
ORIGINAL ARTICLE

High-impedance fault detection in medium-voltage distribution
network using computational intelligence-based classifiers

Veerapandiyan Veerasamy1 • Noor Izzri Abdul Wahab1 • Rajeswari Ramachandran3 • Mariammal Thirumeni2 •

Chitra Subramanian3 • Mohammad Lutfi Othman1 • Hashim Hizam1

Received: 31 March 2017 / Accepted: 12 August 2019 / Published online: 20 August 2019
� Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
This paper presents the high-impedance fault (HIF) detection and identification in medium-voltage distribution network of

13.8 kV using discrete wavelet transform (DWT) and intelligence classifiers such as adaptive neuro-fuzzy inference system

(ANFIS) and support vector machine (SVM). The three-phase feeder network is modelled in MATLAB/Simulink to obtain

the fault current signal of the feeder. The acquired fault current signal for various types of faults such as three-phase fault,

line to line, line to ground, double line to ground and HIF is sampled using 1st, 2nd, 3rd, 4th and 5th level of detailed

coefficients and approximated by DWT analysis to extract the feature, namely standard deviation (SD) values, considering

the time-varying fault impedance. The SD values drawn by DWT technique have been used to train the computational

intelligence-based classifiers such as fuzzy, Bayes, multi-layer perceptron neural network, ANFIS and SVM. The per-

formance indices such as mean absolute error, root mean square error, kappa statistic, success rate and discrimination rate

are compared for various classifiers presented. The results showed that the proffered ANFIS and SVM classifiers are more

effective and their performance is substantially superior than other classifiers.

Keywords High-impedance fault � Discrete wavelet transform � Adaptive neuro-fuzzy inference system � Support vector
machine � Multi-layer perceptron neural network (MLP) � Bayes and fuzzy classifier

1 Introduction

Power system protection is a crucial problem in modern

power system for secured and reliable operation of the

system. The electrical utilities have been adopting numer-

ous techniques to reduce the number of line outages due to

short circuit. In this context, many researches were carried

out to detect and classify the type of fault which leads to

location and isolation of fault, thereby reducing the outages

in both transmission and distribution system. One of the

troublesome abnormalities that occur in the system is HIF.

This type of fault occurs mostly in the distributor feeder

network, when the energized conductor has in contact with

high resistance surface such as tree limb, wet and dry sand,

and wet and dry asphalt. It exhibits the asymmetry, inter-

mittence and nonlinear arcing characteristics with the

magnitude of fault current of about 0–75 A in an grounded

system [1–4]. Normally, the over current relay fails to

detect the HIF in the system because of the lower current

magnitude, leading to the cascading failure of the system

and causing risk to the people and their properties [5]. A

mathematical model for designing the HIF model in the

form of nonlinear partial differential equation for studying

the effect of HIF in distribution system is presented in [6].

In addition, many works were carried out for designing the

HIF model [7]. Another approach of live tree-related HIF

model is suggested [8], to study the effect of environmental

conditions in real time and biological classification using

finite element method (FEM). A least square approach with
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advanced numerical techniques is used to locate the HIF in

the distribution system [9].

Linking with the previously published work, several

studies were carried out to discriminate and identify the

power system disturbances such as capacitor switching,

symmetrical, unsymmetrical HIF and another transient

phenomenon. Nevertheless, significant importance is given

to detect the HIF that occurs in the system by the utilities.

The conventional scheme of detection of single-phase HIF

in low-resistance grounded distribution network (LRGDN)

with the underlying perception of variation of composite

power angle and its magnitude, voltage–current charac-

teristics profiles during normal and fault condition is

studied [2, 10]. In some cases, the conventional numerical

methods fail to identify the HIF due to selection of

improper step size. It can be overcome by the powerful

signal processing techniques. Short-time Fourier transform

(STFT) based on lower-order harmonics represented by its

magnitude and phase was used to identify the HIF from

other system disturbances such as capacitor switching and

feeder energizing [11]. A mathematical morphology and

WT were used to extract the high-frequency component of

the three-phase current signal to locate the power system

faults from the other transients using the energy index

[1, 12]. The detection of HIF using DWT with the mother

wavelet of Daubechies wavelet db4 from the signal com-

prising of another non-fault transient event is presented in

[13, 14]. The continuous wavelet transform (CWT) to

extract the feature for learning the extreme learning

machine (ELM) type of neural network to identify the HIF

and current transformer saturation using the high-speed

communication techniques for the co-ordination of the

relay has also been worked out [15]. Moreover, WT and

other time–frequency analysis in combination with pattern

classifier, ANN and power line communication techniques

were used to locate the fault [16–18]. ANFIS is one of the

major trade-offs among ANNs and fuzzy logic systems,

offering smoothness due to the fuzzy control interpolation

and adaptability due to the ANN for classification problem

[19–23]. On the flipside, SVM-based intelligence classifier

is more efficient than neural network method because of its

classification with few samples and uses the raw data

without pre-processing [24–26].

Among the various feature extraction methods, wavelets

are gaining the popularity in many works [27–31] due to its

capability of reliable feature decomposition in frequency

and localization in time even in the presence of noise.

Therefore, in this work DWT analysis was used to extract

the features and the classifiers such as ANFIS and SVM

were used to detect the occurrence of HIF in the system and

to discriminate them from other transients.

The prime contribution of this paper is as follows:

HIF detection In this paper, the detection of HIF is carried

out by analysing the three-phase current signal of the

power system using DWT analysis to extract the features

such as SD for training the classifiers.

HIF identification In this step, the SD features drawn were

used to train the computational intelligence-based classi-

fiers with different possibilities of power system distur-

bances, also considering the time-varying fault resistance

to prove the effectiveness of the classifier.

The paper is organized as follows: Sect. 2 presents the

system model studied and proposed methodology to detect

the HIF in the system. Section 3 deals with the data

acquisition of current signal using DWT analysis to extract

the features for classification. Section 4 explains the vari-

ous computational intelligence-based classifiers such as

fuzzy, Bayes, MLP, ANFIS and SVM for classifying the

fault. Results and discussion is portrayed in Sect. 5.

Finally, the conclusion and future scope are made in the

last part of the paper.

2 System studied and methodology

In order to validate the proffered method of classifier

technique, it is necessary to accumulate the field data sig-

nals from the power system to train the classifier with

different operating conditions of the system. To obtain the

field data in real time for power system is quite expensive,

so a real-time medium-voltage (MV) distribution feeder

network in Spain [17] is considered for validating the

proposed classifiers simulated in MATLAB for obtaining

the fault current data under different possible disturbances.

2.1 Distribution network model

The MV feeder network configured in Spain consists of

substation transformer with 5 feeder lines. But in the pro-

posed work only 4-feeder network (F1, F2, F3 and F4) is

considered for the simulation assuming the power system

disturbances occur in each of the feeder as represented in

Fig. 1.

The system parameters are as follows: a generator with

voltage rating of 30 kV coupled with substation trans-

former with the turns ratio of 30/13.8 kV, 12 MVA rating.

Assuming that F1 is connected to the nonlinear load, F2

feeding the linear load in which HIF occurs and the bal-

anced and unbalanced fault occurs in the third feeder with

the normal condition in F4 and the model description is

discussed in [17].
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2.2 Proposed methodology to detect HIF

This section describes the steps for detection and identifi-

cation of HIF in the MV distribution power system as

portrayed in Fig. 2 and also discussed as follows.

Step 1 Pre-processing: Design the MATLAB/Simulink

model of MV network and apply the disturbances for

acquisition of fault current data.

Step 2 Feature extraction: The fault current signal is

sampled using db9 mother wavelet of DWT and

extracting the features, namely SD values, of all

decomposed signal to train the classifiers.

Step 3 Training phase: The data obtained (SD) from the

DWT under various power system disturbances were

used to train the computational intelligence-based

classifiers.

Step 4 HIF identification: The trained classifiers are

tested with different power system disturbances to

discriminate the HIF from other disturbances such as

three-phase fault, line-to-ground (LG), line-to-line (LL)

and double line-to-ground (LLG) fault. This process

continues for every cycle of operation of the system for

reliable operation and complete protection of the system.

3 Data acquisition using DWT analysis

Wavelet transform (WT) is a significant tool for decom-

posing the transient signal into several components and

represents in time–frequency domain rather than the time

domain [31, 32]. The fundamental idea behind this is to

analyse the signal by means of dilation and translation

process. In general, WT exists in two forms: CWT and

DWT, in which continuous signal f(t) has been defined as

given in Eq. (1)

CWT a; bð Þ ¼ 1
ffiffiffi

a
p

Z

1

�1

f tð Þ � h t � b

a

� �

dt

2

4

3

5 ð1Þ

where a and b are the scaling and translational parameters

and h is the mother wavelet function. The mother wavelet

is the prototype for generating wavelet function. CWT is an

alternative approach to overcome the problem of resolution

as in STFT. But, this method also has low redundancy

during reconstruction of signal compared to the DWT

method. Therefore, in this paper the DWT analysis was

used to extract the features for training the classifiers.

The DWT is a powerful signal processing information

tool which allows the signal to be sampled with localized

transients. In recent decades, such powerful advanced tool

has been used for operating the protective relays [27–31].

The time and frequency information can also be calculated

Fig. 1 Single-line diagram of radial distribution feeder
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using the following techniques such as fast Fourier trans-

form (FFT), STFT and CWT, but the DWT has been used

because of its fast computation speed and accuracy [4].

Thus, DWT is defined as Eq. (2)

DWT m; kð Þ ¼ 1
ffiffiffiffiffiffi

am0
p

X

n

f nð Þ � h k � nam0
am0

� �

" #

ð2Þ

where the parameter a0
m and na0

m are scaling and translation

constant, respectively, n and m are integer variables and

h is the wavelet function. Figure 3 shows the timescale

representation of digital signal achieved by digital filtering

techniques, and this representation is called subband

coding algorithm. The various decomposition levels of the

signal X(n) are shown below [14].

Steps for decomposing the signal are as follows:

Step 1 Decompose the original X(n) into levels, i.e.

denoising process.

Step 2 Choose the certain levels for reconstruction of

desired signal.

Step 3 Reconstruct the signal with selected levels.

Step 4 Specify the following parameters: sampling

frequency, window length, levels of decomposition and

mother wavelet.

The original signal is divided into low- g(n) and high-

frequency h(n) components by DWT, which are called

approximation and detailed coefficients. The decomposed

signal is further iterated with successive approximation, so

that the signal is broken down into many lower-resolution

components. This is called multi-resolution analysis

(MRA).

In this work, Daubechies 9 (db9) is selected as mother

wavelet for the detection of fault, because it is a better

frequency extractor compared to the Haar wavelet. It also

satisfies the Parsevall’s theorem due to orthogonality and

reduces the redundancy in the signal compared to Coiflet

and Meyer wavelets [40, 41].

The optimal decomposition of L levels is given by the

condition as represented in Eq. (3)

N ¼ 2L ð3Þ

where N is the length of decomposition level and L is the

level of decomposition. During the signal decomposition,

Fig. 2 Flow chart of the proposed method of fault classification

Fig. 3 DWT decomposition of signal
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at each level the signal has been divided into different

frequency bands as defined in Eq. (4)

B ¼ F

2Lþ1
ð4Þ

where B is the bandwidth of each level in Hz and F is the

sampling frequency in Hz.

The sampling frequency of 20 kHz is considered for

decomposing the signal into different levelswith 5000 points

in length and 800 samples for each phase of current signal.

The band frequencies captured for each level are varied and

calculated using Eq. (4) and are as follows: 5–2.5 kHz,

2.5–1.25 kHz, 1.25–0.625 kHz, 0.625–0.3125 kHz and

0.3125–0.15625 kHz are represented as detailed coefficient

of d1, d2, d3, d4 and d5, respectively, and the approximation

is made from detailed coefficient d5 [14]. Hence, the wavelet

analysis is performed for the proposedwork using themother

wavelet of db9 with detailed coefficients of 5 levels, for

different fault current signal recorded for each cycle.

3.1 Feature extraction

Standard deviation (SD) is calculated for feature extraction

to identify the type of fault. It is observed that some useful

information can be extracted from SD of approximation

signal (a5) with detailed coefficient level of d1 to d5 for

each phase. The SD values of current signal are calculated

for each phase under different fault conditions. The SD

values are obtained using Eq. (5) as shown below:

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n� 1

X

n

i¼1

xi � �xð Þ2
" #

v

u

u

t ð5Þ

where �x ¼ 1
n

Pn
i¼1 xi. x is the data vector, and n is the

number of elements in that data vector.

4 Computational intelligence-based
classifiers

This section describes the miscellaneous classifiers such as

fuzzy, Bayes, MLP, ANFIS and SVM classifier approach to

classify and discriminate the HIF from other faults that

occur in the distribution system. Here, the classes for

various faults are considered as C1—normal, C2—three-

phase fault, C3—LG fault, C4—LLG, C5—LL and C6—

HIF.

4.1 Fuzzy inference system (FIS)

FIS is a classical set theory employed in detection of HIF in

the system and has the flexibility in handling the data

during uncertainties. In few cases such as fault or other

disturbances in the system, the boundaries of the mem-

bership function may overlap and greatly reduce the

accuracy of the crisp classifiers. Therefore, the perfor-

mance of FIS is not appreciable in the case of classifier

problem involving noisy, imprecise or incomplete data

[32–34]. In this work, the features extracted (SD values)

from DWT analysis of each phase A, B and C are con-

sidered as SDA, SDB and SDC. Then, these values are

assigned as input with 4 input triangular membership

functions and fed into the Sugeno FIS engine to determine

the status of the system as described in Fig. 4. The

boundary values for the input membership functions are as

follows: 17–24 for normal, 25–35 for ground, 8–16 for HIF

and 27–47 for fault. The developed FIS model in

MATLAB is portrayed in Fig. 5 with its rules for classi-

fications represented in Fig. 6.

4.2 Multi-layer perceptron (MLP) network

Multi-layer perceptron network is the feed forward struc-

ture of ANN with fully connected nodes using weights. The

calculation of output at every node of the network is same

which is given by:

Neti ¼ Wio þ
X

j2pred ið Þ
Wijaj
� �

ð6Þ

where aj is the output of the previous layer neuron, Wij is

the weight connecting ith and jth neuron and Wio represents

the input bias of the neuron. The MLP is trained using the

back-propagation algorithm which calculates the error and

update the weight at each trial run [31, 35, 38].

4.3 Bayesian neural network

The Bayesian neural network (BNN) uses the principle

approach to deal with the complex network problem and

also determines the input variables which are relevant to

the output to be classified. This is done by proper predic-

tion of test cases through the probability produced by the

network with several set of parameters that are averaged

Fig. 4 Fuzzy inference system
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are called predicted probabilities P(C). This prior infor-

mation is used for training the network about the system

and then calculates the probability of occurrence of event

or fault in the system by comparing the likelihood proba-

bility, P(L) with the P(C). Let C denote the classes C1 to C6

of a likelihood of data set L. To predict the class of like-

lihood L = {X1, X2… Xn} by using the Bayes rule, the

highest probability is,

P CjX1;X2; . . .Xnð Þ ¼ P Cð ÞPðX1;X2; . . .XnjCÞ
P X1;X2; . . .Xnð Þ ð7Þ

The simplified form of the above equation is represented

as follows:

P CjLð Þ ¼ P Cð ÞPðLjCÞ
P Lð Þ ð8Þ

It is seen that from Eq. (7) the number of parameters in

the likelihood term PðX1;X2; . . .XnjCÞ; increases expo-

nentially with the number of attributes leading to the

computational burden of the classifier [36, 37].

4.4 Support vector machine (SVM)

SVM is a statistical theory-based popular intelligent soft

computing classifier to classify the data without pre-pro-

cessing the data. It is a nonlinear kernel-based classifier

which maps the data from the one space region to other

form, and this is done during training of data and also

assumes each fault or disturbance as a class labelled in

Sect. 4. During the testing phase, the classifier identifies

the type of fault by predicting the class label of the test

input data and detects the disturbance occurred in the

system. The examples of input and decision space are

shown in Figs. 7 and 8, respectively [24–26].

The hyperplane f(x) as shown in Fig. 7 which groups the

input data after training of classifier is depicted as:

f xð Þ ¼ sign
X

i2N
a�i yi � xi þ b�

 !

x 2
class I; if f xð Þ ¼ þ1

class II; if f xð Þ ¼ �1

�

ð9Þ

where x is the input data set for classification with N

samples, a�i is the optimal value of Lagrangian multiplier,

yi 2 þ 1;� 1f g which decides the class of input data

sample x and b� is the solution of weight vector as given in

[24].

A nonlinear kernel-based SVM is used which consists of

3 SVMs, namely SDA, SDB and SDC, to detect the fault

which occurs in three phases A, B and C, respectively.

Figure 9 shows the decision space vector of SVM for SDA

after training phase, and this is done using a kernel function

for mapping the data in higher-dimensional space. There-

fore, rewriting Eq. (9) using a kernel function results in

[38, 39]

Fig. 5 MATLAB model of Sugeno-based FIS
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f xð Þ ¼ sign
X

i2N
a�i yi � k xi; xNð Þ þ b�

 !

ð10Þ

where k xi; xNð Þ is the kernel function and is defined by

radial basis function (RBF) because of reliability than other

kernel function and is represented by [30].

k xi; xNð Þ ¼ exp � x� yk k2

2r2

 !

ð11Þ

The SVM detects the class as 1 if the fault occurs in the

respective phase during the testing phase, otherwise it gives

- 1. The multiple logics for SVM under different type of

fault of the system are represented in Table 1.

Fig. 6 Rule viewer to classify the fault for FIS system in MATLAB

Fig. 7 Support vector machine

Fig. 8 Input space of nonlinear separable classifier
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4.5 Adaptive neuro-fuzzy inference system

ANFIS is an intelligent adaptive data learning method in

which the fuzzy inference system is optimized via the ANN

training. It maps the input and output through the input and

output member function. From the input–output data,

ANFIS adjusts the membership function using least square

method or back-propagation descent method for linear and

nonlinear system. The Sugeno fuzzy model has been pro-

posed for creating the fuzzy rules from a given input–

output data set. A typical Sugeno fuzzy rule is expressed in

the following form [19–23]:

Rule 1 If (x1 is A1) and (x2 is B1), then

f1 = (u1x1 ? v1x2 ? r1)

Rule 2 If (x1 is A2) and (x2 is B2), then

f2 = (u2x1 ? v2x2 ? r2)

where the vector X = {x1, x2,… xm} is the input data to be

classified. Ai, Bi and Ci are the fuzzy sets with output fi
specified within the rule-based fuzzy system. ui, vi and ri
are design parameters which are obtained during the

training process. The architecture of ANFIS system con-

sists of 6 layers: They are the input layer, fuzzification

layer, rule layer, normalization layer, defuzzification layer

and output layer, respectively as given in Fig. 10.

Layer 1 is the input layer which passes the external crisp

signals to Layer 2 called fuzzification layer which has the

bell activation function and is defined by [19]:

lAi
xð Þ ¼ 1

1þ x�ci
ai

� 	2
� 
bi

ð12Þ

where ai, bi and ci are the design parameters of bell-shaped

membership function. Layer 3 is the rule layer; here each

neuron corresponds to a single Sugeno-type fuzzy rule. The

neuron gets inputs from the corresponding fuzzification

neurons and calculates the firing strength of the rule. In

ANFIS, the conjunction of the rule antecedents is evaluated

by the operator product. Thus, the output of neuron ‘i’ in

Layer 3 is obtained in terms of membership function (l)
using Eq. (12).

y3i ¼ wi ¼ lAi
xið ÞlBi

xj
� �

ð13Þ

Layer 4 is the normalization layer. Individual neuron in

this layer obtains inputs from all neurons in the Layer 3 and

calculates the normalized firing strength of a given rule as

the ratio of the firing strength of a specified rule to the sum

of firing strengths of all rules. It signifies the influence of a

given rule to the final result. Thus, the output of neuron ‘i’

in Layer 4 is determined as given by Eq. (14).

y4i ¼ �wi ¼
wi

w1 þ w2

; i 2 1; 2 ð14Þ

Layer 5 is the defuzzification layer. Respective neuron

in this layer is linked to the individual normalization

neuron and also receives initial inputs x1 and x2. A

defuzzification neuron calculates the weighted consequent

value of a given rule as given in Eq. (15)

y5i ¼ �wifi ¼ �wi uix1 þ vix2 þ rið Þ; i 2 1; 2 ð15Þ

where xi is the input and yi is the output of defuzzification

neuron in Layer 5, ui, vi and ri are set of consequent

parameters of rule ‘i’ and Layer 6 is represented by a single

summation neuron. This neuron calculates the sum of

outputs of all defuzzification neurons and produces the

overall ANFIS output ‘y’ which is given by Eq. (16).

Fig. 9 Decision space of nonlinear separable classifier

Table 1 Multiple SVM logic for fault classification

Classes C1 C2 C3 C4 C5 C6 Fault type

C1 1 - 1 - 1 - 1 - 1 - 1 Normal

C2 - 1 1 - 1 - 1 - 1 - 1 Three-phase

C3 - 1 - 1 1 - 1 - 1 - 1 LG

C4 - 1 - 1 - 1 1 - 1 - 1 LLG

C5 - 1 - 1 - 1 - 1 1 - 1 LL

C6 - 1 - 1 - 1 - 1 - 1 1 HIF

Fig. 10 ANFIS structure
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y6i ¼
X

2

i¼1

�wifi ¼
P2

i¼1 wifi

w1 þ w2

ð16Þ

The SD values obtained for different conditions of the

system using DWT analysis are fed as input to the ANFIS

model with its output representing the type of fault

occurred in the system. To achieve this, the training for

input data set is done using the MATLAB ANFIS by uti-

lizing the mathematical properties of ANN in tuning the

rule-based fuzzy system and that exploits the best qualities

of these two approaches efficiently. Thus, the ANFIS sys-

tem possesses the following advantages than fuzzy

approach [38, 39]:

• Revising the IF–THEN rules to describe the character-

istics of complex system.

• Knowledge of human expertise for training is not

required as like that of FI approach.

• Have better choice of membership function (MFs) to

use.

• Faster convergence speed than fuzzy approach.

• Adaptive through mathematical learning gives accurate

and efficient results.

The network is trained for the input–output data set with

MATLAB ANFIS editor, which adjusts the MFs directly

based on the data set. Here for each phase of input, SDA,

SDB and SDC are assumed with 4 triangular membership

functions and the output being constant for Sugeno model

ANFIS. Fourteen rules were framed with 45 input–output

data sets for training the ANFIS model. The trained con-

stant output assumed for various cases of the system is as

follows: 0—no fault, 0.2—HIF in phase C, 0.3—HIF in

phase B, 0.4—HIF in phase C, 0.5—LLLG, 0.6—AG,

0.7—BG, 0.8—CG, 0.9—AB, 1—BC, 1.1—CA, 1.2—

ABG, 1.3—BCG and 1.4—CAG. The output model of

ANFIS structure developed in MATLAB/Simulink is

shown in Fig. 11, which represents that 0.2 indicates the

HIF in phase C of the system.

4.6 Performance indices for classifiers

4.6.1 Kappa statistic

It is the statistical measure of classifiers that calculate the

consistency among the predicted and observed data sets

and is defined as follows:

K ¼ P OFð Þ � P EFð Þ
1� P EFð Þð Þ ð17Þ

where P(OF) is the probability of observed fault in the

system and P(EF) is the probability of expected type of

fault by chance that occurs in the system. Its value ranges

from 0 to 1. If the classifier is excellent, then the kappa

statistics is 1; if it is between 0.4 and 0.75, then it is good;

and if it is less than 0.4, then the performance is poor

[21, 38, 39]. This measurement is important to calculate the

overall accuracy of the classifier.

4.6.2 Mean absolute error (MAE) and root mean square
error (RMSE)

MAE is the absolute average measure of error between the

predicted and observed value of the classifier, and it is

depicted as follows [21, 38, 39]:

MAE ¼
Pn

i¼1 EP � EOð Þ
�

�

�

�

n
ð18Þ

RMSE is the square root of average measure of variance

between the predicted and observed fault by the classifiers

and is given by:

Fig. 11 ANFIS results for distribution network
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 EP � EOð Þ2

n

s

ð19Þ

where EP is the predicted value of classifier and EO is the

observed value of the classifiers over ‘n’ data sample.

5 Results and discussion

This section presents the simulation of proposed approach

for detection and identification of HIF in MV distribution

network. To validate the performance of the proffered

method, the simulation is carried out using MATLAB/

Simulink for the distribution model portrayed in Fig. 1. The

time-varying current signal for the normal condition of fee-

der for the time period of 0.25 s is captured and is represented

in Fig. 12. Moreover, the various faults that occur in the

power system were also simulated in addition with the study

of HIF to prove the effectiveness of the proposed method.

The three-phase current waveform observed for the period of

0.02–0.08 s in case of HIF fault and single line to ground

(LG) is shown in Figs. 13 and 14, respectively. Figure 15

shows that the fault current magnitude in case of HIF fault in

phase C of three-phase system is low as like the normal phase

current signal. But the amplitude of current signal in case of

LG fault in phase A of three-phase system is very high as
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Fig. 13 Three-phase current

waveform for HIF at phase C

Fig. 14 Three-phase current

waveform for LG fault at phase

A

Fig. 15 High-impedance fault

current waveform
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shown in Fig. 14, and because of this, the detection of HIF in

power system is a major challenge till date as compared to

other conventional type of fault that occurs in the system. To

overcome these difficulties in real time, DWT analysis was

used to extract the features as it decomposes the signal both

in time and in frequency domain.

The DWT analysis of each phase current signal which is

sampled for ever cycle with 800 numbers of samples is

Table 2 Fault detection in case of varying fault resistance by different intelligence classifiers

Class Fault type Fault resistance (Rf) (X) Feature extraction Classifiers output

SDA SDB SDC Fuzzy Bayes MLP ANFIS SVM

Normal Normal 0.01 20.33 21.22 23 4 4 4 4 4

Three-phase fault ABCG 20 40.33 41.54 46 4 4 4 4 4

ABCG 40 31.38 33 35.98 4 4 4 4 4

ABCG 60 28 27.74 27 4 4 4 4 4

LG AG 20 40.33 23 22.64 4 4 4 4 4

AG 40 35 21 20.06 4 4 4 4 4

AG 60 29.98 19 20 4 4 4 4 4

BG 20 21 47 20.06 4 4 4 4 4

BG 40 18 37 18.63 4 4 4 4 4

BG 60 19.73 30 22 4 4 4 4 4

CG 20 18.6 23 47 4 4 4 4 4

CG 40 19.18 22 34.98 4 4 4 4 4

CG 60 21 20.87 29.61 4 4 4 4 4

LLG fault ABG 20 30 34.5 23 4 4 4 4 4

ABG 40 29 30 22.45 4 4 4 4 4

ABG 60 28.42 28.88 21 4 4 4 4 4

BCG 20 20.03 34.76 34 4 4 4 4 4

BCG 40 20 32 31 4 4 4 4 4

BCG 60 19.55 27 29 4 4 4 4 4

ACG 20 34.45 23.33 35.1 4 4 4 4 4

ACG 40 32 22.3 31 4 4 4 4 4

ACG 60 29 20 28 4 4 4 4 4

LL fault AB 20 45.55 46.7 21 4 4 4 4 4

AB 40 40 37 20.1 4 4 4 4 4

AB 60 34 32 23 7 4 4 4 4

BC 20 21 45 44 4 4 4 4 4

BC 40 20.45 36 37 4 4 4 4 4

BC 60 24 32 29.24 7 4 4 4 4

AC 20 45 23 46.9 4 4 4 4 4

AC 40 35.55 22.1 36 4 4 4 4 4

AC 60 32 21 29 7 4 4 4 4

HIF fault HIF A 20 8 21 22.2 4 4 4 4 4

HIF A 40 11 20.09 23.4 4 4 4 4 4

HIF A 60 14.5 19 24 7 4 4 4 4

HIF B 20 21 9 20.01 4 4 4 4 4

HIF B 40 20.09 12.4 23.05 4 4 4 4 4

HIF B 60 19 14 22 7 4 4 4 4

HIF C 20 18.76 21 8.13 4 4 4 4 4

HIF C 40 19.61 20.19 12.09 4 4 4 4 4

HIF C 60 20.08 19.89 15.5 7 4 4 4 4

‘7’ represents misclassified, and ‘4’ represents accurately classified results
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performed with five decomposition levels. Each level

represents with different bands of frequencies as discussed

in Sect. 3. The approximate coefficient obtained for the

final decomposed level (d5) and the various detailed

coefficient levels d1, d2, d3, d4 and d5 are used for cal-

culating SD values as shown in Table 2. The DWT analysis

of each phase A, B and C of the system under normal case

is portrayed in Figs. 16, 17 and 18, respectively. In addi-

tion, the DWT analysis for the faulty phase during the

occurrence of HIF in phase C in one of the feeder and the

occurrence of LG fault in phase A on another feeder net-

work is also represented in Figs. 19 and 20, respectively,

for better understanding of the proposed method. Similarly,

the DWT analysis for other faults such as LL, LLG and

three-phase fault for varying fault resistance is done and

the extracted SD features for training the classifiers to

detect the HIF in the system are given in Table 2.

The performance indices such as MAE, RMSE and

kappa statistic of the proposed ANFIS and SVM method of

classifiers are compared with the fuzzy, MLP and Bayes

classifier approach. Figures 21 and 22 represent that the

proposed classifiers performance is significantly improved

compared to the conventional classifiers and the results are

illustrated in Tables 2 and 3. It is observed that the kappa

Fig. 16 DWT analysis of phase A under normal case

Fig. 17 DWT analysis of phase B under normal case
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statistics is 1 for all the classifier approaches than fuzzy

method due to human error introduced during the selection

of ranges for membership functions. On the other hand, all

the neural-based and SVM classifiers are learned mathe-

matically and there is no possibility of human error. Thus,

the performance of ANFIS and SVM method is substan-

tially predominant than any other method as depicted in

Fig. 22.

In addition with evaluation indices, the other perfor-

mance indices are also tested further to validate the

effectiveness of the proposed classifiers for classification of

fault and are defined as below:

Success rate ¼ Number of HIF detected

Total number of HIF events
� 100% ð20Þ

Discrimination rate

¼ 1�Number of events in correctly diagnosed

Total number of events

� 


� 100%

ð21Þ

Figure 21 shows the success and discrimination rate of

all the classifier methods are 100% except the fuzzy-based

approach which is 66.67% and 85%, respectively, and is

presented in Table 3.

6 Comparison of literature work

The comparative performance of accuracy for various

classifiers to identify different types of fault in the system

by proffered method is made with all other existing

Fig. 18 DWT analysis of phase C under normal case

Fig. 19 DWT waveform of HIF fault at phase C

Neural Computing and Applications (2019) 31:9127–9143 9139

123



methods and presented in Table 4. The result reveals that

all the intelligence-based classifier requires the training of

data obtained from the signal processing techniques and

their accuracy lies in the range of 70–100% for detection of

either conventional fault (LG, LL, LLG and three-phase

fault) [42–51] or HIF [12, 13, 15, 34, 52]. Nevertheless,

these works fail to identify conventional and HIF faults in

the system, whereas the proposed work considers both

faults. Moreover, to test the effectiveness of the proposed

classifiers the performance evaluation indices such as

kappa statistics, MAE and RMSE are evaluated. However,

the literature work portrayed in Table 4 fails to evaluate

these performance indices that demonstrate the robustness

of the classifier in addition with the accuracy of classifi-

cation. It can be concluded that from the results given in

Tables 2 and 3 the proposed ANFIS and SVM classifier

performance is substantially predominant for identifying

various types of fault in the system.

7 Conclusion

In this paper, the detection and identification of HIF in MV

distribution power system network is presented using

computational intelligence-based classifiers such as fuzzy,

MLP, Bayes, ANFIS and SVM. The distribution feeder

network of 13.8 kV is simulated using MATLAB/Simu-

link, and various power system disturbances such as HIF,

LG, LL, LLG and three-phase fault are studied with time-

varying fault resistance for testing the effectiveness of the

proposed classifiers. The DWT analysis of three-phase

current signal using a mother wavelet of db9 with detailed

coefficient of 5 levels is done to extract the SD features for

various types of fault. The features obtained were used to

train the computational intelligence-based classifiers to

identify the HIF in the system. The results showed that the

performance of ANFIS and SVM classifiers is superior in

terms of success rate, discrimination rate, MAE, RMSE

and kappa statistics. Furthermore, it is observed that the

Fig. 20 DWT waveform of LG fault at phase A

Fig. 21 Accuracy and effectiveness of different intelligence

classifiers

Fig. 22 Comparison of MAE, RMSE and kappa statistic of various

intelligence classifiers
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SVM-based intelligence classifier performance is remark-

able than other classifiers. Nonetheless, a more depth

analysis on identification of HIF in the distribution network

comprising of renewable energy resources will be the

future goal of research integrating the field of data mining

and internet of things (IoT) for rapid recovery of system

from fault conditions.
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