
ORIGINAL ARTICLE

Multi-objective multi-item fixed-charge solid transportation problem
under twofold uncertainty

Sankar Kumar Roy1 • Sudipta Midya1 • Gerhard-Wilhelm Weber2

Received: 20 July 2017 / Accepted: 7 August 2019 / Published online: 17 August 2019
� Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
In this paper, we investigate a multi-objective multi-item fixed-charge solid transportation problem (MOMIFCSTP) with

fuzzy-rough variables as coefficients of the objective functions and of the constraints. The main focus of the paper is to

analyze MOMIFCSTP under a fuzzy-rough environment for a transporting system. In practical situations, the parameters of

a MOMIFCSTP are imprecise in nature, due to several uncontrollable factors. For these reasons, we introduce the fuzzy-

rough variables in MOMIFCSTP to tackle vague data which are different from fuzziness and roughness. Fuzzy-rough

expected-value operator is employed to convert fuzzy-rough MOMIFCSTP into deterministic MOMIFCSTP. Thereafter,

we develop a methodology to solve the deterministic MOMIFCSTP by technique for order preference by similarity to ideal

solution (TOPSIS). Three distinct approaches, namely extended TOPSIS, weighted goal programming (WGP) and fuzzy

programming, are used to derive Pareto-optimal solution from the suggested model. A comparison is drawn among the

optimal solutions which are derived from different approaches. It is observed from the extracted results that TOPSIS

provides a better optimal solution than WGP and fuzzy programming. TOPSIS also overcomes some difficulties which

arise in WGP. Finally, a real-world (industrial) problem is incorporated to show the applicability and feasibility of the

proposed problem.

Keywords Fixed-charge solid transportation problem � Multi-objective programming � Fuzzy-rough variable �
Twofold uncertainty � TOPSIS � Fuzzy programming � Weighted goal programming

1 Introduction

In the classical transportation problem (TP), it is generally

computed the minimum cost to transport a certain type of

commodity from a set of source points to a set of desti-

nation points. Generally, TP deals with two types of con-

straints, namely supply constraint and demand constraint.

Solid transportation problem (STP) is an extended version

of the classical TP. STP mainly deals with three types of

constraint, namely supply constraint, demand constraint

and conveyance constraint. The third constraint (i.e., con-

veyance constraint) is involved due to different trans-

portation modes to ship the product from sources to

destinations. In STP, three constraints are taken into

account as three-dimensional aspects; based on this fact it

is called three-dimensional STP. It was first introduced by

Haley [1].

A special structure of the classical TP is fixed-charge

transportation problem (FCTP). In FCTP, a fixed cost is

associated with each route if the route is opened and a

transportation cost per unit commodity is to be shipped.

The fixed-charge solid transportation problem (FCSTP) is a

modified version of STP. In FCSTP, fixed cost is incurred

in the origin for each route from source to destination by a

specified transportation mode.
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One of the important roles of the economy of FCSTP is

the determination of the efficient distributions of the pro-

duct from the factories to the destinations by different

transportation modes. In such an industrial problem, gen-

erally two or more commodities are produced at plants of a

company and those products are transported to different

destinations through various transportation modes. Due to

that reason, the three-dimensional STP is extended to a

multi-item fixed-charge solid transportation problem

(MIFCSTP).

In an industrial problem, two or multi-criteria are more

relevant rather than one criterion. To accommodate these

criteria, several objective functions are treated simultane-

ously in the STP. For example, the objective functions to

be minimized may be the total (shipping and fixed) cost,

packing cost of goods, the transporting time, the deterio-

ration rate of goods during transportation, under-used

capacity of goods, etc. To tackle the problem for many

real-world situations, we consider multi-objective multi-

item FCSTP (MOMIFCSTP) in our proposed work.

In practical situations, the parameters in a STP or an

FCSTP are uncertain in nature due to various aspects such

as insufficient input information, fluctuation of financial

market, weather condition, bad statistical analysis and

other uncontrollable factors. To tackle uncertainty in real-

life transporting systems, researchers have studied STP and

FCSTP in several uncertain environments, such as

stochastic, interval, fuzzy, rough, etc. But some of the

cases arise in an industrial transporting systems where an

uncertain environment is not adequate to tackle the situa-

tion. Based on this fact, the parameters of the formulated

model are treated as fuzzy-rough variables.

Literature survey reveals that a large number of papers

has been published on STP and FCSTP. But until now, no

one did consider the fuzzy-rough variable approach with

multi-item concept in MOSTP and MOFCSTP. So, in our

proposed model, we incorporate the MOMIFCSTP that

may include all possible criteria of an industrial problem.

The main contributions of our proposed work are sum-

marized as follows:

• Fuzzy-rough MOMIFCSTP model is developed.

• Fuzzy-rough MOMIFCSTP is converted into a deter-

ministic form by using the expected-valued operator.

• Deterministic MOMIFCSTP is solved using three

different approaches.

• TOPSIS approach is extended to analyze

MOMIFCSTP.

• To resolve MOMIFCSTP by TOPSIS, we decompose

the proposed MOMIFCSTP into two subproblems. The

optimal solutions of these subproblems provide the

optimal solution of MOMIFCSTP.

To the best of our knowledge, the proposed work is the first

contribution to solve MOMIFCSTP under a fuzzy-rough

environment.

The remainder of the paper is organized as follows. A

related literature review is discussed in Sect. 2. Motivation

of this study is presented in Sect. 3. In Sect. 4, basic

knowledge of rough set, fuzzy number and fuzzy-rough

variables is depicted. Notations and assumptions are

described in Sect. 5. In Sect. 6, MOMIFCSTP and the

deterministic model of MOMIFCSTP are provided. In

Sect. 7, the solution procedure for multi-objective FCSTP

is stated. In Sect. 8, an application example on

MOMIFCSTP is included, and results and discussion are

reflected in Sect. 9. Finally, concluding remarks with

future research directions are given in Sect. 10.

2 Related literature review

FCTP was first initiated by Hirsch and Dantzig [2].

Thereafter, various developments and modifications on

FCTP have been made. In recent years, numerous research

papers have been published on multi-objective FCTP and

TP by several researchers. For instance, Midya and Roy [3]

presented a single-sink fixed-charge multi-objective multi-

index stochastic transportation problem and solved the

model by a fuzzy programming technique. Upmanyu and

Saxena [4] solved a multi-objective fixed-charge problem

with imprecise fractional objective functions. Maity et al.

[5] studied a multi-objective transportation problem under

stochastic environments. Roy et al. [6] investigated a multi-

objective two-stage gray transportation problem using a

utility function with goals. Li and Lai [7] solved a multi-

objective TP by fuzzy programming. Midya and Roy [8]

analyzed interval programming in different environments

and its application to fixed-charge transportation problem.

Roy et al. [9] introduced conic scalarization approach to

solve a multi-objective transportation problem with inter-

val goal under multi-choice environment.

Furthermore, Effati et al. [10] discussed a new fuzzy

neural network model for solving fuzzy linear program-

ming problems with applications. Roy et al. [11] presented

a new approach for solving intuitionistic fuzzy multi-ob-

jective transportation problem. Roy and Maity [12] studied

a minimizing cost and time through a single objective

function in multi-choice interval-valued transportation

problem. Maity et al. [13] introduced a new approach for

solving dual hesitant fuzzy transportation problem with

restrictions. Recently, Moghaddam et al. [14] analyzed the

fixed-charge transportation problem in a fuzzy environ-

ment using a metaheuristics technique. Roy et al. [15]

studied a multi-objective fixed-charge transportation

problem under rough and random rough environments.
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Uncertainty in TP as well as in STP is a common phe-

nomenon. To tackle uncertainty in STP, many researchers

have studied STP and FCSTP in several uncertain envi-

ronments. A few of them are described as follows.

Yang and Feng [16] solved a bi-criteria STP with fixed

charge under stochastic environment. Kundu et al. [17]

studied a multi-objective multi-item STP in a fuzzy envi-

ronment. Roy and Mahapatra [18] proposed and solved a

solid transportation problem with multi-choice cost and

stochastic supply and demand. Zhang et al. [19] proposed

an algorithm to solve a fixed-charge solid transportation

problem in an uncertain environment. Jimenez and

Verdegay [20] solved STP under two types of uncertain

environments, which are interval-number valued and

fuzzy-number valued, respectively, and they solved a fuzzy

STP by a parametric approach [21]. Zavardehi et al. [22]

presented a fuzzy fixed-charge solid transportation problem

and solved it by metaheuristics. Tao and Xu [23] proposed

and solved a class of rough multiple-objective program-

ming and its application to STP. Later on, Gupta et al. [24]

studied a fully fuzzy fixed-charge multi-item solid trans-

portation problem. Recently, Roy and Midya [25] solved a

multi-objective fixed-charge solid transportation problem

with product blending under intuitionistic fuzzy

environment.

Furthermore, Xu and Zhao [26] presented a class of

fuzzy-rough expected-value multi-objective decision-

making model and its application to inventory problems.

Xu and Yao [27] investigated a class of expected-value

multi-objective programming problem with random rough

coefficients. Ebrahimnejad [28] proposed a new method for

solving a fuzzy transportation problem with LR flat fuzzy

numbers. Atteya [29] introduced a rough multiple-objec-

tive programming problem and solved it.

Generally, TOPSIS is used to convert a given multi-

objective optimization problem into a bi-objective prob-

lem. Abo-Sinna et al. [30] applied TOPSIS method to solve

multi-objective large-scale nonlinear programming prob-

lems with a block-angular structure. Later on, Li [31]

developed a TOPSIS-based nonlinear programming

methodology for multi-attribute decision-making prob-

lems. Damghani et al. [32] solved multi-period project

selection problems with fuzzy goal programming, based on

TOPSIS. A summary of some recent literature connected

with TP is given in Table 1.

3 Motivation for this study

Though many investigations have been done on STP and

FCSTP under an uncertain environment, yet there are some

real-world situations which occur in an industrial problem

where a single uncertain environment is not enough to

tackle the situation. Under these circumstances, we con-

sider a twofold uncertain environment in our proposed

model. An example is provided to describe the situation

subsequently.

A seasonal disease such as cold–cough is widespread in

the summer and the rainy season and less in other seasons,

i.e., demand of medicine for the disease cold–cough is

seasonal. When we predict the demand of the medicine in a

period, we may use a fuzzy variable to estimate it. For

example, we address a middle value c, a left spread cL and

a right spread cR of the fuzzy variable. Further, the middle

value c is usually not a crisp number, due to an integrated

logistic network within the period. Definitely, we consider

the demand of such medicine to cover the whole season.

Therefore, it is appropriate to use a rough variable to

describe the middle value c. In fact, we assume a twofold

uncertain environment [36]. In this case, fuzziness and

roughness appear simultaneously. Furthermore, if we col-

lect the statistical data of previous years on a certain

parameter from a large data set, generally all the points are

not equally possible. Fuzzy-rough set is approximated for

such a type of linguistic information. On the other hand, in

real life a STP occurs where the decision maker (DM) has

no deterministic information about data, and then the

parameters in the STP are estimated values. For this phe-

nomenon, the feasible region of the STP will be change-

able. Using rough set approximations, the feasible region

of the STP makes the decision-making process more flex-

ible. Thus, a fuzzy-rough multi-objective environment in

STP has a realistic background, which is the main moti-

vation of our investigated problem. So, we propose a

fuzzy-rough variable in our formulated MOMIFCSTP

model to describe the demand of medicine of seasonal

diseases and other parameters associated with the proposed

model.

4 Preliminaries

In this section, we describe the basic definitions of rough

set and fuzzy set. Besides, we present several useful defi-

nitions and theorems in connection with a fuzzy-rough

variable.

Definition 4.1 [37] Let K be a nonempty set, A be a r-
algebra of subsets of K, D be an element in A, and p be a

nonnegative, real-valued and additive set function. Then,

ðK;D;A; pÞ is called a rough space.

Trust theory is the foundation for rough programming as

the possibility theory for fuzzy programming. Liu [37]

combined the trust measure both the probability measure

and the possibility measure to describe twofold uncertain
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events, such as random rough variable and fuzzy-rough

variable.

4.1 Rough sets and their approximations

We consider a set of objects U which is called the ‘‘uni-

verse,’’ and an indiscernibility relation, R � U � U; is also

treated, representing our lack of knowledge about the ele-

ments of U. For the sake of simplicity, we consider that R is

an equivalence relation. Let X be a subset of U. We want to

characterize the set X with respect to R. The fundamental

concepts of rough set theory are presented as follows:

• The lower approximation of a set X with respect to R is

the set of all objects, which can be certainly classified

as X with respect to R (are certainly X with respect to

R).

• The upper approximation of a set X with respect to R is

the set of all objects that can be possibly classified as

X with respect to R (are possibly X in view of R).

• The boundary region of a set X with respect to R is the

set of all objects, which can be classified neither as

X nor as not-X with respect to R.

Definition 4.2 [38] The set X is called crisp (exact with

respect to R), if the boundary region of X is empty. The set

X is called rough (inexact with respect to R), if the

boundary region of X is nonempty.

The equivalence class of R is determined by anyone of

its elements x and is denoted by R(x). The indiscernibility

relation in a certain sense describes our lack of knowledge

about the universe. Equivalence classes of indiscernibility

relation, called granules, are generated by R, and they

represent an elementary portion of knowledge.

Definition 4.3 [39] The lower approximation of X with

respect to R is denoted by RðXÞ and is defined as follows:

RðXÞ :¼
[

x2U
fRðxÞ : RðxÞ � Xg:

The upper approximation of X with respect R is denoted

by RðXÞ and is described as stated below:

RðXÞ :¼
[

x2U
fRðxÞ : RðxÞ \ X 6¼ /g:

The boundary region of X with respect R is denoted by

BNRðXÞ and is depicted as follows:

BNRðXÞ :¼ RðXÞ � RðXÞ:

The diagrammatic representation of rough set is shown

in Fig. 1.

Table 1 Summary of related literature for TP

References Nature of problem Additional function Environments No. of items No. of objectives

Jimenez and Verdegay [20] STP – Interval and fuzzy Single Single

Yang and Feng [16] STP – Stochastic Single Bi

Tao and Xu [23] STP – Rough Single Multi

Zavardehi et al. [22] STP Fixed-charge Fuzzy Single Single

Kundu et al. [17] STP – Fuzzy Multi Multi

Roy and Mahapatra [18] STP – Stochastic Single Single

Gupta et al. [24] STP – Fuzzy Multi Single

Aggarwal and Gupta [33] STP – Intuitionistic fuzzy Single Single

Zhang et al. [19] STP Fixed-charge Uncertain Single Single

Rani and Gulati [34] STP – Fuzzy Multi Multi

Midya and Roy [8] TP Fixed-charge Interval and rough Single Single

Roy et al. [6] TP – Gray number Single Multi

Roy et al. [15] TP Fixed-charge Random rough Single Multi

Maity et al. [13] TP – Hesitant fuzzy Single Single

Moghaddam et al. [14] TP Fixed-charge Fuzzy Single Single

Singh et al. [35] STP – Stochastic Single Multi

Roy and Midya [25] STP Fixed-charge Intuitionistic fuzzy Single Multi

Proposed model STP Fixed-charge Fuzzy-rough Multi Multi
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4.2 Arithmetics of rough intervals

The arithmetic operations on rough intervals (RIs) are

similar to arithmetic operations of crisp intervals. The

arithmetic of RIs [40] is expressed as follows:

Let RI ¼ ð½RI1;RI1�; ½RI2;RI2�Þ and RI0 ¼
ð½RI01;RI

0
1�; ½RI02;RI

0
2�Þ be two rough intervals, o 2

fþ;�;�; =g be a binary operation on the set of crisp

intervals. Then, the rough interval arithmetic operations are

defined by RIoRI 0 :¼ ð½RIoRI0�; ½RIoRI0�Þ ðo 2 fþ;�;�gÞ,
where RIoRI0 is also a rough interval.

Addition RI þ RI0 :¼ ð½RI þ RI0�; ½RI þ RI
0�Þ.

Other arithmetic operations such as subtraction and

multiplication on rough intervals are defined similarly

as addition.

Division RI=RI0 :¼
��
RI1=RI

0
1;RI1=RI

0
1

�
;
�
RI2=RI

0
2;RI2=

RI02
��

if 0 62 ½RI02;RI
0
2�.

4.3 Fuzzy numbers

Definition 4.4 [41] A fuzzy set ~A defined on the set of real

numbers, R; is said to be a fuzzy number, if its membership

function l ~A : R ! ½0; 1� has the following characteristics:

1. l ~A is convex, i.e., l ~Afð1� kÞx1 þ kx2g ¼ minfl ~Aðx1Þ;
l ~Aðx2Þg8 x1; x2 2 R; 0� k� 1:

2. l ~A is normal, i.e., there is an x 2 R such that

l ~AðxÞ ¼ 1:

3. l ~A is piecewise continuous.

4.4 Trapezoidal fuzzy numbers

Definition 4.5 [41] Trapezoidal fuzzy number is a fuzzy

number represented by a quadruple ~A ¼ ða1; a2; a3; a4Þ:
This quadruple is interpreted as a membership function and

satisfies the following conditions:

1. The line segment over the interval from a1 to a2 is an

increasing function.

2. The line segment over the interval from a2 to a3 is a

constant function.

3. The line segment over the interval from a3 to a4 is a

decreasing function, and

4. a1\a2 � a3\a4:

The membership function of ~A is denoted as l ~AðxÞ (as

shown in Fig. 2) and defined by:

l ~AðxÞ ¼

0; for x\ a1;
x� a1

a2 � a1
; for a1 � x � a2;

1; for a2 � x � a3;
a4 � x

a4 � a3
; for a3 � x � a4;

0; for x[ a4:

8
>>>>>>>><

>>>>>>>>:

4.5 Fuzzy-rough variables

Definition 4.6 [37] A fuzzy-rough variable is a function n
from a rough space ðK;D;A; pÞ to a collection of fuzzy

variables such that for any Borel set B of R , the function

n�ðBÞðkÞ ¼ PosfnðkÞ 2 Bg

is a measurable mapping of k, where the abbreviation Pos

represents possibility [37].

Example 4.1 Let n ¼ ðq� 2; q� 1; qþ 1; qþ 2Þ with

q ¼ ð½a; b�; ½c; d�Þ; 0� c� a\b� d, where the quadruple

denotes a trapezoidal fuzzy number and q is a rough

variable; then, n is a fuzzy-rough variable.

For convenience, a fuzzy-rough variable n ¼
ðq� 2; q� 1; qþ 1; qþ 2Þ; with q ¼ ð½a; b�; ½c; d�Þ; is

symbolically denoted by q ‘ ð½a; b�; ½c; d�Þ:

Definition 4.7 [37] Let n be a fuzzy-rough variable,

defined on the rough space ðK;D;A; pÞ. Then, its expected
value is defined as follows:

E½n� :¼
Z 1

0

Trfk 2 K : E½nðkÞ� 	 rgdr

�
Z 0

�1
Trfk 2 K : E½nðkÞ� � rgdr;

Fig. 1 Diagrammatic representation of rough set

Fig. 2 Graph of a trapezoidal fuzzy number
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provided that at least one of the integrals exist, where E is

the expected-value operator and the abbreviation Tr rep-

resents the trust measure [37].

Theorem 4.1 [37] Let n and f be the fuzzy-rough vari-

ables with finite expected values. Then, for any real num-

bers a and b, we have

E½anþ bf� ¼ aE½n� þ bE½f�:

Proposition 4.1 [42] Let n be a trapezoidal fuzzy-rough

variable n ¼ ð�r1; �r2; �r3; �r4Þ; where �r1; �r2; �r3 and �r4 are

rough variables (i.e., rough intervals) defined on a rough

space ðK;D;A; pÞ, and we have

�r1 ¼ ð½m2;m3�; ½m1;m4�Þ; m1 �m2\m3 �m4;

�r2 ¼ ð½n2; n3�; ½n1; n4�Þ; n1 � n2\n3 � n4;

�r3 ¼ ð½s2; s3�; ½s1; s4�Þ; s1 � s2\s3 � s4;

�r4 ¼ ð½t2; t3�; ½t1; t4�Þ; t1 � t2\t3 � t4:

Then, the expected value of n is given by:

E½n� ¼ 1

16

X4

i¼1

ðmi þ ni þ si þ tiÞ:

Theorem 4.2 [42] If ~�cijk are a trapezoidal fuzzy-rough

variable, defined as: ~�cijkðjÞ ¼ ð�cijk1; �cijk2; �cijk3; �cijk4Þ with

�cijks ‘ ð½�cijks2; �cijks3�; ½�cijks1; �cijks4�Þ; for i ¼ 1; 2; . . .;m; j ¼
1; 2; . . .; n; k ¼ 1; 2; . . .; p; s ¼ 1; 2; 3; 4; where cijks1 �
cijks2\cijks3 � cijks4, then

E½~�cijk� ¼
1

16

X4

s¼1

X4

v¼1

cijksv 8 i; j; k:

5 Notations and assumptions

The following notations and assumptions are considered to

design the paper.

Notations

m number of sources,

n number of destinations,

p number of conveyances (i.e., different

transportation modes),

h number of items,

xlijk unit amount of the product to be transported from

the ith source to the jth destination by the kth

conveyance for the lth item,

gðxlijkÞ binary variable takes the value ‘‘1’’ if the source

i is used, and ‘‘0’’ otherwise,

~�clijk fuzzy-rough transportation (variable) cost for

unit quantity of the product from the ith source to

the jth destination by the kth conveyance for the

lth item,

~�f
l

ijk
fuzzy-rough fixed cost associated with the ith

source to the jth destination by the kth

conveyance for the lth item,
~�tlijk fuzzy-rough time of transportation of the product

from the ith source to the jth destination by the

kth conveyance for the lth item which is

independent of the unit amount of the product

transported,
~�d
l

ijk
fuzzy-rough packing cost for unit pack of the

product from the ith source to the jth destination

by the kth conveyance for the lth item,

~�ali fuzzy-rough availability of the product at the ith

source for the lth item,
~�b
l

j
fuzzy-rough demand of the product at the jth

destination for the lth item,
~�ek total fuzzy-rough capacity of the product which

can be carried by the kth conveyance,
~�ZK

objective functions in fuzzy-rough nature

ðK ¼ 1; 2; 3Þ,
ZK objective functions in crisp nature ðK ¼ 1; 2; 3Þ,

where ZK ¼ E½~�ZK � , and E denotes the expected-

value operator,

dþK ; d
�
K

positive and negative deviations corresponding to

the Kth goal of the objective function,

respectively.

Assumptions

1. ~�ali [ 0; ~�b
l

j [ 0 8 i; j; l:
2. No items deteriorate during transportation.

3. Transporting time from the ith origin to jth destination

by using the kth conveyance is the same whatever the

items are.

4. Each regarded trapezoidal fuzzy-rough variable is

positive in all of its components.

6 Mathematical model

In our proposed MOMIFCSTP, we consider three objective

functions in which the first objective function represents

the total transportation cost (the variable cost and the fixed

cost), the second objective function considers the trans-

porting time and the last objective function refers to the

packing cost; all of the three goals are to be minimized.

Especially, we mention here about the nature of the second

objective function in our proposed model. Actually, the

second objective function is taken to maximize the cus-

tomers’ satisfaction level; in fact, to measure it, we treat

the total transportation time. So, with respect to maxi-

mizing the customers’ satisfaction level, the value of the

objective function should be minimized. There are
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m factories (supply points), n customers (demand points)

and p conveyances (different transportation modes such as

trucks, air freight, goods trains, and ships). Each of the

m factories can transport to any of the n customers by the

p conveyances for l items at a transporting cost of clijk per

unit commodity and a fixed cost of f lijk. The problem is to

determine the amount xlijk, for any i, j, k, l, of the product

conveyed from the ith source to the jth destination by the

kth transportation mode for lth items, in such a way that the

overall value of the three objective functions are to be

minimized. The proposed MOMIFCSTP can be formulated

as follows:

Model 1

minimize ~�Z1ðxÞ ¼
Xm

i¼1

Xn

j¼1

Xp

k¼1

Xh

l¼1h
~�clijkx

l
ijk þ ~�f

l

ijkgðxlijkÞ
i
;

ð6:1Þ

minimize ~�Z2ðxÞ ¼
Xm

i¼1

Xn

j¼1

Xp

k¼1

Xh

l¼1

h
~�tlijkgðxlijkÞ

i
; ð6:2Þ

minimize ~�Z3ðxÞ ¼
Xm

i¼1

Xn

j¼1

Xp

k¼1

Xh

l¼1

~�d
l

ijkx
l
ijk ð6:3Þ

subject to
Xn

j¼1

Xp

k¼1

xlijk � ~�ali

ði ¼ 1; 2; . . .;m; l ¼ 1; 2; . . .; hÞ;
ð6:4Þ

Xm

i¼1

Xp

k¼1

xlijk 	 ~�b
l

j

ðj ¼ 1; 2; . . .; n; l ¼ 1; 2; . . .; hÞ;
ð6:5Þ

Xh

l¼1

Xm

i¼1

Xn

j¼1

xlijk � ~�ek ðk ¼ 1; 2; . . .; pÞ; ð6:6Þ

xlijk 	 0;

gðxlijkÞ ¼ 0 if xlijk ¼ 0;

gðxlijkÞ ¼ 1 if xlijk [ 0

ði ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; p; l ¼ 1; 2; . . .; hÞ:

8
>><

>>:

ð6:7Þ

It is obvious that Model 1 has a feasible solution if

Xm

i¼1

~�ali 	
Xn

j¼1

~�blj 8 l; and
Xp

k¼1

~�ek 	
Xh

l¼1

Xn

j¼1

~�blj:

6.1 Equivalent crisp model of Model 1

We cannot deal with the proposed MOMIFCSTP model

directly due to the presence of fuzzy-rough variables. So,

we employ the expected-value operator E to transform

Model 1 into a fuzzy-rough expected-value model (i.e.,

Model 2) by using Theorems 4.1 and 4.2, which are stated

in Sect. 4.5:

Model 2

minimize E
� ~�Z1ðxÞ

�

¼
Xm

i¼1

Xn

j¼1

Xp

k¼1

Xh

l¼1

E
h
~�clijkx

l
ijk þ ~�f

l

ijkgðxlijkÞ
i
;

¼
Xm

i¼1

Xn

j¼1

Xp

k¼1

Xh

l¼1�
E
�
~�clijk

�
xlijk þ E

�~�f lijk
�
gðxlijkÞ

�
;

ð6:8Þ

minimize E
� ~�Z2ðxÞ

�
¼

Xm

i¼1

Xn

j¼1

Xp

k¼1

Xh

l¼1

E
�
~�tlijk

�
gðxlijkÞ;

ð6:9Þ

minimize E
� ~�Z3ðxÞ

�
¼

Xm

i¼1

Xn

j¼1

Xp

k¼1

Xh

l¼1

E
�~�dlijk

�
xlijk ð6:10Þ

subject to
Xn

j¼1

Xp

k¼1

xlijk �E
�
~�ali
�

ði ¼ 1; 2; . . .;m; l ¼ 1; 2; . . .; hÞ;
ð6:11Þ

Xm

i¼1

Xp

k¼1

xlijk 	E
�~�blj

�

ðj ¼ 1; 2; . . .; n; l ¼ 1; 2; . . .; hÞ;
ð6:12Þ

Xh

l¼1

Xm

i¼1

Xn

j¼1

xlijk �E
�
~�ek
�
ðk ¼ 1; 2; . . .; pÞ; ð6:13Þ

constraint ð6:7Þ: ð6:14Þ

Herewith, Model 2 has a feasible solution if

Xm

i¼1

E
� ~�ali

�
	

Xn

j¼1

E
� ~�blj

�
8 l; and

Xp

k¼1

E
�
~�ek
�
	

Xh

l¼1

Xn

j¼1

E
� ~�blj

�
:

Definition 6.1 A feasible solution x� ¼ ðx�lijk : l ¼ 1; 2; . . .;
h; i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; pÞ is said to

be a Pareto-optimal (non-dominated) solution of Model 2

if there exists no other feasible solution x ¼ ðxlijk : l ¼
1; 2; . . .; h; i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; pÞ
such that

E½~�ZKðxÞ� �E½~�ZKðx�Þ� for K ¼ 1; 2; 3; and

E½~�ZKðxÞ�\E½~�ZKðx�Þ� for at least one K:
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Definition 6.2 If x� is a Pareto-optimal solution of Model

2, then we treat it as a fuzzy-rough expected-value Pareto-

optimal solution.

6.2 Decomposition of Model 2

Generally, a large number of variables is involved in an

industrial problem. We want to extract the Pareto-optimal

solution from Model 2 using TOPSIS approach by LINGO

iterative scheme. Here, Model 2 contains a high number of

variables which generally is computationally difficult when

providing an optimal solution. So with the help of

decomposition principle, we resolve Model 2 into Model 3

and Model 4. Additionally, in LINGO iterative scheme,

there is a limitation on the total number of variables for

solving mathematical optimization models. To overcome

this difficulty also, we decompose Model 2 into Model 3

and Model 4 indeed. In this subsection, we decompose the

proposed MOMIFCSTP (i.e., Model 2) accordingly. For

this decomposition, we assume two types of commodities

(i.e., h ¼ 2) to be shipped from source points to destina-

tions. Therefore, Model 3 and Model 4 are achieved,

looking as follows:

Model 3

minimize E
� ~�Z1ðx1Þ

�
¼

Xm

i¼1

Xn

j¼1

Xp

k¼1h
E
�
~�c1ijk

�
x1ijk þ E

�~�f 1ijk
�
gðx1ijkÞ

i
;

ð6:15Þ

minimize E
� ~�Z2ðx1Þ

�
¼

Xm

i¼1

Xn

j¼1

Xp

k¼1

E
�
~�t1ijk

�
gðx1ijkÞ; ð6:16Þ

minimize E
� ~�Z3ðx1Þ

�
¼

Xm

i¼1

Xn

j¼1

Xp

k¼1

E
�~�d1ijk

�
x1ijk ð6:17Þ

subject to
Xn

j¼1

Xp

k¼1

x1ijk �E
�
~�a1i
�
ði ¼ 1; 2; . . .;mÞ;

ð6:18Þ

Xm

i¼1

Xp

k¼1

x1ijk 	E
�~�b1j

�
ðj ¼ 1; 2; . . .; nÞ; ð6:19Þ

Xm

i¼1

Xn

j¼1

x1ijk �E
�
~�ek
�
ðk ¼ 1; 2; . . .; pÞ; ð6:20Þ

x1ijk 	 0;

gðx1ijkÞ ¼ 0 if x1ijk ¼ 0;

gðx1ijkÞ ¼ 1 if x1ijk [ 0

ði ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; pÞ;

8
>><

>>:

ð6:21Þ

Model 4

minimize E
� ~�Z1ðx2Þ

�
¼

Xm

i¼1

Xn

j¼1

Xp

k¼1h
E
�
~�c2ijk

�
x2ijk þ E

�~�f 2ijk
�
gðx2ijkÞ

i
;

ð6:22Þ

minimize E
� ~�Z2ðx2Þ

�
¼

Xm

i¼1

Xn

j¼1

Xp

k¼1

E
�
~�t2ijk

�
gðx2ijkÞ; ð6:23Þ

minimize E
� ~�Z3ðx2Þ

�
¼

Xm

i¼1

Xn

j¼1

Xp

k¼1

E
�~�d2ijk

�
x2ijk ð6:24Þ

subject to
Xn

j¼1

Xp

k¼1

x2ijk �E
�
~�a2i
�
ði ¼ 1; 2; . . .;mÞ;

ð6:25Þ

Xm

i¼1

Xp

k¼1

x2ijk 	E
�~�b2j

�
ðj ¼ 1; 2; . . .; nÞ; ð6:26Þ

Xm

i¼1

Xn

j¼1

x2ijk �E
�
~�ek
�
ðk ¼ 1; 2; . . .; pÞ; ð6:27Þ

x2ijk 	 0;

gðx2ijkÞ ¼ 0 if x2ijk ¼ 0;

gðx2ijkÞ ¼ 1 if x2ijk [ 0

ði ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; pÞ:

8
>><

>>:

ð6:28Þ

Models 3 and 4 have feasible solutions if

Xm

i¼1

E
� ~�ali

�
	

Xn

j¼1

E
� ~�blj

�
for l ¼ 1; 2; and

Xp

k¼1

E
�
~�ek
�
	

Xh

l¼1

Xn

j¼1

E
� ~�blj

�
:

Definition 6.3 A feasible solution x�1 ¼ ðx�1ijk : i ¼
1; 2; . . .;m; j ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; pÞ is said to be a

Pareto-optimal solution of Model 3 if there exists no other

feasible solution x1 ¼ ðx1ijk : i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .;

n; k ¼ 1; 2; . . .; pÞ such that

E½~�ZKðx1Þ� �E½~�ZKðx�1Þ� for K ¼ 1; 2; 3; and

E½~�ZKðx1Þ�\E½~�ZKðx�1Þ� for at least one K:
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Definition 6.4 A feasible solution x�2 ¼ ðx�2ijk : i ¼
1; 2; . . .;m; j ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; pÞ is said to be a

Pareto-optimal solution of Model 4 if there does not exist

any other feasible solution x2 ¼ ðx2ijk : i ¼ 1; 2; . . .;m; j ¼
1; 2; . . .; n; k ¼ 1; 2; . . .; pÞ such that

E½~�ZKðx2Þ� �E½~�ZKðx�2Þ� for K ¼ 1; 2; 3; and

E½~�ZKðx2Þ�\E½~�ZKðx�2Þ� for at least one K:

7 Solution methodology

In order to solve MOMIFCSTP (i.e., Model 2), we consider

three approaches, namely:

• Fuzzy programming,

• Weighted goal programming, and

• TOPSIS.

7.1 Fuzzy programming

Fuzzy programming was initiated by Zimmermann [41] to

solve multi-objective linear programming problems. He

found that fuzzy linear programming always provides an

efficient solution. Fuzzy programming approach is adopted

to obtain a Pareto-optimal solution from the suggested

model. Moreover, it is easy to apply for solving

MOMIFCSTP. The solution of MOMIFCSTP (i.e., Model

2) using fuzzy programming can be obtained by the fol-

lowing steps:

Step 1 Solve the MOMIFCSTP as a single objective

MIFCSTP, using at each time only one objective

function ZK ðK ¼ 1; 2; 3Þ and ignoring the other ones.

The optimal solution for the Kth ðK ¼ 1; 2; 3Þ objective
function is denoted by XK�.
Step 2 Determine the values of all K ðK ¼ 1; 2; 3Þ
numbered of objective functions at all these XK� optimal

solutions.

Step 3 From Step 2, we find a lower bound ðLKÞ and an

upper bound ðUKÞ for each objective function. We

calculate the payoff table which is given in Table 2, from

which UK and LK are determined in the following way:

UK :¼max
n
ZKðX1�Þ; ZKðX2�Þ; ZKðX3�Þ

o
;

and LK :¼ZKðXK�Þ; K ¼ 1; 2; 3:

Step 4 The initial fuzzy model can then be stated, in

terms of the lower bound of each objective function, as

follows: Find xlijk for all i; j; k; l, which satisfy

ZK � LK ðK ¼ 1; 2; 3) with given constraints (6.11)–

(6.13) and non-negativity conditions (6.14).

Step 5 Formulate a membership function lKðxÞ corre-

sponding to Kth objective function for MOMIFCSTP

which is defined as:

lKðxÞ ¼
1; if ZK � LK ;

1� ZK � LK

UK � LK

� 	
; if LK � ZK �UK ðK ¼ 1; 2; 3Þ;

0; if ZK 	UK :

8
>><

>>:

Step 6 Using max–min operator, the fuzzy linear

programming problem can be written in the following

way:

maximize k1

subject to k1 �
UK � ZK

UK � LK
ðK ¼ 1; 2; 3Þ;

constraints ð6:11Þ � ð6:14Þ;
0� k1 � 1:

ð7:1Þ

Here, k1 ¼ minflKðxÞ : K ¼ 1; 2; 3g is the satisfaction

level for the objective functions. This linear program-

ming problem can further be simplified as:

maximize k1

subject to ZK þ k1ðUK � LKÞ�UK ðK ¼ 1; 2; 3Þ;
constraints ð6:11Þ � ð6:14Þ;
0� k1 � 1:

ð7:2Þ

Theorem 7.1 If x� ¼ ðx�lijk : l ¼ 1; 2; . . .; h; i ¼ 1; 2; . . .;

m; j ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; pÞ is an optimal solution of

linear programming problem (7.2), then it is also a Pareto-

optimal (non-dominated) solution of Model 2, i.e., there is

no other feasible solution x ¼ ðxlijk : l ¼ 1; 2; . . .; h; i ¼
1; 2; . . .;m; j ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; pÞ such that

E
�~�ZKðxÞ

�
�E

�~�ZKðx�Þ
�
for K ¼ 1; 2; 3; and ð1Þ

E
�~�ZKðxÞ

�
\E

�~�ZKðx�Þ
�
for at least one K: ð2Þ

Proof We prove this theorem by contradiction. Let x� is a
Pareto-optimal (non-dominated) solution of Model 2, i.e.,

there exists a feasible solution x such that inequalities (1)

and (2) hold.

Table 2 Payoff table

Z1 Z2 Z3

X�
1 Z1ðX1�Þ Z2ðX1�Þ Z3ðX1�Þ

X�
2 Z1ðX2�Þ Z2ðX2�Þ Z3ðX2�Þ

X�
3 Z1ðX3�Þ Z2ðX3�Þ Z3ðX3�Þ
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Since lKðxÞ decreases strictly with respect to the

corresponding objective value E
�~�ZKðxÞ

�
in [0, 1], we have

lKðxÞ	 lKðx�Þ 8K; and lKðxÞ[ lKðx�Þ for at least

one K ¼ 1; 2; 3:

Hence, it follows from the strict monotonicity of the

weight root-power mean operator [7] and using product–

min operator [41], we can write lKðxÞ[ lKðx�Þ. This

inequality provides a contradiction to the fact that x� is an
optimal solution of problem (7.2). This completes the proof

of the theorem. h

7.2 Weighted goal programming

Goal programming (GP) was first introduced by Charnes

and Cooper [43] to solve multi-objective linear program-

ming problems. The overall concepts of GP are to mini-

mize the deviations between the achievement of the goal

and their aspiration levels. After that, the concept of rela-

tive importance of weights of the objective functions is

introduced in GP, which is known as weighted goal pro-

gramming [44]. WGP is used to find a Pareto-optimal (non-

dominated) solution from the formulated model according

to priorities of the objective functions.

The mathematical model of WGP to solve the

MOMIFCSTP (i.e., Model 2) is presented as follows:

Model 5

minimize
X3

K¼1

WK

NK

ðdþK þ d�K Þ;

subject to E
�~�ZKðxÞ

�
� dþK þ d�K ¼ gK ðK ¼ 1; 2; 3Þ;

dþK � d�K ¼ 0;

dþK 	 0; d�K 	 0 ðK ¼ 1; 2; 3Þ;
constraints ð6:11Þ�ð6:14Þ:

Model 5 can be solved along the following steps:

Step 1 Assign the goal gK ðK ¼ 1; 2; 3Þ associated with

each objective function. We consider the target values

g1 ¼ 820; g2 ¼ 860 and g3 ¼ 400; corresponding to the

objective functions, respectively.

Step 2 Select the weight WK ðK ¼ 1; 2; 3Þ corresponding
to the objective function according to the degree of

importance of the objective function in Model 5. Here,

we choose the weights W1 ¼ 0:5, W2 ¼ 0:4 and W3 ¼
0:1; specifying the objective functions.

Step 3 Substitute the value of normalization constant

NK ¼ gK=100 ðK ¼ 1; 2; 3Þ, measured by a percentage

scale [45].

Step 4 Afterward, substituting the values of gK ; WK and

NK ðK ¼ 1; 2; 3Þ, we obtain the optimal solution of

Model 5 by using LINGO iterative scheme.

Theorem 7.2 Let WK [ 0 and NK [ 0 for K ¼ 1; 2; 3. If

x� ¼ ðx�lijk : l ¼ 1; 2; . . .; h; i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n;

k ¼ 1; 2; . . .; pÞ is an optimal solution of Model 5, then it is

also a Pareto-optimal (non-dominated) solution of Model

2, i.e., there is no other feasible solution x ¼ ðxlijk : l ¼
1; 2; . . .; h; i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; pÞ
such that

E
�~�ZKðxÞ

�
�E

�~�ZKðx�Þ
�
for K ¼ 1; 2; 3; and

E
�~�ZKðxÞ

�
\E

�~�ZKðx�Þ
�
for at least one K:

Proof Let x� subsequently be any non-dominated solution

of Model 2, i.e., there exists a feasible solution x such that

the above inequalities hold.

As dþK and d�K are positive and negative deviations

corresponding to the Kth goal of the objective function, we

can write:

ðdþK þ d�K Þx �ðdþK þ d�K Þx� for K ¼ 1; 2; 3; and

ðdþK þ d�K Þx\ðdþK þ d�K Þx� for at least one K:

Furthermore, as WK [ 0 and NK [ 0 for K ¼ 1; 2; 3, so,
WK

NK
[ 0, K ¼ 1; 2; 3; from the above inequalities we have

WK

NK

ðdþK þ d�K Þ
� �

x

� WK

NK

ðdþK þ d�K Þ
� �

x�
for K ¼ 1; 2; 3; and ðiÞ

WK

NK

ðdþK þ d�K Þ
� �

x

\
WK

NK

ðdþK þ d�K Þ
� �

x�
for at least one K: ðiiÞ

Taking sum on inequalities (i) and (ii), we can write:

min
x

X3

K¼1

WK

NK

ðdþK þ d�K Þ
" #

\ min
x�

X3

K¼1

WK

NK

ðdþK þ d�K Þ
" #

;

which contradicts the fact that x� is an optimal solution to

Model 5. Thus, x� is a non-dominated solution of Model 2.

This concludes the proof of the theorem. h

7.3 TOPSIS

Hwang and Yoon [46] initiated TOPSIS for obtaining

Pareto-optimal solutions to multi-attribute decision-making

problems. It is based on the idea that the chosen alternative

should have the shortest distance from the positive ideal

solution (PIS) and the farthest distance from the negative

ideal solution (NIS). Classical TOPSIS has been compe-

tently used for solving many selection and ranking prob-

lems. It basically focuses on three kinds of decisions: (1)

find the rank of all alternatives, (2) the alternatives are

ranked from the best to the worst and (3) select the best

alternative. The extended TOPSIS approach gives the

Pareto-optimal solution for Model 2, and it generates a

better Pareto-optimal solution. Extended TOPSIS approach

can accommodate a large number of variables involved in a
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MOMIFCSTP by decomposing it into subproblems.

Moreover, it ensures that the Pareto-optimal solutions

obtained from different subproblems are also the Pareto-

optimal solution of the original MOMIFCSTP.

Definition 7.1 If a multi-objective optimization problem

is reduced to a bi-objective problem by TOPSIS approach,

then the reduced problem is called a TOPSIS-based bi-

objective optimization problem.

We extend the concept of TOPSIS approach in our

proposed study to obtain a Pareto-optimal solution of

MOMIFCSTP (i.e., Model 2), which is described by the

following steps:

Step 1 Decompose our MOMIFCSTP into two subprob-

lems, namely Model 3 and Model 4, which are

introduced in Sect. 6.2.

Step 2 Determine the individual minimum and maximum

values of all the objective functions for the subproblems

subject to the constraints (6.18)–(6.21) and (6.25)–

(6.28), respectively.

Step 3 Identify PIS ðZþÞ and NIS ðZ�Þ for Model 3,

which are given as follows:

Zþ ¼ ðZþ
1 ; Z

þ
2 ; Z

þ
3 Þ;

Z� ¼ ðZ�
1 ; Z

�
2 ; Z

�
3 Þ;

where
Zþ
K ¼ minfZK : K ¼ 1; 2; 3; subject to ð6:18Þ�ð6:21Þg;

Z�
K ¼ maxfZK : K ¼ 1; 2; 3; subject to ð6:25Þ�ð6:28Þg:




We note that the size of range of the objective functions

in MOMIFCSTP with Zþ
K \Z�

K can be estimated by

Z�
K � Zþ

K ðK ¼ 1; 2; 3Þ: The concepts of PIS and NIS are

depicted in Fig. 3.

Step 4 Using the PIS and NIS, we calculate the distance

function from PIS
�
i.e:; dPISq ðx1Þ

�
and the distance

function from NIS
�
i.e:; dNISq ðx1Þ

�
as follows:

dPISq ðx1Þ ¼
�X3

K¼1

h
WK

ZKðx1Þ � Zþ
K

Z�
K � Zþ

K

iq�1
q

; ð7:3Þ

dNISq ðx1Þ ¼
�X3

K¼1

h
WK

Z�
K � ZKðx1Þ
Z�
K � Zþ

K

iq�1
q

;

X3

K¼1

WK ¼1; WK 	 0 8K:
ð7:4Þ

The parameters WK ðK ¼ 1; 2; 3Þ in Eqs. (7.3) and (7.4)

denote the weights of the objective functions. Here, we

consider the priorities by weights, and they are

W1 ¼ 0:5, W2 ¼ 0:4 and W3 ¼ 0:1; for three objective

functions, respectively, of Model 3. The indices q ¼
1; 2; . . .;1 are employed to control the compromise

solution in TOPSIS. In general, q ¼ 1; q ¼ 2; and q ¼
1 are widely used to deal with multi-objective opti-

mization problems. Different values of q refer to dif-

ferent distances, e.g., q ¼ 1 refers to the Manhattan

distance (the farthest distance in the geometrical sense),

q ¼ 2 refers to the Euclidean distance (the least distance

in the geometrical sense), and q ¼ 1 refers to the

Tchebycheff distance (the shortest distance in the

numerical sense). Other distances are used less because

they have no concrete meaning in practice. Furthermore,

q ¼ 1 implies an equal weight for all the deviations, q ¼
2 implies that these deviations are weighted propor-

tionality with the largest deviation having the largest

weight, and q ¼ 1 means that the largest deviation

completely dominates the distance determination.

Step 5 Set q ¼ 2 into Eqs. (7.3) and (7.4). To obtain a

Pareto-optimal solution, we transform Model 3 into the

following bi-objective problem:

minimize dPIS2 ðx1Þ; ð7:5Þ

maximize dNIS2 ðx1Þ ð7:6Þ

subject to constraints ð6:18Þ�ð6:21Þ: ð7:7Þ

Step 6 Calculate the individual values to

minimize dPIS2 ðx1Þ and maximize dNIS2 ðx1Þ subject to

the constraints (6.18)–(6.21). Now, we construct the

payoff table which is shown in Table 3. For conve-

nience, we introduce notation as: ðdPIS2 Þ� :¼ dPIS2 ðx1PISÞ,
ðdNIS2 Þ� :¼ dNIS2 ðx1NISÞ, ðdPIS2 Þ

0
:¼ dPIS2 ðx1NISÞ,

ðdNIS2 Þ
0
:¼ dNIS2 ðx1PISÞ.

Step 7 On the basis of the preference concept, we

formulate the membership functions l1ðx1Þ and l2ðx1Þ of
two objective functions from Step 5. They are defined as

follows:

l1ðx1Þ ¼
1; if dPIS2 ðx1Þ� ðdPIS2 Þ�;

1�
�
dPIS2 ðx1Þ � ðdPIS2 Þ�

ðdPIS2 Þ0 � ðdPIS2 Þ�
	
; if ðdPIS2 Þ� � dPIS2 ðx1Þ� ðdPIS2 Þ

0
;

0; if ðdPIS2 Þ
0
� dPIS2 ðx1Þ;

8
>>>><

>>>>:

Fig. 3 Graphical representation of PIS and NIS
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and

l2ðx1Þ ¼
1; if ðdNIS2 Þ� � dNIS2 ðx1Þ;

1�
�
ðdNIS2 Þ� � dNIS2 ðx1Þ
ðdNIS2 Þ� � ðdNIS2 Þ0

	
; if ðdNIS2 Þ

0
� dNIS2 ðx1Þ� ðdNIS2 Þ�;

0; if dNIS2 ðx1Þ� ðdNIS2 Þ
0
:

8
>>>><

>>>>:

Step 8 Using the max–min operator, introduced by

Bellman and Zadeh [47] and further extended by

Zimmermann, we solve the bi-objective problem from

Step 5. Finally, we obtain a Pareto-optimal solution of

Model 3 by solving the simplified and equivalent form of

Eqs. (7.5)–(7.7), which gives us the following form of

our model:

maximize k2

subject to l1ðx1Þ	 k2; l2ðx1Þ	 k2
constraints ð6:18Þ�ð6:21Þ;
0� k2 � 1:

ð7:8Þ

where k2 ¼ minflrðx1Þ : r ¼ 1; 2g is the satisfactory

level for both the criteria of the minimum distance from

the PIS and of the maximum distance from the NIS of

Model 3.

Step 9 Repeat Step 3 in similar way for Model 4.

Step 10 Using the PIS and NIS from Model 4, we

calculate the distance function from PIS
�
i.e:; dPISq ðx2Þ

�

and the distance function from NIS
�
i.e:; dNISq ðx2Þ

�
as

follows:

dPISq ðx2Þ ¼
�X3

K¼1

h
WK

ZKðx2Þ � Zþ
K

Z�
K � Zþ

K

iq�1
q

; ð7:9Þ

dNISq ðx2Þ ¼
�X3

K¼1

h
WK

Z�
K � ZKðx2Þ
Z�
K � Zþ

K

iq�1
q

;

X3

K¼1

WK ¼1; WK 	 0 8K:
ð7:10Þ

The parametersWK ðK ¼ 1; 2; 3Þ in Eqs. (7.9) and (7.10)
stand for the weights of the objective functions. We

consider the priorities as weights, and they are W1 ¼ 0:5,

W2 ¼ 0:4 and W3 ¼ 0:1; for three objective functions,

respectively, of Model 4.

Step 11 Set q ¼ 2 into Eqs. (7.9) and (7.10). To obtain a

Pareto-optimal solution, we transform Model 4 into the

following bi-objective problem:

minimize dPIS2 ðx2Þ; ð7:11Þ

maximize dNIS2 ðx2Þ ð7:12Þ

subject to constraints ð6:25Þ�ð6:28Þ: ð7:13Þ

Step 12 Repeat Steps 6 and 7 in a similar way for Model

4.

Step 13 Using a max–min operator, we solve the bi-

objective problem from Step 11. Finally, we obtain a

Pareto-optimal solution of Model 4 by solving the

simplified and equivalent form of Eqs. (7.11)–(7.13),

which is as follows:

maximize k3

subject to l3ðx2Þ	 k3; l4ðx2Þ	 k3
constraints ð6:25Þ�ð6:28Þ;
0� k3 � 1:

ð7:14Þ

where k3 ¼ minflrðx2Þ : r ¼ 3; 4g is the satisfactory

level for both the criteria of the minimum distance from

the PIS and the maximum distance from the NIS of

Model 4.

Step 14 From Steps 8 and 13, we finally obtain the

Pareto-optimal solution of our proposed MOMIFCSTP

(i.e., Model 2).

Theorem 7.3 If the Pareto-optimal solutions of Model 3

and Model 4 exist, then the solutions are also the Pareto-

optimal solution of Model 2.

Proof Suppose the Pareto-optimal solutions of Model 3

and Model 4 exist, and they are x�1 ¼ ðx�1ijk : i ¼
1; 2; . . .;m; j ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; pÞ and x�2 ¼ ðx�2 :

i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; pÞ; respec-

tively. If there are no other feasible solutions x1 ¼ ðx1ijk :

i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; pÞ for Model 3

and x2 ¼ ðx2ijk : i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n; k ¼ 1; 2;

. . .; pÞ for Model 4, then from Definitions 5.3 and 5.4, we

have for all i, j and k:

E½~�ZKðx1Þ� �E½~�ZKðx�1Þ� for K ¼ 1; 2; 3; ð7:15Þ

E½~�ZKðx1Þ�\E½~�ZKðx�1Þ� for at least one K; ð7:16Þ

and

E½~�ZKðx2Þ� �E½~�ZKðx�2Þ� for K ¼ 1; 2; 3; ð7:17Þ
Table 3 Payoff table of ideal

solutions
dPIS2 ðx1Þ dNIS2 ðx1Þ

x1PIS dPIS2 ðx1PISÞ dNIS2 ðx1PISÞ
x1NIS dPIS2 ðx1NISÞ dNIS2 ðx1NISÞ
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E½~�ZKðx2Þ�\E½~�ZKðx�2Þ� for at least one K: ð7:18Þ

Because of inequalities (7.15) and (7.17), (7.16) and (7.18),

we can write:

E½~�ZKðxÞ� �E½~�ZKðx�Þ� for K ¼ 1; 2; 3; ð7:19Þ

E½~�ZKðxÞ�\E½~�ZKðx�Þ� for at least one K: ð7:20Þ

The inequalities (7.19) and (7.20) follow from Definition

6.1. Thus, the proof of the theorem is completed. h

8 Application example

In this section, first we discuss about the usefulness of

fuzzy-rough parameters in our model. In a real-life

MOMIFCSTP, the cost parameters ðcijkÞ are not precise

always, but there exist left and right spreads of their values.

So, we can consider any cost parameter as a trapezoidal

fuzzy number ð~cijkÞ. Further, the middle value of ~cijk is not

always a crisp number, because the DM in a company

would to take the opinions from more than one expert due

to the uncertainty of parameters. We include a discussion

to better understand this fact as: Let us assume a reputed

medicine company, e.g., in India, has three experts, and

their opinions about the middle value of ~cijk are: [4, 8] per

unit (first expert’s opinion); [3, 6] per unit (second expert’s

opinion) and [4, 7] per unit (third expert’s opinion). The

DM would like to minimize the transportation cost, so that

he or she not only finds the optimal compromise solution,

but also uses the opinions of all experts. One way to

combine the opinions of the three experts is representing

the middle value of ~cijk by rough intervals, which is

([4, 6], [3, 8]). Thus, we can represent the cost parameter

as a trapezoidal fuzzy-rough variable ð~�cijkÞ. Due to a sim-

ilar reason, we treat all other parameters in our

MOMIFCSTP as fuzzy-rough variables. Furthermore, we

illustrate a situation for the applicability of our

MOMIFCSTP. The medicine company produces different

types of medicine (i.e., multi-item is considered), and to

transport the medicine from factories to distribution centers

through roads, the company would pay a certain amount of

toll charge to National Highways Authority of India for

different types of conveyances (i.e., fixed charge is con-

sidered). A detailed description of the application example

is given below.

The medicine company produces different types of

medicine for the seasonal disease cold–cough such as

antibiotic and cough syrup. The company has three facto-

ries ðm ¼ 3Þ and three distribution centers ðn ¼ 3Þ; situated
at different places of India. The company transports two

types of medicine ðh ¼ 2Þ from factories to distribution

centers through two types of conveyances ðp ¼ 2Þ by road

(small and medium size goods carriers). The DM desires

that the total transporting cost (variable cost per unit and

fixed cost), total transporting time of medicine (from fac-

tories to distribution centers) and packing costs of medicine

are to be minimized. Furthermore, the DM decides to find a

compromise solution to the problem in which the values of

the objective functions are to be minimized. The relative

importance of the three objective functions is considered as

the weight factors which are specified by the DM. The

transportation cost of unit quantity (5000 mg) and fixed

charge in dollars, packing cost in dollar per medium pack

(specified by the DM) and time in hours are taken into

account. Data are collected from different sources which

are represented in Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16 and 17.

Using Proposition 4.1 which is stated in Sect. 4.5 for the

expected-value operator on the trapezoidal fuzzy-rough

variable, Tables 4, 5, 6 and 7 reduce to Table 18, Tables 8,

9, 10 and 11 become Table 19, Tables 12 and 13 transform

to Table 20, and Tables 14, 15, 16 and 17 reduce to

Table 21, respectively.

9 Results and discussion

Here, we discuss the Pareto-optimal solutions of the

equivalent crisp Model 2 and of the decomposed Model 3

and Model 4.

Fuzzy programming Utilizing the crisp data of each

fuzzy-rough variable from Tables 18, 19, 20, 21 and 22 in

Model 2, applying the solution procedure described in

Sect. 7.1 and using LINGO, we obtain the following Par-

eto-optimal solution by fuzzy programming which is

shown in Table 23.

Weighted goal programming Using the crisp data of

each fuzzy-rough variable from Tables 18, 19, 20, 21 and

22 in Model 5, considering the solution procedure pre-

sented in Sect. 7.2 and using LINGO, we derive the fol-

lowing Pareto-optimal solution by WGP which is listed in

Table 23.

TOPSIS Considering the crisp data of each fuzzy-rough

variable from Tables 18, 19, 20, 21 and 22 in Model 3 and

Model 4, utilizing the solution procedure delineated in

Sect. 7.3 and using LINGO, we receive the subsequent

Pareto-optimal solution by TOPSIS which is displayed in

Table 23.

From Table 23, we conclude that the Pareto-optimal

solution for MOMIFCSTP, extracted from TOPSIS and

WGP, is more preferable than fuzzy programming. As we

illustrated, for the real-life problem in connection with a

reputed medicine company, transporting cost and trans-

porting time are covered by a higher portion when
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compared to packing cost in order to transport the medi-

cine. As the optimal values of the two objective functions

ðZ1 and Z3Þ extracted from TOPSIS are better than WGP,

the optimal value of the second objective function ðZ2Þ is
equal for our MOMIFCSTP; herewith, we can observe that

TOPSIS is better than WGP. Moreover, in WGP the setting

of proper goals to the objective functions is difficult, and if

we have not chosen properly the target values for the

objective functions, for that case, WGP provides a worst

optimal solution. But in TOPSIS approach, there are no

such cases which effect directly the optimal solution. In

this regard, we may say that TOPSIS is better than WGP

for our problem. From Table 23, we conclude that the

better optimal solutions to the objective functions are:

Total transporting cost is 1010.01 $, total transporting time

is 80 h, and packing cost is 414.78 $ for shipping different

types of medicine from the source points to the destinations

through different transportation modes. A representation

with a bar diagram of the optimal solutions of

MOMIFCSTP extracted from different approaches is pro-

vided in Fig. 4.

Table 4 Transportation cost of first type of medicine ð~�c1ijkÞ for conveyance k ¼ 1

D1 D2 D3 Supply

S1 (q111 � 2, q111 � 1, (q112 � 2, q112 � 1, (q113 � 2, q113 � 1, (qa1
1
� 2, qa1

1
� 1,

q111 þ 1, q111 þ 2), q112 þ 1, q112 þ 2), q113 þ 1, q113 þ 2), qa1
1
þ 1, qa1

1
þ 2),

q111 ‘ ð½4; 6�; ½3; 8�Þ q112 ‘ ð½5; 9�; ½4; 10�Þ q113 ‘ ð½6; 8�; ½4; 9�Þ qa1
1
‘ ð½18; 22�; ½15; 27�Þ

S2 (q121 � 2, q121 � 1, (q122 � 2, q122 � 1, (q123 � 2, q123 � 1, (qa1
2
� 2, qa1

2
� 1,

q121 þ 1, q121 þ 2), q122 þ 1, q122 þ 2), q123 þ 1, q123 þ 2), qa1
2
þ 1, qa1

2
þ 2),

q121 ‘ ð½5; 7�; ½3; 9�Þ q122 ‘ ð½6; 10�; ½4; 12�Þ q123 ‘ ð½4; 8�; ½3; 10�Þ qa1
2
‘ ð½25; 30�; ½20; 35�Þ

S3 (q131 � 2, q131 � 1, (q132 � 2, q132 � 1, (q133 � 2, q133 � 1, (qa1
3
� 2, qa1

3
� 1,

q131 þ 1, q131 þ 2), q132 þ 1, q132 þ 2), q133 þ 1, q133 þ 2), qa1
3
þ 1, qa1

3
þ 2),

q131 ‘ ð½6; 12�; ½5; 14�Þ q132 ‘ ð½7; 9�; ½5; 11�Þ q133 ‘ ð½6; 10�; ½5; 12�Þ qa1
3
‘ ð½24; 28�; ½22; 30�Þ

Demand (qb1
1
� 2, qb1

1
� 1, (qb1

2
� 2, qb1

2
� 1, (qb1

3
� 2, qb1

3
� 1,

qb1
1
þ 1, qb1

1
þ 2), qb1

2
þ 1, qb1

2
þ 2), qb1

3
þ 1, qb1

3
þ 2),

qb1
1
‘ ð½16; 20�; ½14; 22�Þ qb1

2
‘ ð½20; 22�; ½18; 26�Þ qb1

3
‘ ð½16; 18�; ½14; 21�Þ

Table 5 Transportation cost of first type of medicine ð~�c1ijkÞ for conveyance k ¼ 2

D1 D2 D3 Supply

S1 (s111 � 2, s111 � 1, (s112 � 2, s112 � 1, (s113 � 2, s113 � 1, (qa1
1
� 2, qa1

1
� 1,

s111 þ 1, s111 þ 2), s112 þ 1, s112 þ 2), s113 þ 1, s113 þ 2), qa1
1
þ 1, qa1

1
þ 2),

s111 ‘ ð½5; 7�; ½4; 8�Þ s112 ‘ ð½7; 9�; ½5; 11�Þ s113 ‘ ð½8; 10�; ½6; 12�Þ qa1
1
‘ ð½18; 22�; ½15; 27�Þ

S2 (s121 � 2, s121 � 1, (s122 � 2, s122 � 1, (s123 � 2, s123 � 1, (qa1
2
� 2, qa1

2
� 1,

s121 þ 1, s121 þ 2), s122 þ 1, s122 þ 2), s123 þ 1, q123 þ 2), qa1
2
þ 1, qa1

2
þ 2),

s121 ‘ ð½7; 9�; ½5; 10�Þ s122 ‘ ð½4; 8�; ½3; 9�Þ s123 ‘ ð½6; 7�; ½5; 18�Þ sa1
2
‘ ð½25; 30�; ½20; 35�Þ

S3 (s131 � 2, s131 � 1, (s132 � 2, s132 � 1, (s133 � 2, s133 � 1, (qa1
3
� 2, qa1

3
� 1,

s131 þ 1, s131 þ 2), s132 þ 1, s132 þ 2), s133 þ 1, s133 þ 2), qa1
3
þ 1, qa1

3
þ 2),

s131 ‘ ð½7; 10�; ½5; 12�Þ s132 ‘ ð½7; 13�; ½6; 14�Þ s133 ‘ ð½5; 10�; ½3; 11�Þ qa1
3
‘ ð½24; 28�; ½22; 30�Þ

Demand (qb1
1
� 2, qb1

1
� 1, (qb1

2
� 2, qb1

2
� 1, (qb1

3
� 2, qb1

3
� 1,

qb1
1
þ 1, qb1

1
þ 2), qb1

2
þ 1, qb1

2
þ 2), qb1

3
þ 1, qb1

3
þ 2),

qb1
1
‘ ð½16; 20�; ½14; 22�Þ qb1

2
‘ ð½20; 22�; ½18; 26�Þ qb1

3
‘ ð½16; 18�; ½14; 21�Þ
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Table 6 Transportation cost of second type of medicine ð~�c2ijkÞ for conveyance k ¼ 1

D1 D2 D3 Supply

S1 (q211 � 2, q211 � 1, (q212 � 2, q212 � 1, (q213 � 2, q213 � 1, (qa2
1
� 3, qa2

1
� 2,

q211 þ 1, q211 þ 2), q212 þ 1, q212 þ 2), q213 þ 1, q213 þ 2), qa2
1
þ 2, qa2

1
þ 3),

q211 ‘ ð½7; 9�; ½5; 10�Þ q212 ‘ ð½4; 8�; ½3; 11�Þ q213 ‘ ð½7; 8�; ½6; 9�Þ qa2
1
‘([34,37], [32,39])

S2 (q221 � 2, q221 � 1, (q222 � 2, q222 � 1, (q223 � 2, q223 � 1, (qa2
2
� 3, qa2

2
� 2,

q221 þ 1, q221 þ 2), q222 þ 1, q222 þ 2), q223 þ 1, q223 þ 2), qa2
2
þ 2, qa2

2
þ 3),

q221 ‘ ð½8; 10�; ½6; 12�Þ q222 ‘ ð½9; 12�; ½7; 14�Þ q223 ‘ ð½10; 12�; ½7; 13�Þ qa2
2
‘([28,30], [25,33])

S3 (q231 � 2, q231 � 1, (q232 � 2, q232 � 1, (q233 � 2, q233 � 1, (qa2
3
� 3, qa2

3
� 2,

q231 þ 1, q231 þ 2), q232 þ 1, q232 þ 2), q233 þ 1, q233 þ 2), qa2
3
þ 2, qa2

3
þ 3),

q231 ‘ ð½7; 10�; ½6; 12�Þ q232 ‘ ð½5; 7�; ½4; 9�Þ q233 ‘ ð½8; 9�; ½7; 10�Þ qa2
3
‘ ð½26; 30�; ½24; 32�Þ

Demand (qb2
1
� 3, qb2

1
� 2, (qb2

2
� 3, qb2

2
� 2, (qb2

2
� 3, qb2

2
� 2,

qb2
1
þ 2, qb2

1
þ 3), qb2

2
þ 2, qb2

2
þ 3), qb2

2
þ 2, qb2

2
þ 3),

qb2
1
‘ ð½22; 25�; ½20; 28�Þ qb2

2
‘ ð½18; 20�; ½16; 24�Þ qb2

3
‘ ð½17; 21�; ½15; 25�Þ

Table 7 Transportation cost of second type of medicine ð~�c2ijkÞ for conveyance k ¼ 2

D1 D2 D3 Supply

S1 (s211 � 2, s211 � 1, (s212 � 2, s212 � 1, (s213 � 2, s213 � 1, (qa2
1
� 3, qa2

1
� 2,

s211 þ 1, s211 þ 2), s212 þ 1, s212 þ 2), s213 þ 1, s213 þ 2), qa2
1
þ 2, qa2

1
þ 3),

s211 ‘ ð½9; 11�; ½8; 12�Þ s212 ‘ ð½7; 10�; ½6; 11�Þ s213 ‘ ð½5; 9�; ½4; 10�Þ qa2
1
‘([34,37], [32,39])

S2 (s221 � 2, s221 � 1, (s222 � 2, s222 � 1, (s223 � 2, s223 � 1, (qa2
2
� 3, qa2

2
� 2,

s221 þ 1, s221 þ 2), s222 þ 1, s222 þ 2), s223 þ 1, s223 þ 2), qa2
2
þ 2, qa2

2
þ 3),

s221 ‘ ð½8; 11�; ½7; 13�Þ s222 ‘ ð½6; 12�; ½5; 14�Þ s223 ‘ ð½5; 11�; ½4; 12�Þ sa2
2
‘([28,30], [25,33])

S3 (s231 � 2, s231 � 1, (s232 � 2, s232 � 1, (s233 � 2, s233 � 1, (qa2
3
� 3, qa2

3
� 2,

s231 þ 1, s231 þ 2), s232 þ 1, s232 þ 2), s233 þ 1, s233 þ 2), qa2
3
þ 2, qa2

3
þ 3),

s231 ‘ ð½7; 9�; ½6; 10�Þ s232 ‘ ð½8; 9�; ½7; 11�Þ s233 ‘ ð½7; 10�; ½5; 13�Þ qa2
3
‘ ð½26; 30�; ½24; 32�Þ

Demand (qb2
1
� 3, qb2

1
� 2, (qb2

2
� 3, qb2

2
� 2, (qb2

2
� 3, qb2

2
� 2,

qb2
1
þ 2, qb2

1
þ 3), qb2

2
þ 2, qb2

2
þ 3), qb2

2
þ 2, qb2

2
þ 3),

qb2
1
‘ ð½22; 25�; ½20; 28�Þ qb2

2
‘ ð½18; 20�; ½16; 24�Þ qb2

3
‘ ð½17; 21�; ½15; 25�Þ

Table 8 Fixed charge of first type of medicine ð~�f 1ijkÞ for conveyance k ¼ 1

D1 D2 D3

S1 (.111 � 3, .111 � 2, .111 þ 2, .111 þ 3), (.112 � 3, .112 � 2, .112 þ 2, .112 þ 3), (.113 � 3, .113 � 2, .113 þ 2, .113 þ 3),

.111 ‘ ð½10; 12�; ½9; 18�Þ .112 ‘ ð½16; 22�; ½14; 24�Þ .113 ‘ ð½17; 21�; ½16; 23�Þ
S2 (.121 � 3, .21 � 2, .121 þ 2, .121 þ 3), (.122 � 3, .122 � 2, .122 þ 2, .122 þ 3), (.123 � 3, .123 � 2, .123 þ 2, .123 þ 3),

.121 ‘ ð½10; 15�; ½8; 16�Þ .122 ‘ ð½14; 20�; ½13; 26�Þ .123 ‘ ð½15; 25�; ½14; 26�Þ
S3 (.131 � 3, .131 � 2, .131 þ 2, .131 þ 3), (.132 � 3, .132 � 2, .132 þ 2, .132 þ 3), (.133 � 3, .133 � 2, .133 þ 2, .133 þ 3),

.131 ‘ ð½12; 18�; ½10; 20�Þ .132 ‘ ð½15; 22�; ½14; 28�Þ .133 ‘ ð½16; 20�; ½15; 21�Þ
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Table 9 Fixed charge of first type of medicine ð~�f 1ijkÞ for conveyance k ¼ 2

D1 D2 D3

S1 (r111 � 5, r111 � 4, r111 þ 4, r111 þ 5), (r112 � 5, r112 � 4, r112 þ 4, r112 þ 5), (r113 � 5, r113 � 4, r113 þ 4, r113 þ 5),

r111 ‘ ð½15; 20�; ½14; 24�Þ r112 ‘ ð½20; 26�; ½19; 27�Þ r113 ‘ ð½21; 25�; ½20; 28�Þ
S2 (r121 � 5, r21 � 4, r121 þ 4, r121 þ 5), (r122 � 5, r122 � 4, r122 þ 4, r122 þ 5), (r123 � 5, r123 � 4, r123 þ 4, r123 þ 5),

r121 ‘ ð½18; 22�; ½16; 25�Þ r122 ‘ ð½21; 23�; ½20; 24�Þ r123 ‘ ð½22; 24�; ½20; 25�Þ
S3 (r131 � 5, r131 � 4, r131 þ 4, r131 þ 5), (r132 � 5, r132 � 4, r132 þ 4, r132 þ 5), (r133 � 5, r133 � 4, r133 þ 4, r133 þ 5),

r131 ‘ ð½16; 24�; ½15; 25�Þ r132 ‘ ð½19; 21�; ½18; 22�Þ r133 ‘ ð½23; 26�; ½22; 27�Þ

Table 10 Fixed charge of second type of medicine ð~�f 2ijkÞ for conveyance k ¼ 1

D1 D2 D3

S1 (.211 � 3, .211 � 2, .211 þ 2, .211 þ 3), (.212 � 3, .212 � 2, .212 þ 2, .212 þ 3), (.213 � 3, .213 � 2, .213 þ 2, .213 þ 3),

.211 ‘ ð½11; 13�; ½10; 20�Þ .212 ‘ ð½15; 20�; ½13; 26�Þ .213 ‘ ð½16; 22�; ½14; 24�Þ
S2 (.221 � 3, .221 � 2, .221 þ 2, .221 þ 3), (.222 � 3, .222 � 2, .222 þ 2, .222 þ 3), (.223 � 3, .223 � 2, .223 þ 2, .223 þ 3),

.221 ‘ ð½11; 16�; ½9; 18�Þ .222 ‘ ð½13; 23�; ½12; 25�Þ .223 ‘ ð½14; 24�; ½12; 28�Þ
S3 (.231 � 3, .231 � 2, .231 þ 2, .231 þ 3), (.232 � 3, .232 � 2, .232 þ 2, .232 þ 3), (.233 � 3, .233 � 2, .233 þ 2, .233 þ 3),

.231 ‘ ð½11; 19�; ½10; 22�Þ .232 ‘ ð½16; 23�; ½13; 29�Þ .233 ‘ ð½17; 20�; ½16; 24�Þ

Table 11 Fixed charge of second type of medicine ð~�f 2ijkÞ for conveyance k ¼ 2

D1 D2 D3

S1 (r211 � 5, r211 � 4, r211 þ 4, r211 þ 5), (r212 � 5, r212 � 4, r212 þ 4, r212 þ 5), (r213 � 5, r213 � 4, r213 þ 4, r213 þ 5),

r211 ‘ ð½16; 22�; ½13; 25�Þ r212 ‘ ð½19; 27�; ½18; 28�Þ r213 ‘ ð½20; 25�; ½19; 29�Þ
S2 (r221 � 5, r221 � 4, r221 þ 4, r221 þ 5), (r222 � 5, r222 � 4, r222 þ 4, r222 þ 5), (r223 � 5, r223 � 4, r223 þ 4, r223 þ 5),

r221 ‘ ð½17; 22�; ½15; 25�Þ r222 ‘ ð½22; 24�; ½21; 26�Þ r223 ‘ ð½21; 25�; ½19; 27�Þ
S3 (r231 � 5, r231 � 4, r231 þ 4, r231 þ 5), (r232 � 5, r232 � 4, r232 þ 4, r232 þ 5), (r233 � 5, r233 � 4, r233 þ 4, r233 þ 5),

r231 ‘ ð½17; 23�; ½15; 25�Þ r232 ‘ ð½18; 22�; ½17; 24�Þ r233 ‘ ð½22; 27�; ½20; 29�Þ

Table 12 Transporting time of both types of medicine ð~�tijkÞ for conveyance k ¼ 1

D1 D2 D3

S1 (v11 � 2, v11 � 1, v11 þ 1, v11 þ 2), (v12 � 2, v12 � 1, v12 þ 1, v12 þ 2), (v13 � 2, v13 � 1, v13 þ 1, v13 þ 2),

v11 ‘ ð½8; 9�; ½6; 10�Þ v12 ‘ ð½7; 9�; ½5; 10�Þ v13 ‘ ð½6; 8�; ½5; 11�Þ
S2 (v21 � 2, v21 � 1, v21 þ 1, v21 þ 2), (v22 � 2, v22 � 1, v22 þ 1, v22 þ 2), (v23 � 2, v23 � 1, v23 þ 1, v23 þ 2),

v21 ‘ ð½7; 8�; ½6; 12�Þ v22 ‘ ð½9; 10�; ½8; 12�Þ v23 ‘ ð½5; 6�; ½4; 8�Þ
S3 (v31 � 2, v31 � 1, v31 þ 1, v31 þ 2), (v32 � 2, v32 � 1, v32 þ 1, v32 þ 2), (v33 � 2, v33 � 1, v33 þ 1, v33 þ 2),

v31 ‘ ð½6; 7�; ½5; 8�Þ v32 ‘ ð½9; 10�; ½7; 11�Þ v33 ‘ ð½10; 11�; ½9; 12�Þ
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9.1 Comparison with the existing methods

In this subsection, we mainly present the advantages of the

suggested model and method with respect to some existing

methods and related models which are listed below:

1. Aggarwal and Gupta [33] solved a single objective

STP under a intuitionistic fuzzy environment. But, our

formulated model is designed under a multi-objective

environment with an additional cost of fixed-charge

type, which is more realistic for real-life transportation

problems.

2. Zhang et al. [19] considered the parameters of FCSTP

as uncertain variables to deal with indeterminacy

phenomena in transporting systems. They incorporated

an uncertain distribution when historical data are not

valid because of unwanted events having happened.

For example, when a natural disaster occurs, it may be

better to consider uncertain variables as the parameters

in transporting systems. However, this is a special case

and would not happen in daily-life industrial trans-

porting systems. From this stand point, we choose

fuzzy-rough variables as the parameters in our

Table 13 Transporting time of both types of medicine ð~�tijkÞ for conveyance k ¼ 2

D1 D2 D3

S1 (/11 � 4, /11 � 3, /11 þ 3, /11 þ 4), (/12 � 4, /12 � 3, /12 þ 3, /12 þ 4), (/13 � 4, /13 � 3, /13 þ 3, /13 þ 4),

/11 ‘ ð½6; 9�; ½5; 10�Þ /12 ‘ ð½8; 10�; ½7; 11�Þ /13 ‘ ð½9; 11�; ½8; 12�Þ
S2 (/21 � 4, /21 � 3, /21 þ 3, /21 þ 4), (/22 � 4, /22 � 3, /22 þ 3, /22 þ 4), (/23 � 4, /23 � 3, /23 þ 3, /23 þ 4),

/21 ‘ ð½10; 11�; ½9; 12�Þ /22 ‘ ð½8; 12�; ½7; 13�Þ /23 ‘ ð½6; 10�; ½5; 11�Þ
S3 (/31 � 4, /31 � 3, /31 þ 3, /31 þ 4), (/32 � 4, /32 � 3, /32 þ 3, /32 þ 4), (/33 � 4, /33 � 3, /33 þ 3, /33 þ 4),

/31 ‘ ð½7; 8�; ½6; 10�Þ /32 ‘ ð½11; 12�; ½10; 13�Þ /33 ‘ ð½9; 12�; ½8; 14�Þ

Table 14 Packing cost of first

type of medicine ð~�d1ijkÞ for
conveyance k ¼ 1

D1 D2 D3

S1 (m111 � 0:5, m111 � 0:2, m111 þ 0:2, (m112 � 0:5, m112 � 0:2, m112 þ 0:2, (m113 � 0:5, m113 � 0:2, m113 þ 0:2,

m111 þ 0:5),m111 ‘ ð½2; 3�; ½1; 4�Þ m112 þ 0:5),m112 ‘ ð½3; 4�; ½2; 5�Þ m113 þ 0:5), m113 ‘ ð½3; 4�; ½2; 5�Þ
S2 (m121 � 0:5, m121 � 0:2, m121 þ 0:2, (m122 � 0:5, m122 � 0:2, m122 þ 0:2, (m123 � 0:5, m123 � 0:2, m123 þ 0:2,

m121 þ 0:5), m122 þ 0:5), m123 þ 0:5),

m121 ‘ ð½2:5; 3:5�; ½2; 4�Þ m122 ‘ ð½2:5; 3�; ½1:5; 4�Þ m123 ‘ ð½2:5; 3:5�; ½1:5; 4�Þ
S3 (m131 � 0:5, m131 � 0:2, m131 þ 0:2, (m132 � 0:5, m132 � 0:2, m132 þ 0:2, (m133 � 0:5, m133 � 0:2, m133 þ 0:2,

m131 þ 0:5), m132 þ 0:5), m133 þ 0:5),

m131 ‘ ð½3:5; 4�; ½3; 4:5�Þ m132 ‘ ð½4; 5:5�; ½3; 6�Þ m133 ‘ ð½3; 4:5�; ½2:5; 5:5�Þ

Table 15 Packing cost of first type of medicine ð~�d1ijkÞ for conveyance k ¼ 2

D1 D2 D3

S1 (w1
11 � 0:6, w1

11 � 0:3, w1
11 þ 0:3, (w1

12 � 0:6, w1
12 � 0:3, w1

12 þ 0:3, (w1
13 � 0:6, w1

13 � 0:3, w1
13 þ 0:3,

w1
11 þ 0:6), w1

12 þ 0:6), w1
13 þ 0:6),

w1
11 ‘ ð½2:5; 3:5�; ½2; 4�Þ w1

12 ‘ ð½3:5; 5:5�; ½3; 6�Þ w1
13 ‘ ð½4; 5�; ½3:5; 6�Þ

S2 (w1
21 � 0:6, w1

21 � 0:3, w1
21 þ 0:3, (w1

22 � 0:6, w1
22 � 0:3, w1

22 þ 0:3, (w1
23 � 0:6, w1

23 � 0:3, w1
23 þ 0:3,

w1
21 þ 0:6), w1

22 þ 0:6), w1
23 þ 0:6),

w1
21 ‘ ð½2; 4�; ½1:5; 5:5�Þ w1

22 ‘ ð½2; 3�; ½1:5; 4:5�Þ w1
23 ‘ ð½4:5; 5:5�; ½2; 6�Þ

S3 (w1
31 � 0:6, w1

31 � 0:3, w1
31 þ 0:3, (w1

32 � 0:6, w1
32 � 0:3, w1

32 þ 0:3, (w1
33 � 0:6, w1

33 � 0:3, w1
33 þ 0:3,

w1
31 þ 0:6), w1

32 þ 0:6), w1
33 þ 0:6),

w1
31 ‘ ð½2:5; 4:5�; ½1; 5�Þ w1

32 ‘ ð½3; 6�; ½2; 6:5�Þ w1
33 ‘ ð½3:5; 4�; ½1:5; 5�Þ
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proposed study which efficiently deals with real-life

industrial transporting systems.

3. Kundu et al. [17] solved a multi-objective multi-item

solid transportation problem by fuzzy programming. In

Table 23, we see that both WGP and extended TOPSIS

give better results than fuzzy programming. Moreover,

the suggested model is considered with an extra cost of

fixed charge under twofold uncertain environment. The

Table 16 Packing cost of

second type of medicine ð~�d2ijkÞ
for conveyance k ¼ 1

D1 D2 D3

S1 (m211 � 0:5, m211 � 0:2, m211 þ 0:2, (m212 � 0:5, m212 � 0:2, m212 þ 0:2, (m213 � 0:5, m213 � 0:2, m213 þ 0:2,

m211 þ 0:5), m212 þ 0:5), m213 þ 0:5),

m211 ‘ ð½3; 4:5�; ½2:5; 5:5�Þ m212 ‘ ð½3:5; 4�; ½2; 5:5�Þ m213 ‘ ð½2:5; 4:5�; ½2; 5:5�Þ
S2 (m221 � 0:5, m221 � 0:2, m221 þ 0:2, (m222 � 0:5, m222 � 0:2, m222 þ 0:2, (m223 � 0:5, m223 � 0:2, m223 þ 0:2,

m221 þ 0:5), m222 þ 0:5), m223 þ 0:5),

m221 ‘ ð½3; 3:5�; ½2:5; 4:5�Þ m222 ‘ ð½3; 4:5�; ½2; 5�Þ m223 ‘ ð½2:5; 4�; ½2; 4:5�Þ
S3 (m231 � 0:5, m231 � 0:2, m231 þ 0:2, (m232 � 0:5, m232 � 0:2, m232 þ 0:2, (m233 � 0:5, m233 � 0:2, m233 þ 0:2,

m231 þ 0:5), m232 þ 0:5), m233 þ 0:5),

m231 ‘ ð½3; 4:5�; ½2; 6:5�Þ m232 ‘ ð½4:5; 5�; ½3:5; 6�Þ m233 ‘ ð½4; 5�; ½3; 5:5�Þ

Table 17 Packing cost of second type of medicine ð~�d2ijkÞ for conveyance k ¼ 2

D1 D2 D3

S1 (w2
11 � 0:6, w2

11 � 0:3, w2
11 þ 0:3, (w2

12 � 0:6, w2
12 � 0:3, w2

12 þ 0:3, (w2
13 � 0:6, w2

13 � 0:3, w2
13 þ 0:3,

w2
11 þ 0:6), w2

12 þ 0:6), w2
13 þ 0:6),

w2
11 ‘ ð½3:5; 4�; ½2; 4:6�Þ w2

12 ‘ ð½4; 5�; ½3:5; 6�Þ w2
13 ‘ ð½4:5; 5�; ½3; 5:5�Þ

S2 (w2
21 � 0:6, w2

21 � 0:3, w2
21 þ 0:3, (w2

22 � 0:6, w2
22 � 0:3, w2

22 þ 0:3, (w2
23 � 0:6, w2

23 � 0:3, w2
23 þ 0:3,

w2
21 þ 0:6), w2

22 þ 0:6), w2
23 þ 0:6),

w2
21 ‘ ð½2:5; 4:5�; ½2; 6�Þ w2

22 ‘ ð½3; 3:6�; ½2; 5�Þ w2
23 ‘ ð½5; 6�; ½3; 6:5�Þ

S3 (w2
31 � 0:6, w2

31 � 0:3, w2
31 þ 0:3, (w2

32 � 0:6, w2
32 � 0:3, w2

32 þ 0:3, (w2
33 � 0:6, w2

33 � 0:3, w2
33 þ 0:3,

w2
31 þ 0:6), w2

32 þ 0:6), w2
33 þ 0:6),

w2
31 ‘ ð½3; 5�; ½2:6; 5:6�Þ w2

32 ‘ ð½3:6; 5:6�; ½2:6; 6:6�Þ w2
33 ‘ ð½4; 5�; ½2; 5:6�Þ

Table 18 Crisp form of

transportation cost in the form

ðc1ij1; c1ij2; c2ij1; c2ij2Þ

D1 D2 D3 Supply ða1i ; a2i Þ

S1 (5.25, 6, 7.75, 10) (7, 8, 6.50, 8.5) (6.75, 9, 7.50, 7) (20.5, 35.5)

S2 (6, 7.75, 9, 9.75) (8, 6, 10.50, 9.25) (6.50, 9, 10.50, 8) (27.5, 29)

S3 (9.25, 6, 8.75, 7.94) (8, 10, 6.25, 8.75) (8.19, 7.25, 8.50, 8.69) (26, 28)

Demand ðb1j ; b2j Þ (18, 23.75) (21.5, 19.5) (17.25, 19.5)

Table 19 Crisp form of fixed

charge in the form

ðf 1ij1; f 1ij2; f 2ij1; f 2ij2Þ

D1 D2 D3

S1 (12.25, 18.25, 13.56, 19) (19, 22.92, 18.50, 23) (19.25, 16.38, 19, 23.25)

S2 (12.25, 20.25, 13.50, 19.75) (18.25, 22, 18.25, 23.25) (20, 22.75, 19.50, 23.13)

S3 (15, 20, 15.50, 20) (19.75, 20, 20.25, 20.25) (18, 24.50, 19.25, 24.50)

Table 20 Crisp form of transporting time in the form ðtij1; tij2Þ

D1 D2 D3

S1 (8.25, 7.50) (7.75, 9) (7.50, 10)

S2 (8, 10.50) (9.75, 10) (5.75, 8)

S3 (6.50, 7.75) (9.25, 11.50) (10.50, 10.75)
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authors of [17], however, formulated a multi-objective

multi-item STP under a fuzzy environment. From this

viewpoint, it can be said that our model is more

preferable to tackle real-life transporting systems.

4. Rani and Gulati [34] proposed a method to solve a

multi-objective multi-product solid transportation

problem under a fuzzy environment by fuzzy pro-

gramming. But difficulties arise of their method if the

number of objective functions is more than two, and a

large number of variables is involved into the trans-

porting problem. Instead, our suggested extended

TOPSIS is free from such types of difficulties and it

gives better results than fuzzy programming.

5. Ebrahimnejad and Verdegay [48] proposed an

approach to solve intuitionistic fuzzy transportation

problems. But this approach is not suitable to tackle a

large number of variables in an industrial transporting

system as it leads to a higher computational burden.

Instead, our proposed extended TOPSIS approach can

easily handle a large number of variables and it means

less computational expense. In [48], the authors

formulated TP under intuitionistic fuzzy environment.

However, some practical situations arise where both

fuzziness and roughness exist simultaneously. For

these cases our suggested model can deal the situations

well.

6. Singh et al. [35] solved a multi-objective solid

transportation problem under a stochastic environment

by fuzzy programming. From Table 23, it is concluded

that both WGP and extended TOPSIS give better

results than fuzzy programming. Moreover, our pro-

posed model is formulated on multi-item ground with

an extra cost of fixed-charge type, which is more

preferable for an industrial transporting system.

10 Concluding remarks and future research
directions

In this paper, for the first time in the course of research, we

introduce the concept of fuzzy-rough variable in

MOMIFCSTP by considering three objective functions

which are connected with a real-life problem. We need less

computational effort to generate the optimal solutions

which are closest to the PIS and farthest from the NIS. In

Table 21 Crisp form of packing

cost in the form

ðd1ij1; d1ij2; d2ij1; d2ij2Þ

D1 D2 D3

S1 (2.50, 3, 3.88, 3.53) (3.50, 4.44, 3.75, 4.69) (3.50, 4.63, 3.63, 4.50)

S2 (3, 3.25, 3.38, 3.75) (2.75, 2.75, 3.63, 3.40) (2.86, 4.50, 3.31, 5.13)

S3 (3.75, 3.25, 4, 4.05) (4.63, 4.38, 4.75, 4.54) (3.88, 3.50, 4.38, 4.15)

Table 22 Capacity of kth conveyance ð~�ekÞ and its expected value

ðE½~�ek�Þ

~�ek E½~�ek�

k ¼ 1 (xe1 � 7, xe1 � 5, xe1 þ 5, xe1 þ 7), 70.75

xe1 ‘ ð½70; 72�; ½67; 74�Þ
k ¼ 2 (xe2 � 7, xe2 � 5, xe2 þ 5, xe2 þ 7) 62.50

xe2 ‘ ð½60; 65�; ½57; 68�Þ

Table 23 Pareto-optimal solutions of the proposed MOMIFCSTP

Name of the method Optimal values of the objective functions

Z1;Z2;Z3

Values of k1; k2; k3 and dþ1 ; d
þ
2 ; d

þ
3

Fuzzy programming to Model 2 1087.05, 86.25, 398.48 k1 ¼ 0:64

Weighted goal programming to Model 2 (i.e., Model

5)

1014.95, 80, 422.76 dþ1 ¼ 3:07; dþ2 ¼ 65:25

dþ3 ¼ 22:76

TOPSIS to Model 3 and Model 4 (i.e., Model 2) 1010.01, 80, 414.78 k2 ¼ 0:96; k3 ¼ 0:22

Fig. 4 Optimal values of Z1, Z2 and Z3 by three approaches
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TOPSIS approach, we address Euclidean distance measure

and a max–min operator to solve the MOMIFCSTP as a bi-

objective problem for getting a Pareto-optimal solution.

Fuzzy programming and WGP are also employed to obtain

a Pareto-optimal solution. A comparative study is drawn

among the Pareto-optimal solutions from the approaches.

To the best of our knowledge, we, for the first time, have

applied TOPSIS approach to solve the multi-objective

multi-item fixed-charge solid transportation problem, and

we have seen that using of TOPSIS here produced a better

result of a Pareto-optimal solution than fuzzy programming

and WGP. Finally, from the applied viewpoint, we have

concluded that our model is highly significant in real-life

situations; this gives a new paradigm to the decision maker.

In future studies, the contents of this paper can open a

new dimension to make a separate investigation for both

the fixed-charge solid transportation problem and the fixed-

charge transportation problem in fuzzy and rough envi-

ronments. One may consider different distance measures

for different values of the index q in TOPSIS approach to

solve the multi-objective transportation problem under

different uncertain environments. Researchers can use a

portfolio of approaches for representing and handling of

uncertainty, such as gray numbers, ellipsoid uncertainty

and stochastic in real-life multi-objective transportation

problems, and conduct the corresponding comparisons.
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