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Abstract
Microgrid systems are becoming a very promising solution to meet the power demand growth especially in remote areas

where diesel generators (DG) are commonly used as a main energy source. Photovoltaic (PV) systems are commonly used

as a sustainable energy source to economize DG fuel. Due to the intermittent and fluctuating behavior of PV generators,

energy storage systems (ESS) such as electrochemical battery are suggested. PV and ESS are usually connected using one

inverter/charger called hybrid inverter. The power management is crucial to optimize the fuel consumption and operate

efficiently ESS. Additionally, in an off-grid operation, the microgrid frequency becomes sensible due to the slow dynamic

of DG which requires an additional control tool to improve the frequency regulation. This paper proposes a new power

management based on Mamdani fuzzy logic. The proposed controller considers the targets mentioned above by only

controlling the hybrid inverter. Simulation results prove that fuzzy-based controller reduces the DG fuel consumption by

more than 12% compared to classical hysteresis management control. Moreover, the proposed controller performs effi-

ciently regarding the conventional frequency regulation, which is widely used in microgrid control.

Keywords Diesel generator � DG � Photovoltaic � PV � Electrochemical battery � Power management �Mamdani fuzzy logic

List of symbols
Iph Photocurrent

I Diode saturation current

q Coulomb constant (1.602 9 10-19 C)

K Boltzmann’s constant (1.38 9 10-23 J/K)

T Cell temperature

PN P–N junction ideality factor

Rs Intrinsic series resistance

Rsh Intrinsic parallel resistance

S Real solar radiation

Sref Solar radiation in standard test conditions (1000 w/

m2)

Tref Cell absolute temperature in standard test

conditions

Iph-ref Photocurrent in standard test conditions

CT Temperature coefficient

Is-ref Diode saturation current in standard test conditions

Eg Band-gap energy of the cell semiconductor

E Battery no-load voltage

Eo Battery constant voltage

k Polarization voltage

Q Battery capacity

A Exponential zone amplitude

B Exponential zone time constant inverse

Efull Fully charged voltage

Eexp Voltage at the end of exponential zone

Qexp Charge at the end of exponential zone

Enom Voltage at the end of nominal zone

Qnom Charge at the end of nominal zone

Fmin Minimum allowed frequency value

Fr Regulation frequency value

Fmax Maximum allowed frequency value

Tsm Governor time constant

Td Engine time constant

R Frequency drop

Vf Excitation voltage of the synchronous machine

Abbreviations
MPPT Maximum power point tracking

P&O Perturb and observe
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PV Photovoltaic

SOC State of charge

ESS Energy storage system

PM Power management

MG Microgrid

FL Fuzzy logic

DC Direct current

AC Alternative current

DG Diesel generator

1 Introduction

In recent years, the demand for energy in remote areas is on

the increase. To meet this ever-growing demand, energy is

supplied using diesel generators (DG) in the framework of

off-grid microgrid (MG). However, the production cost of

such energy is relatively high; besides, there is a worldwide

concern to reduce CO2 emissions being the main cause of

global warming. To face these challenges, photovoltaic

(PV) systems were introduced and soon became exten-

sively used. With a well-dimensioned PV system, the use

of DG fuel can be dramatically decreased. Though, an

efficient power management (PM) policy is required to

optimally drive any possible energy storage system (ESS)

such as electrochemical batteries [1–7].

PV power fluctuations, which depend highly on weather

conditions, push the stability of MG in terms of frequency

regulation to the limit. The stochastic nature of power

demand can also have an additional effect. Since it is

considered as a direct sign of power equilibrium between

generation and consumption, frequency deviation from the

rated value can reduce the reliability of connected equip-

ment or even damage them. This is probable even when

ESS is included due to the fast behavior of insolation

fluctuations compared to DG and ESS dynamics. Many

works have been proposed to solve such problem [8–14];

however, simultaneous targeting of MG energy manage-

ment as a long horizon (hours) with MG frequency regu-

lation as a short horizon (seconds) in one unique controller

is a challenging task.

In Ref. [15], authors propose a hierarchical energy

management strategy for an island PV/fuel cell/battery

hybrid DC microgrid where the optimum structure and

sizing scheme composed of PV generator, a battery, a fuel

cell (FC) system and an electrolyzer are designed using

HOMER pro-software. The proposed hierarchical energy

management strategy is based on local control layer which

is used to control the inherent operating characteristics;

while the power flow between the battery and FC is allo-

cated to minimize the hydrogen consumption using a sys-

tem control layer. The proposed strategy has been tested

and validated on an island DC MG hardware-in-loop

Simulink platform established using RT-LAB real-time

simulator.

In Ref. [16], authors proposed an adaptive supervisory

energy management system to monitor, control, and opti-

mize the performance of the hybrid FC/ESS power system.

The proposed approach uses the adaptive Pontryagin’s

minimum principle (A-PMP) to adapt the control parame-

ters using the state of charge (SOC) and load power

feedback. The proposed method has been investigated

using three different load profiles under MATLAB/Simu-

link environment as well as on experimental platform.

In Ref. [17], authors propose an optimized energy

management system of hybrid system composed of FC and

gas micro-turbines as backup sources and PV and wind as

renewable energy sources. The proposed system uses

neural network as well as fuzzy logic controllers in order to

minimize the energy production cost and keeping buffer

role of the hybrid power system. The proposed approach

has been tested and validated using MATLAB/Simulink

software for the overall hybrid system during 24-h load

variation, proving the performance of the proposed control

approach avoiding the problems of unexpected load peaks

and/or discontinuous energy production.

In all previous studies, different controllers to manage

and supervise MG within different control layers are

developed and validated. Those layers are connected to

each other, in which the higher layer (PM) manages the

power of energy sources and storage in MG based on some

economical and technical requirements, while the lower

layer (power control) makes sure that the different sub-

systems follow the sent power references, usually via PI

(proportional–integral) controllers. The purpose of this

study is to combine power management and power control

layers in one structure using fuzzy logic topology, this new

control scheme will be able to manage different timescale

tasks in MG from few seconds up to 1 day. The proposed

FL controller has three objectives, namely DG fuel

reduction, ESS SOC supervising, and MG frequency reg-

ulation. Various engineering applications of these days

include FL to solve some technical problems [18–20].

Most of the industrial processes today are characterized

by complex multivariable models which makes it hard—

sometimes impossible—to use linear controllers. With

appropriate logic rules, which should be grounded on a

skilled human logic, FL controller can easily and robustly

link between inputs and outputs to accomplish regulation,

tracking or supervising tasks with only IF–THEN proce-

dure. In the case of control/management, FL can accom-

plish several missions like optimal power sharing in a

hybrid car [21], extracting the maximum of available

power in a PV system [22, 23], or optimally manage the

power flow in a MG [24]. In Refs [25, 26], similar
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approaches to the one proposed here have been presented;

however, the developed controllers have not been config-

ured when ESS is connected; moreover, they aim just to

find a trade-off between maximizing the PV production

while controlling the frequency deviation, hence, a real

power dispatching between DG, PV, load, and any possible

ESS has not been treated.

As mentioned earlier, and unlike previously declared

approaches, the contribution of the proposed method is to

deal with different targets in different timescales using one

controller, which are the DG fuel economy as a long-term

management (up to 1 day); SOC supervising as a medium-

term management (up to hours) and frequency control as a

short-term management (up to seconds). Considering the

different situations, FL gives high flexibility, robustness,

and performance when applying control.

The remainder of this paper is organized as follows: In

Sect. 2, mathematical modeling of MG components, that

will be later simulated using the proposed method, is pre-

sented. Section 3 explains the topology of MG with the

chosen control methods. Section 4 includes the hysteresis

PM with conventional frequency regulation as a reference

method as well as the proposed FL-based method. Com-

puter simulation performed using the proposed method

including an evaluation study versus the reference one is

given in Sect. 5. Finally, Sect. 6 states the main conclu-

sions of this work.

2 Modeling of energy sources and storage

In this section, mathematical models for MG components

(DG, PV, and ESS) are detailed and simulated. No

improvements have been added, since the main goal of this

study is to contribute only in MG control and management.

2.1 Diesel generator model

A standard simplified model of DG and speed governor is

illustrated in block diagram form (Fig. 1).

This model is widely used and perfectly describes the

dynamic behavior of small diesel generator sets, as shown

in [27]. The diesel engine and the valve actuator ser-

vomechanism are represented by first-order lags, with time

constants Td and Tsm, respectively (Fig. 2).

Parameters of the speed governor are the drop R and the

proportional–integral regulator parameters. The objective

of the PI control is to eliminate the steady-state frequency

error, and in many cases (particularly in small and older

units), it may be absent.

The diesel engine must be able to follow the variation in

loads power. The frequency control performance indicates

how well the diesel and its governor maintain the balance

of active power in the system, whereas variation in voltage

shows how well the gen-set and its voltage regulator

maintain the balance of reactive power via the generator

excitation (Fig. 3). Basically, frequency and voltage are not

perfectly constants because the load power, and conse-

quently the MG power balance, fluctuates continuously.

Thereafter, a numeric simulation with MATLAB/

Simulink has been realized for DG for a 10-min scenario.

The main parameters of diesel engine model are cited in

Table 1.

The load power, diesel mechanical power, and voltage

excitation variations are presented in Figs. 4, 5, and 6,

respectively.

Figures 7 and 8 illustrate the DG produced power

quality in terms of voltage and current (with no connected

PV or ESS).

2.1.1 PV array model

PV cell is the most basic generation part in PV system.

Single-diode mathematic model is applicable to simulate

silicon PV cells which consist of a photocurrent source Iph,

a nonlinear diode, internal resistances Rs and Rsh. The

mathematic relationship for the current and voltage in the

single-diode equivalent circuit can be described as:

I ¼ Iph � Is eq
V�I�Rs
PN�K�T � 1

� �
� V � I � Rs

Rsh

ð1Þ

where Iph is photocurrent; I is diode saturation current; q is

coulomb constant (1.602 9 10-19 C); K is Boltzmann’s

constant (1.38 9 10-23 J/K); T is cell temperature (K); PN

is P–N junction ideality factor; Rs and Rsh are intrinsic

series and parallel resistances.

The photocurrent is the function of solar radiation and

cell temperature, described as:

Iph ¼
S

Sref

� �
Iph�ref þ CT T � Trefð Þ
� �

ð2Þ

where S is the real solar radiation (W/m2); Sref, Tref et Iph-ref
are the solar radiation, cell absolute temperature and pho-

tocurrent in standard test conditions respectively; CT is the

temperature coefficient (A/K).

The diode saturation current varies with the cell

temperature:

Is ¼ Is�ref

T

Tref

� �3

e
qEg
PN�K

1
Tref

�1
T

� �h i
ð3Þ

where Is-ref is the diode saturation current in standard test

conditions; Eg is the band-gap energy of the cell semi-

conductor (eV), depending on the cell material.

The main physical parameters of the used PV array are

cited in Table 2.
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2.1.2 Battery model

The equivalent circuit for ESS model is the most suit-

able for dynamic simulation. Based on Shephred battery

model, Ref. [28] presents a generic battery model for

dynamic simulation, which assumes that the battery is

composed of a controlled-voltage source with series

resistance. The equivalent electric circuit is presented in

Fig. 9.

The expression of the controlled-voltage source is:

E ¼ E0 � k
Q

Q� r ibdt
þ Ae�B r ibdt ð4Þ

where E is no-load voltage (V); E0 is battery constant

voltage (V); k is polarization voltage (V); Q is battery

capacity (Ah); A is exponential zone amplitude (V); B is

exponential zone time constant inverse (Ah-l).

This model assumes that the internal resistance of the

battery is kept constant during both charging and dis-

charging cycles. All parameters are deduced from the

Fig. 1 DG model with

MATLAB/Simulink

Fig. 2 Diesel engine model and the excitation system with Simulink

Fig. 3 Excitation system with

Simulink
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discharging profile. Figure 10 shows the discharging

characteristics of the battery at different currents.

All parameters can be calculated by three points marked

on the figure, namely fully charged voltage (Efull), end of

exponential zone (Eexp, Qexp), and end of nominal zone

(Enom, Qnom) (Table 3).

Formulas for calculating the model parameters are:

A ¼ Efull � Eexp

B ¼ 3
�
Qexp

K ¼ Efull � Enom þ A e�BQnom � 1ð Þ½ �

8<
: ð5Þ

3 Power topology and control

Figure 11 shows a whole MG system architecture.

The MG system is composed of a large PV array con-

nected with two power-conditioning stages:

• DC/DC boost converter to rise up PV voltage and

extract the maximum of available PV power thanks to

maximum power point tracking (MPPT) technique;

Table 1 Diesel model parameters

Parameters Values

Nominal power (kVA) 250

Nominal voltage (V RMS) 400

Nominal rotor speed (RPM) 1500

Frequency (Hz) 50

Governor time constant Tsm (s) 0.2

Engine time constant Td (s) 5

Combustion time delay (s) 0.2

Frequency drop R (Hz/pu) 2.5
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Fig. 4 Load power variation
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Fig. 5 Diesel mechanical power

variation
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• The second stage is DC/AC two-level PWM inverter/

charger to convert DC current to AC current synchro-

nized with MG;

• An additional ESS is connected to the DC side of PV

inverter through reversible DC/DC buck–boost con-

verter. The ESS DC-coupled topology is chosen since it

does not require high complex control and synchro-

nization procedures as AC-coupled one. Various power

topologies for hybrid MG with different advantages are

clarified in [29].

The addition of ESS gives more autonomy to the hybrid

system which makes PV inverter connected to MG even

when there is no available PV power (typically during

nights or cloudy periods). However, ESS SOC must be

permanently supervised and operated within two control

limits; fully charged batteries cannot recover sudden PV

excess which may then damage them, when frequent deep

discharging may well reduce their operational lifetime.

ESS converter is controlled to keep DC voltage at the

desired level. The hybrid inverter is controlled to exchange

power with MG according to the set point sent manually

from the MG operator or automatically from PM layer. In

this work, the possibility to manage the power flow in MG

by merely controlling the hybrid inverter has been proven,

and this will be the main objective of Sects. 3 and 4.

3.1 Inverter control

The active and reactive powers are controlled separately

with the help of PWM voltage-controlled inverter. The

active power is controlled through the shifting angle u
between MG and inverter voltages using PI controller. The

reactive power is controllable using the index modulation,

and it is maintained at 1 permanently due to the fact that no

need for additional voltage regulation, and consequently,

no reactive power exchange is proposed in this work

(Fig. 12). The MG voltage is maintained constant only

with DG excitation system.

Table 2 PV model parameters

Parameters Values

Cell

Referenced solar irradiation Sref (W/m2) 1000

Referenced cell temperature Tref (K) 298

Photocurrent at the standard conditions Iph-ref (A) 3.35

Band-gap energy Eg (eV) 1.237

Cell internal resistance Rs (X) 0.312

P–N junction ideality factor A 54

Temperature coefficient CT (%) 0.065

Module

Rated power (W) 220

Open-circuit voltage (V) 42

MPP voltage (V) 35

Short-circuit current (A) 7.23

MPP current (A) 6.90

Number of cells in the module 60

Array

Parallel numbers of PV modules Np 20

Series numbers of PV modules Ns 10

Rated power (kW) 44

Fig. 9 Generic battery model

with Simulink
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3.2 Battery control

The DC/DC batteries converter is controlled in order to

regulate the DC link voltage at a level in which the inverter

can operate properly (700 V). This is feasible using two PI

controllers within two combined control loops: the outer

loop for voltage control which gives the reference to the

inner one: current control. The entire Simulink-based dia-

gram is represented in Fig. 13.
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3.3 MPPT control

The PV array is controlled to extract the maximum avail-

able power via MPPT. In this work, a simple P&O MPPT

tool is chosen to select the PV current reference according

to the MPP which depends essentially on solar irradiation

(Fig. 14).

4 Power management

4.1 Hysteresis-based PM

The hysteresis-based PM consists of sending two power

references (Pmin and Pmax) to the hybrid inverter according

to two ESS SOC limits (SOCmin and SOCmax) (Fig. 15).

Table 3 ESS model parameters

Parameters Values

Cell

Fully charged voltage Efull (V) 13.06

End of exponential zone Eexp (V)–Qexp (Ah) 12.21–0.83

Rated capacity C (Ah) 250

Rated voltage (V) 12

End of nominal zone Enom (V)–Qnom (Ah) 11.86–77.5

Nominal discharge current (A) 50

Internal resistance (mX) 4.8

Stack

Number of cells on series 30

Number of cells on parallel 1

Rated power (kW) 30

Fig. 11 Grid-connected hybrid power system

Fig. 12 Inverter/charger Simulink diagram control
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The purpose is to keep SOC perpetually operating

within these two limits regardless of the power flow

direction through the inverter (feeding/recovering).

To consider the frequency regulation, the reference

power sent from PM layer is then to be passed through the

frequency control layer before being sent again to the

hybrid inverter control system (Fig. 16).

When the MG frequency is between Fmin (minimum

frequency value) and Fr (regulation frequency value), the

controller injects the entire power sent from hysteresis PM

layer without adjustment. When the MG frequency exceeds

Fr, the inverter starts the regulation by reducing the amount

of power to be fed proportionally to frequency deviation.

When the MG frequency is beyond Fmax (maximum

allowed frequency value), the controller disconnects the

PV inverter from the MG allowing only DG to take the

charge of frequency regulation. This whole technique is

depicted in Fig. 17.

4.2 Fuzzy-based PM

In this section, we describe the proposed fuzzy algorithm to

manage the power flow in MG targeting some technical

and economical purposes. The proposed controller can

simultaneously deal with optimal power sharing and fre-

quency stability in MG. FL controller has as inputs the

Fig. 13 ESS DC/DC converter control

Fig. 14 Simulink-based P&O MPPT control

Fig. 15 Hysteresis power management diagram

Fig. 16 Hysteresis power

management diagram with

conventional frequency control
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frequency deviation from rated value (50 Hz), solar inso-

lation, and batteries SOC level as shown in Fig. 18.

The frequency deviation gives FL controller an idea

about the power balance in MG: Frequency drop means

that the power demand is higher than the supplied power,

while the frequency rise means an excess of power gen-

eration is detected. The insolation, as a second input,

provides information about the available PV power in the

DC link. Since the ambient temperature has less influence

on PV generation compared to the insolation, it is excluded

from the controller scheme for a simplification reason. To

take the ESS operational constraints into consideration,

SOC is included as a third input, keeping it within two

limits whatever is the power flow in MG can preserve

enough capacity in ESS to react to any sudden ask for

power balance adjustment in MG.

Real-time measurement of input variables gives FL

controller enough information about the actual operational

point in MG, thus allowing it to take appropriate decisions

about what amount of power should be exchanged (injected

or recovered) with MG (Fig. 19).

According to the number and form of membership

functions of inputs/outputs and the implemented logical

rules that are figured within the fuzzy surfaces (Fig. 20),

FL controller acts, in real time, upon the power exchanged

between MG and the hybrid system to achieve the fol-

lowing objectives:

• Favoring the use of PV power instead of DG power

when feeding load or charging batteries.

• Injecting more power to MG when the frequency drops

and absorbing it when the frequency increases.

• Keeping batteries SOC operating within two predefined

control limits.

• Favoring frequency regulation over power dispatching

when managing the power in MG.

Fig. 17 PV active power control according to frequency regulation

Fig. 18 Fuzzy membership functions of inputs

Fig. 19 Fuzzy membership functions of output: exchanged power

(Pref)
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5 Results and discussion

This section presents the simulation results for an off-grid

MG with the proposed control techniques using Matlab/

Simulink environment. DG, PV, and ESS parameters are

cited in Tables 1, 2, and 3, respectively. The power con-

verter parameters are cited in Table 4.

Weather conditions in terms of solar irradiation and

temperature are presented in Figs. 21 and 22, respectively.

The insolation is a real profile taken in July 9, 2006, in

Tamanrasset town (Southern Algeria), and it comprises a

deep declining in insolation at nearly 11:15 for less than

1 h due to a cloud movement, which is going to provoke a

sudden drop in PV generation. This is considered as an

appropriate case to test the robustness of the proposed

controller against higher power unbalance in MG between

power generation and consumption. Figure 23 shows the

chosen load profile which is the residential active power

demand of the same town scaled down to 1000.

The first test has been performed using hysteresis PM,

and its parameters are cited in Table 5.

In hysteresis PM, the only required feedback signal is

SOC measurement, and then the controller manages the

power between the energy producers and consumers

according to this feedback through the hybrid inverter.

SOC is kept inside the optimal zone whatever is the power

flow in MG. Supplied PV power feedback is not required

since it can be simply estimated through SOC evolution

thanks to ESS DC-coupled topology. PV power can be fed

directly to MG or stored in ESS according to the power

Fig. 20 Fuzzy surfaces that cover all implemented rules

9104 Neural Computing and Applications (2020) 32:9093–9111

123



demand and the inverter set point control. Despite its

simplicity, hysteresis PM is not designed to maximize the

use of PV power. On the other hand, the balance between

power generation and consumption in MG is the charge of

DG (Fig. 24). Consumed DG energy during the testing day

with hysteresis PM is 692,100 kWh.

Since it requires a real-time measurement of insolation,

fuzzy PM controller can maximize, as much as possible,

the use of PV power when feeding load. SOC, as a second

feedback, is necessary for an optimal operation of ESS.

Fuzzy rules focus on operating ESS between 50 and 90%

as a tolerable operational zone. Contrary to hysteresis PM,

FL MP can indirectly follow the power balance in MG

using the frequency deviation as feedback. However, the

difference between inverter power and load power stills the

charge of DG (Fig. 25). In simulation, diesel energy is

608,100 kWh using fuzzy PM.

Figure 26 presents the DC bus regulation for both

strategies. With small rapid fluctuations caused by the

exchanged power between MG and the inverter, DC volt-

age is well controlled which means a good balance is sat-

isfied between fed PV/ESS power and the injected/

recovered inverter power. In fuzzy PM, the DC voltage

regulation is soft due to the smooth power profile in which

the hybrid inverter is operated with (Fig. 27).

Table 4 Power converters

parameters
Power converter Parameters Values

PV DC/DC Inductance (H) 0.015

Capacitor (mF) 24

Input MPPT voltage (V) 280–400

Output MPPT voltage (V) 500–800

Rated power (kW) 45

Switching device IGBT/Diode

PWM switching frequency (kHz) 10

ESS DC/DC Inductance (H) 0.025

Capacitor (common capacitor with PV DC/DC) (mF) 24

Input nominal voltage (V) 360

Output nominal voltage (V) 700

Rated power (kW) 30

Switching device IGBT/Diode

Hybrid DC/AC PWM switching frequency (kHz) 10

Rated DC voltage (V) 700

Rated AC voltage (ph-n) (V) 230

Rated power (VA) 80

Switching device IGBT/Diode

PWM switching frequency (kHz) 10

Filter inductance (mH) 5

Filter capacitor (lF) 600

0 2 4 6 8 10 12 14 16 18 20 22 24
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Fig. 21 Solar irradiation

variation (W/m2)
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The MG AC voltage quality in the case of fuzzy-con-

trolled inverter (Fig. 28) is slightly better than hysteresis-

controlled inverter (Fig. 29). However, THD levels of the

AC voltage using both strategies are acceptable.

Despite that a conventional frequency control is pro-

vided, frequency deviation when hysteresis PM is applied

(Fig. 30) is significant compared to fuzzy PM (Fig. 31),

and this is due to the fact that fast changing in the inverter

set points with hysteresis PM disturb temporally the MG

power balance (black circles). Moreover, PV generation

fluctuations (red circles) have also an additional effect, and

in fuzzy PM, implemented rules take into consideration the

frequency deviation when exchanging power with MG. PV

fluctuations in this case are absorbed by ESS, and conse-

quently, fuzzy controller gives priority to frequency control

over maximizing PV power, supervising simultaneously

SOC evolution.

The main contribution in this study is summarized on

the fact that the proposed fuzzy PM can take different time

scales tasks in one control action, it is able to control fre-

quency and DC voltage unbalances in terms of seconds,

ESS SOC evolution in terms of minutes and the PV max-

imization in terms of hours. Usually, this can be performed

using separate controllers within different layers. The

proposed fuzzy-based controller reduces the DG fuel con-

sumption by more than 12% compared to classical hys-

teresis management control.
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Table 5 Hysteresis management parameters

Parameters Values

Inverter superior power (kW) 25

Inverter inferior power (kW) - 5

Maximum allowed SOC limit (%) 80

Minimum allowed SOC limit (%) 20

Frequency regulation Fr (Hz) 50.2

Maximum allowed frequency (Hz) 50.5

Minimum allowed frequency (Hz) 49.5
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Fig. 24 Power dispatching and

battery SOC variation with
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6 Conclusion

This work proposed a new PM for DG, PV, and ESS-based

hybrid MG using Mamdani FL technique. The developed

controller aims to accomplish several tasks acting only on

the hybrid inverter. It optimizes the power flux in MG

maximizing the use of PV power when feeding load and

operating efficiently ESS. Transient power unbalances in

MG, which are usually translated to frequency deviations,

are also corrected. The hybrid inverter injects more power
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Fig. 27 DC bus voltage

variation with fuzzy PM
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to MG when a frequency drop is detected and recovers it

when a frequency rise is detected, in contrast to the clas-

sical hysteresis management with a conventional frequency

control. Comparative simulation results prove the superi-

ority of the fuzzy controller regarding to the DG fuel

economy and MG dynamic stability. The proposed fuzzy-
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based controller reduces the DG fuel consumption by more

than 12% compared to classical hysteresis management

control. Moreover, the proposed controller performs well

regarding the conventional frequency regulation which is

widely used in MGs. As perspective works, the fuzzy

controller is to be reconfigured including AC voltage

control in MG as an additional feature. With such new

pattern, the controller will be able to avoid local over-

voltage at the common coupled point while feeding active

power which is a typical problem in of low voltage grids.

This is feasible by adjusting the reactive power exchange

between the hybrid inverter and MG simultaneously with

active power feed.
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