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Abstract
The prediction of the uniaxial compression strength (qu) of soil cement mixtures is of up most importance for design

purposes. This is done traditionally by extensive laboratory tests which is time and resources consuming. In this paper, it is

presented a new approach to assess qu over time based on the high learning capabilities of data mining techniques. A

database of 444 records, encompassing cohesionless to cohesive and organic soils, different binder types, mixture con-

ditions and curing time, were used to train three models based on support vector machines (SVMs), artificial neural

networks (ANNs) and multiple regression. The results show a promising performance in qu prediction of laboratory soil

cement mixtures, being the best results achieved with the SVM model (R2 ¼ 0:94) and with an average of SVM and ANN

model (R2 ¼ 0:95), well reproducing the major effects of the input variables water/cement ratio, cement content, organic

matter content and curing time, which are known as preponderant in soil cement mixtures behaviour.
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1 Introduction

Mechanical properties study of soil cement mixtures is a

complex task due to high number of parameters involved.

Over the last decades, several researches have been con-

ducted, following different approaches but with the same

purpose of a better understand of soil cement mixtures

behaviour over time.

Concerning to uniaxial compression strength (qu), this

mechanical property is obtained through laboratory tests

that involve time and resources consuming, which are

generally very limited. Therefore, it is important to reduce

the number of laboratory tests without compromising

safety or confidence issues. A common practice is to pre-

pare (before construction works) and test some laboratory

samples aiming to simulate the field conditions. These

samples, prepared with the same soil, cement and water

used in the field, will give an important idea about the

behaviour of the infield mixture. However, this laboratory

samples also represent an important cost for the project and

therefore should be minimized.

This scenario underlines the necessity, at least upon at a

pre-design stage, to have available prediction tools to

obtain the best design parameters. However, due to the

high number of parameters affecting the behaviour of soil

cement mechanical properties, in particularly the qu, the

traditional statistical analysis are unable to deal with.

Aiming to overcome this limitation, a first and suc-

cessful attempt has been recently made, taking advantage

of the high learning capabilities of data mining (DM)

techniques [6, 27–29], which have been successfully

applied in the pass in different knowledge
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domains [11, 12, 18], including in civil engineering

field [13, 21].

Although a good performance has been achieved in qu
prediction of laboratory soil cement mixtures (Fig. 1),

there are some limitations that still need to be overcome. In

particular, the model dependence on the mixture propri-

eties, such as its porosity, is one of its main drawbacks. As

can be observed in Fig. 2, which shows the relative

importance of each input variables in qu prediction, the

mixture porosity (only measured after mixture preparation)

has a relative importance higher than 15%. Moreover, the

models shown in Fig. 1 were developed based on a data-

base regarding soil cement samples covering higher dosa-

ges of cement [6]. Hence, aiming to eliminate models

dependence on the final mixtures properties, namely its

porosity, as well as increase its applicability domain, a new

data-driven model is here proposed for qu prediction over

time without considering any property of the final soil

cement mixture and covering a wide range of cement

contents.

The proposed model, based on advanced statistics

analysis usually known as data mining techniques, allows

estimating qu of laboratory soil cement mixtures over time

based on ten input variables such as the cement content,

soil grain size distribution or type of binder. A cross-vali-

dation approach under 5 runs was applied for model gen-

eralization assessment.

2 Methodology

2.1 Modelling

For qu modelling it was followed a data-driven approach

where three different DM algorithms were fitted to a

database previously compiled and prepared containing

unconfined compression tests results related to laboratory

soil cement mixtures, as well as a set of ten input variables

related to the soil and cement characteristics used to pre-

pare the mixture. In particular, two of the high flexible

learning DM algorithms were trained, namely Support

Vector Machines (SVMs) and Artificial Neural Networks

(ANNs). As a baseline comparison also a Multiple

Regression (MR) algorithm was fitted to the database.

Bellow is presented a brief overview of the three DM

algorithms applied in this study, highlighting the adopted

parameters for each one.

Initially developed for classification tasks [8], SVMs

were latter adapted to regression tasks thanks to the

introduction of �-insensitive loss function [26]. The main

purpose of the SVMs is to transform input data into a high-

dimensional feature space using nonlinear mapping. The

SVM then finds the best linear separating hyperplane,

related to a set of support vector points, in the feature

space. This transformation depends on a kernel function. In

this work, the popular Gaussian kernel was adopted. In this

context, its performance is affected by three parameters: c,
the parameter of the kernel; C, a penalty parameter; and �

(only for regression), the width of an �-insensitive

zone [14]. The heuristics proposed by Cherkassky and

Ma [3] were used to define the first two parameter values,

C ¼ 3 (for a standardized output) and � ¼ r̂=
ffiffiffiffi

N
p

, where

r̂ ¼ 1:5=N �
PN

i¼1 yi � ŷið Þ2, yi is the measured value, ŷi is

the value predicted by a 3-nearest neighbour algorithm and

N is the number of examples. A grid search of
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Fig. 1 Data mining models performance in qu prediction (old model)

of laboratory soil cement mixtures. (adapted from Correia et al. [6])
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Fig. 2 Relative importance of each input variable in qu prediction of

laboratory soil cement mixtures according to SVM algorithm [28]
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2f�1;�3;�7;�9g was adopted to optimize the kernel parameter

c, under an internal threefold cross-validation scheme.

Concerning to ANNs, they are a method of artificial

intelligence, which seeks to simulate the biological struc-

ture of the human brain and nervous system through their

architecture [19]. This concept was firstly introduced in

1943 by McCulloch and Pitts [23] although its use was

expanded by Werbos [33] through the development of the

backpropagation algorithm, which became a practical tool

in the field of forecasting and prediction. ANNs are a

technique capable of modelling complex nonlinear map-

pings and is robust in exploration of data with noise. In this

study, the multilayer perceptron that contains only feed-

forward connections, with one hidden layer containing H

processing units, was adopted. Because the network’s

performance is sensitive to H (a trade-off between fitting

accuracy and generalization capability), it was adopted a

grid search (similar to the one used for SVM) of

0; 2; 4; 6; 8 during the learning phase to find the best H

value. Such grid search only considered training data,

dividing it into fitting (70%) and validation data (30%),

where the validation error was used to select the best H.

After selecting the best H value, the ANN is retrained with

the whole training data. The neural function of the hidden

nodes was set to the popular logistic function 1=ð1þ e�xÞ.
For a baseline comparison, also MR was implemented in

this work. According to a MR algorithm several indepen-

dent variables are linearly combined to predict the depen-

dent (output) variable [15]. Due to its additive nature, this

model is easy to interpret and is widely used in regression

tasks. However, one of its main limitations is its ineffi-

ciency at modelling problems of a nonlinear nature.

R statistical environment [24], a free and open-source

software, was used to conduct all experiments. The rminer

package [9], which facilitates the implementation of sev-

eral DM algorithms, namely ANNs and SVMs algorithms,

as well as different validation approaches such as the cross-

validation implemented in this study, was also adopted in

this work.

2.2 Models evaluation

Models assessment is an important step after its training

allowing to measure models performance, not only in terms

of accuracy but also concerning to their interpretability.

For models comparison and accuracy measurement,

three metrics currently used in regression problems were

calculated [15]: mean absolute error (MAE), root mean

square error (RMSE) and coefficient of correlation (R2). A

low value of MAE and RMSE and an R2 close to the unit

value means a higher predictive capacity. The main dif-

ference between MAE and RMSE is that the latter one is

more sensitive to extreme values since it uses the square of

the distance between the real and predicted values [27].

When compared with MAE, RMSE penalizes more heavily

a model that in a few cases produces high errors. Thus,

these two error measurements give different and comple-

mentary perspectives about the behaviour of the induced

models, allowing its comparison. In addition to this three

metrics, it was taken also advantage of regression error

characteristic (REC) curve proposed by Bi and Bennett [1],

which plots the error tolerance on the x-axis versus the

percentage of points predicted within the tolerance on the

y-axis, allowing a quick and easy comparison of different

DM models.

Models generalization is another point when assessing a

data-driven model. For that purpose, a cross-validation (k-

fold = 10) approach [15] was applied and the entire pro-

cess was repeated 5 times. A k-fold validation evaluates the

data across the entire training set, but it does so by dividing

the training set into k folds (or subsections, where k is a

positive integer) and then training the model k times, each

time leaving a different fold out of the training data and

using it instead as a validation set. At the end, the perfor-

mance metric (e.g. MAE, RMSE, etc.) is averaged across

all k tests. Lastly, as before, once the best parameter

combination has been found, the model is retrained on the

full data.

Understanding what was learned by the models is also a

key point in any data-driven project. Since data-driven

models, particularly SVM or ANN that rely on complex

statistical analysis and are frequently referred to as ‘‘black

boxes’’, are mathematically very complex it urges the

necessity to ‘‘open’’ such models in order to facilitate its

understanding. Aiming to overcome this drawback, Cortez

and Embrechts [10] proposed a novel visualization

approach based on sensitivity analysis (SA), which is used

in this work. SA is a simple method that is applied after the

training phase and measures the model responses when a

given input is changed, allowing the quantification of the

relative importance of each attribute as well as its average

effect on the target variable. In particular, it was applied

the Global Sensitivity Analysis (GSA) method [10], which

is able to detect interactions among input variables. This is

achieved by performing a simultaneous variation of F

inputs. Each input is varied through its range with L levels

and the remaining inputs fixed to a given baseline value. In

this work, it was adopted the average input variable value

as a baseline and set L ¼ 12, which allows an interesting

detail level under a reasonable amount of computational

effort.

With the sensitivity response of the GSA, different

visualization techniques can be computed. The input

importance barplot shows the relative influence (Ra) of

each input variable in the model (from 0 to 100%). The

Neural Computing and Applications (2020) 32:8985–8991 8987

123



rational of GSA is that the higher the changes produced in

the output, the more important is the input. To measure this

effect, first the gradient metric (ga) for all inputs was cal-

culated. After that, the relative influence was computed

according to the following equation:

Ra ¼ ga

,

X

I

i¼1

gi � 100ð%Þ

where; ga ¼
X

L

j¼2

ŷa;j � ŷa;j�1

�

�

�

�= L� 1ð Þ
ð1Þ

where a denotes the input variable under analysis and ŷa;j is

the sensitivity response for xa;j.

2.3 Database

For models training and testing purposes, a database with

444 records was collected and compiled. These samples

make part of different laboratory studies carried out on

University of Minho and University of Coimbra with two

main purposes. On one hand analyse the influence of several

variables in mechanical behaviour of jet grouting and cutter

soil mixing laboratory mixtures [27]. On the other hand

define the binder mixture to obtain the best technical, eco-

nomical and environmental soil stabilization [5, 7, 30–32].

The soils used in the preparation of the laboratory

samples were collected from eight test sites. One of them is

Coimbra area (located near Coimbra city, Portugal), rang-

ing from cohesive to cohesionless soils, organic to nonor-

ganic soils, presenting different geotechnical properties.

Fourteen different binders were tested, including Portland

cement, slag, fly ash, lime and silica fume, applied indi-

vidually or combined. Concerning to the seven remaining

sites, all of them are of a clayey nature, containing different

percentages of sand, silt, clay and organic matter [27].

These samples were prepared with cement type CEM I

42.5R (Portland cement with 100% clinquer) and CEM II

42.5R (composed Portland cement with � 65% clinquer).

In addition, a couple of samples were also prepared with

pozzolanic cement (CEM IV/A 35.5R with � 20%

clinquer).

As models input a set of 10 variables were selected. The

definition of such variables took into account the empirical

knowledge related to soil cement mixtures behaviour,

particularly concerning to the qu evolution over

time [2, 20, 22, 25]. Also the feedback obtained from the

learning process was used in the input variables selection.

Bellow are listed all 10 input variables considered in this

study for qu prediction.

• Soil clay content (%)—%Clay

• Soil sand content (%)—%Sand

• Soil silt content (%)–%Silt

• Soil organic matter content (%)—%OM

• Water content (%)—x0

• Cement content (%)—aw
• Water/cement ratio—W/C

• Age of the mixture (days)—t

• Coefficient related with the binder type—Cs

• Coefficient related with a secondary binder—L2

Table 1 summarizes the main statistics of all 10 inputs

variables as well as of the output variable, showing the

wide range of cement content as well as the qu values.

3 Results and discussion

This section summarizes the main achievements of this

work that aims the development of a predictive model for

qu of laboratory soil cement mixtures, through the appli-

cation of advanced statistics analysis.

The average hyperparameters and fitting time values

(and respective 95% level confidence intervals according to

a t-student distribution) of the three DM algorithms trained

for qu prediction of laboratory soil cement mixtures (i.e.

MR, ANN and SVM) are shown in Table 2.

The achieved results shows a promising performance in

qu prediction of laboratory soil cement mixtures based on

the set of inputs selected that not include any information

about the mixture properties. In fact, as shown in Table 3,

both ANN and SVM algorithms were able to predict qu
very accurately, haven achieved an R2 ¼ 0:94. Based on

MAE or RMSE, it is possible to observe that SVM.Lab is

able to predict qu with a slightly higher accuracy when

compared with ANN.Lab. As expected, MR.Lab has

achieved the lower performance with an R2 ¼ 0:68, which

Table 1 Summary of the main statistics of the input and output

variables used in qu prediction

Variable Minimum Maximum Mean Standard deviation

%Clay 0.00 45.00 19.84 14.31

%Sand 0.00 99.00 22.97 22.1

%Silt 1.00 79.00 57.17 18.15

%OM 0.00 19.40 5.87 4.64

x0 7.17 113.05 64.96 24.48

aw 3.00 284.32 55.42 69.21

W/C 0.63 10.91 3.30 2.05

t 3.00 90.00 25.71 15.42

Cs 0.20 0.38 0.22 0.06

L2 0.00 1.00 0.61 0.49

qu 0.10 13.19 2.77 2.72
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represent a low performance when compared with

SVM.Lab or ANN.Lab.

Although ANN.Lab and SVM.Lab models present a

very high performance, it was observed that qu prediction

accuracy can be improved by averaging ANN.Lab and

SVM.Lab predictions. With this trick, an R2 ¼ 0:95 is

achieved as well as an RMSE very close to 0.61 MPa

(Table 3). Figure 3, that plots the REC curves of each

model, illustrates this slightly better performance in qu
prediction by averaging ANN.Lab and SVM.Lab predic-

tion. Moreover, Fig. 3 also underlines the huge difference

between MR.Lab and ANN.Lab or SVM.Lab performance

in qu prediction of laboratory soil cement mixtures.

Figure 4 illustrates clearly the very promising perfor-

mance of both ANN.Lab and SVM.Lab models in qu pre-

diction by plotting the relation between observed and

predicted values. As shown, all points are very close to the

diagonal line, which represents a perfect model. Figure 5

plots the same representation but considering the average

of ANN.Lab and SVM.Lab predictions, illustrating once

again the very high performance achieved.

From an engineering point of view, in addition to the

model accuracy it is also important to understand what

have been learned by it, particularly when dealing with

ANN and SVM algorithms that are mathematically very

complex. With this in mind, we have run a GSA [10]

methodology over the models in order to measure the

influence of each model attribute in qu prediction. Figure 6

plots the relative importance of each input variable,

showing that W/C is the most relevant variable in qu pre-

diction according to both ANN.Lab and SVM.Lab models,

with a relative importance higher than 20%. The three next

key variables are, according to SVM.Lab model, aw, %OM

and t. Based on ANN.Lab, the ranking is slightly different,

being x0, %Silt and %Sand the next three most influent

variables after W/C. Comparing both ANN.Lab and

SVM.Lab models, the last one seems to be more realistic.

In fact, among the four most relevant variables, SVM.Lab

model includes the influence of the water and cement

contents (W/C and aw), soil organic matter content (%OM)

and age of the mixture (t), which are known as prepon-

derant in soil cement mixtures behaviour [4, 16, 17, 22].

According to ANN.Lab model, the effect of the cement

content is less representative (only present on W/C) and the

effect of the cure time only takes the sixth position in the

ranking (less than 10%). As well known, the age of the

mixture is one of the most influent variables in soil cement

mixtures behaviour. Thus, considering models accuracy as

well as the relative importance of each variable, SVM.Lab

seems to be a better choice to estimate qu development over

time of laboratory soil cement mixtures. Concerning to

MR.Lab, beyond its lower performance, the high influence

of the soil properties (close to 80%) and the lower effect of

the curing time and cement content (around 4%) is not

rational.

Table 2 Hyperparameters and

computation time for each fitted

model

Model Hyperparameter Time (s)

MR.Lab – 0.41 ± 0.03

ANN.Lab H = 7 ± 1 17.18 ± 0.45

SVM.Lab c ¼ 0:21� 0:04; C ¼ 4:84� 0:22; � ¼ � 5:57� 0:50 9.63 ± 0.28

Table 3 Models performance

comparison based on metrics

MAE, RMSE and R2

Model MAE RMSE R2

MR.Lab 1.08 ± 0.01 1.53 ± 0.01 0.68 ± 0.00

ANN.Lab 0.46 ± 0.02 0.69 ± 0.05 0.94 ± 0.01

SVM.Lab 0.43 ± 0.01 0.67 ± 0.03 0.94 ± 0.01

SVM and ANN.Lab (average) 0.41 ± 0.01 0.61 ± 0.02 0.95 ± 0.00
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prediction of laboratory soil cement mixtures based on REC curves
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4 Conclusions

A data-driven approach is proposed for uniaxial compres-

sive strength (qu) prediction of laboratory soil cement

mixtures. The proposed models, supported on a represen-

tative database comprising 444 records, are able to predict

qu over time with a very promising accuracy (R2 ¼ 0:95)

and only by taken as model inputs information that is

available during the project stage, such as soil properties,

binder and water content, etc. This means that the project

design can calculate the expected qu for different scenarios

(formulations) taken into account the available material

without the need to prepare/test any sample. As a result, a

better optimization of the available resources can be done

and consequently important economic benefits can be

achieved.

Through the application of a global sensitive analysis

(GSA), it was possible to identify the most influent vari-

ables in qu prediction over time. This GSA allowed a better

understanding of the proposed models that due to its nat-

ures are mathematically very complex and allows to con-

clude that the water/cement ratio (W/C) is the most relevant

variable followed by cement content, soil organic matter

content and age of the mixture.

As a final observation, it should be stressed out the

important contribution of data mining techniques to solve

and better understanding of complex problems, namely

support vector machines and artificial neural networks

algorithms.
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