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Abstract
In recent decades, there has been increased interest among both transportation researchers and practitioners in exploring the

application of artificial intelligence (AI) paradigms to address the real-life problems in order to improve the efficiency,

safety and environmental compatibility of transportation systems. In this paper, our main interest is to solve transportation

problem by considering the multimodal transport systems and then utilize it to solve neural network (NN) problem in AI.

The multimodal transportation problem (MMTP) is nothing but a linear programming problem, and so it is easy to solve by

any simplex algorithm. To analyze the proposed method, a numerical example is included and solving it we reveal a better

impact for analyzing the real-life decision-making problems. Thereafter, we revoke our approach for solving NN problems,

which enhances a connection between MMTP and NN problems. Finally, conclusion and future research directions are

presented regarding our study.

Keywords Transportation problem � Multimodal system � Neural network � Artificial intelligence � Decision-making

problem

1 Introduction

At the beginning of the twenty-first century, transportation

professionals meet challenges to address the increasing

complexity. Transportation professionals are asked to

achieve the goals for providing efficient, safe and reliable

transportation while minimizing the impact on the envi-

ronment and communities. Few of those challenges that

transportation professionals face are capacity problems,

unreliability, pollution, poor safety record and wasted

energy. Considering the challenges, we face the fact that

transportation systems are generally complex systems

containing a large number of equipments and different

parties, each having different and sometimes conflicting

objectives.

Transportation problem is mainly considered to mini-

mize the transportation cost from sources to numerous

destinations, satisfying source availabilities and destination

demands, at early time of study in operations research

(OR). A graphical network of TP is presented in Fig. 1.

In our daily-life problems, there are several decision-

making problems such as fixing of cost of goods, profit for

sellers and taking decisions for real-life multiple objective

functions, which are generated by TP, and the classical TP

is taken into account in different mathematical models.

Nowadays, in the competitive market scenario, minimizing

the transportation cost in business economy and in gov-

ernment policies is the utmost important matter.

Multimodal transportation problem (MMTP) is similar

to a transportation problem with the inclusion of multiple

modes of transportation (see Fig. 2). Multimodal trans-

portation is also known as combined transportation which

allows to transport the goods under a single contract, but it

is performed with at least two modes of transport; the
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carrier is liable (in usual sense) for the whole conveyance,

even though it is considered by several/different modes of

transport such as road, sea and train. The carrier does not

have to pose all the means of transport, and in usual

practice, it is not valid. The carrier is often executed by

sub-carriers which are known as actual carriers in common

language. So, in a transportation system of single item of

goods if more than one type of carriers are used to

Fig. 1 Graphical network of TP

Fig. 2 Graphical representation

of the MMTP
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transport, then different types of carriers are termed as

Multimodal Transport Operator (MTO).

As it is well known, neural networks (NNs) are bio-

logically inspired systems consisting of a massively con-

nected network of computational ‘‘neurons,’’ organized in

layers (Fig. 7). By adjusting the weights of the network,

NNs can be ‘‘trained’’ to approximate virtually any non-

linear function to a required degree of accuracy. NNs

provide typically a set of input and output layers through

which the signals reach the proper destinations. Multilayer

perceptron (MLP) is the most commonly used architecture

of NN. The topology of a MLP is nearly same with the

graphical network of MMTP. Here, we describe how the

flow of information reaches the proper destination by

considering the different routes (i.e., modes) of our MMTP.

In this way, an interconnection between NN and MMTP is

encountered.

Here, we formulate the mathematical model of MMTP

by considering the multiple modes of transportation. Now,

we describe the main contributions of our study as follows:

• Design a new class of TP, namely, MMTP, under the

consideration of multimodal transport systems.

• On solving MMTP, we establish the superiority of our

model in comparison with existing models of TP.

• Introduce the way to solve AI problem through MMTP.

• Construct NN problem and solve it through the MMTP

which shows the novelty of the paper.

Therefore, the main contributions are concerned in the

study by considering two different aspects: one is to build

up MMTP model and another is to use it for solving AI

problems. At first, the mathematical model of MMTP is

described and justified by numerical example and then

MMTP is used to solve NN problems in AI. The rest of the

paper is organized as follows: In the next section (Sect. 2),

the review of the related research is presented. We present

the problem background of MMTP and its mathematical

formulation in Sect. 3. To show the application of the

proposed mathematical model of the MMTP, a numerical

example is included in Sect. 4. The results and discussion

regarding the numerical example are presented in Sect. 4.1.

After that, we find a new approach to solve NN problems

by MMTP in Sect. 5. A numerical example of MLP is

presented to justify the effectiveness in Sect. 5.1. The

conclusions with the future study are described in Sect. 6.

2 Review of related research

The basic transportation model was first initiated by Kan-

torovich [1], who has prescribed an incomplete algorithm

for calculating the solution of the transportation problem.

Hitchcock [2] studied the problem of minimizing cost of

distribution of product from several warehouses to a

number of purchasers. To accommodate the complexities

in the real-world problems, the study on transportation

problem is improved by incorporating the different math-

ematical models and methodologies. James et al. [3] dis-

cussed improving transportation service quality based on

information fusion. A good number of research works on

transportation safety planning were developed by Ergun

et al. [4], Luathep et al. [5], Sheu and Chen [6]. Recently,

the multi-objective transportation problem under different

circumstances has been discussed by Roy et al. [7, 8],

Mahapatra and Roy [9], Roy [10], Maity and Roy [11, 12].

There are several approaches available in the literature

to accommodate the transportation problem through the

uni-modal system. Nanry and Wesley [13] presented a

detailed study on uni-modal TP. In the multimodal trans-

portation problem, also few works have been done there,

though none of these on the proposed study solve the entire

logistics problem, being centered in other problems con-

nected with MMTP or in subproblems which do not rep-

resent all the feasible restrictions. Macharis and

Bontekoning [14] discussed the opportunities for OR in

intermodal freight transport. The research work (Macharis

and Bontekoning [14]) was reviewed on OR models which

are currently used in the emerging transportation research

field and define the modeling problems which need to be

addressed. Eibl et al. [15] presented a study on interactive

vehicle routing and scheduling software problem to a

brewing company in the UK. They explained how a com-

mercial tool was applied to schedule the day-by-day (op-

erational) conveyance routing and scheduling to deal out

the goods to the destinations. This technique was specific

for the brewing problem, and the corresponding operator

that controls the technique needs a previous training pro-

cedure to manage all the variables involved. In this case,

the solution is quite domain-independent, with less user

knowledge requirements. Catalani [16] considered a sta-

tistical study to improve the intermodal freight transport in

Italy, by using the road-ship and road-train transports. Qu

and Chen [17] posed the MMTP as a multi-criteria deci-

sion-making (MCDM) problem. They introduced a hybrid

MCDM by considering a feed-forward artificial neural

network along with the fuzzy analytic hierarchy process.

The proposed case study was based on a transportation

network in which nodes create terminals and edges repre-

sent distinct modes of transportation such as road, ship and

train. According to the model, it can deal with several cost

functions and restrictions, but they introduced six nodes,

while in our proposed model there may be thousands of

nodes.

Haykin [18] introduced a comprehensive foundation of

NN. A study on principles of neuro-computing for science

and engineering is presented by Ham and Kostanic [19].
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Duda et al. [20] considered the pattern classification of NN.

Omkar et al. [21] studied on multi-objective design opti-

mization using artificial immune system. A study on

solving vehicle routing problems using artificial intelli-

gence was introduced by Tan et al. [22]. Yaghini et al. [23]

introduced artificial neural network training problem. Effiti

et al. [24] studied a fuzzy neural network model for solving

linear programming problem under fuzzy environment.

Recently, a metaheuristics approach was presented by

Moghaddam et al. [25] to solve the transportation problem

in fuzzy environment.

3 Necessity of MMTP and mathematical
formulation

Here, we present briefly the necessity of MMTP to

accommodate multiple modes of transportation in the study

of linear programming problem (LPP). After that, the

detailed description for formulating MMTP is presented.

3.1 Necessity of MMTP

The term multimodal is defined for several modes of

transport in a transportation problem, and as a whole, it is

referred to here as multimodal transportation problem.

Generally, MMTP can be categorized as either passenger

or freight oriented. Goods can be transported via several

modes, and people also use different modes of transporta-

tion for their journey. Therefore, several modes of trans-

portation are considered as follows:

• Roadway/highway automobiles (including taxi), truck,

motorcycle, etc.,

• Passenger rail and traditional freight train, buses, etc.,

• Air passenger service and air freight,

• Water ferries, barges, transatlantic vessels, cruise ships,

etc., and

• Bicycling, nonmotorized walking, etc.

Again, some other modes (e.g., bicycle, motorcar, etc.) are

available to hold largely recreational transportation for

many countries of the universe. Some of the transportation

modes such as passenger airway service and rail-road

communication service are very important part of the

multimodal transportation system in daily life. All modes

of transportation must be planned and be systematically

provided similar to those of modern organizational struc-

tures (e.g., sanitation, power supplies, buildings, etc.). Not

only exist the several modes, but also the transportation

professionals must also plan and provide for safety and

smart transfer of goods and people among different modes.

This transfer is usually considered to be an intermodal

transfer. Recently, James et al. [3] in University

Transportation Center (UTC) defined intermodal trans-

portation based on information fusion.

There are the important perspectives in the MMTP such

as:

• To decrease total transportation costs by allowing each

mode to be used for the portion of the trip in which it is

the best suited,

• To increase economic productivity and effectiveness,

thereby enhancing the nation’s competitiveness

globally,

• To reduce the overcrowding and burden on overem-

phasized infrastructure equipments,

• To generate higher returns from public and private

investments,

• To improve mobility for the elderly, isolated, disabled

and economically disadvantages, and

• Reducing energy consumption and contributing to

improve air quality and environmental conditions (cf.

Fox et al. [26], Veloso [27]).

Now we define three useful definitions related to our pro-

posed MMTP.

Definition 3.1 (Ground origin (GO)) In a transportation

problem, the sources which have the capacity for supplying

the goods but do not have the capacity to gather the goods

are treated as ground origins.

Definition 3.2 (Final destination (FD)) In a transportation

problem, the destinations which have the capacity for

gathering the goods but do not have the capacity to supply

the goods are considered as final destinations.

There is no possibility to supply the goods according to

the requirement of the final destinations from the ground

origins because of that vehicle capacity/multiple routes of

transport. In that case, there are required some destination

nodes which have the capacity for supplying and receiving

the goods simultaneously. These nodes are known as sup-

plementary origins.

Definition 3.3 (Supplementary origin (SO)) In a trans-

portation problem, the destinations which have the capacity

for collecting the goods as well as the capacity for deliv-

ering the goods are noted as supplementary origins.

In Fig. 2, O1, O2, . . ., Om1 are the ground origins;

SO11, SO12, . . ., SO1m2 are the supplementary origins of

label 1; D1, D2,..., Dn1 are referred as the final

destinations.

The TP under the consideration of at least one supple-

mentary origin is described as the MMTP. We propose to

formulate the mathematical model of the MMTP and solve

it for producing a better result. To accommodate the real-

life transportation problem, it is not always possible to
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fulfill the demand of the customers at the destination points

using a single mode of transportation. Sometimes there are

some restrictions for transporting the goods, and so, it is

required to consider the multi-modes of transportation from

different nodes. Then, the transportation is not a simple TP,

which becomes a MMTP.

The mathematical model of the proposed MMTP is

described in detail in the next subsection.

3.2 Model formulation

To design the mathematical formulation of classical TP, we

use the following notations which are stated below:

Notations:

i: the origin/storage house,

j: the destination,

m: total number of origins,

n: total number of destinations,

Cij: transportation cost per unit commodity from ith

origin to jth destination,

ai: availability of goods at ith origin,

bj: demand at jth destination,

xij: amount of goods to be transported from ith origin to

jth destination.

The mathematical model of a classical TP [2] is defined as

follows:

Model 1

minimize z ¼
Xm

i¼1

Xn

j¼1

Cijxij ð3:1Þ

subject to
Xn

j¼1

xij � ai ði ¼ 1; 2; . . .;mÞ; ð3:2Þ

Xm

i¼1

xij � bj ðj ¼ 1; 2; . . .; nÞ; ð3:3Þ

xij � 0 8 i and j; ð3:4Þ

The constraints (3.2) represent that the availability (chosen

by decision-maker on his experience) at the origin must be

greater than or equal to the amount of goods to be trans-

ported at the destinations from the origin. Constraints (3.3)

represent that the amount of goods to be transported from

the origins to a destination must fulfill the minimum

requirement (chosen by decision-maker on his experience)

at the destination. The constraints (3.4) indicate that

amount of goods transported cannot be negative.

Model 1 finds optimal feasible solution, if sum of the

availability of goods (in maximum) at the origins (i.e.,Pm
i¼1 ai) is greater than or equal to the sum of requirements

(i.e.,
Pn

j¼1 bj). Therefore, the necessary condition for

obtaining the optimal solution of Model 1 isPm
i¼1 ai �

Pn
j¼1 bj.

In the presence of the SO in a TP, it becomes a MMTP.

To formulate the mathematical formulation of MMTP, we

use again the following notations which are listed as:

Notations:

m1: the number of ground origins (GOs),

n1: the number of final destinations (FDs),

mt: the number of supplementary origins (SOs) at ðt �
1Þth level, t ¼ 2; 3; . . .; r,

r: the number of labels for origins,

a1i : availability of goods at ith origin of GO,

ati: availability of goods at ith origin of tth level SO,

t ¼ 2; 3; . . .; r,

bj: demand at jth node of FD,

a11: a single vehicle carrying capacity from ground

origins to final destinations,

ats: a single vehicle carrying capacity from SO of ðt �
1Þth level, t ¼ 2; 3; . . .; r; to SO of ðs� 1Þth label,

s ¼ r; r � 1; . . .; 2,

C1
ij1: transportation cost per unit commodity from ith

origin to jth destination from GO to FD,

Ct
ij1: transportation cost per unit commodity for trans-

portation from ith origin to jth destination from SO of

ðt � 1Þth level to FD where t ¼ 2; 3; . . .; r,

C1
ijs: transportation cost per unit commodity for trans-

portation from ith origin to jth destination from GO to

SO of ðr � sþ 1Þth label, s ¼ 2; 3; . . .; r;

Ct
ijs: transportation cost per unit commodity for trans-

portation from ith origin to jth destination from SO of

ðt � 1Þth level to SO of ðr � sþ 1Þth label, t ¼
2; 3; . . .; r � 1; s ¼ 2; 3; . . .; r with t� s,

x1ij1: number of vehicles to be required for transportation

from ith origin to jth destination of FD from GO,

xtij1: number of vehicles to be required for transportation

from ith origin to jth destination from SO of ðt � 1Þth
level to FD where t ¼ 2; 3; . . .; r,

x1ijs: number of vehicles to be required for transportation

from ith origin to jth destination from GO to SO of ðr �
sþ 1Þth label, s ¼ 2; 3; . . .; r,

xtijs: number of vehicles to be required for transportation

from ith origin to jth destination from SO of ðt � 1Þth
level to SO of ðr � sþ 1Þth label, t ¼ 2; 3; . . .; r �
1; s ¼ 2; 3; . . .; r with t� s,

z1: objective function for minimizing transportation cost

to final destination from ground origin and all supple-

mentary origins,
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zi: objective function for minimizing transportation cost

to ðr � iþ 1Þth label destination points from GO and all

SOs of ðr � iÞth label, i ¼ 2; 3; . . .; r � 1

To formulate the mathematical model of the MMTP, we

consider the following steps:

Construction of objective function (z1) for transportation

to FD from GO and SO in all labels:

The transportation network corresponding to z1 is shown

in Fig. 3. Here, the routes of transportation are considered

from:

GO to FD, corresponding objective function isPm1

i¼1

Pn1
j¼1 a

1
1C

1
ij1x

1
ij1; SO of label 1 to FD, corresponding

objective function is
Pm2

i¼1

Pn1
j¼1 a

2
1C

2
ij1x

2
ij1; and so on.

Finally, from SO of label r � 1 to FD, the corresponding

objective function is
Pmr

i¼1

Pn1
j¼1 a

r
1C

r
ij1x

r
ij1. Therefore,

z1 ¼
Xm1

i¼1

Xn1

j¼1

a11C
1
ij1x

1
ij1 þ

Xm2

i¼1

Xn1

j¼1

a21C
2
ij1x

2
ij1 þ . . .

þ
Xmr

i¼1

Xn1

j¼1

ar1C
r
ij1x

r
ij1:

In the transportation network corresponding to z1 (cf.

Fig. 3), demands at the nodes of FD need to be satisfactory.

For this reason, the following constraints need to satisfy.

Xm1

i¼1

a11x
1
ij1 þ

Xm2

i¼1

a21x
2
ij1 þ . . .

þ
Xmr

i¼1

ar1x
r
ij1 � bj ðj ¼ 1; 2; . . .; n1Þ:

Construction of objective function (z2) for transportation to

SO of label r � 1 from GO and SO of labels t ¼
1; 2; . . .; ðr � 2Þ is discussed below.

The transportation network corresponding to z2 is shown

in Fig. 4. Here, transportation may be considered as:

From GO to SO of label r � 1, the corresponding

objective function is
Pm1

i¼1

Pmr

j¼1 a
1
rC

1
ijrx

1
ijr; from SO of

label 1 to SO of label r � 1, the corresponding objective

function is
Pm2

i¼1

Pmr

j¼1 a
2
rC

2
ijrx

2
ijr; and so on. Finally,

from SO of label r � 2 to SO of label r � 1; the corre-

sponding objective function is
Pmr�1

i¼1

Pmr

j¼1 a
r
r�1C

r�1
ijr xr�1

ijr .

Hence,

z2 ¼
Xm1

i¼1

Xmr

j¼1

a1rC
1
ijrx

1
ijr þ

Xm2

i¼1

Xmr

j¼1

a2rC
2
ijrx

2
ijr þ . . .

þ
Xmr�1

i¼1

Xmr

j¼1

ar�1
r Cr�1

ijr xr�1
ijr :

In the transportation network corresponding to z2 (cf.

Fig. 4), the items stored in the nodes of SO of label r � 1

must be larger than the amount of goods transported from

SO of label r � 1 to nodes of FD. For this reason, the

following constraints need to be satisfied.

Xn1

j¼1

ar1x
r
tj1 �

Xm1

i¼1

a1r x
1
itr þ

Xm2

i¼1

a2r x
2
itr

þ � � � þ
Xmr�1

i¼1

ar�1
r xr�1

itr ðt ¼ 1; 2; . . .;mrÞ:

Fig. 3 Graphical representation of transportation for z1 Fig. 4 Graphical representation of transportation for z2
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Again the total amount of goods stored at the nodes of SO

of label r � 1 must be lesser than its storing capacity.

Therefore,

Xm1

i¼1

a1r x
1
itr þ

Xm2

i¼1

a2r x
2
itr þ . . .

þ
Xmr�1

i¼1

ar�1
r xr�1

itr � atr; ðt ¼ 1; 2; . . .;mrÞ:

In the similar way, we construct zi ði ¼ 2; 3; . . .; r � 1Þ and
finally we reach at the transportation from GO to SO of

label 1.

Construction of objective function (zr) for transportation

to SO of label 1 from GO.

The transportation network corresponding to zr is shown

in Fig. 5. Here, transportation may be considered from GO

to SO of label 1 and corresponding objective function is

zr ¼
Xm1

i¼1

Xm2

j¼1

a21C
1
ij2x

1
ij2:

In the transportation network corresponding to zr (cf.

Fig. 5), the items stored in the nodes of SO of label 1 must

be larger than the amount of goods transported to SO of

labels t; t ¼ 2; 3; . . .; ðr � 1Þ and FD from there. So, we

consider the following constraints as:

Xn1

j¼1

a21x
2
tj1 þ

Xmr

j¼1

a2r x
2
tjr þ . . .þ

Xm3

j¼1

a23x
2
tj3

�
Xm1

i¼1

a12x
1
it2 ðt ¼ 1; 2; . . .;m2Þ:

Again, the total amount of goods stored at the nodes of SO of

label 1 must be lesser than its storing capacity. Therefore,

Xm1

i¼1

a12x
1
it2 � a2t ðt ¼ 1; 2; . . .;m2Þ:

The complete MMTP model (see Fig. 2) is the aggregate of

networks by utilizing the objective functions zi; i ¼
1; 2; . . .; r along with the constraints required for designing

the objective functions zi; i ¼ 1; 2; . . .; r. Hence the math-

ematical model of MMTP is described as follows:

Model 2

minimize z ¼ z1 þ z2 þ . . .þ zr;

z1 ¼
Xm1

i¼1

Xn1

j¼1

a11C
1
ij1x

1
ij1 þ

Xm2

i¼1

Xn1

j¼1

a21C
2
ij1x

2
ij1

þ . . .þ
Xmr

i¼1

Xn1

j¼1

ar1C
r
ij1x

r
ij1;

z2 ¼
Xm1

i¼1

Xmr

j¼1

a1rC
1
ijrx

1
ijr þ

Xm2

i¼1

Xmr

j¼1

a2rC
2
ijrx

2
ijr

þ . . .þ
Xmr�1

i¼1

Xmr

j¼1

arr�1C
r�1
ijr xr�1

ijr ;

..

.

zr ¼
Xm1

i¼1

Xm2

j¼1

a21C
1
ij2x

1
ij2

ð3:5Þ

the constraints regarding availability at GO and SO of all

labels

subject to
Xn1

j¼1

a11x
1
ij1 þ

Xmr

j¼1

a1r x
1
ijr þ . . .þ

Xm2

j¼1

a12x
1
ij2

� a1i ði ¼ 1; 2; . . .;m1Þ;
ð3:6Þ

Xn1

j¼1

a21x
2
ij1 þ

Xmr

j¼1

a2r x
2
ijr þ . . .þ

Xm3

j¼1

a23x
2
ij3

� a2i ði ¼ 1; 2; . . .;m2Þ;
ð3:7Þ

Xn1

j¼1

a31x
3
ij1 þ

Xmr

j¼1

a3r x
3
ijr þ . . .þ

Xm4

j¼1

a34x
3
ij4

� a3i ði ¼ 1; 2; . . .;m3Þ;
ð3:8Þ

..

.

Xn1

j¼1

ar1x
r
ij1 � ari ði ¼ 1; 2; . . .;mrÞ;

ð3:9Þ

the constraints regarding least demands at the FD

Xm1

i¼1

a11x
1
ij1 þ

Xm2

i¼1

a21x
2
ij1 þ . . .þ

Xmr

i¼1

ar1x
r
ij1 � bj ðj ¼ 1; 2; . . .; n1Þ;

ð3:10Þ

the constraints regarding storing and distributing of goods

at nodes of SO of all labels

Fig. 5 Graphical representation of transportation for z3
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Xn1

j¼1

a21x
2
tj1 þ

Xmr

j¼1

a2r x
2
tjr þ . . .þ

Xm3

j¼1

a23x
2
tj3

�
Xm1

i¼1

a12x
1
it2 ðt ¼ 1; 2; . . .;m2Þ;

ð3:11Þ

Xn1

j¼1

a31x
3
tj1 þ

Xmr

j¼1

a3r x
3
tjr þ . . .þ

Xm4

j¼1

a34x
3
tj4

�
Xm1

i¼1

a13x
1
it3 þ

Xm2

i¼1

a23x
2
it3 ðt ¼ 1; 2; . . .;m3Þ;
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..

.

Xn1

j¼1

ar1x
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Xm1

i¼1

a1r x
1
itr þ

Xm2

i¼1

a2r x
2
itr þ . . .þ

Xmr�1

i¼1

ar�1
r xr�1

itr

� atr ðt ¼ 1; 2; . . .;mrÞ;
ð3:13Þ

x
ðsÞ
ijp � 0 8 i; j; s and p: ð3:14Þ

Again to obtain the feasible solution of Model 2, it is

essential to satisfy that the amount of goods required at the

nodes of FD is less than or equal to the sum of availability

at the nodes of GO. Therefore, the feasibility condition of

Model 2 is considered as:
Pm1

i¼1 a
1
i �

Pn1
j¼1 bj.

In Model 2, the number of decision variables is

(m1 � m2 � � � � � mr � n1).

The feasible region of Model 2 is constructed by con-

sidering the following assumptions:

• There are m1 availability constraints (3.6) for the

ground origins.

• There are n1 number of demand constraints (3.7) for the

final destinations.

• There are the restrictions of storing items in the

supplementary origins so we introduce ðm2 þ m3 þ
. . .þ mrÞ number of inequalities form (3.8) to (3.10).

• Again the delivered amount of goods from the supple-

mentary origins does not exceed the supplied amount of

goods to the respective supplementary origins. To do

this, we introduce ðm2 þ m3 þ . . .þ mrÞ number of

inequalities from (3.11) to (3.13).

Thus, Model 2 consists of ðm1 � m2 � � � � � mr � n1Þ
number of variables and ½2ðm2 þ m3 þ . . .þ mrÞ þ m1 þ
n1� constraints along with the nonnegativity conditions.

Here, Model 2 is a completely LPP and it can be solved by

simplex algorithms like Big-M method, revised simplex

method, Vogal’s approximal method, etc.

Furthermore, time complexity for solving MMTP is

similar to LPP. According to the study of strongly polyno-

mial algorithm (cf., Kleinschmidt and Schannath [28]), a TP

has time complexityOðt1 logðt1ðt3 þ t2 log t2ÞÞÞ, where t1; t2

and t3 stand for numbers of supply nodes, demand nodes and

feasible arcs, respectively. Therefore, time complexity of the

MMTP given in Model 2 is Oðt1 logðt1ðt3 þ t2 log t2ÞÞÞ;
where t1 ¼ m1 þ m2 þ � � � þ mr; t2 ¼ m2 þ m3 þ � � � þ
mr þ n1 and t3 ¼ m2 þ m3 þ . . .þ mr. If the number of

variables is increased, then one can use the software such as

LINGO and MATLAB for solving Model 2.

Remark 1 In MMTP (see Fig. 2), we consider all the

possible paths from upper label to lower label of trans-

portation among GO, SO in all labels and FD. It may be

happened in reality that there do not exist few routes of

transportation from some nodes to some other nodes in

different labels, and then there is no need for change in the

model, but at the time of solving the model, we simply set

‘‘0’’ as the value of corresponding decision variable.

4 Numerical example of MMTP

The numerical example is presented here to justify the utility

of MMTP. Assume that two supply centers of goods are,

namely, A1 and A2 (ground origins), and D1 and D2 are final

destinations inwhich a homogeneous commodity of a product

is to be transported. The capacity of vehicle for delivering

goods is 1000 items. So it is a problem for delivering the

goods when the demands at the destinations are not multiple

of 1000 items. Again, the destinations B1 and B2 can receive

the goods from A1 and A2 and have the capacity to transport

the goods to the final destinations D1 and D2. The goods are

carried by the vehicles fromB1 and B2 to D1 and D2with the

capacity of 100 items. So, again there is a problem to deliver

goods when the amounts are not multiple of 100. Also con-

sider that there is a destination C1 which can take the goods

form A1, A2, B1 and B2 and supply them to the destinations

D1 and D2. The transportation from the center C1 to the

destinations D1 and D2 has no such vehicle capacity; i.e., any

Fig. 6 Network corresponding to numerical example
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amount of goods can be transported between the nodes. The

graphical network corresponding to the numerical example is

shown in Fig. 6. The traditional approach of transportation

problem cannot be provided any suchmathematicalmodel for

solving the proposed problem. Here, to solve the problem, we

formulate themathematicalmodel which is known asMMTP.

The following notations and assumptions are considered

to formulate the mathematical model of the MMTP.

• The decision variables for transporting the items are

considered as follows:

From A1 and A2 to D1 and D2 are considered as x1ij1
(number of ships) using shipway with vehicle capacity

a11 ¼ 1000;

From B1 and B2 to D1 and D2 are chosen as x2ij1
(number of railway vehicles) using railway with vehicle

capacity a21 ¼ 100;

From C1 to D1 and D2 are assumed as x3ij1 (number

of roadway vehicles) using roadway without any

vehicle capacity restriction, i.e., a31 ¼ 1. Since a31 ¼ 1,

here, x3ij1 refers to the number of goods transported into

the respective nodes.

From A1 and A2 to C1 are taken as x1ij3 with vehicle

restriction a13 ¼ 500;

From B1 and B2 to C1 are treated as x2ij3 without any

vehicle restriction. Therefore, x2ij3 represents the number

of goods to be transported into the respective nodes.

From A1 and A2 to B1 and B2 are considered as x1ij2

and a12 ¼ 1. Since a12 ¼ 1, here, x1ij2 refers to the number

of goods transported into the respective nodes.

• The feasibility of the numerical example consists of the

following number of constraints:

The supply capacities at the ground origins A1 and

A2 are introduced by two constraints. The demands at

the final destinations D1 and D2 are considered by two

constraints. Storing capacities at the supplementary

origins B1, B2 and C1 provide three constraints. Three

constraints are required to represent that the amount of

goods distributed from the SOs, i.e., B1, B2 and C1,

does not exceed the amount of items stored there.

Hence, the number of constraints for MMTP model in

the numerical example is 10.

The transportation costs in different routes are represented

in Tables 1, 2, 3, 4, 5 and 6.

Again according to the decision-maker’s experience, it

is noted that the availability of goods at each of the GOs,

A1 and A2, is 1600 items. The maximum capacity of

storing at the SOs: B1, B2 and C1, is 1200 items, 1300

items and 1000 items, respectively. The mathematical

model is designed based on the available data described in

Tables 1, 2, 3, 4, 5 and 6 as follows:

Model 3

minimize z ¼ z1 þ z2 þ z3;

subject to z1 ¼ 1000ð15x1111 þ 13x1121 þ 15x1211 þ 18x1221Þ þ 100ð8x2111
þ 10x2121 þ 9x2211 þ 7x2221Þ þ 6x3111 þ 5x3121;

z2 ¼ 500ð11x1113 þ 12x1213Þ þ 8x2113 þ 9x2213;

z3 ¼ 5x1112 þ 4x1122 þ 6x1212 þ 5x1222;

1000ðx1111 þ x1121Þ þ 100x1113 þ 500ðx1112 þ x1122Þ� 1600;

1000ðx1211 þ x1221Þ þ 100x1213 þ 500ðx1212 þ x1222Þ� 1600;

1000ðx1111 þ x1211Þ þ 100ðx2111 þ x2211Þ þ x3111 � 1555;

1000ðx1121 þ x1221Þ þ 100ðx2121 þ x2221Þ þ x3121 � 1575;

x1112 þ x1212 � 1200;

x1122 þ x1222 � 1300;

500ðx1113 þ x1213Þ þ x2113 þ x2213 � 1000;

x1112 þ x1212 � 100ðx2111 þ x2211Þ þ x2113 þ x2213;

x1122 þ x1222 � 100ðx2121 þ x2221Þ þ x2123 þ x2223;

500ðx1113 þ x1213Þ þ x2113 þ x2213 � x3111 þ x3121;

x
p
ijk � 0 ð all are taken integers Þ; 8 i; j; k; p:

Table 1 Transportation cost/

item from A1 and A2 to D1 and

D2 (in $)

D1 D2

A1 15 13

A2 15 18

Table 2 Transportation cost/

item from B1 and B2 to D1 and

D2 (in $)

D1 D2

B1 8 10

B2 9 7

Table 3 Transportation cost/

item from C1 to D1 and D2 (in

$)

D1 D2

C1 6 5

Table 4 Transportation cost/

item from A1 and A2 to C1 (in

$)

C1

A1 11

A2 12

Table 5 Transportation cost/

item from B1 and B2 to C1 (in

$)

C1

B1 8

B2 9

Table 6 Transportation cost/

item from A1 and A2 to B1 and

B2 (in $)

B1 B2

A1 5 4

A2 6 5
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Model 3 is completely a LPP which can be solved by any

simplex algorithm. As Model 3 contains the large number

of variables, we use LINGO software to obtain the solution

of Model 3.

4.1 Results and discussion

Using LINGO iterative scheme, Model 3 provides the

minimum value of the objective function, i.e., z ¼ $41;700

(sum of the values of z1; z2; z3). The optimal solution of

Model 3 is shown in Table 7.

In the optimal solution, the amounts of transported

goods stored at all SOs and FDs are presented in Table 8.

In classical TP, there are only two types of nodes,

namely supply node and demand node. In addition to that,

there is at least one supplementary origin node which is

presented in the MMTP. Sometimes, there are restrictions

for transporting the goods between the nodes due to vehicle

capacity. So, to minimize the transportation cost for

delivering the goods in proper node, different types of

vehicles are required.

To justify the efficiency of the proposed mathematical

model of the MMTP, we describe the various possibilities

in connection with the numerical example as follows:

• Consider that the routes between the supply points, A1

and A2 to FDs, D1 and D2 are seaway. A large amount

of goods is delivered through a ship which is taken as

1000 items/ship. In that situation, if there are no other

nodes available like B1, B2 and C1, then the formulated

TP is a classical TP. In this case, we see that there exists

a feasible solution of the proposed problem, but the

transportation cost is not minimized. Because in each

destination the minimum requirements are 1555 items

and 1575 items of goods which means at least two ships

are required for delivering the goods in each of the

nodes D1 and D2, traditional TP is not enough to give

definite conclusion without considering the SOs as we

consider in our proposed study.

• Again, we assume that there is a connection through

railway between B1 and B2 to D1 and D2. Then, the

capacity of transports in each time by the railway is

more and we consider that at a single transport, the

amount of goods needed is 100. In that situation, we

solve the problem without considering the supplemen-

tary origin C1 (i.e., using the value of the variables as

‘‘0’’ which are taken for C1), and the total transporta-

tion cost is $42;000. The amounts of transported goods

to the nodes D1 and D2, respectively, are 1600 items

and 1600 items, respectively. The amounts of goods

supplied at the SOs, B1 and B2 are 900 items and 1300

items, respectively.

• In the similar way, if we formulate mathematical model

without considering the SOs, B1 and C1, or B2 and C1,

and then the transportation cost will be increased.

Based on our discussion, we introduce the multimodal

system in TP which helps to reduce the transportation cost

for delivering the goods. But, in classical TP, it is not so.

5 Solving NN problem by MMTP

Here, we describe a new way for solving AI problem,

especially in the field of NN with the help of our proposed

study, i.e., MMTP. Though there are different types of NN,

here, we choose MLP which is the most commonly used in

architecture of NN. MLP is considered as a static NN

which is broadly used in several real-life transportation

problems due to its simplicity and ability to accomplish

nonlinear-type function approximation.

In usual sense, MLP consists of three layers which are

input, hidden and output. The input layer delivers one-

directional flow of information to the hidden layer and

finally reaches the output layer, and then it delivers the

response of the network to the input stimuli. Generally,

there are three different types of neurons organized in

layers to this network. The input layer consists of neurons

same as the number of input variables. The neurons in

hidden layer consist of one or more hidden layers, which

process the information and convert it into a coded form of

knowledge within the network. The selection of the number

of hidden layers and the number of neurons within the

system represents the accuracy and performance of the

Table 7 Solution of Model 3

Transportation to Value of decision variables

the nodes

D1 and D2 x1121 ¼ 1,x2111 ¼ 12,x2211 ¼ 3,x2221 ¼ 6,x3111 ¼ 55;

Rest are zero

C1 x2213 ¼ 55

Rest are zero

B1 and B2 x1122 ¼ 600,x1212 ¼ 1200,x1222 ¼ 355,x1112 ¼ 0

Table 8 Amounts of transported goods stored at all SOs and FDs

Node B1 B2 C1 D1 D2

Value 1200 955 55 1555 1600
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network. The output layer receives the entire flow of

information as an output vector.

A MLP topology is shown in Fig. 7. Weighted coeffi-

cient (wr
k) is associated with each of the connections

between any two neurons inside the network. Processing of

information at the neurons in each level is taken by an

‘‘activation function’’ which controls the result of each one.

Based on the examples given in a training set, NNs train is

associated with some weights. The training is continued

successively until the error between the calculated and the

real output over all training types is minimized. Output

errors are evaluated in comparison with the desired output

with the actual output. Therefore, it is possible to calculate

an error function which is used to propagate the error back

to the hidden layer and to the input layer in order to modify

the weights. This iterative procedure is carried out until the

net error evaluated in all layers to reach the signal at the

output layer is reduced to a minimum value.

We relate our study of MMTP with the MLP by the

following considerations:

Consider the variables (xrijk) as the number of connec-

tions required between any two neurons in different levels

in our desired network (here it is taken as MMTP). The

weighted coefficient (wr
k) is attached to the coefficient (ark)

in each channel. The calculated error is associated for

transferring information from one layer to another layer

which is taken as (Cr
ijk) in MLP network, and it is

considered as unit cost of transportation in MMTP net-

work. We design the constraints in accordance with the

maximum amount of errors acceptable in a node of NN. If

there is some difficulty for sending information from a

particular layer to another layer, then the flow of infor-

mation in the respective channel will be stopped, and in

that case, we treat the decision variable, xrijk ¼ 0. It is

similar to the situation of network MMTP, when there does

not exist route between the respective nodes. With this

consideration, the constraints are redesigned in the MMTP.

Furthermore, the designed MMTP corresponding to MLP

has polynomial complexity of time which is displayed in

the last paragraph of Sect. 3.

The objective function of a NN in our MMTP is con-

sidered by the sum of errors which is minimized through

our technique. Therefore, we are able to design a NN

problem like MMTP and solve it by linear optimization

technique presented in this paper. Basically, in usual way

of AI, the error function is calculated for different possible

flows of information and the best is chosen to design NNs

in practical field of applications. But, this technique con-

siders a model which calculates error functions in every

possible flow of information and optimizes them, and

predicts the flows in the system through a single time of

calculation. To illustrate the way for solving MLP problem,

here a small numerical example is presented and the use-

fulness is described in an efficient manner.

Fig. 7 Graphical representation

of the MLP
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5.1 Numerical example of MLP

Construction of a noise-free network service with ensur-

ing minimum error in the communication system is a

challenging task in the study of artificial intelligence. In

Fig. 7, a numerical example of a MLP is presented.

Problem is constructed with two signal-generating centers

(O1 and O2) and one receiving sector (D1), so O1 and O2

are the elements of input layers and D1 is the output

layer. There are two hidden layers (S1.1, S1.2, S1.3 are

first hidden layer and S2.1, S2.2 are second hidden layer

elements) through which the signals are passed from input

layers to output layers. The possible paths of flowing

signals are presented by the connecting line with the

elements of the layers. The resistances are committed in

the system, when the signals are passing from one node to

another node through the paths. Several types of functions

are used to calculate the resistances. Here, the resistances

are taken as errors committed in the flow of network. To

justify the effectiveness, we are not considering the

functions regarding the flow of networks in several paths.

We present the values of maximum error committed

through the channels in Fig. 8. Furthermore, someone can

select theerror functions in the formula according to his/

her field of study. Now, the problem is to find the opti-

malpath of network flow with minimum resistances to

reach signals at the output unit D1. Figure 8 shows that

the presented problem is a MLP problem. Now, we for-

mulate a MMTP model for the problem and find the

optimum solution.

The MMTP model corresponding to the MLP is as

follows:

Model 4

minimize z ¼ z1 þ z2 þ z3;

subject to z1 ¼ :7x1211 þ :95x1221 þ :95x1231 þ :2x1311

þ :25x1321;

z2 ¼ :35x2111 þ :45x2112 þ :48x2113 þ :44x2121

þ :5x2122 þ :6x2123;

z3 ¼ :4x3211 þ :5x3212 þ :6x3221 þ :5x3222

þ :5x3231 þ :8x3232;

x1211 þ x1221 þ x1231 þ x1311 þ x1321 ¼ 1;

x3211 þ x3212 þ x3221 þ x3222 þ x3231 þ x3232 ¼ 1;

x2111 þ x2112 þ x2113 þ x2121 þ x2122 þ x2123 ¼ 1;

x2111 þ x2121 ¼ x1211 þ x3211 þ x3212;

x2112 þ x2122 ¼ x1221 þ x3221 þ x3222;

x2113 þ x2123 ¼ x1231 þ x3231 þ x3232;

x3211 þ x3221 þ x3231 ¼ x1311;

x3212 þ x3222 þ x3232 ¼ x1321;

xtsij � 0; 8t; s; i; j:

Solving Model 4, we list the solution in Table 9.

We observe that minimum error communicated in the

entire flow from input units to output units is 0.95. The

network flow with minimum resistances to reach signals at

the output unit D1 is shown by dotted lines in Fig. 8. Also,

the time complexity of Model 4 is

Oðt1 logðt1ðt3 þ t2 log t2ÞÞÞ, where t1 ¼ 7; t2 ¼ 6 and

t3 ¼ 8.

Remark 2 The communicated errors due to resistances are

presented by values for a simple understanding in the

presented example of MLP; however, one can use respec-

tive functions in place of numerical values in the model

and the functions need to be defined as constraints in

proper way.

Utility of MMTP for solving NN problems:

Here, we present the effectiveness of our study for

solving NN problems in the area of AI.

• The numerical example in Model 4 has been derived

through MLP in Fig. 8. According to Fig. 8, researchers

may attempt to optimize the neuron train through

backpropagation technique or by some metaheuristic

techniques. There are few drawbacks on applying the

Fig. 8 Network of numerical example for MLP problem

Table 9 Solution of model 4

Objective function Decision variables

z ¼ 0:95 x2111 ¼ 1; x3211 ¼ 1; x1311 ¼ 1;

Rest are zero
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same which are depicted below:

i. Firstly, in backpropagation technique each node

has only one step length. In Fig. 8, the step lengths from

input layers to output layers are 2 and 3. There are

routes of passing the signals from hidden layer 1 to

output layer directly without crossing through hidden

layer 2. Moreover, if the error for passing signals from

S1.1 to D1 is 0.5 (which is 0.7 at present), then the

optimal path of network flow becomes O1 to S1.1, S1.1

to D1, which uses only two steps. In that situation, the

backpropagation technique fails to judge the step length

of node D1 and cannot find the optimal path using

traditional backpropagation.

ii. If D1 is a workstation where ten network channels

are required. Again, the input stations O1 and O2 can

supply eight network channels each. Then, how many

channels will be considered from O1 and O2 and

corresponding optimal paths are not derivable from

backpropagation technique. In this context, we need to

redesign the set of constraints in MMTP Model 4,

which produces the optimal solution.

iii. In most of the metaheuristic techniques, the

optimal solutions are approximated and they are not

exact, whereas MMTP finds exact solution. In this

context, MMTP is preferable to solve the MLP problem

in comparison with any metaheuristic technique.

Realizing the above factors, we conclude that MMTP

is better than backpropagation or any metaheuristic

technique for solving MLP in the present context.

• The problem presented in the study on a single-

objective optimization problem and, however, the

multi-objective optimization problem of MMTP is easy

to develop and solve through Roy et al. [7, 8]. As a

consequence, if there is any other objective to optimize

function (such as optimize controlling cost, optimize

the energy required in the system) which is conflicting

objective functions of minimizing total errors, then a

multi-objective programming on the MMTP provides

solution of multi-objective MLP problem. Again, multi-

objective MLP problem is not easy to solve by

backpropagation. Therefore, the study of MMTP finds

a better scope to solve MLP problem in the said ground.

• The presented model of MMTP is easy to apply for

solving the problem described in shortest path compu-

tation and routing in computer networks in the study of

Mustafa et al. [29]. In the study [29], simulation

technique is used, but we do not need such kind of

technique to solve the problem by our method.

• The presented network for solving the shortest path

problem (see Thomopoulos et al. [30]) for traffic

routine communication using neural network is very

much similar to our MMTP network. The problem is

easy to solve by our technique. Furthermore, we can

employ multi-objective optimization with the same

kind of problem, whereas the multi-objective concept is

not possible to communicate in the technique of

Thomopoulos et al. [30].

Therefore, there are many fields opened for applying

MMTP in the areas of artificial intelligence optimization

problem.

6 Conclusion

The main significance of this paper is broadly divided into

two parts. Firstly, a new class of TP under multimodal

system, termed as MMTP, has been defined, and secondly,

a new approach for solving NN problem in the field of

MLP by MMTP has been incorporated. Recalling the

reality, it is observed that there are many situations in a

transportation system in the presence of multiple modes of

transportation in which the traditional TP fails to formulate

a mathematical model and find the least-cost route of

transportation. In this context, our proposed model MMTP

has been applied to formulate the mathematical model

under multiple modes of transportation and its solution

provided decisions to select the mode of transportation as

well as optimal solution of the problem. The results of the

numerical example of MMTP presented in the paper justify

the efficiency of the mathematical model MMTP. Fur-

thermore, we have discussed a new approach to solve a NN

problem in the field of MLP by MMTP. The applicability

and utility of the approach have been illustrated by a

numerical example of MLP problem. In this regard, this

study has made a bridge between the two distinct areas,

namely transportation problem and artificial intelligence in

the field of operations research.

We must indicate that in relation to this paper, there are

other research works of absolute relevance and importance

that we have not raised because they are outside the main

objectives initially set; however, in future investigation,

multimodal transportation planning should be integrated in

several areas such as networks, stations, user information

and fare payment systems. In the same way, possibility of

using MMTP for solving multi-constraint shortest path

problems (Zhang et al. [31]) is an interesting line to be

explored in forthcoming paper(s). Furthermore, the study

MMTP may be considered for selection of modes in variety

of transportation improvement policies such as mobility

management strategies, pricing reforms and smart growth

land use policies, etc. Besides, it is of utmost importance to

think about real-world problems in this context (cf.

[32, 33]), to see that we have problems with large dimen-

sions where it is possible to apply our presented technique

for getting fruitful results. In this regard, a line of research
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that we intend to explore in the future is the application of

MMTP to solve real-life network optimizing problems

under several uncertain environments, such as fuzzy,

stochastic and rough.
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