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Abstract
Estimating the uniaxial compressive strength (UCS) of travertine rocks with an indirect modeling approach and machine

learning algorithms is useful as models can reduce the cost and time required to obtain accurate measurements of UCS,

which is important for the prediction of rock failure. This approach can also address the limitations encountered in

preparing detailed measured samples using direct measurements. The current paper developed and compared the perfor-

mance of three standalone tree-based machine learning models (random forest (RF), M5 model tree, and multivariate

adaptive regression splines (MARS)) for the prediction of UCS in travertine rocks from the Azarshahr area of northwestern

Iran. Additionally, an ensemble committee-based artificial neural network (ANN) model was developed to integrate the

advantages of the three standalone models and obtain further accuracy in UCS prediction. To date, an ensemble approach

for estimating UCS has not been explored. To construct and validate the models, a set of rock test data including p-wave

velocity (Vp (Km/s)), Schmidt Hammer (Rn), porosity (n%), point load index (Is (MPa)), and UCS (MPa) were acquired

from 93 travertine core samples. To develop the ensemble tree-based machine learning model, the input matrix repre-

senting Vp, Rn, n%, and Is data with the corresponding target variable (i.e., UCS) was incorporated with a ratio of 70:15:15

(train: validate: test). Results indicated that a standalone MARS model outperformed all other standalone tree-based

models in predicting UCS. The ANN-committee model, however, obtained the best performance with an r-value of

approximately 0.890, an RMSE of 3.980 MPa, an MAE of 3.225 MPa, a WI of 0.931, and an LMI of 0.537, demonstrating

the improved accuracy of the ensemble model for the prediction of UCS relative to the standalone models. The results

suggest that the proposed ensemble committee-based model is a useful approach for predicting the UCS of travertine rocks

with a limited set of model-designed datasets.
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1 Introduction

Structural rock characteristics are important for geological

studies, mining, petroleum engineering, and geotechnical

surveys. Lithology and uniaxial compressive strength

(UCS) are two variables used in the prediction of general

rock failure. Therefore, measuring and estimating the UCS

of rock materials is important for intact rock mass classi-

fication, foundation construction, tunneling, slope stability

issues, and other rock failure criteria [1]. Accurate esti-

mation of UCS, however, remains a challenging, yet

important problem in a range of engineering disciplines.

The UCS of rocks can be measured in both the field and

laboratory, through direct and indirect approaches. The
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International Society for Rock Mechanics (ISRM) has

standardized the procedure for direct measurement, which

involves producing high-quality rock core samples in

engineering laboratories. The procedure requires destruc-

tive tests and is time-consuming and expensive [1]. Indirect

determination of UCS can be carried out through various

methods including the point load strength index test, block

punch strength index test, and the Schmidt hammer test.

These methods generally require many core samples,

expensive devices, as well as significant time and funding

[2]. Extraction of rock samples with the specific dimen-

sions required for laboratory testing purposes is not always

possible. In such cases, it is important to develop other

methods to define the correlation of physio-mechanical

features of materials, where one attribute can be predicted

from another. In the preliminary stage of planning and

design activities, understanding property interdependencies

is useful [3]. Many studies have investigated the possibility

of estimating UCS according to other material features,

since the methods used to measure other features are rel-

atively rapid, incur low costs, and are easy to execute in

comparison with the ISRM UCS test.

The indirect estimation of UCS can be performed using

conventional regression methods, which propose a func-

tional relationship between underlying variables related to

UCS. However, due to the evolution of computers, new

techniques based on artificial intelligence (AI) that employ

machine learning have been utilized to create predictive

models that can estimate essential parameters [4–7]. Many

studies have focused on the indirect estimation of rock

UCS with AI. Table 1 lists the previous studies that have

applied AI models to the prediction of UCS.

Most of the above-mentioned AI models, however, are

complex and computationally costly during the training

processes. As such, tree-based machine learning models

have become increasingly explored for regression problems

because they are relatively simple, and have relatively

lower computational costs [17, 18]. Although the afore-

mentioned research studies confirmed that AI models

showed significant advantages for UCS estimation, a

comparative study among tree-based machine learning

models (e.g., random forest (RF), M5 model tree, and

multivariate adaptive regression splines (MARS)) has been

not carried out. Moreover, developing an ensemble-based

multi-model approach is useful as it integrates the advan-

tages of different models. Thus, the current study devel-

oped an artificial neural network (ANN)-based committee

ensemble model with three tree-based models. To the best

of the authors’ knowledge, this study represents the first

time such an ensemble model has been developed in this

field.

In this study, data samples from travertine rocks were

collected from different quarries in the Azarshahr area of

northwest Iran, and the relationships between UCS (i.e., the

target variable) and other rock properties (i.e., the predictor

variables) were investigated. The goals of this research

included: (1) development of single (or standalone) non-

linear tree-based machine learning models that utilized the

RF, the M5 model tree, and MARS algorithms to model

UCS, (2) comparison of the aforementioned models’ per-

formances to select the best approach, and (3) integration

of the advantages of the standalone tree-based machine

learning models to construct and evaluate an ensemble

committee-based model for USC prediction through

application of an ANN algorithm. The purpose of this

research was to propose a new ensemble-based model that

could potentially lead to improved prediction accuracy,

relative to standalone models, when applied to the pre-

diction of UCS of travertine rock.

2 Materials and methods

2.1 Study area and data collection

Travertine, which is characterized by its high porosity, fine

grain, and banded structure, is a particular form of car-

bonate deposit (also referred to as a type of limestone). It is

deposited by hot spring water containing Ca2? and CO3
2-

and is mainly found in fault zones, karstic caves, and

around spring cones. The travertine in the Azarshahr area is

a fissure-ridge type, which extends to the eastern part of

Urmia Lake in northwestern Iran [7].

A geological map of the study area and location of

travertine formations is illustrated in Fig. 1. The active

quaternary Sahand volcanic complex, near the travertine

ridges, has had a significant impact on the Jurassic and

Cretaceous carbonate solution, as well as the stained tra-

vertine layers [19]. Different colored travertine, aragonite,

and onyx quarries exist in the area, which contain up to

approximately 560 million m3 of travertine.

Travertine samples, for modeling purposes, were

obtained from ten quarries in four different provinces in the

area. Overall, 30 travertine blocks were collected, each

with the approximate dimension of 40 9 40 9 20 cm.

Samples were then transferred to the Rock Mechanics

Laboratory at Tarbiat Modarres University, where rock

cores were prepared with a core-drilling machine. The ratio

of the length to the diameter of core samples was found to

be approximately two. The edges of the cores were sub-

sequently cut parallel and smoothed. Rock mechanics tests

were carried out on the 93 core samples prepared from the

travertine rock blocks. Porosity (n%), P-wave velocity [Vp

(Km/s)], Schmidt rebound hardness (Rn), Is (MPa), and

UCS (MPa) were the primary physical and mechanical
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properties measured by the laboratory tests, in accordance

with the methods recommended by the ISRM [20].

Histogram plots for each test are presented in Fig. 2.

The UCS values ranged between 37.5 and 67.8 MPa (with

a median value of 54.07 MPa). Based on the ISRM [20]

UCS classification, the rock samples were categorized as

medium (25–50 MPa) to high (50–100 MPa) strength

rocks.

2.2 Multiple linear and nonlinear regression
models

In order to identify the relationships between multiple

independent or explanatory variables (Xi) and a dependent

variable (Yi), multiple linear regression (MLR) was used,

based on the assumption of linearity between Xi and Yi. The

MLR equation is shown in Eq. (1) [21, 22].

Y ¼ aþ b1X1 þ � � � þ bkXk ð1Þ

where k denotes the number of observed values, a repre-

sents the intercept, and b is the slope or coefficient.

A multiple nonlinear regression (MNLR) model was

also used. In contrast to MLR, MNLR assumes a nonlinear

association between the dependent variable Yi and the

explanatory variables Xi. The MNLR formula is shown in

Eq. (2) [22, 23].

Y ¼ aþ b1Xi þ b2Xj þ b3X
2
i þ b4X

2
j þ � � � þ bkXiXj ð2Þ

where a denotes the intercept, b represents the slope (also

called the regression coefficient), and k is the number of

observed values. For predictions, fitted multiple regression

equations can be used to estimate the value of Y with new

known values of X.

2.3 Objective model 1: Random Forest

The first objective algorithm used in this study was the

random forest (RF), a model created by Ho [24]. An

extension of the algorithm was later developed by Breiman

[25]. The RF, known as an ensemble method, produces a

set of repeated predictions of the same phenomenon by

Table 1 Previous studies directed at UCS prediction using AI techniques

Reference Rock type Technique Input

Yilmaz and Yuksek

[5]

Gypsum ANN Id2, Rn, ne, Is50

Tiryaki [6] Sandstone, mudstone, limestone ANN DD, CI, Shore

Karakus and Tutmez

[4]

Limestone, marble, volcanic

rocks

FL IS50, Rn, Vp

Gokceoglu [8, 9] Agglomerate FL IS50, Rn, Vp

Mishra and Basu [50] Granite, schist, sandstone FL BPI, IS50, Rn, Vp, ne, q

Jahed Armaghani et al.

[64]

Granite ANN, ANFIS IS50, Rn, Vp

Liu et al. [10] Carbonates ELM Mineralogical contents, G, ck, n, ne,

Id2, Vp

Ozbek et al. [2] Basalt, ignimbrite GEP c, wA, ne

Beiki et al. [11] Limestone, dolomite, calcite GEP n, q, Vp

Ghasemi et al. [12] Carbonates M5P c, Rn, ne, Vp, Id2

Barzegar et al. [7] Travertine ANN, FL, SVM n, Rn, Vp

Ceyran [13] Volcanic rocks SVM, RVM Id2, n

Momeni et al. [14] Granite and limestone ANN-PSO IS50, Rn, Vp, DD

Saedi et al. [15] Migmatite FL n, CPI, BPI, BTS, IS50, Vp

Çelik [16] Marble, dolomite, limestones,

travertine

LSSVM Rn, Vp, L

Present study Travertine RF, M5P, MARS, ANN-committee-based

ensemble

IS50, Rn, Vp, n

Id2 slake durability index, Rn Schmidt hammer rebound number, ne effective porosity, Is50 point load index, DD dry density, CI cone indenter

hardness, Shore shore hardness, Vp p-wave velocity, BPI block punch index, q density, G specific density, ck dry unit weight, n total porosity, c
dry unit weight, wA water absorption by weight, CPI cylindrical punch index, BPI block punch index, BTS Brazilian tensile strength, L cubic

sample size, ANN artificial neural network, FL fuzzy logic, ANFIS adaptive neuro-fuzzy inference system, GEP gene expression programming,

ELM extreme learning machine, PSO particle swarm optimization, LSSVM least square support vector machine, SVM square support vector

machine, RVM relevance vector machine, RF random forest, M5P M5 model tree, MARS multivariate adaptive regression splines
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combining multiple decision tree algorithms. The RF

includes a set of tree-structured classifiers {h(x, k),

k = 1,…}, where {k} represents independent and identically

distributed random vectors, in which each tree casts a unit

vote for the most widespread class at input x [25].

Decision trees can be grouped into classification or

regression types. For classification purposes, an RF con-

siders a class vote from each tree and subsequently

classifies the features that receive the majority of votes. In

contrast, for regression purposes, the predicted values from

each tree at a target point, x, are averaged [26]. A set of

conditions form a regression tree (RT), which is organized

from a root to a terminal node [27, 28]. An RT is intro-

duced through recursive splitting and by performing mul-

tiple regressions on the model’s training dataset. For each

internal node of a rule (of the tree), data partitioning is

Fig. 1 Geological features in

the Azarshahr area
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performed repeatedly until a previously-specified stop

condition is reached. Each terminal node, or leaf, has a

simple regression model attachment applied specifically to

that node section. Upon completion of the tree’s induction

process, pruning action is used to ameliorate the tree’s

generalization capacity by minimizing its structural com-

plexity. In each node, the number of cases can be consid-

ered as the pruning criteria [29].

According to Breiman et al. [27], the RT’s induction

process needs to select the optimal splitting measurement

vectors at an initial stage. Binary splits are created by

dependent variables or the parent node (root), in which the

child nodes are purer than the roots. Throughout this step,

the RT explores all candidate splits to discover the best

split, s, which maximizes the purity of the produced tree (as

indicated by the largest reduction in the impurity). The RF

model structure used for the prediction of UCS is shown in

Fig. 3. The equation for the reduction in impurity that

results from a given split is shown in Eq. (3).

Di s; tð Þ ¼ i tð Þ � pLi tLð Þ � pRi tRð Þ ð3Þ

where s represents a particular split at node t, in which

node t is divided by s into two different child nodes; the left

child node (tL) and the right child node (tR). The pL and pR
are the proportion of data cases in t partitioned to the tL and

tR, respectively. The impurity measure at node t is defined

by i(t) and the impurity for the left and right child nodes

are defined by (tR) and i(tL), respectively. Di(s,t) is the

difference between the impurity measure for node t and the

impurity measures for the tR and tL.

2.4 Objective model 2: M5 Model Tree

The second objective algorithm used in the current study,

the M5 model tree, was first proposed by Quinlan [30].

This model, with linear regression functions at the terminal

(leaf) nodes, has been used for continuous-class learning

purposes and more recently for engineering problems

[29–31]. The M5 model tree is a type of binary decision

tree, which is generally applied to categorical datasets.

Furthermore, the algorithm can be applied to quantitative

data, which is an advantage in comparison with other tree-

based regression models [30, 33].

The M5 model tree is developed in two steps [34, 35]. In

the first step, the input-target data are divided into sub-

categories, and a decision tree is created. The division of

the data is carried out based on two factors; first, the

treatment of the standard deviation of the class values, and

second, the calculation of the expected decrease in this

error as a consequence of testing each attribute at that node

[36]. The standard deviation reduction (SDR) is computed,

as shown in Eq. (4) [37].

SDR ¼ sd Tð Þ �
X Tij j

T
sd Tið Þ ð4Þ

where T expresses a set of examples that reach the node, Ti
denotes the subset of examples that have the ith outcome of

Fig. 2 Histogram plots for the individual tests including Vp (km/s), Rn, n%, Is (MPa), and UCS (MPa)
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the potential set, and sd represents the standard deviation of

the class values [34, 38].

As a result of the division process, the data in the child

nodes have a smaller standard deviation than that of the

parent nodes, and therefore, provide purer nodes. Next, the

M5 model tree selects nodes with the highest expected

error reduction after scanning all of the possible divisions

in the resulting tree structure. As a result of this division, a

large tree-like structure is frequently produced, which in

turn, can cause over-fitting. The overgrown tree can be

pruned by replacing sub-trees by linear regression func-

tions in the second step of the modeling to avoid overfit-

ting. By pruning, the accuracy of estimation can be

significantly increased. Overall, the input space is divided

into areas (i.e., the subspaces) and a linear regression

model is created for each area [39]. The M5 model tree

structure used for the prediction of UCS is provided in

Fig. 4.

2.5 Objective model 3: Multivariate Adaptive
Regression Splines

The third objective model used in this study, the multi-

variate adaptive regression splines (MARS) model, was

initially proposed by Friedman [40]. MARS is a multi-

variate nonparametric technique used to predict continuous

numeric results. MARS is a flexible technique for orga-

nizing relationships that contain interactions between a few

variables; it can lead to a significant degree of accuracy in

solving engineering problems (e.g., [31, 32]). Furthermore,

the MARS model can estimate the basic practical rela-

tionship between input and output variables without any set

assumptions [40, 41].

The MARS model aims to divide the solution space (i.e.,

the input-target matrix) into various intervals that indicate

the feature space of the indicator variables. The individual

splines are then fit to each interval [40]. Subsequently, for

each data interval, a unique mathematical regression

equation is determined. For each interval of the indepen-

dent variable, a relationship to the output of the modeled

system is developed according to the established mathe-

matical equations. Every spline function is considered on a

given interval, and the endpoints of the interval are called

knots. This process can be carried out in two stepwise

methods, forward and backward. A set of appropriate

inputs are selected in the forward stepwise approach and

consequently split, generating an over-fitted model with a

high number of knots. In the backward procedure, which

aims to improve prediction accuracy, the unnecessary

variables are then removed from the previously selected set

[42]. In order to uproot the repetitive knots, a pruning

technique is used. The ‘‘basis function’’ (BF) is used to

demonstrate each distinct interval of predictors, which are

formed, as shown in Eqs. (5) and (6) [43].

Y ¼ max 0;X � cð Þ ð5Þ

Fig. 3 An illustration of the RF

model structure used for the

prediction of UCS
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Y ¼ max 0; c� Xð Þ ð6Þ

where X is a predictor variable and c is a threshold value. In

order to maintain the coherency of the BFs, two close

splines are intersected at a knot. Accordingly, the function

is connected to every input variable, which is used to

characterize the location of the knots [42, 44]. The MARS

model employs a two-sided truncated power function as the

spline BFs, as shown in Eqs. (7) and (8) [45].

� x� tð Þ½ �qþ¼
t � xð Þq if x\t

0 otherwise

�
ð7Þ

þ x� tð Þ½ �qþ¼
t � xð Þq if x� t

0 otherwise

�
ð8Þ

where q � 0ð Þ represents the power to which the splines are

raised, along with the degree of evenness of the resulting

function. A schematic view of the MARS model structure

for the prediction of UCS is shown in Fig. 5.

2.6 Ensemble model: the ANN-committee-based
model

Previous studies (e.g., [7, 43, 46]) that designed and eval-

uated ensemble-based models revealed their improved

performances in comparison with individual (standalone)

machine learning models in a number of engineering

problems. To develop an ensemble model for UCS pre-

diction in the present study, the ANN-committee-based

model, which is a multi-model ensemble framework, was

used. A feed-forward multilayer perceptron (MLP) was

employed to construct the ANN-committee model. The

MLP was organized into three layers, including an input,

one or more hidden layers, and an output layer, as shown in

Eq. (9) [7, 46, 47].

ŷk ¼ fo
XMN

i¼1

Wkj:fh
XNN

i¼1

WjiXi þWj0

 !
þWk0

" #
ð9Þ

where fh is the activation function of the hidden neuron, fo
is the activation function of the output neuron, ŷk are the

computed output variables, NN is the number of neurons in

the input layer, MN is the number of neurons in the hidden

layer, Wji is a weight in the hidden layer connecting the i th

neuron in the input layer and the jth neuron in the hidden

layer, Wj0 is the bias for the jth hidden neuron, Wkj is a

weight in the output layer connecting the jth neuron in the

hidden layer and the kth neuron in the output layer, Wk0 is

the bias for the kth output neuron, and Xi is the ith input

variable for the input layer.

The structure of the developed ANN ensemble com-

mittee-based model utilizing the input, hidden layer, and

Fig. 4 An illustration of the M5 model tree structure for prediction of UCS
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output layer neurons, and used for the prediction of UCS, is

shown in Fig. 6.

2.7 Model design framework

In this study, three different machine learning regression

models, including the M5 model tree, MARS, and RF,

were explored for the prediction of travertine UCS, with

data obtained from the Azarshahr area in northwestern Iran.

The input matrix (x) defined by Vp, Rn, n%, and Is datasets

represented the predictor variables, and the target variable

(y), defined by UCS, were used in each tree-based model.

Seventy percent of the original dataset was randomly

selected for the training phase, and the remainder of the

dataset was partitioned for the validation (15%) and testing

(15%) phases. Before developing the machine learning

models, all variables were normalized to a value between

zero and one by a scaling factor to guarantee that all input-

target variables received equal attention during the training

phase.

All models were implemented using the MATLAB

software on an Intel(R) core i7-4470CPU @ quad-core

3.74 GHz computer system. To develop the RF model, the

initial number of weak learners (i.e., regression trees) was

set to 800, and the initial number of leaves in each tree was

set to five, the default of the Bagger algorithm [48].

Notably, no universal mathematical formula is used to set

the optimum number of trees [49]. Generally, a larger

number of trees generates more accurate results but

increases computational cost.

The M5 model tree was constructed using a set of tuning

parameters for model initialization. A minimum tree split

value of five, a smoothing value of 15, and a split threshold

value of 0.05 were selected, as suggested by Yaseen et al.

[32] and Deo et al. [50, 51]. The model was pruned to

prevent over-fitting of the model to the data, which has the

dual purpose of implementing the ‘‘divide-and-conquer

rule’’ in which the problem is broken down by splitting it

into several smaller problems [34–44]. In order to improve

prediction accuracy, the sharp discontinuities generated as

a result of joining multiple piece-wise linear regression

functions were eliminated during the smoothing process

[38]. The model found the optimum number of decision

Fig. 5 An illustration of the MARS structure for prediction of UCS
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trees (or ‘rules’) to be seven, as this value attained the

smallest RMSE in the training step.

The MARS model was constructed using the ARESLab

toolbox and followed the approach of earlier studies

[31, 32, 43, 50, 51]. Generally, the MARS modeling pro-

cess consisted of two stages: the forward and backward

stages. In the forward stage, the reflected pair(s) of the BFs

were added and the potential knots were identified to obtain

the greatest decrease in the training error (RMSE). The

approximate number of available knot locations, which are

controlled using midspan and endspan, were found to be

ten, eight, ten, and ten for x1 (Vp (km/s)), x2 (Rn), x3 (n%),

and x4 (Is (MPa)) inputs, respectively. The number of BFs

in the model after the forward stage was found to be 21. It

is important to note that over-fitting of the modeled data is

a risk when a large model is generated at the end of the

forward phase. Therefore, by deleting a set of redundant

BFs through a backward procedure, the MARS model was

pruned to achieve a model that only included the intercept

term [32]. The total effective number of parameters after

the backward stage was found to be 23. The BFs and the

optimal prediction functions of the developed MARS

model are provided in Table 2.

Following the construction and evaluation of the stan-

dalone (i.e., MARS, RF, M5 tree) models, integration of

the predicted UCS values from the three developed

machine learning models was performed to improve the

prediction accuracy of the UCS data, and for subsequent

use in an ANN model. The predicted UCS values simulated

from the standalone models were employed as the ANN-

committee-based model’s inputs, and the measured UCS

values were given as the target (output) of the ANN model.

In accordance with earlier studies [43], the utilization of

the output of each standalone model in the final predictive

Fig. 6 An illustration of the ANN ensemble committee-based model structure for the prediction of UCS

Table 2 Basis functions and optimal function for MARS-based UCS prediction

Basis function Optimal prediction function

MARS model BF1 = C(x4| - 1,0.334,0.611,0.797) y = - 1.68 - 0.569 9 BF1 - 1.94 9 BF2 ? 4 9 BF3 ? 1.97 9 BF4 -

1.9 9 BF5 - 2.24 9 BF6 ? 0.775 9 BF7 ? 1.18 9 BF8 ? 1.71 9 BF9 -

0.839 9 BF10 ? 0.534 9 BF11
BF2 = C(x3| - 1,0.242,0.345,0.519)

BF3 = C(x3| - 1,0.519,0.693,0.832)

BF4 = C(x3| ? 1,0.0693,0.139,0.242)

BF5 = C(x3| - 1,0.0693,0.139,0.242)

BF6 = C(x1| ? 1,0.621,0.762,0.871)

BF7 = C(x1| - 1,0.621,0.762,0.871)

BF8 = C(x2| ? 1,0.159,0.318,0.477)

BF9 = C(x1| ? 1,0.276,0.48,0.621)

BF10 = C(x2| ? 1,0.477,0.636,0.659)

BF11 = C(x2| - 1,0.659,0.682,0.841)
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model (i.e., the ANN) was done to better assimilate data

features present in the predictor variables, as some of these

features may not have been fully identifiable by the indi-

vidual standalone models. To develop an optimal ANN-

committee-based model, the Levenberg–Marquardt (LM)

training algorithm was used to design a three-layered feed-

forward neural network model. The LM minimizes the

mean square error (MSE) between the predicted and

measured UCS values by applying a computationally effi-

cient second-order training technique. The optimal number

of hidden neurons was selected by considering a value set

by log (N) and (2n ? 1), where N and n are the numbers of

training samples and input neurons, respectively, as rec-

ommended by Wanas et al. [52], Mishra and Desai [53],

and Barzegar et al. [7, 46, 54]. In this case, the number of

neurons in the hidden layer was set to four. The sigmoid

and linear functions were selected as the hidden transfer

and output functions between layer two and three,

respectively, with a learning rate and a momentum factor

of 0.1. Through an iterative modeling process, the best

validation performance was attained at 10 epochs, based on

an MSE of approximately 9.551 9 10-1 MPa. After

training and validation of the ANN ensemble committee-

based model, the testing phase, in which an independent

test dataset was used to evaluate the final predictive model,

was established.

2.8 Statistical performance evaluation

Statistical metrics were used to assess the performance of

the models in this study. These metrics are comprised of

the correlation coefficient (r), root mean square error

(RMSE), mean absolute error (MAE), and their normalized

equivalents expressed in percentages (RRMSE and

RMAE). The basic equations of these metrics are shown in

Eqs. (10) to (14).

r ¼
Pi¼N

i¼1 UCSmeas
i � UCS

meas� �
: UCS

pred
i � UCS

pred
� �h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pi¼N

i¼1 UCSmeas
i � UCS

meas� �2
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pi¼N

i¼1 UCS
pred
i � UCS

pred
� �rs

where;�1� r� 1

ð10Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xi¼N

i¼1

UCSmeas
i � UCS

pred
i

� �2
vuut ð11Þ

MAE ¼ 1

N

Xi¼N

i¼1

UCSmeas
i � UCS

pred
i

���
��� ð12Þ

RRMSE ¼ 100� RMSE

UCS
meas ð13Þ

RMAE ¼ 100� MAE

UCS
meas ð14Þ

where N is the number of data points, UCSmeas
i and UCS

pred
i

are the ith measured and predicted UCS values, respec-

tively, and UCS
meas

and UCS
pred

are the mean of measured

and predicted UCS values, respectively.

The covariance of the observed data, which is explained

by the prediction model, was described by r. RMSE and

MAE, which are represented in their absolute units, show

the accuracy of the models as described by their goodness-

of-fit. Moreover, RRMSE, which compares the percentage

of deviation between the predicted and measured data, was

used to evaluate the models’ precision. The RMAE was

used to determine the average magnitude of total absolute

bias error (in percent) between predicted and measured

data.

The previously described statistical metrics demonstrate

the linear agreement between the measured and predicted

values in a modeling system. However, these metrics can

be excessively sensitive to outliers in the measured data,

while showing insensitivity to the additive or relative dif-

ferences between predictions and measurements

[32, 55, 56]. To overcome these challenges, two normal-

ized performance indicators, the Willmott’s Index (WI) and

Legates and McCabe Index (LMI), were used. The math-

ematical formulations associated with these metrics are

given in Eqs. (15) and (16).

WI ¼ 1

�
Pi¼N

i¼1 UCSmeas
i � UCS

pred
i

� �2

Pi¼N
i¼1 UCS

pred
i � UCS

meas
���

���þ UCSmeas
i � UCS

meas�� ��
� �2

2
64

3
75

ð15Þ

LMI ¼ 1�
Pi¼N

i¼1 UCSmeas
i � UCS

pred
i

���
���

Pi¼N
i¼1 UCSmeas

i � UCS
meas�� ��

2
4

3
5 ð16Þ

Note that the LMI has an advantage over WI when

relatively high predicted values are expected, even for a

poorly fitted model.

2.9 Results and discussion

Simple regression analysis was used to determine the

relationships between the predicted (i.e., UCS) and pre-

dictor variables (i.e., Vp, Rn, n% and Is) (Table 3). The

relationships between UCS and the predictor variables

were analyzed using linear, exponential, power, and loga-

rithmic functions. A meaningful relationship between UCS

and Is (i.e., 0.7715\ r\ 0.7726) was found, which was in

accordance with several studies [53, 57, 58]. Conversely,
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weaker relationships were observed between UCS and the

other input variables; Vp yielded a value of

0.4917\ r\ 0.5078, Rn yielded a value of

0.5930\ r\ 0.6093, and n% yielded a value of

0.5463\ r\ 0.5842. These poor relationships may have

been due to the use of different travertine rocks with

diverse characteristics from the study area.

In addition to the simple regression analysis, a correla-

tion analysis was carried out between the predicted and

predictor variables. In previous studies, it has been

demonstrated that n% is the main control factor for the

durability and strength of rock, and can thus influence Rn,

Is, and UCS [59–61]. It has also been reported that

increasing porosity was linked with decreasing UCS

[61–63]. However, the results (Table 4) of the present

study showed weak correlations between Vp and n%

(r = - 0.003), and Rn and n% (r = - 0.162). Additionally,

moderate correlations were found between Vp and Is
(r = 0.458), Rn and Is (r = 0.511), and n% and Is
(r = - 0.419), reinforcing the study’s objective to employ

models based on multiple input parameters for the pre-

diction of UCS, namely multiple regression and machine

learning models.

In the execution of multiple regression modeling,

which included the MLR and MNLR procedures, the same

datasets as the machine learning models were used.

Implementation of the MLR and MNLR procedures yiel-

ded Eqs. (17) and (18), respectively, for the prediction of

UCS. The MLR model obtained an r of 0.626, an RMSE of

7.527 MPa, and an MAE of 5.580 MPa. The MNLR yiel-

ded an r of 0.721, an RMSE of 6.172 MPa, and an MAE of

4.570 MPa, which highlighted the greater accuracy of

nonlinear models, in comparison with linear models, for

the prediction of UCS.

UCS ¼ 2:96þ 0:43Vp þ 0:46Rn � 0:78nþ 6:90Is ð17Þ

UCS ¼ 16:02� 19:90Vp � 1:79Rn � 3:58nþ 45:93Is
þ 2:29V2

p þ 0:02R2
n þ 0:23n2 � 4:31I2s

ð18Þ

Sensitivity analysis was used to evaluate the relative

influence of input variables on the models’ output variable

using the relative strength of effect (RSE) method. In this

method, all data pairs were used to construct a data array

X [64–66].

X ¼ x1; x2; x3; . . .; xi; . . .; xnf g

where the variable xi in the array X is the vector of length

m, shown as:

xi ¼ xi1; xi2; xi3; . . .; ximf g

The RSE for the input unit ‘‘i’’ on the output unit ‘‘j’’,

between dataset Xi and Xj is calculated using Eq. (19).

Table 3 Results of simple

regression analyses for

prediction of UCS

Regression model Predictor Regression function r

Linear Vp UCS = 7.1879 Vp ? 19.559 0.4968

Rn UCS = 0.9792 Rn ? 9.9338 0.6043

n% UCS = - 1.7355 n% ? 62.795 0.5463

Is UCS = 9.5583 Is ? 8.751 0.7720

Exponential Vp UCS = 27.717e0.1359 Vp 0.4917

Rn UCS = 23.269e0.0184 Rn 0.5930

n % UCS = 62.908e-0.033 n % 0.5485

Is UCS = 22.323e0.1825 Is 0.7718

Power Vp UCS = 19.847 Vp
0.6327 0.5034

Rn UCS = 2.5295 Rn
0.8018 0.5986

n% UCS = 62.713 n%-0.123 0.5808

Is UCS = 14.337 Is
0.8478 0.7726

Logarithmic Vp UCS = 33.412 ln (Vp) ? 1.9819 0.5078

Rn UCS = 42.733 ln (Rn) - 108.290 0.6093

n% UCS = - 6.453 ln(n%) ? 62.717 0.5842

Is UCS = 44.325 ln(Is) - 14.501 0.7715

Table 4 Correlation matrix of independent variables

Vp Rn n% Is UCS

Vp 1.000

Rn 0.733 1.000

n% - 0.003 - 0.162 1.000

Is 0.458 0.511 - 0.419 1.000

UCS 0.496 0.604 - 0.546 0.772 1.000
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RSE ¼
Pm

k¼1 xikxjkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
k¼1 x

2
ik

Pm
k¼1 x

2
jk

q ð19Þ

Figure 7 shows the calculated RSE values for the four

input variables, with Is (MPa) (with an RSE of 0.993)

having the highest impact on UCS prediction modeling.

The variable n% had the lowest impact on UCS prediction

modeling.

Table 5 shows a comparison of the statistical perfor-

mances of the RF, M5 tree and MARS models, as well as

the ANN-based ensemble model, in predicting UCS in

travertine rocks. Statistical performance metrics (r, RMSE,

and MAE) are provided for both the training and validation

phases of each model. All standalone machine learning

models that were trained and validated showed high values

of r and low values of RMSE and MAE.

Following the training and validation phases of the stan-

dalone machine learning models, the viability of the models

for the prediction of UCS data was established through a

testing phase. The statistical performance of the developed

models, in terms ofUCSprediction during the testing phase, is

given inTable 6.Basedon the calculated statistical indicators,

the MARS model (r = 0.830, RMSE = 5.588 MPa, MAE =

4.461 MPa, WI = 0.997, and LMI = 0.359) obtained supe-

rior performance followed by the M5 tree (r = 0.572,

RMSE = 8.147 Mpa, MAE = 5.745 MPa, WI = 0.993, and

LMI = 0.175) and RF (r = 0.488, RMSE = 8.071 MPa,

MAE = 6.436 MPa,WI = 0.600, and LMI = 0.076) models.

The LMI has greater robustness than the WI and is thus

always lower than theWI. In the current study, LMI was very

low for theM5 tree and RFmodels, but relatively good for the

MARS model. Additionally, the relative errors (i.e., RRMSE

and RMAE) were low for all the single models (MARS =

11.24%, 8.99% vs. M5 tree = 16.68%, 12.38% and RF =

16.24%, 14.29%). It was also observed that the predicted

values ofUCSobtained using theMARSmodelwere closer to

the measured UCS values than in the M5 tree and RFmodels.

TheMARSmodel also showed the highest r-value, as well as

fit by the linear regression equation (UCSpred = 1.032

UCSmeas ? 0.013). This indicated, along with the other

metrics used, that the MARS model outperformed the other

standalone models. The superior performance of the MARS

model may be the result of more effective feature identifica-

tion resulting from the use of several cubic splines at different

intervals in the input-target dataset.

The ensemble model was then developed to integrate the

advantages of each standalone machine learning model.

After training and validation of the ANN-based committee

model, the testing phase was executed. Based on the results

given in Table 6, the ensemble model yielded an r of

0.890, an RMSE of 3.980 MPa, an MAE of 3.225 MPa, a

WI of 0.931, and an LMI of 0.237, with a lower scatter than

each of the standalone models, and a linear regression

equation of UCSpred = 0.899 UCSmeas ? 6.696.

Generally, results showed that the ensemble model

improved the performance of the standalone machine

learning models. Measured and predicted values of UCS by

the RF, M5 tree, MARS, and ensemble models in the

Fig. 7 The relative impact of the input variables on the model output

Table 5 Statistical metrics for

each model’s performance

evaluation in the training and

validation phases

Model Training phase Validation phase

r RMSE (MPa) MAE (MPa) r RMSE (MPa) MAE (MPa)

RF 0.857 4.830 4.029 0.993 1.254 0.953

M5 tree 0.598 8.055 5.849 0.990 1.363 1.021

MARS 0.713 6.391 5.128 0.994 1.034 0.701

Ensemble 0.733 5.730 4.151 0.991 1.315 0.931

Table 6 Statistical metrics of

each model’s performance

evaluation in the testing phase

Model r RMSE (MPa) MAE (MPa) RRMSE (%) RMAE (%) WI LMI

RF 0.488 8.071 6.436 16.234 14.490 0.600 0.076

M5 tree 0.572 8.147 5.745 16.386 12.185 0.993 0.175

MARS 0.830 5.588 4.461 11.240 8.999 0.997 0.359

Ensemble 0.890 3.980 3.225 8.005 6.487 0.931 0.537
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testing phase are compared in Fig. 8. It was observed that

the ensemble model was the most efficient in predicting

low and high USC values. The comparison between

the simple multiple variable regression models and

machine learning models for predicting UCS indicated that

the performance of the RF and M5 tree models were rel-

atively poor and that the MARS and ensemble models were

superior. The improved performance of the AI models over

the statistical approaches was confirmed, supporting the

results of other studies [9, 11, 64, 67].

2.10 Conclusions

In this study, 93 core samples were collected from tra-

vertine rocks in the Azarshahr area of northwestern Iran.

Laboratory tests, including P-wave velocity (Vp (Km/s)),

Schmidt Hammer (Rn), porosity (n%), point load index (Is

Fig. 8 Measured and predicted UCS (MPa) values for travertine rocks by a RF, b M5 tree, c MARS, and d ensemble models in the testing phase
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(MPa)), and UCS (MPa), were carried out on the samples

according to the ISRM. Simple regression analysis

demonstrated a meaningful relationship between UCS and

Is and a relatively weak relationship between USC and the

other measured parameters, which may have been the result

of the use of different travertine rocks with diverse char-

acteristics from the study area. Furthermore, poor to

moderate correlations existed between the input variables.

Therefore, nonlinear machine learning models based on

multi-input parameters were required to accurately predict

UCS. In this case, the dataset used included Vp, Rn, n%, and

Is as the input variables and UCS as the target variable for

the tree-based machine learning models (e.g., MARS, RF,

and M5 tree).

After training and validation, the MARS model

(r = 0.830, RMSE = 5.588 MPa, MAE = 4.461 MPa,

WI = 0.997, and LMI = 0.359) showed superior perfor-

mance in the testing phase for prediction of UCS, followed

by the M5 tree and RF models. An ensemble model based

on an ANN-committee was implemented to integrate the

advantages of each single machine learning model. The

ensemble model yielded an r of 0.890, RMSE of

3.980 MPa, MAE of 3.225 MPa, WI of 0.931, and LMI of

0.237, which improved the prediction of UCS in compar-

ison to the standalone models. In addition, the superiority

of the machine learning models over the multiple linear

and nonlinear models was confirmed. Sensitivity analysis

was also applied to assess the relative influence of input

variables on the models’ output variable using the relative

strength of effect (RSE) method. The calculated RSE val-

ues showed that the Is, with an RSE of 0.993, and n%, with

an RSE value of 0.8, had the highest and lowest impacts,

respectively, on predicting UCS.

Future research should use the models proposed in the

current study to predict the UCS of other rock types, such

as sedimentary, volcanic, and metamorphic, in different

parts of the world. Applying and comparing other

ensemble techniques, for example, bagging, boosting, and

voting, provides an additional opportunity for future

research. Furthermore, other machine learning models

(e.g., extreme learning machine and deep learning mod-

els) could be applied for modeling the UCS of different

rock types.
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