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Abstract
Global analysis of power system markets project frequency regulation as one of the most profitable ancillary services. It is

associated with second-to-second balance of load and frequency within a control area and acquires a principal role in

enabling power interchanges while offering better conditions for electricity exchange. In the light of the above, a novel

control strategy, namely salp swarm algorithm (SSA)-based model predictive controller, is proposed for frequency reg-

ulation of an unequal two-area realistic power system, incorporating solar thermal power plant and conventional thermal

plant. Governor dead band, generation rate constraint and transport delay are considered in each control area. Over the past

few years, model predictive controller (MPC) has come forward as a prediction-based control strategy for stabilizing

dynamical systems while considering non-linearities, system uncertainties and constraints. The MPC parameters are

optimized using SSA. The performance of the proposed approach is validated by comparing the dynamic time responses of

SSA-optimized MPC with the other SSA-optimized conventional controllers, namely PID, FOPID and cascade PIDN-

FOPID controller. The simulation result analysis shows that the proposed optimal MPC outpaces the conventional con-

trollers with respect to peak overshoot, undershoot and settling time of the time responses. A comparative study of various

objective functions indicates that, as compared to other indices, integral square error is better for the considered test

system. Further, sensitivity analysis reveals the robustiousness of MPC parameters obtained at nominal values and hence is

not required to be retuned, against variations in system loading and inertia constant.

Keywords Load frequency control (LFC) � Salp swarm algorithm (SSA) � Solar thermal power plant (STPP) �
Model predictive controller (MPC) � Fractional-order proportional integral derivative (FOPID) � Integral square error (ISE)

List of symbols
f Considered system frequency (Hz)

i Referred subscript to area i, i = 1, 2

T12 Synchronizing coefficient

DPDi Load variation in area i (p.u.)

T Simulation time (s)

Dfi Frequency change in ith area (Hz)

Di DPDi/Dfi (p.u. MW/Hz)

Ksi Gain of solar field of ith area

Bi Frequency bias constant of ith area

p pi

Kpi 1/Di (Hz/p.u. MW)

Hi Inertia constant of area i (s)

bi (Di ? 1/Ri); area frequency response

characteristics of ith area

Ri Speed regulation parameter of governor of ith area

(Hz/p.u. MW)

DPtie Incremental tie-line power deviation amid area 1

and area 2

Tgi Time constant of steam governor for thermal power

plant in ith area

Kpfi Proportional gain of FOPID part of PIDN-FOPID

cascade controller for ith area, i = 1, 2

li Order of differentiator of cascade PIDN-FOPID

controller in ith area, i = 1, 2

Tti Time constant of steam turbine for thermal power

plant in ith area

Tgsi Time constant of steam governor for STPP in ith

area

a12 Area capacity ratio

Tpi 2Hi/f/Di
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To Working fluid outlet temperature of solar field (�C)
Ti Working fluid inlet temperature of solar field (�C)
Te Environmental temperature (�C)
I Solar irradiance (W/m2)

v Pump flow rate (m3/s)

A Surface area of the collector

C Heat capacity of the working fluid (J/K)

g0 Solar field collector efficiency

UL Total heat loss coefficient (W/m2 K)

Tri Reheat steam turbine time constant of ith area (s)

Kri Reheat coefficient of steam turbine of ith area

Kpri PID, FOPID, PIDN-FOPID proportional gain for

ith area, i = 1, 2

Kini PID, FOPID, PIDN-FOPID integral gain for ith

area, i = 1, 2

Kdei PID, FOPID, PIDN-FOPID derivative gain for ith

area, i = 1, 2

Ni PIDN-FOPID derivative filter coefficient for ith

area, i = 1, 2

Kdfi Derivative gain of FOPID part of PIDN-FOPID

cascade controller for ith area, i = 1, 2

Kifi Integral gain of FOPID part of PIDN-FOPID

cascade controller for ith area, i = 1, 2

ki Order of integrator of cascade PIDN-FOPID

controller in ith area, i = 1, 2

Tsi Solar collector time constant of ith area

Ttsi Time constant of steam turbine for STPP in ith area

1 Introduction

In a power system, watt and volt–ampere reactive power

demands being dynamic, both frequency and voltage con-

tinuously change. The LFC, also termed as automatic

generation control (AGC), controls the real power in an

effort to keep a constant system frequency. The system

frequency rests at its expected nominal value only when

there is a balance between the real power generation and

the real power demand, failing which the speed of the

machine will fluctuate with subsequent deviation in system

frequency [1]. These deviations must be detected, and the

automatic control system must initiate control actions to

counter these deviations, thus getting the power system

back quickly to its original state. AGC uses the frequency

deviations, and net real tie-line power interchanges

between the neighbouring areas to evoke suitable valve

actions of generators in reaction to system load fluctua-

tions. Thus, the key objectives of the AGC are: (1) to hold

the frequency of the system at or very close to a stated

theoretical value and (2) to keep up the scheduled net

interchanges of real power amongst the control areas [2].

From the already existing work, it can be observed that a

wide and extensive research has been done on AGC of

interconnected power systems [3–7]. An extensive and

exhaustive bibliographic survey on classical and optimal

control strategies, linear and nonlinear power system

models, AGC strategies based on digital, soft computing,

self-tuning control and adaptive control have been pre-

sented by Ibraheem et al. [3]. Analysis on challenges in

LFC integrating storage devices such as battery energy

storage system (BESS), wind–diesel system, PV systems

and FACTS devices was presented by Pandey et al. [4].

Janardan Nanda et al. [5] studied the generation control of

a two-area interconnected thermal–hydro power system

applying classical controllers, while considering system

non-linearities. Researchers in [6] have put forward a

comprehensive dynamic analysis of a more realistic power

system under deregulated environment with varied sources

such as hydro, thermal and gas in each control area. In

2012, Das et al. [7] researched the models of an isolated

hybrid generation system such as wind, diesel, aqua elec-

trolysers, photovoltaic, STPP, flywheel, BESS, fuel cells

and ultra-capacitors.

Owing to the price of conventional sources of power and

the grave environmental problems, the usage of non-con-

ventional energy sources, particularly the solar energy, is

continuously increasing [8]. The modelling and concepts of

combining solar power in a multi-source power plant have

been presented in the literature [9–12]. Buzas et al. [9]

proposed a validated solar collector transfer function based

on a mathematical model, already present in the literature,

that can be easily employed for the control design and

dynamical analysis. Based on the solar collector transfer

function model proposed by Buzas in [9], Sharma et al.

[10] presented the frequency control of an interconnected

unequal two-area system integrating STPP and thermal

plant, using grey wolf optimization (GWO)-optimized PID

controller. Researchers in [11] studied the effect of using

ultra-capacitors on load frequency regulation of a two-area

STPP–thermal power plant using recent PIDN-FOPID

controller under deregulated environment. The concept of

an integrated multi-source model of automatic voltage

regulator and LFC in a STPP–thermal power plant, using

lightning search algorithm (LSA), was addressed by

Rajbongshi et al. [12].

The AGC action is predominantly divided into a primary

control action and a secondary control action. In case of a

sudden increase in electrical load on a generator, the

deviation in frequency is compensated by the speed gov-

ernor action called the primary control. However, in case of

mismatch over few seconds to several minutes, the fre-

quency cannot be maintained at a constant value by
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employing the speed governor action alone. Hence, the

sudden load variations are minimized while maintaining

the system frequency at nominal value by exercising a

secondary control mechanism in the form of controllers.

Currently, for a reliable operation of power system, nearly

all the investigation on AGC is targeted on design of

efficient and improved controllers [11, 13–18]. Various

controllers, namely integral (I), proportional integral (PI),

integral derivative (ID), proportional integral derivative

(PID) [13, 14], integral double derivative (IDD) [13],

parallel 2-degree-of-freedom proportional integral deriva-

tive (2-DOF PID) [15], modern controllers like FOPID

[16], model predictive controller (MPC) [17], cascaded

controllers [11], intelligent and advanced controllers like

artificial neural network (ANN) and fuzzy logic controller

(FLC) [14, 18] controllers, have been discussed in the

above literature. These control schemes deliver good

dynamic response and reduce the deviations in the system

as well as the steady-state error in tie-line real power flow

and fluctuations in system frequency. The setback for

conventional or classical controllers over modern con-

trollers is their lack of efficacy in handling system non-

linearities and constraints as well as their gradual transient

response. The implementation of MPC is not yet consid-

ered in interconnected multi-area systems incorporating

renewable sources like solar thermal power plant.

The power system performance mostly depends on the

gains and parameters of the controller; thus, they must be

optimally tuned using good and efficient optimization

approaches. Nowadays, engineers dedicated in power sec-

tor have used various optimization approaches, namely

genetic algorithm (GA), gravitational search algorithm

(GSA) and its different variants [19], firefly algorithm

(FFA) [10, 20], particle swarm optimization (PSO) [11]

and cuckoo search algorithm (CSA) [12] for LFC under

both conventional and deregulated environments. Recently,

GWO [21, 22], ant lion optimization (ALO) [23, 24], whale

optimization algorithm (WOA) [25], grasshopper opti-

mization algorithm (GOA) [26], LSA [12] and SSA [27]

have been developed. Amongst the methods, PSO is the

pioneer one and SSA is the most recently developed opti-

mization algorithm. GA requires a large number of

objective function evaluations with lengthy computation

time especially for large dimensional problems [28]. Like

GA, PSO also has a disadvantage of getting trapped in local

optimum solution. The performance of any technique

mainly depends on the balance between exploitation and

exploration mechanisms [29]. With poor exploration

capability, algorithms such as bat algorithm [30] easily get

trapped into the local minima, whereas GWO and artificial

bee colony (ABC) show a much better performance,

especially on the functions with a large number of local

minima. CSA and FFA do not perform as well as GWO and

ABC in terms of convergence rate and search efficiency

and need more iterations to reach the global optima [28].

The authors [31] presented the superiority of GWO over

differential evolution (DE), PSO and ABC approaches. The

main advantages of the GWO method include quick con-

vergence, more accurate results and highly robust and

strong exploration ability over the search space. The

advantages of WOA over PSO and FFA were shown by

Saha et al. [11]. Recently, another swarm-based algorithm

has been introduced by Mirjalili et al. [27] in 2017. The

authors [27] presented the effectiveness of SSA over DE,

PSO and GSA by conducting experiments on 19 different

benchmark functions.

SSA is inspired by the swarming attitude of salps, while

navigating and searching in oceans. Also, it employs an

adaptive mechanism to balance convergence and diver-

gence. Thus, this technique is able to approach the global

optimum solution of day-to-day world single- and multi-

objective problems with inspiring and unfamiliar investi-

gating areas. However, the SSA approach is not yet applied

for optimal tuning of parameters and gains of controllers in

LFC of STPP–thermal power plants under conventional

and deregulated environments.

Thus, in consideration of the above, the main objectives

of the present work are listed below:

(a) To design a load frequency model of an unequal two-

area STPP–thermal power plant with appropriate

governor dead band (GDB) and generation rate

constraint (GRC).

(b) To optimally tune the gains and parameters of PID,

FOPID, PIDN-FOPID cascade controllers, as well as

output signal weight, manipulated variable weight

and manipulated variable rate weight parameters of

MPC using salp swarm algorithm (SSA). Further,

using the above-mentioned controllers the dynamic

time response of the system considered in (a) is

obtained.

(c) To perform a comparative analysis of dynamic time

responses of the considered system while applying

the controllers mentioned above, in order to find the

most suitable controller for the considered system.

(d) To evaluate the different objective functions used for

optimal tuning using SSA, so as to attain the best

suitable objective function for the system considered

in (a).

(e) To carry out sensitivity analysis for efficiency and

robustness of the proposed SSA-optimized MPC

controller.
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2 Test system

The system investigated in this paper is an unequal two-

area interconnected STPP–thermal power plant with area

capacity ratio of area 1 to area 2 = 2:5. Each control area

consists of a STPP and a fuel unit comprising of single

reheat turbine. Non-linearities such as GDB of 0.06%

(0.036 Hz) and GRC of 3%/min with each reheat thermal

unit make the considered system more realistic in nature.

To study the system dynamics, a 0.01 p.u. step load per-

turbation is considered as disturbance in area 1. For each

control area, the considered parameters for thermal system

are obtained from [13] and the considered parameters for

solar thermal power plant are obtained from [7, 10]. PID,

FOPID, PIDN-FOPID cascade controller and MPC are

considered for the necessary secondary control action. The

controller parameters, gains and filter coefficient are opti-

mized using a novel meta-heuristic optimization approach

named as SSA. The Simulink transfer function block dia-

gram model of the considered system is presented in Fig. 1.

The different cost functions considered for the investiga-

tion are: integral squared error (ISE), integral absolute error

(IAE), integral time square error (ITSE) and integral time

absolute error (ITAE), shown by Eqs. (1–4), respectively

J1 ¼
ZT

0

Dfið Þ2þ DPtieð Þ2
n o

dt ð1Þ

J2 ¼
ZT

0

Dfij j þ DPtiej jf gdt ð2Þ

J3 ¼
ZT

0

Dfið Þ2þ DPtieð Þ2
n o

tdt ð3Þ

J4 ¼
ZT

0

Dfij j þ DPtiej jf gtdt ð4Þ

where i denotes the number of control areas =1, 2 and T is

the simulation time in seconds. The turbine, reheat turbine

and governor transfer function are represented by Eqs. (5–

7), respectively

GtiðsÞ ¼
1

1þ sTti
ð5Þ

GrtiðsÞ ¼
1þ sKriTri

1þ sTri
ð6Þ

GgiðsÞ ¼
1

1þ sTgi
ð7Þ

Fig. 1 Simulink transfer function block diagram model of STPP–thermal power system
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Similarly, the solar field transfer function is presented

by [9], as shown below

GiðsÞ ¼
Ksi

1þ sTsi
ð8Þ

where Tsi denotes the solar collector time constant and is

represented as Tsi ¼ 1
ULA

2C
þv

Vð Þ, where V denotes volume of the

heat transfer fluid present in the collector (m3). For the

different processes of STPP, a transport delay of 1 s is

considered in each area of the system [9].

3 Model predictive controller (MPC)

Model predictive controller has been presented as a novel

method for automatic generation control of power systems

incorporating non-conventional energy sources such as

STPP. MPC is a prediction-based control technique where,

at every sampling interval, an optimum control action is

attained over a predefined prediction range. It presents

many advantages, like robustness, quick response and

stability against system uncertainties and non-linearities

[32]. The controller action relies on a prespecified number

of prediction and control moves across both manipulated

and controlled variable measurements. MPC designer can

preassign the sampling interval. The control estimates rely

on both predicted future output values and current obtained

output values. Figure 2 presents the elementary conceptual

diagram representing MPC [33]. The primary goal of MPC

is to compute a sequence of control moves in the manip-

ulated variable, in such a way that the system can be

optimally tracked to its set or reference value [17]. The

MPC state space representation is expressed by the fol-

lowing equations:

xðk þ 1Þ ¼ /xðkÞ þ svvðkÞ ð9Þ
yðkÞ ¼ ŷðkÞ ð10Þ
yðkÞ ¼ CxðkÞ þ DuuðkÞ þ DvvðkÞ ð11Þ

where a vector of n state variables is represented by x and u

denotes manipulated variables present in the system and

also enacts as an actuator. v typifies measured disturbances,

whereas constant matrices are symbolized by / and sv. ŷ
denotes the predicted output of the considered plant. C, Du

and Dv are constant matrices [34]. MPCobj ¼
mpcðPlant; Ts;P;M;WÞ creates an object based on a plant

model, sampling interval (Ts), prediction horizon (P),

control horizon (M), output, manipulated variable and

manipulated variable rate weights (W). All the parameters

stating the MPC control law are stored in an MPC object.

MPC as a modern control approach obtains the solution

for an optimization problem with the help of an objective

function, for every time instant k, based on predicted future

output values across a prediction range of P time steps. The

objective function minimization is achieved by selecting

manipulated variable moves, over a M-move control range.

Despite the fact that at each time step a set of M moves is

computed, only the first move uðk þ 1Þ is put into effect.

Following the realization of this step, the results yðk þ 1Þ at
the next successive time step is attained. These courses of

actions are conducted for every k time step [35]. The

foremost aim of MPC is to bring down the output error to

zero. The objective function J, which is to be minimized, is

in general a weighted sum of square of predicted future

PAST        FUTURE

SET POINT (TARGET)Predicted Future  Output
Past  Output

Past Control Action

Future Control Action

y
Control Horizon,  M

Prediction Horizon,  P

u

k-1 k k+1 k+2 k+M-1 k+P
Sampling Instant

ŷ

Fig. 2 Basic conceptual diagram representing model predictive controller [33]

Neural Computing and Applications (2019) 31:8859–8870 8863

123



errors and square of future control output values, as rep-

resented by the equation shown below

JðN1;N2;NuÞ ¼
XN2

j¼N1

bðjÞ ŷðk þ jjkÞ � wðk þ jÞ½ �2

þ
XNu

j¼1

kðjÞ uðk þ j� 1Þ½ �2
ð12Þ

where N1 and N2 denote the lower bound and upper bound

prediction ranges over the output, respectively, the control

limit is represented by Nu, the weighting factors are

denoted by bðjÞ and kðjÞ, whereas the trajectory of refer-

ence line across the future bound N is denoted by wðk þ jÞ.
Herein, measured disturbance of 0.01 p.u. MW is consid-

ered in area 1 of the test system and unmeasured distur-

bances are supposed to be absent. In this work, the MPC

parameters considered for tuning are manipulated variable

weights ðuiÞ, output signal weights ðyiÞ and manipulated

variable rate weights ðduiÞ [35]. The above-stated MPC

parameters are tuned using SSA so as to minimize the

objective functions (Eqs. 1–4), subject to the following

constraints [32]

umin
i � ui � umax

i

ymin
i � yi � ymax

i

dumin
i � dui � dumax

i

ð13Þ

within the limits of 0 and 1. umin
i , ymin

i , dumin
i and umax

i , ymax
i ,

dumax
i are lower and upper bounds of MPC parameters,

respectively.

4 Salp swarm algorithm (SSA)

A novel meta-heuristic optimization technique called SSA

is presented in this work for optimal tuning of different

controller gains, parameters and filter coefficient. In 2017,

Seyedali Mirjalili et al. proposed a recent swarm intelli-

gence optimizer named SSA. It is nature-inspired popula-

tion-based algorithm that follows the floating behaviour of

salps, in the form of salp chains while navigating in oceans

and seas. SSA saves and assigns the best solution obtained

so far to the food source variable, so it never gets lost even

if the whole population declines. It outperforms many

algorithms such as GA, PSO, GSA, CSA and FF due to its

adaptive nature, high exploration and exploitation using the

converging and diverging parameter, minimum feature

selection and hence less execution time and better accuracy

of results. Many stochastic operators incorporated into SSA

let this technique to be better than many approaches and

prevent them from being trapped at local optimal solutions

in multi-modal search spaces [27].

The algorithm starts with dividing the random popula-

tion into two classes: the leader and the followers. The salp

positioned at the very start of the salp chain is regarded as

the leader, while the salps other than the leader salp are

considered as follower salps. The leader salp being the best

solution directs the swarm of salps, whereas the follower

salps follow each other. The position of the leader is

updated using the following equations

x1j ¼ Fj þ c1 ubj � lbj
� �

c2 þ lbj
� �

c3 � 0 ð14Þ

x1j ¼ Fj � c1 ubj � lbj
� �

c2 þ lbj
� �

c3 � 0 ð15Þ

where x1j represents the position of leader and Fj represents

the food source position in dimension j. ubj and lbj are the

maximum and minimum limits in dimension j, respec-

tively. c1, c2 and c3 are random numbers, where c2 and c3
are uniformly created random numbers. Coefficient c1
balances convergence and divergence, expressed as below:

c1 ¼ 2e�
4l
Lð Þ2 ð16Þ

where l denotes the current and L denotes the maximum

number of epochs. The position of the follower salps is

revised using the below equation

xij ¼
1

2
xij þ xi�1

j

� �
; i� 2 ð17Þ

where xij depicts the location of ith salp follower in

dimension j [27]. The leader salp revises its location

depending upon the source of food or the fittest solution.

The rest of the salps (followers) follow the food source and

update their positions accordingly. The process continues

until the fittest solution is obtained or a stopping criterion is

met. The pseudocode and flowchart of SSA is presented in

Figs. 3 and 4, respectively.

The tuned values of input parameters applied in SSA

are: number of search agents (NP) = 30 and maximum

number of iterations = 50. The output variables in this

paper are the values of parameters and gains of controllers.

The output variables of PID controller is given as

Fig. 3 Pseudocode of salp swarm algorithm
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½Kpr1Kpr2Kin1Kin2Kde1Kde2� ð18Þ

The output variables of FOPID controller is given as

Kpr1Kpr2Kin1Kin2Kde1Kde2l1l2k1k2
� �

ð19Þ

The output variables of PIDN-FOPID controller is given

as

Kpr1Kpr2Kin1Kin2Kde1Kde2N1N2Kpf 1

�
Kpf2Kif1Kif2Kdf1Kdf 2l1l2k1k2

� ð20Þ

The output variables of MPC is given as

u1u2y1y2du1du2½ � ð21Þ

In this work, the variables range between 0 and 1

excluding Ni, i= 1, 2, for which the range taken into con-

sideration is between 0 and 100. The considered bound of

frequency for Oustaloup approximation is [0.01, 50] [11].

5 Results and analysis

5.1 Comparison of MPC with conventional
controllers

Here, MPC as well as conventional controllers such as PID,

FOPID and cascade PIDN-FOPID are used as secondary

control for lowering frequency deviations, area control

error (ACE) and controlling the variations in real power

flow of the considered power system. These controllers are

used independently, in each control area. MPC toolbox in

MATLAB/Simulink environment on MATLAB 2018 has

been used to design the MPC. In this work, considered

MPC parameters are prediction horizon (P) = 13; control

horizon (M) = 2; sampling interval = 0.0002 s [32]. In

each case, system responses are attained by taking into

account a 1% step load perturbation as disturbance, in area

1 of the system under investigation. An error band of 0.1%

is considered while calculating steady-state error and set-

tling time.

For each controller, the tunable parameters and gains are

simultaneously optimized exercising SSA technique. The

SSA-optimized values of controller gains, order of inte-

grator and differentiator and filter coefficient are presented

in Table 1. Using the attained optimum values, the

dynamic response of each controller is obtained and

assessed. The time-domain simulation responses of SSA-

optimized MPC, PIDN-FOPID cascade, FOPID and PID in

the form of frequency deviation in area 1 and area 2, tie-

line real power deviation and area control error are shown

in Fig. 5. Based on dynamic time responses, the perfor-

mance attributes such as settling time, peak undershoot and

peak overshoot, as given in Table 2, show that there is an

improvement of 62.79%, 44.03% and 34.33% in settling

time with MPC as compared to PID, FOPID and PIDN-

FOPID cascade controller, respectively, in frequency

deviation in area 1. Also, there is an improvement of

58.96%, 35.38% and 31.61% in settling time with MPC as

for PID, FOPID and PIDN-FOPID cascade controller,

respectively, in net tie-line power deviation. Therefore,

Fig. 5 and Table 2 show that SSA-optimized MPC control

strategy outperforms the other conventional controllers in

terms of settling time, peak undershoot and overshoot.

The performance of SSA technique is evaluated by

comparing its dynamic behaviour with GWO, WOA, GOA

and PSO, while considering same population size and

maximum number of iterations for the above-studied test

power system. Using the above-mentioned optimization

techniques, the controller gains and parameters are opti-

mized simultaneously, one controller at a time. Figure 6

presents the dynamic time responses corresponding to the

optimized parameters of MPC using SSA, WOA, GWO,

GOA and PSO techniques. In Fig. 6, the responses of SSA,

WOA, GWO, GOA and PSO techniques in terms of

Assign the values for search agents (NP),
MaxIter, ub, lb and dim

Start

Initialize the salps xi (i = 1, 2…dim)

Evaluate the fitness of each salp
Set F = Best Salp

Update c1 using Eq. (16)

C1

C1

Is
i=1?

Update the
position of

follower salps
using Eq. (17)

Update the
position of leader

salp using Eq.
(14) and Eq. (15)

No         Yes

C2

C2

Is i<NP?i=i+1
    Yes

Update the salps considering lb and ub

Is l<MaxIter?

i=i+1
                   No

Display F

Stop

     No

       Yes

1

1

22

Fig. 4 Flowchart of salp swarm algorithm
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Table 1 Optimum values of parameters and gains for different controllers in nominal condition

Controller Control area Optimal values of parameters

PID Area 1 Kpr1 = 0.9993 Kin1 = 0.8275 Kde1 = 0.6982

FOPID Area 2 Kpr2 = 0.9991 Kin2 = 0.4321 Kde2 = 0.8321

Area 1 Kpr1 = 0.7789 Kin1 = 0.3425 Kde1 = 0.9884 l1 = 0.9971 k1 = 0.8992

Area 2 Kpr2 = 0.8318 Kin2 = 0.8955 Kde2 = 0.9680 l2 = 0.9994 k2 = 0.4936

PIDN-FOPID cascade Area 1 Kpr1 = 0.9813 Kin1 = 0.3820 Kde1 = 0.0198 N1 = 4.6213 Kpf1 = 0.5953

Kif1 = 0.0026 Kdf1 = 0.9984 l1 = 0.7218 k1 = 0.4252

Area 2 Kpr2 = 0.9854 Kin2 = 0.0034 Kde2 = 0.9946 N2 = 6.9974 Kpf2 = 0.9709

Kif2 = 0.6010 Kdf2 = 0.9970 l2 = 0.4359 k2 = 0.9443

MPC Area 1 u1 = 0.3150 y1 = 0.9975 du1 = 0.0102

Area 2 u2 = 0.5089 y2 = 0.8994 du2 = 0.0056

Fig. 5 Dynamic response

comparison of SSA-optimized

controllers: a frequency

deviation in area 1 with respect

to time, b frequency deviation

in area 2 with respect to time,

c net tie-line power flow

deviation with respect to time,

d ACE in area 1 versus time

Table 2 Dynamic response

comparison with respect to

settling time (s), peak

undershoot and peak overshoot

Figures Parameters PID FOPID PIDN-FOPID MPC

Figure 5a Df1 Settling time (s) 32.430 21.553 18.370 12.064

Peak undershoot - 0.02551 - 0.02832 - 0.02827 - 0.02824

Peak overshoot 0.02202 0.03339 0.05996 0.006377

Figure 5b Df2 Settling time (s) 34.772 17.779 16.731 12.367

Peak undershoot - 0.02307 - 0.01997 - 0.01883 - 0.01735

Peak overshoot 0.01230 0.004791 0.003173 0.001782

Figure 5c DPtie Settling time (s) 35.960 22.837 21.576 14.756

Peak undershoot - 0.01254 - 0.012081 - 0.012092 - 0.01207

Peak overshoot 0.0005379 0.0003467 0.001621 0.0002008

Figure 5d ACE1 Settling time (s) 32.095 19.001 17.837 11.668

Peak undershoot - 0.01073 - 0.002276 - 0.0007240 - 0.0002118

Peak overshoot 0.02114 0.02167 0.02167 0.02161
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attributes such as frequency variation in area 1, frequency

variation in area 2 and net tie-line active power flow

deviation are compared. It can be observed that SSA-op-

timized MPC performs better than WOA, GWO, GOA and

PSO-optimized MPC, as SSA-based MPC has faster set-

tling time and lesser peak over and undershoot. Also, the

convergence curve of SSA, GWO, WOA, GOA and PSO

techniques is presented in Fig. 7. Figure 7 shows that SSA

converges at a faster rate than WOA, GWO, GOA and

PSO. Convergence depends upon the complexity, compu-

tational burden, memory requirement and hence on the

number of parameters required to be adjusted in an algo-

rithm. SSA has only one controlling parameter (c1), PSO

has three parameters (inertial weight, personal influence

factor and social influence factor), whereas, GOA, WOA

and GWO each have two controlling parameters. There-

fore, SSA requires less memory storage and can be easily

implemented. Moreover, steady movement of follower

salps prevent the algorithm from being trapped easily in

local optima [27].

Fig. 6 Dynamic response

comparison of different

algorithm-optimized MPCs:

a frequency deviation in area 1

with respect to time,

b frequency deviation in area 2

with respect to time, c net tie-

line power flow deviation with

respect to time, d ACE in area 1

versus time

Fig. 7 Convergence curve of different optimization algorithms

Table 3 Objective functions and optimum values of MPC parameters

for different objective functions

Objective function Value Optimal values of MPC parameters

Area 1 Area 2

ISE 0.0015 u1 = 0.2144 u2 = 0.7540

y1 = 0.9938 y2 = 0.9733

du1 = 0.1782 du2 = 0.0631

IAE 0.1276 u1 = 0.1502 u2 = 0.0119

y1 = 0.9815 y2 = 0.9464

du1 = 0.0175 du2 = 0.1276

ITSE 0.0028 u1 = 0.2580 u2 = 0.1354

y1 = 0.9889 y2 = 0.9775

du1 = 0.00931 du2 = 0.0298

ITAE 0.5526 u1 = 0.4039 u2 = 0.5467

y1 = 0.9584 y2 = 0.9945

du1 = 0.0585 du2 = 0.0101
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5.2 Objective function (J) selection

In this paper, different cost functions or objective functions

such as IAE, ISE, ITAE and ITSE are addressed. Each cost

function is considered one at a time for the system under

study, and in every case, the parameters of MPC are

optimally tuned using SSA. The resultant optimum values

of MPC parameters and objective functions are presented

in Table 3. The dynamic time responses corresponding to

each performance index in terms of deviation in frequency

in area 1 and tie-line real power flow are presented in

Fig. 8. The values of objective function in Table 3 show

that integral squared error (ISE) has least value and hence

minimum error as compared to other performance indices.

Also Fig. 8 shows that ISE has better response in terms of

peak deviations and settling time as compared to others.

Hence, ISE is qualifying as the performance index for the

test system under study.

5.3 Sensitivity analysis

A sensitivity analysis is performed on SSA-optimized MPC

parameters, achieved at nominal condition, to evaluate the

robustiousness and efficiency of the proposed control

scheme for considered power systems under wide fluctua-

tions in inertia constant and loading condition. Herein,

loading condition and inertia constant are varied in the

range of ± 25% of the given nominal or assumed values.

For every case, the parameters and controller gains are

optimized independently employing SSA. The simulation

time response obtained at each varied condition with

respect to their corresponding optimally tuned value of

parameters is evaluated with that obtained at nominal case

and is presented in Fig. 9. Figure 9 shows that the response

at varied condition is almost same as that of nominal

condition. Hence, it can be concluded that SSA-optimized

MPC parameters are vigorous and therefore need not be

Fig. 8 Dynamic response

comparison of different

objective functions with MPC

controller: a deviation in

frequency in area 1 with respect

to time, b net deviation in tie-

line power flow with respect to

time

Fig. 9 Dynamic response

comparison for frequency

deviation in area 1: a frequency

deviation in area 1 with respect

to time for 25% loading,

b frequency deviation in area 1

with respect to time for 75%

loading, c frequency deviation

in area 1 with respect to time for

H = 3.75 s, d frequency

deviation in area 1 with respect

to time for H = 6.25 s
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retuned when subjected to variations in inertia constant and

loading condition.

6 Conclusions

In this work, an effort has been made to implement model

predictive controller as a secondary control for frequency

regulation of an unequal two-area interconnected power

system incorporating solar thermal power plant as a non-

conventional source and a thermal power plant. A new

optimization approach called SSA has been effectively

applied for optimal tuning of model predictive controller

parameters as well as gains of various conventional con-

trollers. The robustiousness of proposed control strategy is

evaluated from its dynamic behaviour in time-domain

simulations of the power system taken under investigation.

The dynamic behaviour of the considered system, studied

in terms of peak undershoot, peak overshoot and settling

time, exhibits that the functioning of the SSA-optimized

MPC outperforms the performance of conventional con-

trollers in minimizing the ACE and augmenting the per-

formance of the considered system. Also, SSA-based MPC

control scheme is capable of handling non-linearities

existing in a realistic interconnected power system.

Investigations on the choice of objective function explored

that ISE is more suitable for the considered test system.

The sensitivity analysis performed on SSA-optimized MPC

parameters, subject to wide fluctuations in system loading

conditions and inertia constant parameter, presents the

robust nature of the controller parameters and hence needs

not to be reset again and again in case of large inertia

constant and system loading variations.
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Appendix

Nominal parameters considered for the test system are

[7, 10, 13]: f = 60 Hz; 1% step load disturbance in area 1;

Tts = 3.0 s; Tgs = 1.0 s; Tg1 = 0.08 s, Tg2 = 0.08 s; Tt1=

0.3 s, Tt2 = 0.3 s; Kri = 0.5 s; Tri = 10 s; Tpi = 20 s; Kpi-

= 120 Hz/p.u. MW; T12 = 0.08 p.u. MW/rad; Di-

= 8.33 9 10-3 p.u. MW/Hz; Ri = 2.4 Hz/p.u. MW;

Bi = 0.425 p.u. MW/Hz; Hi = 5 s; Ts = 1.8 s; Ks = 1.8.
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