, solution)
2: n = length of sequence

3: Duplicate solution to form newSolution
4: for i = 1 to n do
5: for j = i − 1 to 1 do
6: if sequence[j] is H monomer then
7: try to move every possible empty position in cubic

lattice and calculate HPs

8: if HPs is minimum then
9: move newSolution[j] to the free lattice point

10: end if
11: end if
12: if sequence[j] is P monomer then
13: try to move every possible empty position in cubic

lattice and calculate HPs

14: if HPs is maximum then
15: move newSolution[j] to the free lattice point
16: end if
17: end if
18: end for
19: end for
20: Output: newSolution
21: end procedure

4.4 Evolution mechanism

The evolution mechanism tries to move each individual

monomer in a protein using every possible direction. For

each amino acid, it inspects empty positions of the cubic

lattice points. After that, it changes the position of amino

acid to one of the empty positions and determines whether

the energy value of the entire structure increases or not. If

the energy value increases, then new structure is accepted;

otherwise, it is rejected. Figure 8a gives a sample structure

with 13 monomers. The energy value is 3 and the structure

does not contain any overlapping in positions. The main

principle of evolution mechanism is to increase the per-

formance of each structure by moving the monomers in

every possible direction. In this mechanism, we try to move

each monomers from its monomer, gradually moving

toward the first monomer. For example, in the case of 13th

monomer, if we move the 13th monomer in every possible

direction, it can be seen that the energy value does not

increase. As the energy value cannot be increased due to

13th monomer, the mechanism immediately switches to the

previous monomer. If we change the direction of the 12th

monomer from right to left, then we can observe that

energy value increases from 3 to 5 as shown in Fig. 8b.

This direction changing process continues to the first

monomer, the process tries to move the monomer and

increases the performance. After that, we consider the 12th

monomer and continue this process 12th to first monomer.

We continue this process for every individual monomer

with respect to each previous individual monomer. Algo-

rithm 7 depicts the pseudo-code of this process.

Algorithm 7 Evolution
1: procedure evaluate(sequence, solution)
2: n = length of sequence

3: Duplicate solution to form newSolution
4: for i = n to 1 do
5: for j = i to 1 do
6: if newSolution[j] has free lattice point and energy

value increases then
7: move newSolution[i] to the free lattice point
8: end if
9: end for

10: end for
11: Output: newSolution
12: end procedure

4.5 Repair mechanism

During execution of the operators of CROPFO, many

invalid structures may be created and those may contain

overlapping in the same position. The number of overlap-

ping positions can be one or more. Such structures cannot

be accepted to solve PFO problem. For this reason, we

have designed a repair function that works on the invalid

Fig. 7 H&P compliance
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structures and produces valid ones. The two major tasks of

the repair mechanism are overlap checking and applying

backtracking algorithm to create a valid structure. The

working process of repair mechanism is as follows. A

checking process checks the structures to observe that if the

structures contain overlapping or not. The procedure starts

checking from the last position to the first position of any

particular monomer. If any lattice point contains more than

one monomer, then the procedure returns true. A back-

tracking algorithm is applied to the protein structure for

removing the overlapping. The backtracking algorithm sets

a pointer to the previous monomer of the overlapping

monomer. Then, the algorithm finds free adjacent lattice

points of the previous monomer and tries to move the

overlapping monomer to the free positions. If there exists

any free lattice point, then the algorithm moves the over-

lapping monomer to the free position, and if there is no free

lattice point, then the algorithm moves to the next previous

monomer. This process continues until the structure

becomes overlapped free. For example, if we find any

overlapping for any individual monomer, we start checking

from the previous position to first position of that mono-

mer. If we find any free lattice point position, then we

move the overlapping monomer to that free position. We

continue this process for each individual monomer with

respect to its previous all monomers until we get a valid

structure. Algorithm 8 gives the pseudo-code of the pro-

cess, and Fig. 9 depicts the pictorial view, where an invalid

structure has been repaired using repair mechanism. In the

case of Fig. 9, if we start checking from the last monomer,

it can be seen that the last monomer produces overlapping

with another monomer. After removing overlapping

according to the above steps, we have found a valid

structure that has also shown on the right side of Fig. 9.

The repair mechanism is invoked after the execution of any

of the four operators and it repairs any invalid structure.

Algorithm 8 Repair
1: procedure repair(sequence, solution)
2: n = length of sequence

3: Duplicate solution to form newSolution

4: for i = 1 to n do
5: if overlap exists then
6: for j = i − 1 to 1 do
7: if newSolution[j] have free lattice point then
8: move newSolution[i] to the free lattice point
9: end if

10: end for
11: end if
12: end for
13: Output: newSolution
14: end procedure

5 Experimental result

We compared the Ebest, Emean values and the standard

deviation of our proposed algorithm with the results of

GAAM [5]. Here, the Emean value has been multiplied by

- 1 which means higher Emean value shows better effi-

ciency. The proposed algorithm was tested on four differ-

ent datasets. The results are shown in Tables 4, 5, 6 and 7.

In the tables, the sequence number is generated by a set

number followed by a serial number of the set, such as S1.1

represents set 1 and the first sequence of the set.

5.1 Experimental setup

We described the proposed CRO algorithm in Sect. 4.1.

The experimental issues have been started as follows. The

algorithm was implemented in Java programming language

and executed using an Intel Core i5 computer with

2.60 GHz CPU and 4 GB RAM under windows operating

system. Our developed algorithms were tested on 4 datasets

[5] which are shown in Table 2. The values of the

parameters used in the algorithm are shown in Table 3. The

molCol value varies according to the length of protein

sequences. In this case, the algorithm performs 200 itera-

tions in one run.

molCol ¼
1; for length� 36

0:5; for length[ 36

�
ð6Þ

Fig. 8 Evolution mechanism

Fig. 9 Repair mechanism
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5.2 Effect of control parameters

The effect of the control parameters was tested on the first

dataset of sequences. Because the set contains a large

number of sequences and the length is medium. We set

three values for each control parameter: popSize 2
f200; 500; 1000g and molCol 2 f0:4; 0:5; 0:6g. Besides

this, the initialKE and the KELossRate were set to 100 and

0.5 during the performance test. The default values were

set to popSize ¼ 500, molCol ¼ 0:5, initialKE ¼ 100 and

KELossRate ¼ 0:5 and we calculated the Emean and Estd for

all the values of control parameters. Table 4 shows the

results and 30 independent runs were performed to com-

pute the values. From the table, it can be seen that the

Table 2 Test sequences

Set Protein sequence Len

1 HPH2P2H4PH3P2H2P2HPH3PHPH2P2H2P3HP8H2 48

H4PH2PH5P2HP2H2P2HP6HP2HP3HP2H2P2H3PH 48

PHPH2PH6P2HPHP2HPH2PHPHP3HP2H2P2H2P2HPHP2HP 48

PHPH2P2HPH3P2H2PH2P3H5P2HPH2PHPHP4HP2HPHP 48

P2HP3HPH4P2H4PH2PH3P2HPHPHP2HP6H2PH2PH 48

H3P3H2PHPH2PH2PH2PHP7HPHP2HP3HP2H6PH 48

PHP4HPH3PHPH4PH2PH2P3HPHP3H3P2H2P2H2P3H 48

PH2PH3PH4P2H3P6HPH2P2H2PHP3H2PHPHPH2P3 48

PHPHP4HPHPHP2HPH6P2H3PHP2HPH2P2HPH3P4H 48

PH2P6H2P3H3PHP2HPH2P2HP2HP2H2P2H7P2H2 48

2 P2H5P3H2P5H2P3HP6HPHP3HP2HP2HP5HP4H2PH2P2HP2HP 64

P2HPHP2HP2H3PH4P2H3P4HPHP3HPHP3HPHP5HPHP2HPHP3HP2HP2 64

HPH2P2H2PHP5H3PH4P2HP2HPH2P3HPHP2H3PH2PHP5H8P3 64

HP2H2P2HP2HPHP2HP4HP6HPHPH3P2HPHP3HPHP2H2P2HP2HP2HPH3PH 64

HP3H2P2HPHP3HP3HPH2P3H2PHPH2PHP2HP3HP2HPH3P2HP2HP2H3PH4 64

HP2H2PH4P6H2P2HP4H2P3HP2HPH2PHP4H2P4HP5HP4HPH2 64

P4HP3HP3H4PH2P5HP2HPH2PHPHP5HP10H4P4H2P2H 64

P3H3P2HPHP2HP2H2P3HP2HP2H2PHP3HP7HPH3PH5P2H2P3HP2H 64

HP2HP2H3P4HPHP3HPH2PH5P4HPHPHP4HPHP3H2PHP4HP2H2PHP 64

P2HP2HP2H3P3HPHP2HP2HP6HP2H3P2HP2HP2HPHP6H3P5HPHP 64

3 HPHP2H2PHP2HPH2P2HPH 20

H2P2HP2HP2HP2HP2HP2HP2H2 24

P2HP2H2P4H2P4H2P4H2 25

P3H2P2H2P5H7P2H2P4H2P2HP2 36

P2HP2H2P2H2P5H10P6H2P2H2P2HP2H5 48

H2PHPHPHPH4PHP3HP3HP4HP3HP3HPH4PHPHPHPH2 50

P2H3PH8P3H10PHP3H12P4H6PH2PHP 60

H12PHPHP2H2P2H2P2HP2H2P2H2P2HP2H2P2H2P2HPHPH12 64

4 P2H3PH3P3HPH2PH2P2HPH4PHP2H5PHPH2P2H2P 46

PHPH3PH3P2H2PHPH2PH3PHPHPH2P2H3P2HPHP4HP2H P2H2P2HP2H 58

P2H2P5H2P2H2PHP2HP7HP3H2PH2P6HP2HPHP2HP5H3P4H2PH2P5H2P4H4PHP8H5P2HP2 103

HP5HP4HPH2PH2P4HPH3P4HPHPH4P11HP2HP3HPH2P3H2P2HP2HPHPHP8HP3H6P3H2P2H3P3H2PH5P9HP4HPHP4 136

Table 3 Parameters of CRO

algorithm
Symbol Value

popSize 500

initialKE 100

KELossRate 0.5

molCol Eq. 6

a Rand [10, 100]

b Rand [10, 100]

numHit 0

minHit 0
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values have been changed a little due to the change in

parameters. For popSize ¼ 200, the Emean and Estd values

have changed a little from the highest values. On the other

hand, for popSize ¼ 1000, all the Emean and Estd values

have attained the highest values. But for molCol ¼ 0:4 and

molCol ¼ 0:6, the Emean and Estd values have also changed

a little from the highest values. The Emean and Estd have

been calculated as a statistical measure. The Estd value is

calculated as follows:

Estd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NR

XNR

i¼1

ðEi � EmeanÞ2
vuut ð7Þ

where NR is the number of runs which is set to 30 and Ei is

the selected energy value in each run. Emean is the mean

energy value in all the iterations and the value is calculated

by the following equation:

Emean ¼
PNR

i¼1 Ebest

NR

ð8Þ

It means that the Ebest is the best energy value of each run.

5.3 Comparison with existing algorithm

The state of the art for the PFO in HP cubic lattice model is

GAAM [5]. This method was proposed in 2016 by Boš-

ković and Brest. They compared their proposed algorithm

with adaptive genetic algorithm with phenotypical crowd-

ing [26], memetic algorithm with self-adaptive local search

[32], ant colony optimization algorithm [33], multi-objec-

tive genetic algorithm with feasibility rules [34], genetic

algorithm with systematic crossover [24], estimation of

distribution algorithm [4] and clustered memetic algorithm

with local heuristics [35]. The performance of GAAM was

best of all the compared algorithms. So, we compared our

proposed algorithm with the GAAM. The results are shown

in Tables 5, 6 and 7. In the tables, the sequence number

was generated by a set number followed by a serial number

of the set, such as S1.1 represents set 1 and the first

sequence of the set. We computed the Ebest, Emean and Estd

for dataset 1. The results are shown in left part of Table 5.

All the sequences of this dataset are of 48 lengths long. The

Emean indicates the mean energy value of all independent

Table 4 The effect of control

parameters for dataset 1 with

initialKE ¼ 100, KELossRate ¼
0:5 and the number of runs was

30

Seq. popSize ¼ 200 popSize ¼ 1000 popSize ¼ 500 popSize ¼ 500

molCol ¼ 0:5 molCol ¼ 0:5 molCol ¼ 0:4 molCol ¼ 0:6

Emean Estd Emean Estd Emean Estd Emean Estd

S1.1 32.00 0.00 32.00 0.00 32.00 0.00 31.95 0.21

S1.2 33.95 0.21 34.00 0.00 33.70 0.78 34.00 0.00

S1.3 34.00 0.00 34.00 0.00 33.95 0.21 33.80 0.51

S1.4 32.90 0.43 33.00 0.00 33.00 0.00 33.00 0.00

S1.5 32.00 0.00 32.00 0.00 32.00 0.00 32.00 0.00

S1.6 32.00 0.00 32.00 0.00 31.90 0.30 32.00 0.00

S1.7 31.90 0.30 32.00 0.00 32.00 0.00 31.80 0.51

S1.8 31.00 0.00 31.00 0.00 31.00 0.00 31.00 0.00

S1.9 33.90 0.30 34.00 0.00 34.00 0.00 34.00 0.00

S1.10 32.80 0.51 33.00 0.00 32.90 0.43 32.75 0.73

Table 5 Results of datasets 1

and 2 with initialKE ¼ 100,

KELossRate ¼ 0:5, the number

of runs was 50 and NE ¼ 4�
105 (whereas NE ¼ 4� 106 for

GAAM [5])

Seq. CROPFO GAAM [5] Seq. CROPFO GAAM [5]

Ebest Emean Estd Ebest Emean Estd Ebest Emean Estd Ebest Emean Estd

S1.1 32 32.00 0.00 32 31.82 0.38 S2.1 32 32.00 0.00 32 30.86 0.60

S1.2 34 34.00 0.00 34 33.08 0.77 S2.2 38 38.00 0.00 37 35.12 0.71

S1.3 34 34.00 0.00 34 33.26 0.44 S2.3 45 45.00 0.00 45 43.54 0.37

S1.4 33 33.00 0.00 33 32.22 0.54 S2.4 42 42.00 0.00 41 39.74 0.59

S1.5 32 32.00 0.00 32 31.58 0.49 S2.5 42 42.00 0.00 42 40.62 0.72

S1.6 32 32.00 0.00 32 31.18 0.38 S2.6 35 35.00 0.00 34 33.52 0.50

S1.7 32 32.00 0.00 32 30.62 0.56 S2.7 28 28.00 0.00 28 28.00 0.00

S1.8 31 31.00 0.00 31 30.38 0.48 S2.8 38 38.00 0.00 38 36.54 0.54

S1.9 34 34.00 0.00 34 33.02 0.37 S2.9 41 41.00 0.00 40 38.00 0.60

S1.10 33 33.00 0.00 33 32.28 0.45 S2.10 31 31.00 0.00 31 31.00 0.00
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runs, and Estd represents the standard deviation of all runs.

From the table, it can be observed that CROPFO shows

better Emean values for all sequences. Our proposed algo-

rithm has obtained not only better Emean values but also

better Estd values for all the sequences with respect to

GAAM. We computed the Ebest, Emean and Estd for dataset

2. The results are shown in the right side of Table 5. All the

sequences of this dataset are 64 lengths long. For the

sequences of both datasets 1 and 2, we set initialKE ¼ 100

and KELossRate ¼ 0:5. The molCol value was set to 0.5.

The number of independent runs was 50 for each individual

sequence. It means that CROPFO performed 200 iterations

in one run. In one full iteration the algorithm performs 500

evaluations (popSize ¼ 500). Now we describe the calcu-

lation process of number of evaluations (NE) as follows:

– If we consider the worst case, in Algorithm 1 within

popSize and (if b[molCol or not) loops the repair

operator executes maximum 2 times (whether

b[molCol or not). Either line numbers 11–13 or line

numbers 27–29 of Algorithm 1.

– In each iteration within popSize loop, but outside the (if

b[molCol) loop the repair operator executes 2 times

(line numbers 33–35 of Algorithm 1).

From these two points, we can say that in each iteration

within popSize loop repair executes 4 times which is

maximum. Actually, it will be less than 4 in average case.

By considering the worst case the number of evaluations in

one run is 200� 500� 4 ¼ 4� 105. From Table 5, it can

be noticed that our proposed algorithm provides better Ebest

values for the sequences S2.2, S2.4, S2.6, S2.9 and for

other sequences it gives same Ebest values as GAAM. For

all sequences of this dataset, CROPFO has obtained better

Emean and Estd values than GAAM. Our proposed algorithm

has also showed the less number of solution evaluations

(NE) than GAAM [5].

Table 6 shows the Ebest, Emean and Estd for dataset 3.

Dataset 3 contains sequences of length 20–64. Here, we

used three different parameters. For dataset 3 we set

initialKE ¼ 100 and KELossRate ¼ 0:5. The molCol value

was set 1 for length� 36 and 0.5 for length[ 36. Fifty

independent runs were performed for each individual

sequence. From this table, we can notice that our proposed

algorithm provides better Emean and Estd for sequences

S3.6, S3.7 and for other sequences, the proposed algorithm

has shown same Ebest values as GAAM [5]. Here, the

values in boldface indicate the better performance of our

algorithm.

Table 7 shows the Ebest, Emean and Estd for dataset 4.

Dataset 4 contains sequences of length 46–136. Here, two

different parameters were used. For sequences of length 46

and 58, we set KELossRate ¼ 0:5, for length 103 and 136,

the KELossRate ¼ 0:05. The molCol value was set 0.5 for

all sequences. Fifty independent runs were performed for

each individual sequence. For all sequences of Table 7,

CROPFO has obtained better Emean and Estd values. In par-

ticular, when the sequence length is long, CROPFO obtained

better Ebest, Emean and Estd values than GAAM.

Table 8 shows the Ebest, Emean and Estd for dataset 3.

Dataset 3 contains sequences of length 20–64. The stop-

ping condition was 12 h for dataset 3 and our algorithm

Table 6 Results of dataset 3 with initialKE ¼ 100,

KELossRate ¼ 0:5, the number of runs was 50 and NE ¼ 4� 105

(whereas NE ¼ 4� 106 for GAAM [5])

Seq. CROPFO GAAM [5]

Ebest Emean Estd Ebest Emean Estd

S3.1 11 11.00 0.00 11 11.00 0.00

S3.2 13 13.00 0.00 13 13.00 0.00

S3.3 9 9.00 0.00 9 9.00 0.00

S3.4 18 18.00 0.00 18 18.00 0.00

S3.5 31 31.00 0.00 31 31.00 0.00

S3.6 34 34.00 0.00 34 32.62 0.48

S3.7 55 55.00 0.00 55 52.40 0.66

S3.8 59 59.00 0.00 59 57.62 0.60

Table 7 Results of dataset 4 with initialKE ¼ 100, KELossRate ¼ 0:5
(for S4.1 and S4.2), KELossRate ¼ 0:05 (for S4.3 and S4.4), the

number of runs was 50, NE ¼ 4� 105 (for S4.1 and S4.2) and NE ¼
4� 106 (for S4.3 and S4.4) (whereas NE ¼ 4� 106 (for S4.1–S4.3)

and NE ¼ 4� 107 (for S4.4) for GAAM [5])

Seq. CROPFO GAAM [5]

Ebest Emean Estd Ebest Emean Estd

S4.1 35 35.00 0.00 35 34.42 0.49

S4.2 44 44.00 0.00 44 41.92 0.49

S4.3 58 58.00 0.00 53 50.80 0.99

S4.4 75 73.98 0.46 71 68.54 1.20

Table 8 Results of dataset 3 under runtime 12 h

Runtime = 12 h

Seq. CROPFO GAAM [5]

Ebest Emean Estd Ebest Emean Estd

S3.1 11 11.00 0.00 11 11.00 0.00

S3.2 13 13.00 0.00 13 13.00 0.00

S3.3 9 9.00 0.00 9 9.00 0.00

S3.4 18 18.00 0.00 18 18.00 0.00

S3.5 31 31.00 0.00 31 31.00 0.00

S3.6 34 34.00 0.00 34 33.96 0.14

S3.7 55 55.00 0.00 55 54.46 0.50

S3.8 59 59.00 0.00 59 59.00 0.00
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obtained the best result. From all of the tables, we can

observe that the results of our proposed algorithm are better

than the GAAM especially for the mean energy ðEmeanÞ and
the standard deviation ðEstdÞ values for all the datasets.

5.4 Performance measure

In order to do a fairer comparison, we performed some

more statistical tests over the datasets such as the diversity

of the final population and the speed (number of sequence

evaluations per second) of our proposed algorithm.

Diversity measures the structural differences in each pop-

ulation. The mean diversity of final population has been

calculated by following equation:

div ¼ 2

TR � ðp� 1Þ � p
XTR

i¼1

Xp

m¼1

Xp

n¼mþ1

Dðam; anÞ ð9Þ

Here, p ¼ popSize and Dðam; anÞ represent the Hamming

distance between sequence am and an. The Emean value has

been multiplied by - 1 which means higher Emean value

shows better efficiency. The statistical tests were done over

the datasets 1, 2 and 3 to check the speed and diversity in

population. It seems that speed is a number of function

evaluations per second. Tables 9 and 10 show the results.

Table 9 A performance

measure of datasets 1 and 2 with

initialKE ¼ 100, KELossRate ¼
0:5 and the number of runs was

30

Seq. CROPFO Seq. GAAM [5]

Ebest Emean Estd Speed Div Ebest Emean Estd Speed Div

S1.1 32 32.00 0.00 13,843.51 4.31 S2.1 32 32.00 0.00 14,214.46 3.34

S1.2 34 34.00 0.00 12,248.94 3.44 S2.2 38 38.00 0.00 13,214.54 3.59

S1.3 34 34.00 0.00 13,724.23 3.67 S2.3 45 45.00 0.00 11,854.14 3.11

S1.4 33 33.00 0.00 11,876.71 2.50 S2.4 42 42.00 0.00 12,385.43 2.72

S1.5 32 32.00 0.00 14,978.51 4.01 S2.5 42 42.00 0.00 12,745.10 4.48

S1.6 32 32.00 0.00 12,487.27 7.31 S2.6 35 35.00 0.00 13,547.41 5.73

S1.7 32 32.00 0.00 15,104.18 3.32 S2.7 28 28.00 0.00 14,496.98 4.61

S1.8 31 31.00 0.00 11,871.74 4.55 S2.8 38 38.00 0.00 13,482.48 4.25

S1.9 34 34.00 0.00 14,814.24 6.34 S2.9 41 41.00 0.00 12,578.59 2.49

S1.10 33 33.00 0.00 12,541.71 5.34 S2.10 31 31.00 0.00 14,271.14 3.69

Table 10 A performance measure of dataset 3 with initialKE ¼ 100,

KELossRate ¼ 0:5 and the number of runs was 30

Seq. CROPFO

Ebest Emean Estd Speed Div

S3.1 11 11.00 0.00 19,286.78 5.15

S3.2 13 13.00 0.00 18,215.45 5.52

S3.3 9 9.00 0.00 18,548.91 3.65

S3.4 18 18.00 0.00 16,436.36 3.75

S3.5 31 31.00 0.00 13,749.31 4.47

S3.6 34 34.00 0.00 12,473.32 2.72

S3.7 55 55.00 0.00 10,734.25 3.11

S3.8 59 59.00 0.00 9218.42 3.59

Table 11 Mean time comparison of dataset 1 with initialKE ¼ 100,

KELossRate ¼ 0:5 and the number of runs was 20

Seq. Runtime (s)

CROPFO GAAM [5] Speed up

S1.1 223.97 251 1.12

S1.2 463.86 549 1.18

S1.3 372.68 532 1.42

S1.4 294.24 525 1.78

S1.5 298.56 358 1.19

S1.6 402.47 619 1.53

S1.7 756.37 2447 3.23

S1.8 268.74 317 1.17

S1.9 439.46 945 2.15

S1.10 374.32 412 1.10

Table 12 Mean time comparison of dataset 2 with initialKE ¼ 100,

KELossRate ¼ 0:5 and the number of runs was 20

Seq. Runtime (s)

CROPFO GAAM [5] Speed up

S2.1 588.774 1061 1.8

S2.2 533.193 2171 4.07

S2.3 967.16 1481 1.53

S2.4 1373.645 1763 1.28

S2.5 2241.341 2373 1.05

S2.6 567.112 1288 2.27

S2.7 1180.383 1337 1.13

S2.8 1122.502 1890 1.68

S2.9 1361.756 2239 1.64

S2.10 610.531 1207 1.97
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5.5 Execution time comparison

In this subsection, the execution time comparison of

datasets 1, 2 and 3 was performed. The sequences are of

different lengths. The default parameter settings were used

for the sequences. Speed up value indicates the rate of

increase performance of CROPFO algorithm. The speeds of

the algorithm for different datasets with respect to GAAM

[5] are shown in Tables 11, 12 and 13. From the tables, it

can be noticed that the highest speed up value = 7.39 and

lowest speed up value = 1.05 of our proposed CROPFO

algorithm. Here, the stopping condition was the maximum

target energy value or until the initialKE is not reached 0.

The speed up values show that the proposed algorithm is

better than GAAM due to less execution time and high

speed up values. From these tables, it can be observed that

our proposed algorithm takes less time for evaluating the

amino acid sequences than GAAM [5] and provides highest

energy values most of the times. In our developed algo-

rithm, we worked with the directions of structures, not with

the real structure. Because the final direction array provides

sufficient information of the structures. We know that for

the PFO problem input is the amino acid sequence which is

a combination of H and P monomers as defined earlier. For

an example, HPHHPPHHHHPHHHPPHHPPHPHHHPHP

HHPPHHPPPHPPPPPPPPHH is an input sequence of 48

lengths. According to CROPFO algorithm, a random pop-

ulation of fixed size is created first. Then, our algorithm

applies the four operators of CRO and the additional

mechanisms on the population which is a set of direction

arrays. After all the iterations and modifications, the best

Table 13 Mean time comparison of dataset 3 with initialKE ¼ 100,

KELossRate ¼ 0:5 and the number of runs was 20

Seq. Runtime (s)

CROPFO GAAM [5] Speed up

S3.1 36.917 87 2.36

S3.2 49.117 178 3.62

S3.3 28.751 211 7.39

S3.4 983.917 1295 1.32

S3.5 430.713 459 1.06

S3.6 263.303 448 1.70

S3.7 2452.67 2974 1.21

S3.8 2889.21 3692 1.28

(a) PFO problem at a glance

(b) Structure of final directions with
Ec = ( 1) Fc = 32

Fig. 10 Progress of energy value of dataset 1 with respect to time (s)

(a) PFO problem at a glance

(b) Structure for final direc-
tions with Ec = ( 1) Fc = 34

Fig. 11 Progress of energy value of dataset 1 with respect to time (s)
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structure is selected among all the structures. The sequence

of directions of the final structure is RUUULDDFDRU

ULUFDRRDLDLULDBLBRBUFFLFURUFFLBBBRDB.

The pictorial view for the PFO problem is given in

Fig. 10a. Here, the green monomers represent hydrophobic

amino acid and the blue monomer represents the polar

amino acids. Another example can be given for the

sequence HHPHPHPHPHHHHPHPPPHPPPHPPPPHPP

PHPPPHPHHHHPHPHPHPHH that is a sequence of 50

length. After completing all the steps according to our

algorithm, the best structure is selected among all the

structures. The sequence of directions of the best structure

is FLBLBURBDFRRBLURFLULFDLFRRBRFDBRDBL

BLFLBLFFRFRRBL. The pictorial view of PFO problem

for this sequence is given in Fig. 11a.

5.6 Performance analysis

In Table 14, it can be observed that four types of results

have been shown to analyze the performance of our pro-

posed algorithm. First, we calculated the energy value of

the sequences with H&P compliance and without evolution

mechanism. Second, the energy values were calculated of

the sequences with evolution mechanism and without H&P

compliance.

Table 14 Performance analysis of datasets 1–4 with initialKE ¼ 100, KELossRate ¼ 0:5 and the number of runs was 30

Seq. With H&P and without Evolution

mechanism

With Evolution and without H&P

mechanism

Without H&P and Evolution

mechanism

With H&P and Evolution

mechanism

Ebest Emean Estd Ebest Emean Estd Ebest Emean Estd Ebest Emean Estd

S1.1 28 24.78 1.41 27 25.64 2.28 17 15.88 13.12 32 32.00 0.00

S1.2 30 27.66 1.51 28 26.22 1.41 19 14.12 12.71 34 34.00 0.00

S1.3 29 27.12 1.18 28 26.12 1.64 18 15.97 12.97 34 34.00 0.00

S1.4 29 26.84 1.58 27 25.74 2.13 17 15.74 13.27 33 33.00 0.00

S1.5 28 25.46 1.52 26 24.54 2.07 16 14.57 12.93 32 32.00 0.00

S1.6 29 26.88 1.82 28 25.68 2.23 16 15.03 13.32 32 32.00 0.00

S1.7 27 24.32 1.61 27 25.52 1.89 15 13.72 12.49 32 32.00 0.00

S1.8 29 25.12 1.46 29 26.48 1.97 15 13.81 12.07 31 31.00 0.00

S1.9 28 24.88 2.22 26 23.84 2.08 18 16.94 14.98 34 34.00 0.00

S1.10 27 25.82 1.71 25 23.26 2.15 18 16.39 14.13 33 33.00 0.00

S2.1 29 26.98 2.22 27 25.18 1.51 17 15.38 12.37 32 32.00 0.00

S2.2 32 29.76 2.89 30 28.66 1.93 19 18.01 17.92 38 38.00 0.00

S2.3 40 37.12 2.91 39 36.52 2.28 23 21.72 20.19 45 45.00 0.00

S2.4 38 34.88 3.11 37 34.14 2.39 20 18.23 16.71 42 42.00 0.00

S2.5 37 36.42 1.64 36 34.38 1.79 21 19.82 17.09 42 42.00 0.00

S2.6 31 29.84 1.86 31 29.84 1.86 17 15.73 14.43 35 35.00 0.00

S2.7 26 25.36 1.21 25 24.18 1.43 13 11.14 9.86 28 28.00 0.00

S2.8 33 31.62 1.97 31 29.52 1.67 18 17.24 15.45 38 38.00 0.00

S2.9 36 33.44 2.52 35 32.46 2.32 19 17.03 16.73 41 41.00 0.00

S2.10 28 26.86 1.71 27 25.91 1.89 14 13.92 12.14 31 31.00 0.00

S3.1 10 9.24 0.58 10 9.52 0.38 5 4.29 4.08 11 11.00 0.00

S3.2 12 11.12 0.81 11 10.44 0.51 6 5.17 4.91 13 13.00 0.00

S3.3 9 8.52 0.39 9 8.32 0.53 4 3.73 3.08 9 9.00 0.00

S3.4 16 15.14 0.78 15 14.74 0.89 8 7.15 6.97 18 18.00 0.00

S3.5 28 25.48 1.55 27 24.68 1.21 14 12.83 11.48 31 31.00 0.00

S3.6 30 28.86 1.62 28 25.54 2.27 16 15.73 14.57 34 34.00 0.00

S3.7 49 45.38 2.81 47 44.76 1.73 26 24.15 23.81 55 55.00 0.00

S3.8 51 47.82 3.07 49 45.28 2.93 27 24.73 23.49 59 59.00 0.00

S4.1 31 29.87 1.89 30 29.08 1.09 16 14.84 13.86 35 35.00 0.00

S4.2 40 38.64 2.97 38 36.84 2.23 21 19.64 18.47 44 44.00 0.00

S4.3 54 52.46 2.25 53 51.91 2.07 26 24.71 23.54 58 58.00 0.00

S4.4 71 68.32 2.88 69 66.67 2.93 34 32.78 31.09 75 73.83 0.89
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After that, we found out the energy value of the

sequences without two mechanisms. It can be noticed that

without these two types of mechanisms the algorithm

cannot find out the target best energy values and most of

the cases the obtained energy values are more than 49

In Fig. 12a, b we have shown the convergence results of

the algorithm with time. From the graphs, it can be noticed

that the energy value of each sequence (S1.1–S1.10) is

increased with respect to the time. Within the interval of

time, the energy value of each sequence is increased

sequentially in most of the cases and finally gets the best

energy value. The convergence curves show that our pro-

posed algorithm has progressed with time and found out

the best results.

6 Conclusions

The protein folding optimization (PFO) is a familiar NP-

hard optimization problem, and here, we have used

chemical reaction optimization (CRO) algorithm to solve

this problem. CRO is a recent population-based meta-

heuristic algorithm that has already been successfully

applied to many well-known optimization problems. It is a

nature-inspired algorithm that mimics the behavior of

chemical reactions. The main challenge of this algorithm is

the search space formulation. In PFO problem, the actual

search space is massive with respect to the length of the

protein and the size of the actual search space increases

exponentially with the protein length. So, it is a very

challenging task to select a limited number of structures

from the huge number of possible choices. We have

redesigned four basic operators of CRO algorithm to solve

PFO problem. Additionally, we have also designed two

extra mechanisms, evolution and H&P compliance. These

two extra mechanisms help to raise the performance of the

algorithm dramatically. Our algorithm includes a repair

mechanism that produces valid structures from invalid

structures. The performance of our proposed algorithm is

appreciable. We have compared the results of our algo-

rithm with the genetic algorithm with an advanced mech-

anism (GAAM) which is a state-of-the-art population-

based algorithm, and from the results, it is clear that the

performance of our algorithm is better than GAAM.

A particular study on parameters of CRO may yield

better results and less execution time for this problem.

Since there is no fixed rule for setting of the parameters of

CRO, finding the right values for the parameters is a tough

task. So more experiment and study on parameters may

give better results in the case of PFO problem.
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