
ORIGINAL ARTICLE

NSNAD: negative selection-based network anomaly detection
approach with relevant feature subset

Naila Belhadj aissa1 • Mohamed Guerroumi1 • Abdelouahid Derhab2

Received: 19 January 2018 / Accepted: 18 July 2019 / Published online: 6 August 2019
� Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
Intrusion detection systems are one of the security tools widely deployed in network architectures in order to monitor,

detect and eventually respond to any suspicious activity in the network. However, the constantly growing complexity of

networks and the virulence of new attacks require more adaptive approaches for optimal responses. In this work, we

propose a semi-supervised approach for network anomaly detection inspired from the biological negative selection process.

Based on a reduced dataset with a filter/ranking feature selection technique, our algorithm, namely negative selection for

network anomaly detection (NSNAD), generates a set of detectors and uses them to classify events as anomaly. Otherwise,

they are matched against an Artificial Human Leukocyte Antigen in order to be classified as normal. The accuracy and the

computational time of NSNAD are tested under three intrusion detection datasets: NSL-KDD, Kyoto2006? and UNSW-

NB15. We compare the performance of NSNAD against a fully supervised algorithm (Naı̈ve Bayes), an unsupervised

clustering algorithm (K-means) and a semi-supervised algorithm (One-class SVM) with respect to multiple accuracy

metrics. We also compare the time incurred by each algorithm in training and classification stages.

Keywords Intrusion detection system (IDS) � Anomaly detection � Feature selection � Artificial immune system (AIS) �
Negative selection � NSL-KDD dataset � Kyoto2006? dataset � UNSW-NB15 dataset

1 Introduction

In recent years, security threats, attacks and intrusions in

network infrastructures have become one of the major

causes of great losses and massive sensitive data leaks. A

countless number of mechanisms are used to minimize,

detect and counter these security issues.

Anomaly detection is one of the techniques proposed to

ensure the integrity and the confidentiality of data. In

general, anomaly/outlier detection can be seen as a normal/

anomaly classification problem [32]. Several modern

techniques exist in the literature addressing this issue using

neural network [78], Bayesian network [17], clique clus-

tering approaches [10, 38, 67], bandit clustering

[26, 29, 35, 52, 55], support vector machine (SVM) [65],

fuzzy logic [82], graph theory [37, 54, 69], decision tree

[56], genetic programming [21, 34], artificial immune

systems (AIS) [11, 16, 79, 80] and more.

The biological immune system (BIS) has several prop-

erties such as robustness, error tolerance, decentralization,

recognition of foreigners, adaptive learning and memory

which makes it a very complex and promising source of

inspiration for several domains. Artificial immune system,

which is the field that tries to mimic the complex mecha-

nisms of the BIS, is the focus of much research since the

early 1990s [22] to tackle with complex engineering

problems. Theories and algorithms were proposed and

exploited for pattern recognition, data mining, optimiza-

tion, machine learning and anomaly detection to name only

a few [3].

& Naila Belhadj aissa

nbelhadj@usthb.dz

Mohamed Guerroumi

guerroumi@gmail.com

Abdelouahid Derhab

d.ouahid@gmail.com

1 Faculty of Electronic and Computer Science, University of

Sciences and Technology Houari Boumediene, Algiers,

Algeria

2 Center of Excellence in Information Assurance (CoEIA),

King Saud University, Riyadh, Kingdom of Saudi Arabia

123

Neural Computing and Applications (2020) 32:3475–3501
https://doi.org/10.1007/s00521-019-04396-2(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-3250-0803
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-019-04396-2&domain=pdf
https://doi.org/10.1007/s00521-019-04396-2

Indeed, anomaly detection approach [5, 8] in network

security relies on building normal models or profiles and

discovering variation/deviation from the model in the

observed data. This process is strongly similar to the main

objective of the biological immune system. Several models

were proposed that imitate BIS mechanisms such as clonal

selection, negative and positive selections and immune

cells network [95].

In this paper, we propose a negative selection algorithm,

namely Negative Selection for Network Anomaly Detection

(NSNAD) which includes the following outlined

contributions:

(a) We propose a filter/ranking-based feature selection

using the Coefficient of Variation. The advantage of

this statistical metric is twofold: First, it is indepen-

dent from the class, and second, it can be measured

regardless of the attribute’s scale and unit.

(b) Most of the previous works dealt with nominal

attributes by coding them with iterative integers or

binarizing them. The first approach depends on the

categories’ order of the nominal feature, which

means that different orderings will yield to different

numerical values and thus a biased classification.

The second requires more computational time and

memory resources as each value will be represented

by an additional binary attribute. In our work, we

replace the nominal attributes by their occurrence

probabilities when statistical operations are carried

out (feature selection phase). Otherwise, we handle

them as strings.

(c) We noticed that traditional negative selection imple-

mentations, usually, generate detectors as random

binary sequences with an R-chunk (r consecutive

bytes) matching against binary strings representing

the self. We consider, in our work, both the real and

string representations of all attributes in the dataset.

We randomly choose instances from the unlabeled

training data to be detectors, and we validate them

against self-data in each dimension. Unlabeled

training data contain both normal and anomaly

records.

(d) Our detector radius is border-based, which means

that every detector has its own range of activation

and it corresponds to the distance between the

detector and the border instances in self-data.

(e) Furthermore, in order to identify new attacks, we

optimize the detection phase with an additional

verification against self-space. Inspired from the

biological Human Leukocyte Antigen (HLA), we

define an Artificial HLA as the volume of self-space

and ensure that the incoming instance is not actually

a ‘‘self’’ before classifying it into anomaly.

(f) Finally, we evaluate our approach not only under

NSL-KDD dataset, which has been for the last

decades the most used benchmark for the test and

evaluation of IDS, but also using two more up-to-

date datasets: Kyoto2006? and UNSW-NB15.

The remainder of this paper is organized as follows: Sec-

tion 2 presents some background and related work

regarding biological and artificial immune systems as well

as feature selection techniques. Section 3 details each

phase of our proposed algorithm. Section 4 presents an

experimental design. The results, analysis and discussion

are provided in Sect. 5. An extensive comparison between

AIS-based intrusion detection techniques is given in

Sect. 6. We finally draw some concluding remarks in

Sect. 7.

2 Background and related works

In this section, we present some background on biological

and artificial immune systems; we briefly explain the bio-

logical immune response and point out the artificial theo-

ries inspired from each step of this process. We also review

some previous work done in the field of intrusion detection

using artificial immune system (AIS) approaches. We dis-

cuss feature selection algorithms and their classification,

and finally, we provide a brief comparison between our

algorithm and other related work.

2.1 Biological and artificial immune systems

The biological immune system (BIS) responds to an

intrusion or any pathogen1 through two types of immunity:

innate and adaptive immunity [85] (Fig. 1).

The innate immunity, also known as non-specific

immunity, is considered as the first line of defence. It

consists in four categories of barriers: (1) Anatomical,

which includes the skin, the mucus, etc., (2) Physiological

like the temperature and the pH, (3) Phagocytic such as the

macrophages and the polymorph nuclear and (4) Inflam-

matory as an antibacterial activity. The phagocytic and

cytotoxic cells, known as Natural Killer cells (NK), are the

key agents that ensure the pathogen’s termination. If the

innate immunity fails to destroy the pathogen, it triggers a

specific immune response.

The adaptive immunity, on the other hand, is said to be

specific because it only responds to a particular pathogen.

Each pathogen caries a certain shaped protein called anti-

gen. The lymphocytes recognize each cell of its own body

as self through Human Leukocyte Antigen (HLA1 and

1 Any disease-producing agent, especially a virus, bacterium, or other

microorganism.

3476 Neural Computing and Applications (2020) 32:3475–3501

123

HLA2). The first class of HLA (HLA1) has a ubiquitous

expression. It is expressed on the surface of all nucleated

cells including the Antigen Presenting Cells (APC),

whereas the second class: HLA2 is expressed only by the

Antigen Presenting Cells, such as dendritic cells, macro-

phage, and Lymphocytes B (LB) cells [70].

Any other antigen is flagged as foreign and has to be

destroyed. To do so, the immune response produces killer

lymphocytes (B and T) and antibodies to target this one

particular foreign antigen as well as memory cells in order

to enhance the immune response in case of a second

exposure to the same pathogen [72].

The BIS is a very complex system, and its interaction

and defence mechanisms are in constant discovery. Indeed,

immune cells interactions during the specific immune

response, their proliferation and their maturation process

have led to the definition of the main artificial immune

theories and models, namely clonal selection theory, neg-

ative and positive selection theories, immune network

theory and Danger theory [23]. Moreover, BIS features

have been a great source of inspiration for many

researchers in several fields such as pattern recognition,

optimization and anomaly detection. These features can be

summarized as follows:

– The self/nonself-discrimination During its maturation,

the T cells precursor can either turn into LT4 or into

LT8 through the positive selection process. Based on a

survival signal delivered to the lymphocytes that can

identify with a small affinity one of the HLA classes, it

becomes an LT4 cell if it recognizes the HLA class II

(HLA2) or an LT8 cell if it recognizes a HLA class I

(HLA1).

Thereafter, the LT cells, which recognize ‘‘too well’’

the HLA paired with a self-peptide (self-reactive T

cells), must be eliminated. This elimination (apoptosis)

process is called negative selection and has been an

inspiration for several classification models [24].

This maturation process leads to the generation of

two types of mature LT cells (LT4 and LT8) capable of

discriminating between the self-antigens, through HLA,

and the foreign antigens during the immune response.

– Immune response APCs are cells that present antigenic

peptides on their surface along with HLA1 or HLA2 to

recruit LT8 or LT4 cells, respectively. The LT8 cells

become LT cytotoxic, and the LT4 cells become

T-helpers. Those T-helpers are involved in the clonal

selection process [77] and the maturation of LB cells to

plasmocytes in order to produce antibodies.

Several algorithms were proposed for classification,

clustering and pattern recognition that are inspired from

the biological clonal selection [15].

– Memorization and distribution Some immune cells

become memory cells for a specific foreign antigen

once an immune response is activated from its first

exposure. They ensure quicker and more effective

immune responses of the BIS without going through the

recognition and affinity maturation process.

In addition to all the above cited characteristics, self-reg-

ulation, decentralized functioning, immune response

adaptation, cell proliferation are some other properties that

inspired several models as solutions to real and complex

problems [12]. Table 1 summarizes the immunological

concepts, the models inspired therefrom and their use in

computational problems.

2.2 AIS in intrusion detection

Several researchers exploited adaptive biological immunity

mechanisms, mimicked them and applied them to solve

several real-world and engineering problems. The ability of

the human body to automatically distinguish between self-

cells and nonself-cells in order to protect itself from

harmful pathogens is highly consistent with the concept of

intrusion detection. Hence, we are interested to apply this

mechanism in intrusion detection field.

Forrest and her team introduced in 1994 one of the first

applications of AIS in intrusion detection [28]. They

identified the problem of protecting computer systems as

the problem of learning to distinguish self from nonself.

Their algorithm runs in two steps; (i) generation of a set of

string detectors that do not match any of the protected data

and (ii) monitoring of the protected data by comparing

Fig. 1 Biological immune

system components

Neural Computing and Applications (2020) 32:3475–3501 3477

123

them to the detectors. Any changes in the data that activate

the detectors are considered as potential intrusions.

Later on, they designed an artificial immune system

(ARTIS) framework [40] and applied it in network intru-

sion detection domains by implementing ARTIS into

LISYS (Lightweight Intrusion detection SYStem).

An immune-based network intrusion detection system

(AINIDS) was proposed in [94]. AINIDS has two main

components: an antibody generation and an antigen

detection. It includes the generation of passive immune

antibodies to detect known attacks and automatic immune

antibodies that integrate statistic methods with fuzzy rea-

soning systems to detect novel attacks. Experiments were

carried out under collected data from authors’ LAN and

DARPA dataset.

Others like Hong [41] presented a hybrid immune

learning algorithm that combines the advantages of real-

valued negative selection algorithm (RNSA) and a classi-

fication algorithm to mainly find a boundary between

normal and anomaly classes.

More recently, Shen et al. [83] applied Rough Set

Theory feature selection on KDDCup99 dataset and used a

negative selection algorithm to detect anomalies.

Zhang et al. [100] proposed an integrated intrusion

detection model based on artificial immunity (IIDAI), a

vaccination strategy and amethod to generate initialmemory

antibodies with Rough Set (RS). IIDAI integrates misuse

detection model as well as anomaly detection model.

Seresht and Azmir [81] proposed a multi-agent AIS-

based approach for a distributed intrusion detection system.

Multiple functionalities of the proposed IDS (namely

MAIS-IDS) were inspired from AIS paradigm such as the

cloning, the mutation and the collaboration between agents.

MAIS-IDS is a hybrid anomaly IDS (host and network)

that uses agents in virtual machines where network traffic

was being analyzed. Authors used a small portion of NSL-

KDD to test the performance of their system with 19 fea-

tures chosen from the literature. The results showed that

the accuracy and false alarm rates reached 88% and 14%,

respectively.

Mohammadi et al. [60] presented a real-time anomaly

detection system based on a probabilistic artificial immune

algorithm. A first version named SPAI (Simple Proba-

bilistic Artificial Immune method) used the probability

density function as self-detectors. As the computational

cost seemed to be quite important, the authors proposed a

second version, namely CPAI (Clustered Probabilistic

Artificial Immune algorithm) where normal profile was

clustered into subgroups. These subgroups were given

priority values in a third version of the proposed algorithm

in order to enhance the response time.

Ghanem et al. [30] presented a hybrid approach for

anomaly detection using generated detectors, based on

multi-start metaheuristic method and genetic algorithms.

Detectors were generated using self- and nonself-training

data, which was strongly inspired from negative selection-

based detector generation. The approach reached 96%

detection rate and 7% false positive rate when evaluated

with NSL-KDD dataset.

Abas et al. [1] applied Rough Set Theory (RST) on gure-

KddCup6percent dataset in order to eliminate irrelevant

and redundant features. Then, they tested R-chunk and

negative selection algorithm on the six resulting features.

The accuracy of the experimental evaluation reached 90%.

Igbe et al. [43] proposed a framework for a distributed

network intrusion detection system (d-NIDS) based on

negative selection algorithm (NSA). They used a genetic

algorithm to generate a set of detectors that were dis-

tributed between IDS participants. The performance of this

framework was evaluated using NSL-KDD dataset; an

average detection rate of 98% and false positive rate of

1.77% were recorded.

Authors in [80] presented an AIS-based anomaly

detection and prevention system. They introduced self-

tuning and detector power to achieve dissimilarities among

the detectors in order to cover as much space as possible

with minimum computational cost. Experiments were

carried out using different percentages of KDDCup99

training dataset. They studied and compared the effects of

the dataset and the affinity threshold on detectors’ gener-

ation as well as detection rate and false positive rate. The

results showed a high detection rate (100%) but presented

important false alarm values (68%).

2.3 Feature selection

Feature selection is an important data preprocessing phase

used to remove irrelevant, redundant and noisy data with

Table 1 Immunity-based computational models and specific immunological concepts [23]

Immunological concepts and entities Immunity-based models Computational problem

Self/nonself-recognition, T cells Negative selection algorithm Fault and anomaly detection

Idiotypic network, immune memory, B cells Immune network theory Supervised and unsupervised learning

Clonal expension, affinity maturation, B cells Clonal selection algorithm Search and optimization

Innate immunity Danger theory Defence strategy

3478 Neural Computing and Applications (2020) 32:3475–3501

123

respect to the description of the problem at hand. It aims to

improve the data processing performance and reduce the

computational complexity.

Feature selection has been the focus of researchers in

many fields since the early nineties [51]. Various methods

have been proposed, tested and discussed. They can glob-

ally be classified into two categories: filter-based and

wrapper-based methods.

2.3.1 Filter-based methods

These methods are based on performance evaluation metric

deduced from general characteristics of the training data

(Fig. 2). They are carried out once, and the output can be

provided to different classifiers. Filters are commonly

independent from the learning algorithm. They are known

for their low computational complexity and good general-

ization ability.

Some filters provide a feature ranking rather than an

explicit best feature subset, and the cutoff point in the

ranking is usually chosen via cross-validation. Among

feature selection and feature ranking techniques, we find:

correlation-based feature selection (CFS), fast correlation-

based feature selection (FCBF), gain ratio attribute evalu-

ation (GR), information gain (IG), chi-squared evaluation

and others [46].

2.3.2 Wrapper-based methods

As to wrapper methods, they use the feedback of a clas-

sification algorithm to assess the quality (efficiency) of

feature subsets (Fig. 3). These subsets are usually created

using some search strategy. Even though the wrapper

approach has the advantage of handling the possible

interactions between features, it does not ensure the gen-

eralization as good as filter approach does. This is mainly

due to the fact that it leans toward the specific learning

algorithm used to choose the best feature subset.

Furthermore, wrappers are restricted by the time com-

plexity of the learning algorithm, which increases rapidly

as data get larger.

2.4 Feature selection in intrusion detection

In this section, we provide a small overview of feature

selection techniques applied in intrusion detection area

using different datasets, including UNSW-NB15, the latest

benchmark provided by the Australian Centre for Cyber

Security [63].

Kayacik et al. [47] investigate the relevance of each

feature in KDD99 intrusion detection dataset to discrimi-

nate normal behavior form attacks using information gain

(IG). Based on the entropy of a feature, IG measures the

role of this feature in predicting the class label. It is said to

be relevant if the value of IG is close to 1. Since IG is

measured for discrete values, authors preprocessed con-

tinuous features by partitioning each one into equal-sized

partitions using equal frequency intervals. Authors reached

the conclusion that normal, neptune and smurf classes are

highly related to certain features which make their classi-

fication easier as compared to other type of attacks that fall

into U2R and R2L categories.

Gonzalez-Pino et al. [31] integrated a feature selection

process based on information gain (IG) in their intrusion

detection system that deploys data mining and fuzzy logic

approaches. In order to efficiently detect malicious events

and be able to analyze large amounts of data in real time,

an IDS has to select attributes that are relevant enough for

an adequate detection profile with a low FPR. To this end,

authors used decision tree learning with IG algorithm to

select features from DARPA99 dataset. They limited their

experiments to evaluate the detection of ipsweep attack and

compared the results with and without using IG algorithm.

The article in [66] presents a study of four filter-based

feature selection methods using different classification

algorithms (5-Nearest Neighbor, C4.5 decision tree andFig. 2 Filters feature selection

Fig. 3 Wrapper feature selection

Neural Computing and Applications (2020) 32:3475–3501 3479

123

Naı̈ve Baye) under Kyoto2006? dataset for intrusion

detection. Authors performed ANalysis Of Variance

(ANOVA) along with Tukey’s Honestly Significant Dif-

ference (HSD) test to compare the performance of three

feature rankers: signal-to-noise ratio, chi-squared and

AUC. Authors concluded with the statement that overall

filter-based rankers perform better than the feature subset

evaluation method. Among the feature rankers, S2N is

performing best.

In [9], authors investigate the minimal subset of the

most relevant features in NSL-KDD dataset. They used

Correlation Feature Selection (CFS) technique to filter

attributes highly correlated with the class and uncorrelated

with each other. Different search methods were used to

build subsets, and Naı̈ve Bayes algorithm was the algo-

rithm performed to compare the results. The experiments

point out 12 features from the complete set that are com-

monly selected by all search methods as the most important

and reliable attributes. The accuracy and FPR reported

under these 12 attributes regarding U2R attack category are

65.43% and 0.01%, respectively.

Another article [75] studied feature selection for

machine learning algorithms under NSL-KDD dataset.

They tried to find the optimal feature subset using Dis-

cretized Differential Evolution (DDE), which is a popula-

tion-based search technique, and C4.5 decision tree

algorithm. The classification performances under training

and testing sets with tenfold cross-validation reached

99.01% and 82.37%, respectively, with an average FPR of

0.007% and 0.15%.

Authors in [48] have tried to minimize the computa-

tional time of machine learning and data mining techniques

with high-dimensional data using feature selection. They

investigated a wrapper approach based on a GA as search

strategy and logistic regression as learning algorithm. They

used various subsets of both KDD99 and UNSW-NB15

datasets for their experiments. The proposed algorithm

selected an average of 18 and 20 attributes from KDD99

and UNSW-NB15 with an accuracy reaching 99.3% and

92.5%. Moreover, the same features applied to C4.5, RF

and NBTree reached an average accuracy of 99.7%, 99.8%

and 99.7% under KDD99 and 80.6%, 80.45% and 80.2%,

respectively.

Janarthanan and Zargari [44] explored relevant features

in both NSL-KDD and UNSW-NB15 using machine

learning techniques. Since the two datasets are significantly

different, authors compared their results against previous

works applied on both datasets with Random Forest algo-

rithm. They employed several feature selection algorithms

implemented in Weka tool as CfsSubsetEval with

GreedyStepwise method and InfoGainAttributeEval with

Ranker method. Experiments were carried out using two

feature subsets, one extracted from previous work ([99] for

KDD99 and [62] for UNSW-NB15 datasets) and the other

proposed by the authors. The results show that the second

subset improves Kappa statistic, which indicates better

detection rates.

2.5 Comparison with related work

Most of the related work previously cited used a binary

representation of data flow without fully explaining the

conversion process from raw or featured data connections

into binary strings, as well as the computational cost of

such an operation. Moreover, when featured connections

are considered without binary transformation, authors tend

to deal with nominal attributes by coding them with

iterative integers. This usually leads to the biased classi-

fication results. In this work, we replace the nominal

attributes by their occurrence probabilities when statistical

operations are conducted (as feature selection). Otherwise,

we handle them as nominal in order to gain in efficiency

and make most of the information provided by this type

of features.

Besides, most of the empirical analyses are performed,

exclusively, under KDDCup99 dataset, which have been

for the past two decades the benchmark for the evaluation

of IDS and the only labeled dataset publically available

even though it is largely outdated.

We detail, in this paper, the full process of our proposed

algorithm based on the negative selection theory, from the

feature selection phase with a multi-type representation

(real, nominal), through detectors generation to the deci-

sion rules and the classification phase. We test and evaluate

our approach under NSL-KDD dataset, Kyoto2006?

dataset as well as UNSW-NB15 dataset.

As for feature selection, a great amount of work has

been done regarding this preprocessing phase in network

intrusion detection, but almost all of the published results

used DARPA 98 [39] or KDDCup99 dataset

[44, 47, 48, 68] and few used NSL-KDD [9, 75] or

Kyoto2006? [4, 6, 66] datasets. An increasing number of

researches have been carried out using the new benchmark

data for intrusion detection, namely UNSW-NB15 devel-

oped by Moustafa and Slay [63] at the Australian Center

for Cyber Security. Table 2 gives a summarized overview

of feature selection techniques discussed in the related

work.

We propose as feature selection module, a new filter-

based algorithm that exploits the Coefficient of Variation

(CV) to rank attributes of datasets. The algorithm Coeffi-

cient of Variation-based Feature Selection (CVFS) is fur-

ther explained in Sect. 3.2, and the results are presented in

Sect. 5.1.

3480 Neural Computing and Applications (2020) 32:3475–3501

123

3 NSNAD description

3.1 Overall architecture

The overall architecture and main components of the

negative selection algorithm for network anomaly detec-

tion (NSNAD) are depicted in Fig. 4. The training dataset

is passed through a filter/ranking-based feature selection,

which results in a subset of relevant features with low

dispersion. NSNAD is based on a semi-supervised classi-

fication, in the sense that the training data used as input

contain labeled as well as unlabeled records [102]. The

labeled instances represent normal or self-cells in the bio-

logical sense. These self-data are used to validate a set of

detectors randomly picked from the complete unlabeled

training data with both classes. A radius for each detector is

computed and used to classify instances from the test set as

anomaly.

NSNAD detectors can be assimilated to LT4 cells rec-

ognizing only AGs presented by APCs along with an

HLA2. An interaction with the AG will allow it to be

classified as ‘‘anomaly’’. However, if the latter is not

flagged by any detector, the possibility that it is (by anal-

ogy) a cell expressing only HLA1 (not recognized by LT4

cells) cannot be disregarded. This led us to add a second

verification based on an Artificial� HLA1. It consists in

comparing the structures of the AG (instance) with the

self’s HLA1. If these structures are close enough, the

instance is considered as ‘‘normal’’; otherwise, it is clas-

sified as ‘‘anomaly’’.

3.2 Feature selection

In the preprocessing phase, we introduce a feature selection

technique that falls into filter-based category as it uses a

statistical metric to rank the features. The cutoff point in

the ranking can be fixed by two different ways: either using

a subjective threshold or using a cross-validation feedback.

The Coefficient of Variation (CV) is the statistical metric

we use to define the most relevant attributes in terms of

dispersion. It is expressed as follows:

CVi ¼ ri
li
; i ¼ f1::pg ð1Þ

Table 2 Summary feature selection related work

References Feature selection N Classifier Dataset Attack category Evaluation metrics

[39] EA 1–8 RBF DARPA

1998

Back, Dict, Guest, Nmap,

Ipsweep, Portsweep,

Warezclient

Classification errors, FA, MA

[47] IG 1–11 – KDD99 All –

[31] IG 3 FL DARPA99 ipsweep –

[68] GeFS_CFS,

GeFS_mRMR

5, 18 C4.5, SVM,

BN,

CART

KDDCup99 DOS, Probe Accuracy

[66] S2N, CS, AUC, CFS 6 C4.5, NB Kyoto2006? All ROC, ANOVA, Tukey’s

Honestly Significant

Difference (HSD)

[9] CFS 12 NB NSL-KDD U2R Accuracy, FPR

[75] DDE 16 C4.5 NSL-KDD All Accuracy, Error Rate, TPR,

FPR, Precision, Recall, F-

measure

[48] GA 18,

20

LR KDD99,

UNSW-

NB15

All Accuracy, Recall, FAR, AIC,

McFadden R2

[44] Cfs Subset Eval ?

Greedy Stepwise, IG ?

Ranker

10, 8 RF KDD99,

UNSW-

NB15

All Kappa stata, ROC value

[62] ARM 11 NB, EM UNSW-

NB15

All Accuracy, FAR

EA evolutionary algorithm, IG information gain, GeFS generic feature selection, S2N signal to noise, CS chi-square, AUC area under curve, CFS

correlation-based feature selection, DDE discritized differential evolution, GA genetic algorithm, ARM association rule mining, RBF radial basis

function, FL fuzzy logic, NB Naı̈ve Bayes, LR linear regression, RF random forest, EM expectation–maximization; FA false alarm, MA missing

alarm, AIC Akaike information criterion
aKappa statistic is a measure that takes the expected figure into account by deducting it from the predictor’s success and expressing the result as a

proportion of the total for a perfect predictor, to yield extra success out of a possible total of predictions

Neural Computing and Applications (2020) 32:3475–3501 3481

123

where ri and li are the standard deviation and the mean of

the attribute i in the training data.

We compute the coefficient of Eq. 1 for each attribute in

the training data regardless of instances’ class. In fact, one

of the advantages of this technique is that it does not need a

label attribute in the ranking process, unlike other filter-

based algorithms. As another advantage of CVFS, it makes

it possible to compare attributes with different scales and

units. Moreover, CVFS defines both the dispersion and the

homogeneity of attributes depending on whether their

values are high or low.

The choice of whether to keep features with high or low

CV values depends on the field of application. For instance,

in radar image processing, the CV is used as filtering cri-

terion. A value of CV below a threshold results in the

application of a filter. It is also used for values lower than a

threshold to select, in the multi-temporal radar images, the

targets with a stable temporal backscatter.

In a multi-class classification case with p attributes, a

high CV value of an attribute, usually, reflects its important

contribution in the class’s discrimination. However, in

anomaly detection, an intrusion is identified if it deviates

from a normal behavior. Ideally, this normal behavior has

to be projected as a compact sphere in the multidimen-

sional space.

Since NSNAD is a semi-supervised algorithm, we rather

seek the least disperse attributes, those that allow us to

project normal instances as tightly as possible in order to

reduce false negatives and optimize the detection rate.

Before applying CVFS process, we excluded some

features of Kyoto2006? dataset that, we believe, are

irrelevant for the overall classification approach. We leave

out the source and the destination IP addresses so that the

method is independent from these particular addresses. We

also omit the features related to security analysis resulting

from some software (as clam anti-virus and Snort) so that

our method can be generalized to other networks that might

not have such software in their network.

We ordered the features in ascending order according to

their CV values so that we can choose the best feature

subset. In fact, there are two ways to determine the number

of attributes to retain in a subset: (1) by choosing a

threshold for the CV beyond which a subset of attributes is

kept. In this case, the threshold is entirely subjective and

may not yield the best subset for a given classifier. (2) by

using another method that exploit the tested classifier

feedback to choose the best attribute’s subset. In our work,

we adopt the second method following these steps:

– Fix the cardinality of the smallest feature subset, and let

it be jFTsubset0j.
jFTsubset0j\jFT j, with jFT j ¼ number of features in

the data.

– Choose an evaluation metric, eg: f-measure;

– Run the algorithm using k-folds cross-validation2

(k ¼ 6) against training data;

– Add attributes incrementally with respect to the order

made under CV values;

– Choose the feature subset that gives the highest f-score

to carry further experiments and comparison.

Fig. 4 Block diagram of

NSNAD

2 In k-fold cross-validation, the original sample is randomly

partitioned into k equal-sized subsamples. Of the k subsamples, a

single one is retained as test data, and the remaining k � 1 subsamples

are used as training data. The cross-validation process is then repeated

k times, with each of the k subsamples used exactly once as test data.

The k results from the folds are then averaged to produce a single

estimation.

3482 Neural Computing and Applications (2020) 32:3475–3501

123

In this case, the algorithm has to be run at most ½ðjFT j �
jFTsubset0jÞ þ 1� � 6 times. The process’s results are

detailed in Sect. 5.1.

3.3 Detector set generation

NSNAD is based on the negative selection algorithm

known as the principle of self/nonself-discrimination of the

immune system. In the proposed algorithm, normal records

from train set represent the ‘‘self’’. The detectors, on the

other hand, represent the matured LT4 immune cells that

do not match any self-data.

Along with the normal instances from the train set, the

complete unlabeled training data are provided to NSNAD

in order to generate the detectors. In a random manner,

detector candidates are picked from the complete unlabeled

dataset and validated against normal samples regarding

each feature:

Let TR 2 Rp be the training data featured by p attributes

and contain both classes (normal and anomaly).

S � TR is a set of normal instances (represent self-

antigens) and rself their radius. rself ¼ fr1; r2; . . .; rpg is a p-

dimensional vector and:

ri

¼
a� riself ; if i is numeric

String value with the largest number of occurences in S if i is nominal

�

ð2Þ

where a is a regulation factor 2 ½1; 3�. For an average

confidence interval of 96%, we put a ¼ 2 (refer to three

sigma rule or empirical rule [27]).

riself is the standard deviation of the attribute i in S.

To construct a set of detectors, DT 2 Rp, we validate

each detector candidate instance X ¼ fx1; x2; . . .; xpg, ran-
domly picked from the non-labeled TR, versus self-data

according to the nature of the attribute i as follows:

if i is nominal : xi 6¼ ri

if i is numeric :

For j ¼ 1. . .jSj; if

jx1 � s1jj [r1

and jx2 � s2jj [r2

and . . .

and jxp � spjj [rp

8>>><
>>>:

9>>>=
>>>;

then

DT ¼
DT [X

ð3Þ

Which means that the distance between the instance X and

all ‘‘normal’’ instances in S has to be greater than the self-

radius rself regarding each and all the attributes.

If these conditions are met, X will be added to the

detector set DT 2 Rp. Otherwise, another candidate

instance is randomly picked from TR and validated with

Eq. 3 as explained above. This process is repeated until DT

contains a predefined number of detectors or all the

instances were picked out.

Moreover, we assigned to each detector d from DT a

radius rd used to test its activation in the classification

phase. This radius represents the lowest Manhattan dis-

tance between d and self-instances (Eq. 4).

rd ¼ min
jSj

j¼1
dist ðd; sjÞ

and : dist ðd; sjÞ ¼
XP
i¼1

jd � sijj
ð4Þ

Pseudocode 1 details the complete process.

3.4 Classification

The classification phase is a two-stage process. First, the

radius of the generated detectors is used to identify and

classify an incoming instance as ‘‘anomaly’’. If this

instance is not in the range of all the detectors’ radius, it is

compared to an A-HLA class I (Artificial Human Leukocyte

Antigen) to be classified as ‘‘normal’’.

For an input instance a to activate the detector d, the

Manhattan distance between d and a must at most be equals

to the detector’s radius rd (Eq. 4). In other words, for an

instance a to be classified as anomaly, the inequality Eq. 5

should be satisfied for at least one detector in DT.

dist ða; dÞ ¼
XP
i¼1

jai � dij � rd ð5Þ

Pseudo code 1 Detector set generation
1: Input: S ∈ Rp, TR ∈ Rp, nbr detectors, α
2: Output: Set of nonself detectors DT

Begin α = 2
3: Compute self radius : rself = {α × σ1self

, α ×
σ2self

, .., α × σiself , .., α × σpself
}

4: nbr d = 0
5: while ((nbr d < nbr detectors)or(nbr d = |TR|)) do
6: Pick a candidate detector X from TR

// Validation
7: for all (s ∈ S) do
8: dist = {|x1 −s1|, |x2−s2|, .., |xi−si|, .., |xp−sp|}

9: if (dist{1..p} < rself{1..p}) then
10: Break //X is a self
11: end if
12: end for

//Add detector and compute radius
13: if (reached the last self instance) then
14: Compute detector radius (Eq. 4)
15: add X to DT
16: nbr d ++
17: end if
18: end while

End.

Neural Computing and Applications (2020) 32:3475–3501 3483

123

If none of the detectors in DT has been activated, the

instance a could be classified as normal/self. However, in

our work we first compare a to the Artificial HLA (A-HLA)

analogously to the HLA class I (see Sect. 2.1). We perform

this additional verification in order to detect any new attack

that was not covered by the detectors. We identify our A-

HLA (Artificial HLA) as the volume of self-data Vself

(Eq. 6). S is the self-space and l its mean.

Vself ¼
2ffiffiffi
p

p
� �p YP

j¼1

max jsij � lijj
� �

; 8s 2 S and i ¼ 1. . .jSj

ð6Þ

In this case, for an incoming instance a to be classified as

normal, it should:

– not activate any detector in D,

– and satisfy the inequality (Eq. 7) regarding the volume

of self-space.

2ffiffiffi
p

p
� �p YP

j¼1

jaj � ljj \ Vself ð7Þ

Pseudocode 2 summarizes the classification process.

4 Experimental design

Three baseline algorithms are chosen to compare against

NSNAD performances: Naı̈ve Bayes, K-means and One-

class SVM.

Naı̈ve Bayes is based on Bayes theorem; it uses a labeled

input samples in order to build a model, wherefrom an

unknown sample is classified under a likelihood probability

[71]. We exploit in this work, JAVA package ‘‘Naive-

Bayes’’ from Weka tool [36].

K-means, on the other hand, is a clustering algorithm

that does not need any prior knowledge of the data distri-

bution or a label. It rather aims to partition n samples into

k groups [53]. Training set is partitioned into two groups

with k-means; incoming samples, from the test set, are then

assigned to the nearest cluster (using Euclidean distance). It

should be known that this kind of algorithms make the

implicit assumption that normal samples are more frequent

than anomalies, which means that the biggest cluster is

assumed to contain normal instances after clustering [76].

As for One-class SVM, it is a semi-supervised variant of

the support vector machine (SVM) algorithm [20]. The

principle is to learn a decision function for novelty detec-

tion classifying new data as similar or different from the

training set. A kernel function is implicitly used as simi-

larity measure. The RBF kernel is the most used function

with SVM classification algorithms [92]. One of its

advantages is the possibility to apply other distances than

the Euclidean distance in the exponential expression [14].

Moreover, its ‘‘sigma’’ parameter gives more flexibility

with regard to the input space dimension. We used in this

work the ‘‘svm’’ package of Scikit-learn tool [13, 74].

4.1 Datasets

To assess the performance of any detection approach,

experimentation on benchmarks or enough heterogeneous

and realistic data, with up-to-date network attacks, is

required [96]. In our work, we evaluated our approach with

three different datasets, namely NSL-KDD, Kyoto2006?

and UNSW-NB15 datasets. A brief description of each

dataset is given in this section along with test subsets used

in the empirical study.

4.1.1 NSL-KDD

NSL-KDD is the refined version of KDDCup99 known for

some deficiencies mentioned in [90]. It has the following

advantages over the original KDD dataset [25]:

– Redundant records are removed so that the classifiers

will not be biased toward more frequent records.

– A sufficient number of records are available in the train

and test datasets, which make it affordable to run the

experiments on the complete set. Moreover, the eval-

uation results of different research works will be

consistent and comparable.

– The number of selected records from each difficult level

group is inversely proportional to the percentage of

records in the original KDD dataset.

The dataset contains a large volume of network TCP

connections, the results of 5 weeks of capture in the Air

Force Network. Each connection consists of 41 attributes

Pseudo code 2 Classification
1: Input: DT ∈ Rp, TS ∈ Rp, S ∈ Rp

2: Output: TS labeled (normal/anomaly)
Begin

3: Compute self volume Vself (Eq. 6)
4: for all (a ∈ TS) do
5: for all (detector d ∈ DT) do
6: dist = distance(d, a) (Eq. 5)
7: if (dist ≤ rd) then
8: classify a as anomaly
9: end if
10: Break
11: end for

//a is not in any detectors’ radius, check A-HLA
12: if (Eq. 7 satisfied) then
13: classify a as normal
14: else
15: classify a as anomaly
16: end if
17: end for

End.

3484 Neural Computing and Applications (2020) 32:3475–3501

123

plus a label of either normal or a type of attack. Simulated

attacks fall into one of the four following categories:

– DOS (Denial of service) aims at making a service or a

resource unavailable.

– U2R (User to root) A simple user tries to exploit a

vulnerability in order to obtain super user or adminis-

trator privileges.

– R2L (Remote to local) Attacker attempts to gain access

(account) locally on a machine accessible via the

network.

– PROBE represents any attempt to collect information

about the network, the users or the security policy in

order to outsmart it.

NSL-KDD is actually available in the form of four datasets.

Table 3 shows the distribution of normal and attacks

instances in each dataset.

In our study, we use normal instances of nslKDDTrain?

dataset as self and we perform our tests under ten subsets

from the complete NSL-KDD data (nslKDDTrain? and

nslKDDTest? combined). Each test subset represents a

percentage of the data as it is described in Table 4.

4.1.2 Kyoto20061

Kyoto2006? dataset is a collection of over 2.5 years of real

traffic data (Nov. 2006–Aug. 2009) realised by Kyoto

University for evaluating IDSs using a much recent dataset

than KDDCup99, which was for a long time, the only

publically available labeled dataset. Kyoto dataset was

collected from 348 honeypots (Windows XP, Windows

Server, Solaris...) deployed inside and outside of Kyoto

University. All traffic was thoroughly inspected using three

security softwares SNS7160 IDS, Clam AntiVirus, Ashula,

and since Apr.2010, snort was added.

Connections are featured by 24 attributes, among which,

the first 14 ones were extracted based on KDDCup99

dataset and the remaining 10 attributes were added to

further analyze and evaluate network IDSs. A detailed

analysis can be found in [86]. The dataset is available as

text files [91] representing the daily traffic labeled as

‘‘normal’’ or ‘‘attack’’. Figure 5 shows the monthly distri-

bution of the dataset in 2009 after removing duplicate

records.

This study uses the January 1, 2009, as training set and

tests the algorithms on the subsets described in Table 5.

Table 3 NSL-KDD dataset

Dataset Description #Normal #Attack

nslKDD Train? Full NSL-KDD train set with attack-type labels and difficulty level 67,343 58,630

nslKDD Train20% 20% KDDTrain? dataset 13,449 11,743

nslKDD Test? Full NSL-KDD test set with attack-type labels and difficulty level 9711 12,833

nslKDD Test-21 KDDTest? dataset with no difficulty level 21 2152 9698

Table 4 NSL-KDD test subsets

Sub. Description (%) #Normal #Attack All

1 10 7799 7052 14,851

2 20 15,477 14,226 29,703

3 30 23,221 21,334 44,555

4 40 30,909 28,497 59,406

5 50 38,586 35,672 74,258

6 60 46,312 42,798 89,110

7 70 54,055 49,906 103,961

8 80 61,880 56,933 118,813

9 90 69,585 64,080 133,665

10 100 77,054 71,463 148,517

Fig. 5 Monthly distribution of Kyoto2006? in 2009

Table 5 Kyoto2006? test subsets

Sub. Description #Normal #Attack All

1 20090102 43,228 73,267 116,495

2 20090104 48,003 47,068 95,071

3 20090105 54,426 59,051 113,477

4 20090112 62,615 27,588 90,203

5 20090121 70,972 39,957 110,929

6 20090123 71,843 32,158 104,001

7 20090124 62,677 26,702 89,379

8 20090125 70,712 23,250 93,962

9 20090128 78,376 26,104 104,480

10 20090130 80,613 25,729 106,342

Neural Computing and Applications (2020) 32:3475–3501 3485

123

4.1.3 UNSW-NB15

UNSW-NB15 dataset is the newest benchmark dataset for

IDS test and evaluation [64]. It was created by a research

group at the Australian Centre for Cyber Security (ACCS).

It contains both real modern normal network connections

and synthetical attack traffic generated using IXIA Per-

fectStorm tool in the Cyber Range Lab of the ACCS. The

following categories of attacks, along with normal traffic,

were simulated from an updated CVE Web site:

– Analysis represents different attacks like port scan,

spam and scripts penetration.

– Backdoors Bypassing normal authentication to secure

unauthorized remote access to a resource.

– DoS A malicious attempt to make a server or a network

resource unavailable.

– Exploits Commands or instructions that take advantage

of a vulnerability in a network or program.

– Fuzzers Injection of massive random data into an

application or a network to crash it.

– Generic Attack that works against all block-ciphers

(with a given block and key size), without consideration

about the structure of the block-cipher.

– Reconnaissance contains all strikes that can simulate

attacks that gather information.

– Shellcode A small piece of code used as the payload in

the exploitation of software vulnerability.

– Worms Attacker replicates itself in order to spread to

other computers. Often, it uses a computer network to

spread itself, relying on security failures on the target

computer to access it.

Simulations were performed during 16 h on Jan 22,

2015, and 15 h on Feb 17, 2015. 100GB were captured;

the first 50GB were captured with a one attack per

second configuration, while the second 50GB with ten

attacks per second [63]. UNSW-NB15 dataset is avail-

able as csv files at [61]. The number of records in the

training and testing set as well as their distribution is

given in Table 6.

Normal records in the train set are taken as ‘‘self’’ in this

study, and test subsets are described in Table 7.

4.2 Input parameters

NSNAD has as input parameters: the number of detectors

(nbr detectors), the self-data (S 2 Rp, S � TR), the unla-

beled train (TR 2 Rp) set and test subsets (TS 2 Rp). The

number of detectors is set to 1% testing data. Normal

records of the train set represent the self. The unlabeled

train data, used to generate detectors, contain both classes

(normal and anomaly).

Naı̈ve Bayes classifier constructs a probabilistic model

from a set of train data and assigns class labels to problem

instances using Bayes’ theorem. It only takes as input a

labeled train data with both classes and the unlabeled test

sets to be classified.

As for K-means clustering algorithm, the number of

clusters k is required as well as a similarity distance along

with an unlabeled train and test sets. In this work, k ¼ 2

and the Euclidean distance is used for similarity compari-

son. Once the algorithm clusters train set into two groups,

we assume that the largest cluster is the ‘‘normal’’ traffic

and assigns test instances to the nearest cluster.

Finally, the input parameters required for One-class

SVM classifier with radial basis function (RBF) are: gamma

that defines how far the influence of a single training

example reaches. It is set to c ¼ 1=p, where p is the number

of features in the data and nu which is an upper bound on

the fraction of training errors and a lower bound of the

fraction of support vectors [73].

All experiments are performed using Windows 8 64 bit

platform with core i7 processor running at 2.40 GHz and 8

GB RAM.

Table 6 UNSW-NB15 data distribution

Attack Training set Testing set

Analysis 677 2000

Backdoors 583 1746

DoS 4089 12,264

Exploits 11,132 33,393

Fuzzers 6062 18,184

Generic 18,871 40,000

Reconnaissance 3496 10,491

Shellcode 378 1133

Worms 44 130

Normal 37,000 56,000

Table 7 UNSW-NB15 test subsets

Sub. Description (%) #Normal #Attack All

1 10 5607 11,927 17,534

2 20 11,214 23,854 35,068

3 30 16,850 35,752 52,602

4 40 22,461 47,675 70,136

5 50 28,062 59,608 87,670

6 60 33,657 71,547 105,204

7 70 39,221 83,517 122,738

8 80 44,846 95,426 140,272

9 90 50,546 107,260 157,806

10 100 56,000 119,341 175,341

3486 Neural Computing and Applications (2020) 32:3475–3501

123

4.3 Evaluation metric

Several performance metrics were used in this work. Their

equations are given in Table 8 where TP (true positive) are

anomalies correctly classified, TN (true negative) are nor-

mal events successfully identified as such, FP (false posi-

tive) are normal events wrongly identified as anomalies,

and FN (false negative) are anomalies misclassified as

normal.

5 Results and analysis

In this section, we aim to present a comprehensive com-

parison of two feature selection algorithms with CVFS and

three different classifiers against NSNAD. We also aim to

highlight the contribution of the A� HLA1 step in

NSNAD’s overall performance optimization.

The validation process is carried out using train and test

sets of each benchmark dataset. We incrementally varied

the size of the provided sets in order to explore the algo-

rithms’ scalability. The distribution of the subsets is

described in the previous section, Tables 4, 5 and 7.

Moreover, the results depicted in the manuscript for

each sample are the mean of 10 successive runs.

5.1 Feature subset and normalization

At first, attributes of each dataset (NSL-KDD, Kyoto

2006? and UNSW-NB15) are ranked according to their

CV values (the results are given in Table 9). Then, a six-

fold cross-validation is performed under training data with

different feature subsets (Fig. 6). These subsets are created

incrementally with respect to the order given in Table 9.

The size of the outcome subsets is 29, 10 and 11 for NSL-

KDD, Kyoto2006? and UNSW-NB15 datasets, respec-

tively. The description of each feature is detailed in

Tables 15, 16 and 17 (see ‘‘Appendix’’).

In order to compare the relevance of our feature subset

with other well-known algorithms, we applied information

gain (IG) as well as Correlation Attribute Evaluation

(CAE) algorithms under train set of each dataset. The

ranked attributes are also reported in Table. 9. It is note-

worthy to mention that both algorithms need labeled train

data to evaluate the relevance of data attributes, which is

not the case of CVFS.

We also present, in Fig. 7, the f-measure of

NSNAD?HLA, NB, K-means as well as One-class SVM

applied to the complete test sets using the same number of

attributes as CVFS (29, 10 and 11 attributes for NSL-KDD,

Kyoto 2006? and UNSW-NB15 datasets, respectively).

The depicted results show that NSNAD?HLA has better f-

measure results under all datasets with both feature selec-

tion algorithms.

Furthermore, we noticed a huge difference in scale

between attributes’ values in the training data. This usually

Table 8 Evaluation metrics

Metric Equation

True positive rate TP=ðTPþ FNÞ
False positive rate FP=ðFPþ TNÞ
Accuracy TPþ TN=ðTPþ TN þ FPþ FNÞ
Precision TP=ðTPþ FPÞ
F-measure 2� TP=ð2� TPþ FPþ FNÞ
Matthews correlation coefficient TP�TN�FP�FNffi

ðTPþFPÞ�ðTPþFNÞ�ðTNþFPÞ�ðTNþFNÞ
p

Table 9 Attributes’ ranking

Dataset Algorithm Attributes

NSL- KDD CVFS 20, 21, 7, 22, 2, 4, 32, 29, 12, 34, 3, 33, 23, 38, 25, 26, 39, 36, 35, 40, 24, 41, 31, 28, 27, 30, 37, 1, 10, 8, 19, 14, 11,

17, 15, 18, 16, 13, 5, 9, 6

IG 5, 3, 6, 4, 30, 29, 33, 34, 35, 38, 12, 39, 25, 23, 26, 37, 32, 36, 31, 24, 41, 2, 27, 40, 28, 1, 10, 8, 13, 16, 19, 22, 17, 15,

14, 18, 11, 7, 21, 20, 9

CAE 29, 33, 34, 12, 39, 38, 25, 4, 26, 23, 32, 3, 28, 41, 27, 40, 35, 30, 31, 8, 36, 2, 37, 1, 22, 19, 15, 17, 14, 10, 16, 13, 18,

7, 5, 6, 11, 9, 21, 24, 20

Kyoto

2006?

CVFS 2, 14, 10, 6, 9, 15, 5, 11, 8, 13, 12, 16, 7, 1, 4, 3

IG 16, 2, 10, 4, 3, 1, 14, 15, 9, 5, 6, 11, 8, 13, 12, 7

CAE 10, 2, 14, 6, 9, 5, 15, 8, 13, 16, 12, 11, 7, 1, 4, 3

UNSW-

NB15

CVFS 38, 43, 5, 3, 4, 11, 33, 21, 32, 42, 24, 12, 22, 23, 41, 34, 28, 37, 36, 35, 10, 27, 25, 29, 26, 13, 14, 2, 40, 30, 7, 20, 6,

17, 16, 19, 18, 39, 9, 15, 8, 31

IG 1, 8, 28, 13, 9, 33, 29, 10, 12, 2, 18, 11, 7, 14, 26, 25, 36, 5, 17, 27, 6, 19, 3, 20, 16, 35, 42, 15, 32, 21, 4, 22, 24, 23, 37,

34, 41, 31, 43, 40, 30, 38, 39

CAE 11, 21, 5, 36, 1, 24, 35, 10, 3, 33, 42, 32, 23, 22, 14, 37, 41, 4, 34, 29, 26, 25, 13, 17, 27, 43, 12, 40, 7, 28, 16, 18, 9, 6,

19, 20, 30, 8, 39, 38, 31, 15, 2

Neural Computing and Applications (2020) 32:3475–3501 3487

123

leads to the biased results. To overcome this problem, we

normalized the numerical attributes using Eq. 8.

xP norm ¼ xp � minp

maxp � minp

� �
ð8Þ

where xp is the pth attribute’s value in the instance x. maxp
and minp correspond, respectively, to maximum and min-

imum value of the Pth attribute in the dataset.

The results of multiple experiments under various

datasets are compared in terms of all the evaluation metrics

mentioned in the previous subsection. Hereafter, we pre-

sent, compare and discuss the results of our algorithm

against Naı̈ve Bayes classifier, K-means clustering and

One-class SVM algorithm.

5.2 True positive rate (TPR)/false positive rate
(FPR)

As reported in Tables 10, 11 and 12, both versions of

NSNAD exhibit better performances compared to the other

algorithms. Indeed, their average TPR is 93%, 94% and

86% with an average FPR of 1%, 2% and 6% when it is

tested under NSL-KDD, Kyoto2006? and UNSW-NB15

datasets, respectively. These values demonstrate the effi-

ciency of NSNAD to detect most attacks present in the

dataset. The detection rate is further improved with the

A-HLA optimization, although FPR is slightly increased

because of new normal behaviors (instances) that are not

represented in the train.

As for Naı̈ve Bayes classifier and K-means clustering

when tested under NSL-KDD, the former displays a rela-

tively better detection rate (*84%) than the latter

(*78%). However, the FPR of K-means is much lower

(*0.5%) than NB (*9%). The main reason is not only the

difference in probability distribution between train and test

data, but also the unbalanced type of attacks in both sets.

When it comes to UNSW-NB15 dataset, the DR is almost

the same (*65%), yet the FPR of K-means is nearly six

times higher (*29%) than NB’s (*5%), which can be

explained by the supervised nature of NB classifier and the

difficulty level of the dataset for unsupervised techniques.

The results of NB and K-means under Kyoto2006? dataset

are thought not different. Indeed, the average TPR and the

average FPR are 85% and 1.5% for both algorithms.

However, the results of One-class SVM classifier under

all test subsets are very bad, especially the false positive

rates that reach the 48%, 45% and 70%. This can be

explained by the non-exhaustive representation of the

normal class in the train data as the algorithm depends

entirely on the latter for the classification.

5.3 ROC and AUC

Roc (Receiver Operating Characteristic) curves in Fig. 8

depict the relationship and visualize the detection rates

Fig. 6 NSNAD?HLA versus number of attributes

Fig. 7 Performances with other feature selection

3488 Neural Computing and Applications (2020) 32:3475–3501

123

versus the false positive rates as the classifier decision

threshold is varied. The test sets used in the evaluation for

each dataset are: the full NSL-KDD dataset; the records of

January 30, 2009, of Kyoto2006? dataset; and the com-

plete test set of UNSW-NB15.

Meanwhile, the area under the ROC curve (AUC) metric

demonstrates the trade-offs between TPR and FPR. A

higher AUC value indicates a high TPR and low FPR,

which is the goal of intrusion detection algorithms.

AUC values reported in the plots highlight the algorithm

that performs the best. Again, NSNAD with A-HLA opti-

mization displays the best results with up to 0.995 on

average. The worst values are recorded by One-class SVM

classifier, especially under UNSW-NB15 since it is the

Table 10 TPR/FPR results

under NSL-KDD dataset
Sub. NSNAD without HLA NSNAD with HLA NB K-means One-class SVM

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

1 84.11 0.19 94.37 1.42 82.7 9.7 77.96 0.29 98.71 48.63

2 84.21 0.21 95.33 1.46 83.3 9.6 78.3 0.3 98.73 48.83

3 87.4 0.37 95.56 1.62 83.4 9.5 78.32 0.31 98.67 48.27

4 91.32 0.9 96.16 1.7 83.5 9.4 78.35 0.33 98.67 48.11

5 91.6 1.01 96.37 1.72 83.4 9.4 78.39 0.39 98.67 48.34

6 93.02 1.2 96.43 1.78 83.5 9.3 78.39 0.42 98.66 48.43

7 93.1 1.26 96.45 1.82 83.5 9.2 78.41 0.44 98.65 48.38

8 93.31 1.43 96.5 1.83 83.5 9.1 78.46 0.5 98.62 48.43

9 93.7 1.77 96.58 1.91 83.5 9.1 78.49 0.54 98.62 48.49

10 93.09 1.92 96.59 2.09 83.6 9 78.54 0.58 98.57 48.30

Table 11 TPR/FPR results

under Kyoto2006? dataset
Sub. NSNAD without HLA NSNAD with HLA NB K-means One-class SVM

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

1 97.42 4.74 99.04 3.5 66.56 1.73 50.56 0.73 100 48.78

2 88.55 0.31 98.78 2.84 71.24 1.78 61.24 0.78 100 46.17

3 92.22 4.74 99.4 3.8 73.46 1.82 63.46 0.82 100 48.41

4 96.3 0.55 98.79 2.91 81.66 1.94 81.66 1.74 100 44.45

5 94.31 2.43 98.69 2.69 99.52 3.42 90.19 2 100 44.52

6 92.35 0.59 98.1 1.47 99.33 3 86.23 1.9 100 41.99

7 95.29 0.58 98.39 1.7 98 2.4 68.31 0.99 100 45.40

8 90.39 0.34 97.35 1.32 99.15 2.8 72.93 1.3 100 41.60

9 94.5 1.06 98.75 2.76 99.24 2.95 82.9 1.78 100 40.04

10 96.98 0.78 98.59 2.56 99.46 3.24 85.38 1.83 100 39.42

Table 12 TPR/FPR results

under UNSW-NB15 dataset
Sub. NSNAD without HLA NSNAD with HLA NB K-means One-class SVM

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

1 69.8 3.2 85.6 5.7 65.5 5.1 66.43 29.39 85.41 75.12

2 72.4 3.45 90.18 8.2 65.1 5.2 65.96 29.57 84.80 75.56

3 76.3 4.11 90.5 8.51 64.8 5.3 65.64 29.74 84.69 75.71

4 78.66 5.25 91.7 9.2 64.9 5.3 65.72 29.67 84.76 75.70

5 82.17 5.9 91.8 10.01 64.9 5.4 65.66 29.74 84.90 75.78

6 83.63 6.31 91.9 10.3 65 5.5 65.71 29.75 84.91 75.79

7 86.51 7.06 92.01 10.6 65 5.5 65.72 29.86 84.86 75.87

8 87.32 7.87 92.5 11.02 65 5.5 65.73 29.99 84.90 75.83

9 87.6 8.08 93.4 11.8 65 5.5 65.75 29.96 84.91 75.76

10 87.82 8.5 93.8 12.1 65 5.7 65.79 30.14 84.92 75.60

Neural Computing and Applications (2020) 32:3475–3501 3489

123

most challenging dataset. AUCs of NB and K-means

algorithms reach around 0.90 and around 0.8, respectively.

5.4 Accuracy and precision results

The accuracy of a classifier is a global measure that reflects

the probability of correctly classified records over the

complete data, regardless of a specific class. The precision,

on the other hand, is the probability of correctly detected

anomalies over the original amount of anomalies in the

data. A classifier is said to be good if it is accurate and

precise.

As shown in Fig. 9, NSNAD?HLA is the most accurate

algorithm among the five (NSNAD without HLA inclu-

ded). Indeed, the rate of correctly classified samples is up

to 97% with a precision as high as around 98% (Fig. 10).

As it appears in the graphs, the A-HLA optimization

enhanced the accuracy since it performs an additional

verification before the final classification. The improve-

ment is even more pronounced under NSL-KDD and

UNSW-NB15 datasets.

FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
T

PR NSNAD-HLA (AUC = 0.9732)

NSNAD+HLA (AUC = 0.9789)

NB (AUC = 0.9511)

K-means (AUC = 0.8898)

One-class SVM (AUC = 0.7514)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
PR NSNAD-HLA (AUC = 0.9032)

NSNAD+HLA (AUC = 0.9954)
NB (AUC = 0.9919)
K-means (AUC = 0.8354)
One-class SVM (AUC = 0.8029)

(b)

(c)

Fig. 8 ROC results under a NSL-KDD, b Kyoto2006? and c UNSW-

NB15 datasets

Fig. 9 Accuracy results under a NSL-KDD, b Kyoto2006? and

c UNSW-NB15 datasets

3490 Neural Computing and Applications (2020) 32:3475–3501

123

One-class SVM, on the other hand, is the least accurate

algorithm, especially under NSL-KDD and Kyoto2006?

datasets; its rate of accuracy and precision are around 70%.

K-means and NB perform broadly the same when it

comes to accuracy. Yet, K-means exhibits a better preci-

sion than the other algorithms under NSL-KDD and

Kyoto2006? datasets due to its low FPR when tested under

these datasets.

5.5 F-measure results

This metric considers both precision and TPR. It reflects

the overall performance of the classifier to correctly iden-

tify anomalies. Figure 11 depicts the F-measure results of

the four compared algorithms (NSNAD, NB, K-means and

One-class SVM) plus the version of our proposed algo-

rithm without the A-HLA step. It clearly shows that not

only our algorithm outperforms the others with values up to

97%, but also point out the contribution of A-HLA step in

achieving better results.

5.6 Matthews correlation coefficient (MCC)

This coefficient was introduced by Brian W. Matthews in

1975 [59] to evaluate the quality of a binary classification.

Contrary to F-measure, MCC takes into account TP, FP,

TN and FN. Indeed, the f-measure results are dependent on

one class (in this case anomaly). If we consider normal

class, the f-measures’ values change accordingly. MCC

considers the two cases at the same time and involves all

the classifier outputs. The comparative results given in

Fig. 12 show MCC values regarding each algorithm under

the chosen benchmark dataset. Here again, NSNAD results

outperform those of Naive Bayes, K-means and One-class

Fig. 10 Precision results under a NSL-KDD, b Kyoto2006? and

c UNSW-NB15 datasets Fig. 11 F-measure results under a NSL-KDD, b Kyoto2006? and

c UNSW-NB15 datasets

Neural Computing and Applications (2020) 32:3475–3501 3491

123

SVM algorithms under every dataset. It also highlight that

NSNAD with HLA verification gives slightly better results

compared to its version without optimization.

5.7 Computational time

As for the overall computational time of the proposed

approach, it varies from 1 to 16 s ðTðtrainÞ þ Tðclassif ÞÞ.
The training phase involves the creation and the validation

of the detectors as well as the computation of their radius.

The classification phase includes the activation of the

detectors and the A-HLA verification. The results, as

depicted in Figs. 13, 14 and 15, represent the average time

incurred by each algorithm in both training and classifi-

cation stages after 10 runs.

The overall observation that we could point out from

these figures is that the computational time of our approach

slightly increases along with the size of the test data.

Indeed, as the number of detectors depends on the size of

test data, the time spent during the training is more

important when the test data are large. Nevertheless, the

mentioned time does not exceed 8 s, 2.8 s and 9 s under

NSL-KDD, Kyoto2006? and UNSW-NB15 datasets,

respectively. The computational time of the classification

step, on the other hand, depends on the detectors’ repre-

sentation of the nonself-space. In fact, the best case (for

each instance) is that the incoming instance activates the

first detector to be classified as anomaly which, more

likely, has been the case under Kyoto2006? dataset with a

maximum classification time of 4 s. The worst case is that

after looping over all the detectors, none of them was

activated so A-HLA verification is executed. This worst

case have likely been seen under UNSW-NB15 dataset

with maximum classification time of 7 s.

The computational time of One-class SVM has not been

reported in the graphics due to their high values. Indeed,

the mean time that this algorithm spends on the training/

testing phases are about 16mn/19mn, 5mn/9mn and 3mn/

7mn.

Fig. 12 MCC results under a NSL-KDD, b Kyoto2006? and

c UNSW-NB15 datasets

Fig. 13 Computational time of a training and b classification under

NSL-KDD

3492 Neural Computing and Applications (2020) 32:3475–3501

123

5.8 Summary of results

In order to summarize the overall results of NSNAD

compared with the baseline algorithms, Table 13 provides

the figures of each metric for algorithm under the bench-

mark datasets we used in our experiments. The results are

for the complete NSL-KDD dataset, January 30, 2009, of

Kyoto2006? dataset and the complete test set of UNSW-

NB15.

6 Comparison with AIS-based intrusion
detection techniques

For comparison purposes, Table 14 summarizes the per-

formance of some recent AIS-based intrusion detection

techniques. As can be seen, a large number of these

researches used KDDCup99 dataset for their experiments

[18, 19, 60, 79, 83, 89–89, 93, 97, 98], few of them used

NSL-KDD dataset [30, 43, 60] and others used private [60]

or non-networK-related [19, 49, 50] datasets. To the best of

our knowledge, our work is the only artificial immune-

based approach that uses UNSW-NB15 dataset for test

experiments. In [33], UNSW-NB15 is used to test their

approach based on artificial neural network to detect the

attack in cloud infrastructures. In [7], these data are used to

evaluate an ontology-based multi-agent model IDS for

detection Web service attacks. Others like [2] used it along

with KDDCup99 and NSL-KDD to test data mining tech-

niques for intrusion detection in network traffic.

The true positive rate of most techniques under

KDDCup99 dataset reaches high values (from 71.5 to

99.2%) with low values of false positive rate (from 0 to

3%). However, these figures no longer reflect the detection

in nowadays networks because the database used is nearly

20 years old. It sure gives a comparative point of view

against early papers, but researchers should validate their

approaches with more recent datasets in addition to the old

benchmarks.

Another important fact to point out from the table is the

lack of techniques’ computational time or time complexity

reported in a large number of papers. For instance, in [98],

authors reported only the modeling time of their improved

clonal algorithm before and after the feature selection

without mentioning the settings of the machine they

experimented on.

The distributed network intrusion detection system

presented in [43] uses a genetic algorithm to generate

detectors, yet authors did not present an estimation for time

complexity knowing that GA is usually time-consuming

algorithms as many previous works mentioned [42, 58, 84].

Fig. 14 Computational time of a training and b classification under

Kyoto2006?

Fig. 15 Computational time of a training and b classification under

UNSW-NB15

Neural Computing and Applications (2020) 32:3475–3501 3493

123

Another technique combining GA and AIS is presented in

[88] without time complexity reported. The authors used

genetic search for correlation-based feature selection and

have proposed an AIS-based classifier to classify attacks

over the selected features. Both papers did not mention the

CPU/RAM settings of the machine used in experiments.

Authors in [1] claimed that using RST to reduce features

of GureKDDcup dataset would enhance the computational

time of the algorithm, but they did not present any com-

parative results to support their claim, where others like

[93] state that their clonal selection-based method achieves

high detection rate with low complexity time without

showing any results regarding the second criterion.

Another clonal selection-based technique was proposed in

[49] where authors experimented on three datasets varying

detectors sample size and antigen sample size to investigate

their effects on TPR and FPR but not on the computational

time.

Experiments of the probabilistic AIS-based IDS of [60]

were conducted under six different datasets, from which

two were generated by the authors. We reported in the

table the last version’s results in terms of TPR, FPR and

computational time. It is worth noting that the computa-

tional time is based on 2 s analysis, which means that the

table’s figures correspond to the time that the algorithm

spends on classifying 2sec of monitored traffic. The fig-

ures mentioned in the table are the algorithm’s time to

classify 2 s of monitored traffic. In addition, authors fail to

mention the actual time cost of their algorithm under

KddCup99 and NSL-KDD datasets. They rather present a

speedup ratio against that of SPAI, the first version of their

algorithm. Although, they stated that the computational

cost of SPAI is six times higher than that of RVNS (real-

valued negative selection) and four times higher than that

of PS (positive selection).

In this work, we evaluated our method under old

benchmarks (NSL-KDD, Kyoto2006?) as well as the

newest one, namely UNSW-NB15. We discuss and com-

pare the process against two other algorithms regarding

multiple metrics including TPR and FPR whose values are

as good as other papers summarized in the table. Further-

more, we report training and classification computational

time of each algorithm compared in this paper under each

dataset.

7 Conclusion and future work

The results presented in this paper clearly outline the

efficiency provided by the artificial immune system to the

field of intrusion detection. Indeed, we proposed a classi-

fication process based on the negative selection theory.

This process begins with a reduction in the space through

feature selection using the Coefficient of Variation to

determine the least dispersed attributes. Detectors are

subsequently generated and validated with respect to the

normal (self-) data to cover the nonself-space via their

radius. The classification we proposed exploits, at first, the

radius of these detectors to classify an incoming instance as

‘‘anomaly’’. Then, an additional verification with the vol-

ume of ‘‘self’’ is performed in order to classify the instance

as ‘‘normal’’. We called this latter, an Artificial-HLA

optimization. The validation experiments of our process

using old benchmark as well as up-to-date and challenging

Table 13 Summary of results

Dataset Algorithm TPR

(%)

FPR

(%)

AUC

(%)

Acc

(%)

Prec

(%)

F-

meas(%)

MCC

(%)

Computational time (s)

Training Classification

NSL-KDD (Full dataset) NSNAD?HLA 96.59 2.09 97.89 97.27 97.72 97.15 94.54 8 5.8

NB 83.6 9 95.11 87.44 89.6 86.49 74.93 1.18 18.3

K-means 78.54 0.58 88.98 89.37 99.21 87.67 80.21 9.5 0.5

One-class

SVM

98.57 48.3 74.17 74.25 65.43 78.65 56.24 927.17 1818.97

Kyoto 2006? (30 Jan

2009)

NSNAD?HLA 98.59 2.56 99.54 97.71 92.47 95.43 95.76 2.5 2

NB 99.46 3.24 99.19 97.41 90.74 94.89 95.03 1.5 46.27

K-means 85.38 1.83 83.54 95.07 93.70 89.35 89.52 3 0.5

One-class

SVM

100 39.42 80.29 70.12 44.74 61.82 52.06 304.3 554.21

UNSW-NB15 (Test set) NSNAD?HLA 93.8 12.1 99.66 91.91 94.29 94.04 81.46 9 7

NB 65 5.7 89.50 74.35 96.04 77.53 55.46 0.4 2.65

K-means 65.79 30.14 67.83 67.09 82.30 73.13 33.37 3 0.4

One-class

SVM

84.91 75.60 54.66 65.58 70.53 77.06 11.28 152.79 713.67

3494 Neural Computing and Applications (2020) 32:3475–3501

123

datasets show a promising tradeoff between detection rate,

false positive rate and computational time compared to

other algorithms.

There are many potential and interesting future works,

including:

– Improve the detectors generation process and their

distribution over the nonself-space in order to balance

between the detectors’ number, their coverage and

minimize the overlapping of their radius.

– Optimize computational time through parallelism.

– Compare NSNAD to other methods as: subspace

clustering [57, 101].

– Analyze the resulting clusters through postprocessing

techniques, such as quantification-based technique for

cluster analysis [45].

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

Table 14 Comparison with AIS-based intrusion detection techniques

References Tech. TPR

(%)

FPR

(%)

Dataset CT (Sec) Settings

Tr. Cl. CPU RAM

Our method

(NSNAD)

NS and CV-based FS 96 1.7 NSL-KDD 8 5.8 2.40 GHz Intel�
CoreTM i7

8 GB

98.5 2.5 Kyoto2006? 2.8 4

91.5 9 UNSW-NB15 9 7

[91] NS, PS 99.1 1.99 KDDCup99 N/A N/A N/A N/A

[80] CIA, CS 69.5 N/A KDDCup99 N/A N/A N/A N/A

[99] CS 98.7 0.15 KDDCup99 13.84 N/A N/A N/A

[89] DCA and IG FS 71.5 0.0 KDDCup99 900–1200 N/A N/A

[44] NS, GA and IG FS 98.9 1.7 NSL-KDD(Tr.20%) N/A 4 N/A N/A

[21] AIS, PBIL and CF 93.24 KDDCup99 N/A N/A N/A N/A

86.23 Australian credit card N/A N/A

[98] CS 99.2 0.2 KDDCup99 N/A N/A N/A N/A

[31] NS 96.2 7.5 NSL-KDD 1100–1700 N/A 3.0 GHz Intel� CoreTM i5 4 GB

[3] AIS and RS 90 N/A GureKDDCup N/A N/A N/A N/A

[101] Vaccination and RS 97.07 1.19 KDDCup99 OðNaNsL1Þa N/A N/A

[61] Self/nonself and GMM 97 20 Darpa N/A 3 ms PentiumIV 2 GHz 1 GB

98 3 KDDCup99 N/A T1=2
b

95 30 NSL-KDD N/A T1=5

96 20 DataSetMe N/A 50ls

98 10 IUSTSip N/A 0.7 ms

98 10 INRIASip N/A 0.4 ms

[20] CS 94.6 5.4 KDDCup99 N/A N/A 2.13 GHz Intel� CoreTMi3 N/A

[90] AIS and GA 98.6 1.3 KDDCup99 N/A N/A N/A N/A

[84] NS and RS FS 98.25 1 KDDCup99 N/A N/A N/A N/A

[94] CS and fuzzy clustering 90 9 KDDCup99 N/A N/A N/A N/A

[33] NS 98 5 DARPA98 N/A N/A N/A N/A

95 2 DARPA99 N/A N/A

[51] CS 90 5 Breast cancer N/A N/A N/A N/A

[50] CS and NS 95 5 Cancer N/A N/A N/A N/A

92 3 Vote N/A N/A

95 1 Iris N/A N/A

Tech. Technique, CT. computational time, Tr. training, Cl. classification, NS negative selection, PS positive selection, CIA coevolutionary

immune algorithm, CS clonal selection, CV coefficient of variation, FS feature selection, IG info gain, RS rough set, DCA dendritic cell

algorithm, PBIL population-based incremental learning, CF collaborative filtering, GMM Gaussian mixture model, N/A not available
aThe complexity time of the algorithm with: Na number of antigens, Ns, number of self-antibodies, L1 length of detectors.
bT1 ¼ the response time of SPAI, the first version of the authors’ algorithm

Neural Computing and Applications (2020) 32:3475–3501 3495

123

Appendix: Feature description

See Tables 15, 16 and 17.

Table 15 NSL-KDD attributes

n Attribute Description

1 Duration Length (number of s) of the connection

2 protocol_type Type of the protocol

3 service Network service on the destination

4 flag Status of the connection – Normal or Error

5 src_bytes Number of data bytes from source to destination

6 dst_bytes Number of data bytes from destination to source

7 land If source and destination IP addresses and port numbers are equal, then this variable takes value 1, 0

otherwise

8 wrong_fragment Number of wrongn fragments

9 urgent Number of urgent packets

10 hot Number of ‘‘hot’’ indicators

11 num_failed_login Logins number of failed logins

12 logged_in Takes 1 if successfully logged in, 0 otherwise

13 num_compromised Number of ‘‘compromised’’ conditions

14 root_shell Number of ‘‘root’’ accesses

15 su_attempted Takes 1 if ‘‘su root’’ command attempted; 0 otherwise

16 num_root Number of ‘‘root’’ accesses

17 num_file_creations Number of file creation operations.

18 num_shell Number of shell prompts

19 num_access_files Number of operations on access control files.

20 num_outbound_cmds number of outbound commands in an ftp session

21 is_host_login Takes 1 if the login belongs to the root or admin list, 0 otherwise

22 is_guest_login Takes 1 if the login is a ‘‘guest’’ login, 0 otherwise

23 Count Number of connections to the same destination host as the current connection in the past 2 s

24 srv_count Number of connections to the same service as the current connection in the past 2 s.

25 Serror_rate The percentage of connections that have activated the flag s0, s1, s2 or s3, among the connections

aggregated in count

26 srv_serror_rate The percentage of connections that have activated the flag s0, s1, s2 or s3, among the connections

aggregated in srv_count

27 rerror_rate The percentage of connections that have activated the flag REJ, among the connections aggregated in count

28 srv_rerror_rate The percentage of connections that have activated the flag REJ, among the connections aggregated in

srv_count

29 same_srv_rate The percentage of connections that were to the same service

30 diff_srv_rate The percentage of connections that were to different services, among the connections aggregated in count

31 srv_diff_host_rate The percentage of connections that were to different destination machines among the connections

aggregated in srv_count

32 dst_host_count Number of connections having the same destination host IP address

33 dst_host_srv_count Number of connections having the same port number.

34 dst_host_same_srv_rate The percentage of connections that were to the same service, among the connections aggregated in

dst_host_count

35 dst_host_diff_srv_rate The percentage of connections that were to different services, among the connections aggregated in

dst_host_count

36 dst_host_same_src_port_rate The percentage of connections that were to the same source port, among the connections aggregated in

dst_host_srv_count

37 dst_host_srv_diff_host_rate The percentage of connections that were to different destination machines, among the connections

aggregated in dst_host_srv_count

3496 Neural Computing and Applications (2020) 32:3475–3501

123

Table 15 (continued)

n Attribute Description

38 dst_host_serror_rate The percentage of connections that have activated the flag s0, s1, s2 or s3, among the connections

aggregated in dst_host_count

39 dst_host_srv_serror_rate The percent of connections that have activated the flag s0, s1, s2 or s3, among the connections aggregated in

dst_host_srv_count

40 dst_host_rerror_rate The percentage of connections that have activated the flag REJ, among the connections aggregated in

dst_host_count

41 dst_host_srv_rerror_rate The percentage of connections that have activated the flag REJ, among the connections aggregated in

dst_host_srv_count

42 class Indicates if the connection is ‘‘normal’’ or ‘‘attack’’

Table 16 Kyoto2006? attributes

n Attribute Description

1 duration The length (number of s) of the connection

2 service The connection’s service type

3 src_bytes The number of data bytes sent by the source IP address

4 dst_bytes The number of data bytes sent by the destination IP address

5 Count The number of connections that their source IP and destination IP address are the same to those of the

current connection in the past 2 s

6 same_srv_rate The percentage of connections to the same service in Count feature

7 serror_rate The percentage of connections that have ‘‘SYN’’ errors in Count feature

8 srv_serror-rate The percentage of connections that have ‘‘SYN’’ error in Srv_count feature

9 dst_host_count Among the past 100 connections whose destination IP address is the same to that of the current connection,

the number of connections whose source IP address is also the same to that of the current connection

10 dst_host_srv_Count Among the past 100 connections whose destination IP address is the same to that of the current connection,

the number of connections whose service type is also the same to that of the current connection

11 dst_host_same_src_port_rate The percentage of connections whose source port is the same to that of the current connection in

dst_host_count feature

12 dst_host_count Among the past 100 connections whose destination IP address is the same to that of the current connection,

the number of connections whose source IP address is also the same to that of the current connection

13 dst_host_srv_serror_rate The percentage of connections that have ‘‘SYN’’ errors in Dst_host_srv_count

14 flag The state of the connection at the time it was written

15 source_port_number The source port number used in the session

16 destination_port_number Indicates the destination port number used in the session

17 class Indicates whether the session was attack (‘1’) or not (‘0’)

Neural Computing and Applications (2020) 32:3475–3501 3497

123

References

1. Abas EAER, Abdelkader H, Keshk A (2015) Artificial immune

system based intrusion detection. In: 2015 IEEE seventh inter-

national conference on intelligent computing and information

systems (ICICIS), pp 542–546. Institute of Electrical & Elec-

tronics Engineers (IEEE). https://doi.org/10.1109/intelcis.2015.

7397274

2. Agrawal A, Mohammed S, Fiaidhi J (2016) Developing data

mining techniques for intruder detection in network traffic. Int J

Secur Appl 10(8):335–342. https://doi.org/10.14257/ijsia.2016.

10.8.29

3. Al-Enezi J, Abbod M, Alsharhan S (2010) Artificial immune

systems-models, algorithms and applications. http://www.arpa

press.com/Volumes/Vol3Issue2/IJRRAS_3_2_01.pdf

4. Ambusaidi MA, He X, Nanda P, Tan Z (2016) Building an

intrusion detection system using a filter-based feature selection

algorithm. IEEE Trans Comput 65(10):2986–2998. https://doi.

org/10.1109/TC.2016.2519914

5. Amer SH, Hamilton J (2010) Intrusion detection systems (ids)

taxonomy-a short review. Def Cyber Secur 13(2):23–30

6. Ammar A (2015) Comparison of feature reduction techniques

for the binominal classification of network traffic. J Data Anal

Inf Process 3(02):11. https://doi.org/10.4236/jdaip.2015.32002

7. Anusha K, Sathiyamoorthy E (2016) Omamids: ontology based

multi-agent model intrusion detection system for detecting web

service attacks. J Appl Secur Res 11(4):489–508. https://doi.org/

10.1080/19361610.2016.1211847

Table 17 UNSW-NB15 attributes

n Attribute Description

1 id Connection identification

2 dur Record total duration

3 proto Transaction protocol

4 service http, ftp, ssh, dns ..,else (–)

5 state The state and its dependent protocol, e.g.,

ACC, CLO, else (–)

6 spkts Source to destination packet count

7 dpkts Destination to source packet count

8 sbytes Source to destination bytes

9 dbytes Destination to source bytes

10 rate

11 sttl Source to destination time to live

12 dttl Destination to source time to live

13 sload Source bits per second

14 dload Destination bits per second

15 sloss Source packets transmitted or dropped

16 dloss Destination packets transmitted or dropped

17 sintpkt Source inter-packet arrival time (ms)

18 dintpkt Destination inter-packet arrival time (ms)

19 sjit Source jitter (ms)

20 djit Destination jitter (ms)

21 swin Source TCP window advertisement

22 stcpb Source TCP sequence number

23 dtcpb Destination TCP sequence number

24 dwin Destination TCP window advertisement

25 tcprtt The sum of ‘‘synack’’ and ‘‘ackdat’’ of the

TCP

26 synack The time between the SYN and the

SYN_ACK packets of the TCP

27 ackdat The time between the SYN_ACK and the

ACK packets of the TCP

28 smeansz Mean of the flow packet size transmitted

by the src

29 dmeansz Mean of the flow packet size transmitted

by the dst

30 trans_depth the depth into the connection of http

request/response transaction

31 response_body_len The content size of the data transferred

from the server’s http service

32 ct_srv_src No. of connections that contain the same

service and source address in 100

connections according to the last time

33 ct_state_ttl No. for each state according to specific

range of values for source/destination

time to live

34 ct_dst_ltm No. of connections of the same destination

address in 100 connections according to

the last time

35 ct_src_dport_ltm No of connections of the same source

address and the destination port in 100

connections according to the last time

Table 17 (continued)

n Attribute Description

36 ct_dst_sport_ltm No of connections of the same destination

address and the source port in 100

connections according to the last time

37 ct_dst_src_ltm No of connections of the same source and

the destination address in 100

connections according to the last time

38 is_ftp_login If the ftp session is accessed by user and

password then 1, 0 otherwise

39 ct_ftp_cmd No of flows that has a command in ftp

session

40 ct_flw_http_mthd No. of flows that has methods such as Get

and Post in http service

41 ct_src_ltm No. of connections of the same source

address in 100 connections according to

the last time

42 ct_srv_dst No. of connections that contain the same

service and destination address in 100

connections according to the last time

43 is_sm_ips_ports If source IP equals to destination IP and

port numbers are equal, this variable

takes value 1; 0 otherwise

44 class The name of each attack category. In this

dataset, nine categories (e.g., Fuzzers,

Analysis, Backdoors, DoS, Exploits,

Generic, Reconnaissance, Shellcode and

Worms)

45 label 0 for normal and 1 for attack records

3498 Neural Computing and Applications (2020) 32:3475–3501

123

https://doi.org/10.1109/intelcis.2015.7397274
https://doi.org/10.1109/intelcis.2015.7397274
https://doi.org/10.14257/ijsia.2016.10.8.29
https://doi.org/10.14257/ijsia.2016.10.8.29
http://www.arpapress.com/Volumes/Vol3Issue2/IJRRAS_3_2_01.pdf
http://www.arpapress.com/Volumes/Vol3Issue2/IJRRAS_3_2_01.pdf
https://doi.org/10.1109/TC.2016.2519914
https://doi.org/10.1109/TC.2016.2519914
https://doi.org/10.4236/jdaip.2015.32002
https://doi.org/10.1080/19361610.2016.1211847
https://doi.org/10.1080/19361610.2016.1211847

8. Axelsson S (2000) Intrusion detection systems: a survey and

taxonomy. Report, Technical report

9. Bahl S, Sharma SK (2016) A minimal subset of features using

correlation feature selection model for intrusion detection sys-

tem. In: Proceedings of the second international conference on

computer and communication technologies, pp 337–346.

Springer. https://doi.org/10.1007/978-81-322-2523-2_32

10. Bethi SK, Phoha VV, Reddy YM (2004) Clique clustering

approach to detect denial-of-service attacks. In: Proceedings

from the fifth annual IEEE SMC information assurance work-

shop 2004, pp 447–448. https://doi.org/10.1109/iaw.2004.

1437856

11. Bhuyan M, Bhattacharyya D, Kalita J (2014) Network anomaly

detection: methods, systems and tools. Commun Surv Tutor

IEEE 16(1):1–34

12. Brownlee J (2011) Clever algorithms: nature-inspired pro-

gramming recipes. Jason Brownlee

13. Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A,

Grisel O, Niculae V, Prettenhofer P, Gramfort A, Grobler J,

Layton R, VanderPlas J, Joly A, Holt B, Varoquaux G (2013)

API design for machine learning software: experiences from the

scikit-learn project. In: ECML PKDD workshop: languages for

data mining and machine learning, pp 108–122

14. Burges CJ (1998) A tutorial on support vector machines for

pattern recognition. Data Min Knowl Disc 2(2):121–167. https://

doi.org/10.1023/a:1009715923555

15. de Castro L, Zuben FV (2002) Learning and optimization using

the clonal selection principle. IEEE Trans Evol Comput

6(3):239–251. https://doi.org/10.1109/tevc.2002.1011539

16. de Castro LN, Timmis JI (2003) Artificial immune systems as a

novel soft computing paradigm. Soft Comput 7(8):526–544

17. Cemerlic A, Yang L, Kizza JM (2008) Network intrusion

detection based on bayesian networks. In: SEKE, pp 791–794

18. Chan FT, Prakash A, Tibrewal R, Tiwari M (2013) Clonal

selection approach for network intrusion detection. In: Pro-

ceedings of the 3rd international conference on intelligent

computational systems (ICICS’2013), Singapore, pp 1–5

19. Chen MH, Chang PC, Wu JL (2016) A population-based

incremental learning approach with artificial immune system for

network intrusion detection. Eng Appl Artif Intell 51:171–181.

https://doi.org/10.1016/j.engappai.2016.01.020

20. Cortes C, Vapnik V (1995) Support-vector networks. Mach

Learn 20(3):273–297. https://doi.org/10.1007/bf00994018

21. Crosbie M, Spafford G (1995) Applying genetic programming to

intrusion detection. In: Working notes for the AAAI symposium

on genetic programming, pp 1–8. MIT Press, Cambridge

22. DasGupta D (1993) An overview of artificial immune systems

and their applications. In: Artificial immune systems and their

applications, pp 3–21. Springer

23. Dasgupta D, Nino F (2008) Immunological computation: theory

and applications. CRC Press, Boca Raton

24. Dasgupta D, Yu S, Nino F (2011) Recent advances in artificial

immune systems: models and applications. Appl Soft Comput

11(2):1574–1587. https://doi.org/10.1016/j.asoc.2010.08.024

25. Dhanabal L, Shantharajah S (2015) A study on NSL-KDD

dataset for intrusion detection system based on classification

algorithms. Int J Adv Res Comput Commun Eng 4(6):446–452

26. Ding K, Li J, Liu H (2019) Interactive anomaly detection on

attributed networks. In: In the twelfth ACM international con-

ference on web search and data mining (WSDM ’19). https://doi.

org/10.1145/3289600.3290964

27. Empirical rule: What is it? (2017). http://www.statisticshowto.

com/empirical-rule-2/

28. Forrest S, Perelson A, Allen L, Cherukuri R (1994) Self-nonself

discrimination in a computer. In: Proceedings of 1994 IEEE

computer society symposium on research in security and

privacy, p 202. Institute of Electrical & Electronics Engineers

(IEEE). https://doi.org/10.1109/risp.1994.296580

29. Gentile C, Li S, Kar P, Karatzoglou A, Zappella G, Etrue E

(2017) On context-dependent clustering of bandits. In: Precup

D, Teh YW (eds) Proceedings of the 34th international confer-

ence on machine learning, proceedings of machine learning

research, vol 70, pp 1253–1262. PMLR, International Conven-

tion Centre, Sydney, Australia. http://proceedings.mlr.press/v70/

gentile17a.html

30. Ghanem TF, Elkilani WS, Abdul-kader HM (2015) A hybrid

approach for efficient anomaly detection using metaheuristic

methods. J Adv Res 6(4):609–619. https://doi.org/10.1016/j.jare.

2014.02.009

31. González-Pino J, Edmonds J, Papa M (2006) Attribute selection

using information gain for a fuzzy logic intrusion detection

system. In: Defense and security symposium, pp 62410D–

62410D. International society for optics and photonics

32. González FA, Dasgupta D (2003) Anomaly detection using real-

valued negative selection. Genet Program Evolvable Mach

4(4):383–403

33. Guha S, Yau SS, Buduru AB (2016) Attack detection in cloud

infrastructures using artificial neural network with genetic fea-

ture selection. In: Dependable, autonomic and secure comput-

ing, 14th International conference on pervasive intelligence and

computing, 2nd International conf on big data intelligence and

computing and cyber science and technology congress (DASC/

PiCom/DataCom/CyberSciTech), 2016 IEEE 14th Intl C,

pp 414–419. IEEE

34. Guo H, Feng Y, Hao F, Zhong S, Li S (2014) Dynamic fuzzy

logic control of genetic algorithm probabilities. J Comput

9(1):22–27. https://doi.org/10.4304/jcp.9.1.22-27

35. Gutierrez MP, Kiekintveld C (2016) Bandits for cybersecurity:

adaptive intrusion detection using honeypots. In: AAAI Work-

shop: Artificial Intelligence for Cyber Security

36. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten

IH (2009) The WEKA data mining software. SIGKDD Explor

Newsl 11(1):10. https://doi.org/10.1145/1656274.1656278

37. Hao F, Li S, Min G, Kim HC, Yau SS, Yang LT (2015) An

efficient approach to generating location-sensitive recommen-

dations in ad-hoc social network environments. IEEE Trans Serv

Comput 8(3):520–533. https://doi.org/10.1109/tsc.2015.

2401833

38. Hao F, Park DS, Li S, Lee HM (2016) Mining k-maximal cli-

ques from a fuzzy graph. Sustainability 8(6):553

39. Hofmann A, Horeis T, Sick B (2004) Feature selection for

intrusion detection: an evolutionary wrapper approach. In: 2004

IEEE international joint conference on neural networks (IEEE

Cat. No. 04CH37541), vol 2, pp 1563–1568. Institute of Elec-

trical & Electronics Engineers (IEEE). https://doi.org/10.1109/

ijcnn.2004.1380189

40. Hofmeyr SA, Forrest S (2000) Architecture for an artificial

immune system. Evol Comput 8(4):443–473. https://doi.org/10.

1162/106365600568257

41. Hong L (2008) Artificial immune system for anomaly detection.

In: 2008 IEEE international symposium on knowledge acquisi-

tion and modeling workshop, pp 340–343. Institute of Electrical

& Electronics Engineers (IEEE). https://doi.org/10.1109/kamw.

2008.4810493

42. Hoque MS, Mukit M, Bikas M, Naser A, et al. (2012) An

implementation of intrusion detection system using genetic

algorithm. arXiv preprint arXiv:1204.1336

43. Igbe O, Darwish I, Saadawi T (2016) Distributed network

intrusion detection systems: an artificial immune system

approach. In: Connected health: applications, systems and

engineering technologies (CHASE), 2016 IEEE First Interna-

tional Conference on, pp 101–106. IEEE

Neural Computing and Applications (2020) 32:3475–3501 3499

123

https://doi.org/10.1007/978-81-322-2523-2_32
https://doi.org/10.1109/iaw.2004.1437856
https://doi.org/10.1109/iaw.2004.1437856
https://doi.org/10.1023/a:1009715923555
https://doi.org/10.1023/a:1009715923555
https://doi.org/10.1109/tevc.2002.1011539
https://doi.org/10.1016/j.engappai.2016.01.020
https://doi.org/10.1007/bf00994018
https://doi.org/10.1016/j.asoc.2010.08.024
https://doi.org/10.1145/3289600.3290964
https://doi.org/10.1145/3289600.3290964
http://www.statisticshowto.com/empirical-rule-2/
http://www.statisticshowto.com/empirical-rule-2/
https://doi.org/10.1109/risp.1994.296580
http://proceedings.mlr.press/v70/gentile17a.html
http://proceedings.mlr.press/v70/gentile17a.html
https://doi.org/10.1016/j.jare.2014.02.009
https://doi.org/10.1016/j.jare.2014.02.009
https://doi.org/10.4304/jcp.9.1.22-27
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1109/tsc.2015.2401833
https://doi.org/10.1109/tsc.2015.2401833
https://doi.org/10.1109/ijcnn.2004.1380189
https://doi.org/10.1109/ijcnn.2004.1380189
https://doi.org/10.1162/106365600568257
https://doi.org/10.1162/106365600568257
https://doi.org/10.1109/kamw.2008.4810493
https://doi.org/10.1109/kamw.2008.4810493
http://arxiv.org/abs/1204.1336

44. Janarthanan T, Zargari S (2017) Feature selection in unsw-nb15

and kddcup’99 datasets. In: 2017 IEEE 26th international

symposium on industrial electronics (ISIE), pp 1881–1886.

IEEE

45. Kar P, Li S, Narasimhan H, Chawla S, Sebastiani F (2016)

Online optimization methods for the quantification problem. In:

Proceedings of the 22nd ACM SIGKDD international confer-

ence on knowledge discovery and data mining, pp 1625–1634.

ACM

46. Karegowda AG, Manjunath A, Jayaram M (2010) Comparative

study of attribute selection using gain ratio and correlation based

feature selection. Int J Inf Technol Knowl Manag 2(2):271–277

47. Kayacik HG, Zincir-Heywood AN, Heywood MI (2005)

Selecting features for intrusion detection: A feature relevance

analysis on kdd 99 intrusion detection datasets. In: Proceedings

of the third annual conference on privacy, security and trust

48. Khammassi C, Krichen S (2017) A GA-LR wrapper approach

for feature selection in network intrusion detection. Comput

Secur 70:255–277

49. Kim J, Bentley PJ (2001) Towards an artificial immune system

for network intrusion detection: An investigation of clonal

selection with a negative selection operator. In: Proceedings of

the 2001 congress on evolutionary computation, 2001. vol 2,

pp 1244–1252. IEEE

50. Kim J, Bentley PJ (2002) Towards an artificial immune system

for network intrusion detection: an investigation of dynamic

clonal selection. In: Proceedings of the 2002 congress on evo-

lutionary computation, 2002. CEC’02., vol 2, pp 1015–1020.

IEEE

51. Kira K, Rendell LA (1992) A practical approach to feature

selection. In: Proceedings of the ninth international workshop on

Machine learning, pp 249–256

52. Korda N, Szörényi B, Shuai L (2016) Distributed clustering of

linear bandits in peer to peer networks. In: Journal of machine

learning research workshop and conference proceedings, vol 48,

pp 1301–1309. International Machine Learning Society

53. Kumar V, Chauhan H, Panwar D (2013) K-means clustering

approach to analyze NSL-KDD intrusion detection dataset.

International Journal of Soft Computing and Engineering

(IJSCE) ISSN, pp 2231–2307

54. Li S, Hao F, Li M, Kim HC (2013) Medicine rating prediction

and recommendation in mobile social networks. In: International

conference on grid and pervasive computing, pp 216–223.

Springer

55. Li S, Karatzoglou A, Gentile C: Collaborative filtering bandits.

In: Proceedings of the 39th international ACM SIGIR confer-

ence on research and development in information retrieval

56. Li X, Ye N (2001) Decision tree classifiers for computer

intrusion detection. J Parallel Distrib Comput Pract

4(2):179–190

57. Lu C, Feng J, Lin Z, Mei T, Yan S (2018) Subspace clustering

by block diagonal representation. IEEE Transactions on Pattern

Analysis and Machine Intelligence pp 1–1. https://doi.org/10.

1109/tpami.2018.2794348

58. Lu W, Traore I (2004) Detecting new forms of network intrusion

using genetic programming. Comput Intell 20(3):475–494

59. Matthews BW (1975) Comparison of the predicted and observed

secondary structure of t4 phage lysozyme. Biochimica et Bio-

physica Acta (BBA)-Protein Structure 405(2):442–451

60. Mohammadi M, Akbari A, Raahemi B, Nassersharif B,

Asgharian H (2014) A fast anomaly detection system using

probabilistic artificial immune algorithm capable of learning

new attacks. Evol Intel 6(3):135–156. https://doi.org/10.1007/

s12065-013-0101-3

61. Moustafa JSN (2016) The unsw-nb15 data set description.

https://www.unsw.adfa.edu.au/australian-centre-for-cyber-secur

ity/cybersecurity/ADFA-NB15-Datasets/

62. Moustafa N, Slay J (2015) The significant features of the unsw-

nb15 and the kdd99 data sets for network intrusion detection

systems. Unpublished. https://doi.org/10.13140/RG.2.1.2264.

4883

63. Moustafa N, Slay J (2015) UNSW-NB15: a comprehensive data

set for network intrusion detection systems (UNSW-NB15 net-

work data set). In: 2015 Military communications and infor-

mation systems conference (MilCIS), pp 1–6. IEEE. https://doi.

org/10.1109/milcis.2015.7348942

64. Moustafa N, Slay J (2016) The evaluation of network anomaly

detection systems: statistical analysis of the unsw-nb15 data set

and the comparison with the kdd99 data set. Inf Secur J Global

Perspect 25:1–3. https://doi.org/10.1080/19393555.2015.

1125974

65. Mukkamala S, Janoski G, Sung A (2002) Intrusion detection

using neural networks and support vector machines. In: Neural

Networks, 2002. IJCNN’02. In: Proceedings of the 2002 inter-

national joint conference on, vol 2, pp 1702–1707. IEEE

66. Najafabadi MM, Khoshgoftaar TM, Seliya N (2016) Evaluating

feature selection methods for network intrusion detection with

kyoto data. Int J Reliab Qual Saf Eng 23(01):1650001. https://

doi.org/10.1142/s0218539316500017

67. Nastaiinullah, N., Adiwijaya, Kurniati, AP (2014) Anomaly

detection on intrusion detection system using CLIQUE parti-

tioning. In: 2014 2nd International conference on information

and communication technology (ICoICT). IEEE. https://doi.org/

10.1109/icoict.2014.6914031

68. Nguyen HT, Petrović S, Franke K (2010) A comparison of

feature-selection methods for intrusion detection, pp 242–255.

Springer. https://doi.org/10.1007/978-3-642-14706-7_19

69. Noble CC, Cook DJ (2003) Graph-based anomaly detection. In:

Proceedings of the ninth ACM SIGKDD international confer-

ence on Knowledge discovery and data mining. ACM Press.

https://doi.org/10.1145/956750.956831

70. Owen JA, Punt J, Stranford SA et al (2013) Kuby immunology.

WH Freeman, New York

71. Panda M, Patra MR (2007) Network intrusion detection using

naive bayes. Int J Comput Sci Netw Secur 7(12):258–263

72. Parham P (2015) The immune system, 4th edn. Garland Science,

New York City

73. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B,

Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V,

Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M,

Duchesnay E (2007–2017) Scikit-learn tool. http://scikit-learn.

org

74. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B,

Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V,

Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M,

Duchesnay E (2011) Scikit-learn: machine learning in Python.

J Mach Learn Res 12:2825–2830

75. Popoola E, Adewumi AO (2017) Efficient feature selection

technique for network intrusion detection system using discrete

differential evolution and decision. IJ Netw Secur

19(5):660–669

76. Portnoy L (2000) Intrusion detection with unlabeled data using

clustering

77. Rathore H (2016) Mapping biological systems to network

systems

78. Ryan J, Lin MJ, Miikkulainen R (1998) Intrusion detection with

neural networks. In: Proceedings of the advances in neural

information processing systems 10: annual conference on neural

information processing systems 1997, NeurIPS 1977, Denver,

3500 Neural Computing and Applications (2020) 32:3475–3501

123

https://doi.org/10.1109/tpami.2018.2794348
https://doi.org/10.1109/tpami.2018.2794348
https://doi.org/10.1007/s12065-013-0101-3
https://doi.org/10.1007/s12065-013-0101-3
https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/ADFA-NB15-Datasets/
https://doi.org/10.13140/RG.2.1.2264.4883
https://doi.org/10.13140/RG.2.1.2264.4883
https://doi.org/10.1109/milcis.2015.7348942
https://doi.org/10.1109/milcis.2015.7348942
https://doi.org/10.1080/19393555.2015.1125974
https://doi.org/10.1080/19393555.2015.1125974
https://doi.org/10.1142/s0218539316500017
https://doi.org/10.1142/s0218539316500017
https://doi.org/10.1109/icoict.2014.6914031
https://doi.org/10.1109/icoict.2014.6914031
https://doi.org/10.1007/978-3-642-14706-7_19
https://doi.org/10.1145/956750.956831
http://scikit-learn.org
http://scikit-learn.org

Colorado, USA, 1997. The MIT Press 1998, ISBN 0-262-10076-

2

79. Salamatova T, Zhukov V (2017) Network intrusion detection by

the coevolutionary immune algorithm of artificial immune sys-

tems with clonal selection. IOP Conf Ser Mater Sci Eng

173(1):012016

80. Saurabh P, Verma B (2016) An efficient proactive artificial

immune system based anomaly detection and prevention system.

Expert Syst Appl 60:311–320

81. Seresht NA, Azmi R (2014) MAIS-IDS: a distributed intrusion

detection system using multi-agent ais approach. Eng Appl Artif

Intell 35:286–298

82. Shanmugavadivu R, Nagarajan N (2011) Network intrusion

detection system using fuzzy logic. Indian J Comput Sci Eng

(IJCSE) 2(1):101–111

83. Shen J, Wang J, Ai H (2012) An improved artificial immune

system-based network intrusion detection by using rough set.

CN 04(01):41–47. https://doi.org/10.4236/cn.2012.41006

84. Shon T, Moon J (2007) A hybrid machine learning approach to

network anomaly detection. Inf Sci 177(18):3799–3821

85. Sompayrac LM (2016) How the immune system works. The

how it works series, 5ed edn. Wiley, Hoboken

86. Song J, Takakura H, Okabe Y, Eto M, Inoue D, Nakao K (2011)

Statistical analysis of honeypot data and building of kyoto

2006? dataset for NIDS evaluation. In: Proceedings of the first

workshop on building analysis datasets and gathering experience

returns for security, pp 29–36. ACM. https://doi.org/10.1145/

1978672.1978676

87. Souici-Meslati L, Zekri M (2016) Immunological approach for

intrusion detection. REVUE AFRICAINE DE LA

RECHERCHE EN INFORMATIQUE ET MATHÉMATIQUES

APPLIQUÉES 17:

88. Sridevi R, Chattemvelli R (2012) Genetic algorithm and artifi-

cial immune systems: a combinational approach for network

intrusion detection. In: 2012 International Conference on

Advances in Engineering, Science and Management (ICAESM),

pp 494–498. IEEE

89. Tabatabaefar M, Miriestahbanati M, Grégoire JC (2017) Net-

work intrusion detection through artificial immune system. In:

Systems Conference (SysCon), 2017 Annual IEEE International,

pp 1–6. IEEE

90. Tavallaee M, Bagheri E, Lu W, Ghorbani AA (2009) A detailed

analysis of the KDD CUP 99 data set. In: 2009 IEEE symposium

on computational intelligence for security and defense applica-

tions. Institute of Electrical & Electronics Engineers (IEEE).

https://doi.org/10.1109/cisda.2009.5356528

91. Traffic data from kyoto university’s honeypots. http://www.

takakura.com/Kyoto_data/data/

92. Vapnik VN (2000) The nature of statistical learning theory.

Springer, New York. https://doi.org/10.1007/978-1-4757-3264-1

93. Xian JQ, Lang FH, Tang XL (2005) A novel intrusion detection

method based on clonal selection clustering algorithm. In: 2005

International conference on machine learning and cybernetics,

vol 6, pp 3905–3910. IEEE. https://doi.org/10.1109/icmlc.2005.

1527620

94. Yan Q, Yu J (2006) Ainids: an immune-based network intrusion

detection system. In: Defense and security symposium,

pp 62410U–62410U. International Society for Optics and

Photonics

95. Yang H, Li T, Hu X, Wang F, Zou Y (2014) A survey of

artificial immune system based intrusion detection. Sci World J

2014:1–11. https://doi.org/10.1155/2014/156790

96. Yasir H, Balasaraswathi VR, Journaux L, Sugumaran M (2018)

Benchmark datasets for network intrusion detection: a review.

Int J Netw Secur 20:645–654

97. Yin C, Ma L, Feng L (2015) Towards accurate intrusion

detection based on improved clonal selection algorithm. Mul-

timed Tools Appl 76:1–14. https://doi.org/10.1007/s11042-015-

3117-0

98. Yin C, Ma L, Feng L (2016) A feature selection method for

improved clonal algorithm towards intrusion detection. Int J

Pattern Recognit Artif Intell 30(05):1659013

99. Zargari S, Voorhis D (2012) Feature selection in the corrected

KDD-dataset. In: 2012 Third international conference on

emerging intelligent data and web technologies. IEEE. https://

doi.org/10.1109/eidwt.2012.10

100. Zhang L, ying BAI Z, long LU Y, xing ZHA Y, wen LI Z (2014)

Integrated intrusion detection model based on artificial immune.

J China Univ Posts Telecommun 21(2):83–90

101. Zhao X, Wang G, Li Z (2016) Unsupervised network anomaly

detection based on abnormality weights and subspace clustering.

In: 2016 Sixth international conference on information science

and technology (ICIST). IEEE. https://doi.org/10.1109/icist.

2016.7483462

102. Zhu X (2005) Semi-supervised learning literature survey.

Technical Report 1530, Department of Computer Sciences,

University of Wosconsin, Madison

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2020) 32:3475–3501 3501

123

https://doi.org/10.4236/cn.2012.41006
https://doi.org/10.1145/1978672.1978676
https://doi.org/10.1145/1978672.1978676
https://doi.org/10.1109/cisda.2009.5356528
http://www.takakura.com/Kyoto_data/data/
http://www.takakura.com/Kyoto_data/data/
https://doi.org/10.1007/978-1-4757-3264-1
https://doi.org/10.1109/icmlc.2005.1527620
https://doi.org/10.1109/icmlc.2005.1527620
https://doi.org/10.1155/2014/156790
https://doi.org/10.1007/s11042-015-3117-0
https://doi.org/10.1007/s11042-015-3117-0
https://doi.org/10.1109/eidwt.2012.10
https://doi.org/10.1109/eidwt.2012.10
https://doi.org/10.1109/icist.2016.7483462
https://doi.org/10.1109/icist.2016.7483462

	NSNAD: negative selection-based network anomaly detection approach with relevant feature subset
	Abstract
	Introduction
	Background and related works
	Biological and artificial immune systems
	AIS in intrusion detection
	Feature selection
	Filter-based methods
	Wrapper-based methods

	Feature selection in intrusion detection
	Comparison with related work

	NSNAD description
	Overall architecture
	Feature selection
	Detector set generation
	Classification

	Experimental design
	Datasets
	NSL-KDD
	Kyoto2006+
	UNSW-NB15

	Input parameters
	Evaluation metric

	Results and analysis
	Feature subset and normalization
	True positive rate (TPR)/false positive rate (FPR)
	ROC and AUC
	Accuracy and precision results
	F-measure results
	Matthews correlation coefficient (MCC)
	Computational time
	Summary of results

	Comparison with AIS-based intrusion detection techniques
	Conclusion and future work
	Appendix: Feature description
	References

