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Abstract
The safety assessment of dams is a complex task that is made possible thanks to a constant monitoring of pertinent

parameters. Once collected, the data are processed by statistical analysis models in order to describe the behaviour of the

structure. The aim of those models is to detect early signs of abnormal behaviour so as to take corrective actions when

required. Because of the uniqueness of each structure, the behavioural models need to adapt to each of these structures, and

thus flexibility is required. Simultaneously, generalization capacities are sought, so a trade-off has to be found. This

flexibility is even more important when the analysed phenomenon is characterized by nonlinear features. This is notably

the case of the piezometric levels (PL) monitored at the rock–concrete interface of arch dams, when this interface opens. In

that case, the linear models that are classically used by engineers show poor performances. Consequently, interest naturally

grows for the advanced learning algorithms known as machine learning techniques. In this work, the aim was to compare

the predictive performances and generalization capacities of six different data mining algorithms that are likely to be used

for monitoring purposes in the particular case of the piezometry at the interface of arch dams: artificial neural networks

(ANN), support vector machines (SVM), decision tree, k-nearest neighbour, random forest and multiple regression. All six

are used to analyse the same time series. The interpretation of those PL permits to understand the phenomenon of the

aperture of the interface, which is highly nonlinear, and of great concern in dam safety. The achieved results show that

SVM and ANN stand out as the most efficient algorithms, when it comes to analysing nonlinear monitored phenomenon.

Through a global sensitivity analysis, the influence of the models’ attributes is measured, showing a high impact of

Z (relative trough) in PL prediction.
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1 Introduction

1.1 Context

Assessing the safety of dams is a priority for the owners of

those large civil engineering structures. They are required

to have a clear vision of the state of health of their dams,

and to be able to potentially detect any abnormal evolution.

In case such an event occurs, identifying the causes and

taking the necessary steps to bring the structure back to a

safe state is made possible thanks to a good knowledge and

understanding of the behaviour of the structure.

Considering the specificity of each structure (the geo-

metrical parameters, the hydro-geological context, the

shape of the valley in which it is situated, specific opera-

tional conditions, the historical background in terms of

environmental conditions, climatic events…), being able to

assess at any moment the state of a given dam is a complex

task, that relies on a systematic surveillance of the struc-

ture. This surveillance is based on the one hand on visual

inspection, and on the other hand on monitoring. While

visual inspections are rather qualitative techniques, the

monitoring of dams is based on the continuous gathering of

pertinent measurements that are processed by behavioural

analysis models. The type of data that are collected is
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varied, including mechanical (displacements) and hydrau-

lic quantities (piezometric levels, leakage flows). Those

quantities constitute representative factors that traduce the

global behaviour of the dam. Consequently, they are

analysed to describe as finely as possible this behaviour. In

engineering practices, the behaviour of the dam is assumed

to be simultaneously influenced by three external loads,

namely the hydrostatic load, the thermal load, and the

temporal load. Those loads are thus also measured. Even-

tually, behavioural models are built, based on the mea-

surements of both loads and their effects [10, 22, 24, 26].

The first aim of those models is to provide a prediction

of the structure behaviour under normal operating condi-

tions, which is compared to the actual measurements and

makes it possible to check the appropriateness between the

expected and actual evolutions. Second, in a long-term

perspective, sensitivity analyses are carried out to identify

the contribution of each load to the monitored parameters,

which permit to assess the overall functioning of the

structure.

Today, as most dams have been monitored since their

first filling, and with the generalization of telemetry, a great

amount of data is already available, which makes it pos-

sible to use statistical models. Among the community of

dam owners, the classically used models belong to the

category of the multilinear regression, and the reference

model is the HST (Hydrostatic, Season, Time) model [41].

Initially designed to describe mechanical phenomena, this

type of model assumes that the explanatory factors have

independent and thus additive effects on the modelled

quantity. Thus, its application to the analysis of hydraulic

phenomenon is not always pertinent, for nonlinearity

comes into play, and the additivity assumption is invali-

dated. In order to deal with such nonlinear phenomena,

more advanced models issued from the data mining tech-

niques turn out to be particularly interesting, by providing

valuable processing of the database.

1.2 The aperture of the rock–concrete interface:
a nonlinear phenomenon

The state of compression of the rock-mass foundation sit-

uated right under the contact between rock and concrete is

in constant evolution, due to the variations of the abutment

forces that the foundations support. The appearance of

tensile stress is regularly observed at the heel of the dam,

which causes the permeability of the rock-mass to increase,

and the hydrostatic load is thus transferred to the founda-

tion. The tensile stress can also induce an unsticking of the

rock–concrete contact, and/or a cracking of the upstream

face concrete [21].

This phenomenon is referred to as the opening of the

rock–concrete interface, considering the interface as the

1-m-wide zone on both sides of the contact. The aperture of

the contact (Fig. 1) induces the development of uplift

pressure, that is to say the rise of the piezometry in that

zone. Subsequently, it is possible to assess the state of

aperture by interpreting the piezometric levels measured at

the interface.

This aperture is irreversible, for rock cannot cicatrize by

itself. Its temporal evolution is multiscale: indeed, the size

of the aperture varies at the infra-annual scale, evolving

with the mechanical stress that the dam is subject to, but its

magnitude can also evolve at the scale of several years,

with the opening, and thus the full charge propagating

further towards the toe of the dam, or on the contrary,

declining subsequently to specific operational conditions,

clogging, etc.

Unlike most mechanical phenomena, the aperture of the

interface follows nonlinear evolution rules. Indeed,

because of the thermal sensitivity of concrete, the influence

of a given filling (and thus of a given hydrostatic load)

differs according to the thermal state of the structure: low

temperatures cause concrete to contract, inducing a global

downstream movement of the arch, which exacerbates the

tensile stress and finally increases the aperture. Conversely,

high temperatures tend to ‘‘close’’ the aperture. Thus, this

phenomenon has to be studied taking into account complex

interactions between the different influence quantities.

Fig. 1 Rock–concrete aperture
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1.3 Motivation and objectives

Because of the nonlinear features that characterize the

piezometry at the rock–concrete interface, it is not possible

to obtain a satisfying modelling by using mere additive

models. Consequently, a more advanced type of model was

sought among the different data mining (DM) techniques,

the use of which is growing in Civil Engineering, and more

particularly in dam monitoring. With the by now diversi-

fied range of existing DM techniques, the identification of

the most pertinent algorithm is not obvious. Although there

is an extensive literature presenting studies that were

conducted in the field of dam monitoring, when focusing

on arch dams, the majority of them deal with mechanical

phenomena (vertical, radial and, tangential displacements).

To pick one example out, the subject of theme C at the 6th

ICOLD Benchmark Workshop on Numerical Analysis of

the Dams [18] was the analysis of the crest displacement of

the Schlegeis arch dam (Austria). Various deterministic

and statistical models and combinations of them were used,

namely the multilinear regression (MLR), autoregressive

moving average (ARMA), finite elements (FE), nonlinear

autoregressive with exogenous input (NARX), artificial

neural networks (ANN), trial load method (TLM) and

nonparametric polynoms (NP). This case study was then

resumed by Balcilar and Demirkaya [2] who applied the

MLR and ANN models. They came to the same conclu-

sion, which is that linear models are perfectly suitable to

interpret displacement measurements. Those two refer-

ences are only a sample of the numerous applications of

MLR models and more sophisticated algorithms to the

analysis of displacements. Many other studies are avail-

able, among which Mata [23], Ranković et al. [28] and

Rankovic et al. [27, 29]. As recalled by Balcilar and

Demirkaya [2], mechanical phenomena are in most cases

purely additive. Therefore, DM techniques do not provide a

tremendous improvement compared to linear models and

even sometimes show worst performances [2].

Conversely, while modelling hydraulic phenomena

(piezometry, leakage) with such advanced methods would

benefit from the high adaptability of those techniques, and

their capacity to adapt to complex interactions between the

inputs, leakage and piezometry measurements are actually

seldom addressed. A recent exhaustive review was done by

Salazar et al. [32, 34] which draws up an inventory of the

statistical and machine learning techniques that have been

applied to dam behaviour modelling, and discusses the

methodological choices that were made by the authors. No

less than 59 studies were noted and analysed, each study

corresponding to one type of output (radial, tangential or

vertical displacement, leakage, piezometry, etc.) collected

on one or more dams, and analysed with one or more

techniques. The techniques that were addressed are the

following: MLR, impulse response function (IRF), k-

nearest neighbours (KNN), ANN, wavelet neural networks

(WNN), nonlinear autoregressive exogenous neural net-

work (NARXNN), autoassociative neural network

(AANN), NARX, Hybrid (HYB), adaptive neurofuzzy

system (ANFIS), principal component analysis (PCA),

moving PCA (MPCA), support vector machines (SVM),

error correction model (ECM), robust regression (RR),

multivariate adaptive regression splines (MARS), random

forest (RF) and boosted regression trees (BRT). Among the

reviewed studies, 38 deal with radial displacements, 31 of

which in arch dams. Hydraulic indicators (piezometry,

leakage), however, are much less taken into consideration,

especially in arch dams, although considerable safety

issues are at stake, as shown by the matter of the founda-

tion uplift pressures. Piezometry in arch dams is addressed

in only one out of the 59 studies [16], using a MLR model.

Apart from this review paper, the state of the art con-

firms the scarcity of references relative to arch dams

piezometry and leakage measurements. Simon et al. [36]

analysed piezometric measurements with ANN. They put

forward the capacity of ANN to detect the nonlinear links

between the input variables, which permits much finer and

more accurate predictions compared to MLR analysis. This

paper is the only one that could be found addressing the

triptych ‘‘piezometry—arch dam—DM techniques’’. Ran-

kovic et al. [27, 29] propose an application of ANN to the

analysis of piezometric levels but in an embankment dam.

This type of dam behaves very differently compared to

concrete dams, and the nonlinear features that are the

subject of the present study are not at stake. In addition, the

variables that are used as inputs do not include time. This

implies that no irreversible evolution is taken into account,

which is not acceptable in dam monitoring.

Leakage measurements share more common features

with piezometric levels, since leakages that are collected in

the rock–concrete interface are also influenced by the

aperture of the interface. Consequently, one can expect the

same nonlinear features to be found when analysing such

types of measurements. When enlarging the bibliographical

research to leakages, Simon et al. [36] also propose an

application of ANN, which help identify the link between

the inputs and the output, and lead to the improvement of a

state-of-the-art linear regression model. In a comparative

work, Salazar et al. [32, 34] benchmark different machine

learning techniques applied to dam behaviour analysis.

They apply models based on MLR, ANN, SVM, MARS,

RF and BRT techniques to the La Baells arch dam leakage

and displacement measurements. Those leakage measure-

ments include measurements that were made in the central

block of the dam, and that are thus potentially influenced

by an aperture of the interface. The models are altogether
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adjusted to 14 target variables, using 25 predictors. The

comparison of the different results obtained is made on the

basis of the mean absolute error (MAE), and the average

relative variance (ARV), which is the ratio between the

mean squared error and the variance. As far as leakages are

concerned, what comes out of this study is that the BRT are

the most performing models. However, as underlined by

the author, all techniques are not equivalent in terms of

tuning effort, depending on the number of parameters by

which they are defined, their flexibility, and their sensi-

tivity to noise. Consequently, in this study that seeks to be

as unbiased as possible, the modelling choices that are

made necessarily induce that each technique is not driven

to its maximum performance. This shows particularly well

when looking at the results corresponding to the leakages

collected on the central block. For those two targets, while

the MLR models scores a MAE of 2.6 mm, ANN and

SVM, respectively, score 3.04 mm and 5.38 mm. This

shows that SVM and ANN could be improved by a more

detailed tuning and as suggested by the author, a more

careful variable selection. Consequently, BRT might not

actually be the most performing algorithm to analyse

leakage time series, so further tests have to be conducted.

Finally, Santillán et al. [35] propose an application of

ANN to analyse seepages on an arch dam. A sensitivity

analysis is proposed to visualize how each input impacts

the seepage. However, the author develops an algorithm

aimed at selecting automatically the input variables among

the following possibilities: the air temperature, the water

level in the reservoir, and several moving averages of both

variables. In the end, the retained inputs are the water level

and two moving averages of this water level, which implies

that no thermal influencing quantity is considered, nor any

irreversible evolution. This actually contradicts what is

actually observed on all French arch dams.

From this state of the art, it seems that as far as PL

predictions are concerned, ANNs are the most popular

algorithm. They are, however, often regarded as a ‘‘black

box’’, and no agreement is reached regarding the pre-pro-

cessing of the data, the way to build the learning and test

sets, how to choose the architecture of the network, the

stopping criteria, the number of iterations, or how to check

the generalization capacities. Some authors even use this

algorithm for temporal extrapolation [27, 29], while others

strongly advice against it [6, 33].

Consequently, the following work aims at filling the

above-mentioned gaps by performing a comparative anal-

ysis of six of the most popular DM techniques in civil

engineering applied to the monitored arch dam piezometric

levels. Those are artificial neural networks (ANN), support

vector machines (SVM), decision tree (DT), k-nearest

neighbour (kNN), random forest (RF) and multiple

regression (MR). The aim is to get a better understanding

of how the issue of the aperture of the rock–concrete

interface can be analysed, which tool is the most suit-

able for that purpose. To that end, the prediction perfor-

mances of the six methods are assessed and compared.

Eventually, the interpretability of those complex algo-

rithms is declined thanks to a global sensitivity analysis

procedure.

2 Case study (dam and data)

2.1 The dam

The data that were proposed for that study comes from a

French double-curvature arch dam, which is 130 m high

from the foundation to the crest, with a 425-m-long crest.

Its thickness varies from 25 to 6 m, and it is thus consid-

ered a thin arch. The ratio between the width of the valley

(L) and the height of the dam (H) is higher than 3 (L/

H = 3.3), which indicates that the valley is relatively large.

Those characteristics are elements that are known to favour

the appearance of an aperture at the interface. Coupled to

the phenomena of shrinkage and creep of concrete and the

creep of the foundation, the arch shifted to the downstream

direction right from the first filling of the reservoir, and the

rock–concrete interface opened (5–7 mm). Subsequently,

uplift pressures propagated under the heel of the dam, and

further toward downstream. In order to follow the evolu-

tion of this phenomenon, the network of piezometers has

been gradually complemented. It now comprises 52

piezometers, distributed under the dam and under the

downstream plunge basin. Among those sensors, four are

particularly interesting (named C1, C2, C3 and C4), since

they are situated (Fig. 2) in the central cantilever of the

dam, at the rock–concrete interface (298 m). Therefore,

they are directly influenced by the aperture of this inter-

face. The data provided for this study corresponds to the C4

sensor, situated close to the downstream end of the toe.

C4 is the piezometer that is situated at the smallest

distance from the downstream end. Therefore, assuming

that the aperture extents until the toe when the dam is

submitted to extremely high stresses, C4 is situated in a

zone where the interface is sometimes closed (for low

fillings and/or high temperatures) and sometimes open (for

high water levels and/or low temperatures). Thus, C4 is the

most sensitive to the load variations and can be used to get

an idea of the evolution of the aperture.

2.2 The data

The time series that are provided stretch from September

2011 to June 2016 and comprise 623 observations for each

measured quantity. The measured quantities are the
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following, with i [ {1623} (all measurements are

synchronized):

• the piezometric levels PLi expressed in meters of a

water column

• the water level in the reservoir hi expressed in meters

• time ti expressed in number of days elapsed since 1

January 2011 (the chosen origin)

The following variables are subsequently defined from

those measurements:

• the season Si which is an angle equal to 0� on the 1st of

January and 360� on the 31st of December, defined by

Si ¼ 2p � ti
365:25 � floor ti

365:25

� �� �
, where the function

floor() computes the integer part of its argument.

• the relative trough Zi which is a scaling of the water

level hi defined by Zi ¼ hnorm�hi
hnorm�hemp

, where hnorm is the

normal operating water level and hemp the water level

when empty

In order to have a temporal distribution that would be as

balanced as possible, a time sampling was processed so as

to keep maximum one measurement per day. Indeed, in

standard operating conditions, the sensors are automati-

cally polled once a week during the hot season and/or for

low water level, and once or twice a day during cold season

and for high water levels. However, during some singular

operational events, the data acquisition frequency increases

in order to conduct the operation as safely as possible and

follow its evolution closely. For the considered sensor, the

interval between two measurements is often inferior to

2 days, and up to ten measurements per day are regularly

observed (twice a year, the drainage system is locally

closed and opened for efficiency reasons). Consequently,

those very close measurements are correlated between each

other, and the convergence of the models might be overly

influenced by those identical observations. What is more,

the fact that those dense observations correspond to sin-

gular operational conditions might result in a deterioration

of the representativeness (keeping in mind that the models

aim at describing the behaviour of the dam under normal

operating conditions). Consequently, it was decided to

keep only one measurement per day which resulted in 623

remaining observations (starting from an initial 1041-large

dataset). No more advanced sampling was carried out, in

order to keep a sufficient amount of observations.

Table 1 summarizes the main statistics of the variables

used as model attributes as well as the PL. Figure 3 depicts

the histograms of Z and h, S, as well as PL.

3 Modelling

3.1 Choice of the predictors

The modelling techniques that are compared for regression

purposes are based on complex mathematical algorithms

and do not take into account any physical law. Thus the

choice of the input variables is a way to involve some

physical understanding of the phenomenon at stake. In the

present case, the algorithms are the tools that are used to

model the link between the PL and the three main external

loads. Each of these loads has an effect on the PL, and it is

downstreamupstream

galleries

300 m

430 m

C2  C3  C4C1

grout 
curtain

Fig. 2 Piezometers location

(central cantilever)

Table 1 Main statistics of the models attributes and output (PL)

Variable Minimum Maximum Mean SD

Z (–) 0.0178 0.3599 0.0891 0.0653

h (m) 402.69 427.7 422.48 4.78

S (–) 0.0055 6.2698 2.6114 1.5584

PL (m) 318.8 397.3 345.3 21.1
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those effects that the models are expected to build ade-

quately from the appropriate predictors, detecting nonlinear

interactions between the inputs. The first load is the

hydrostatic load, and the corresponding predictor is the

relative through Z. The second load is the thermal load,

which includes the different annual thermal waves that

induce cyclical temperature variation in the concrete of the

structure. This global concrete temperature variation is the

sum of different thermal variations (air temperature as the

most influent but also water temperature, solar radiations,

presence or absence of wind, temperature of the founda-

tions etc., with potentially different phases), that can thus

be modelled thanks to periodic functions of the season,

with a 1-year-long period. The corresponding predictors

are thus cosðSÞ and sinðSÞ. Transforming the season

beforehand permits to define predictors that are as close as

possible to the thermal load, as confirmed by the experi-

ence in monitoring air and concrete temperature. In addi-

tion, since the correlation between cos(S) and sin(S) is zero,

using those variables as inputs does not induce the risk of

multicolinearity. The last influence quantity is time, which

is introduced into the regression through the variable t.

Engineering practices have established by custom the

use of the historical model named Hydrostatic Season Time

(HST) [41]. It is a multilinear regression model that uses

additional predictors compared to those four basic ones.
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Indeed, in order to take into account the influence of the

thermal loads, not only are cosðSÞ and sinðSÞ introduced as

inputs but also cosð2SÞ and sinð2SÞ. As to the effect of the

hydrostatic load, a fourth-order polynomial in Z is used.

Those choices were determined empirically. Considering

Xi the measurement of a given phenomenon, the HST

model is thus expressed as follows:

Xi ¼ b0 þ f1ðtÞ þ f2ðZÞ þ f3ðSÞ þ ei; i 2 f1;Ng

With f1ðtÞ ¼ b1t the irreversible function, f2ðZÞ ¼
b2Z þ b3Z

2 þ b4Z
3 þ b5Z

4 the hydrostatic function,

f3ðSÞ ¼ b6 cosðSÞ þ b7 sinðSÞ þ b8 cosð2SÞ þ b9 sinðSÞ the

seasonal function, ei the modelling residue (representing

the measurement errors and model imperfections), b0 the

constant of linear regression

For the following study, however, the objective is to

compare the performances of the different algorithms by

confronting them to the same problem, and thus the same

inputs.

What is ideally expected from a model is to offer the

necessary flexibility to be able to provide good predictions

without having to impose physical laws a priori. Indeed,

when modelling a complex phenomenon, the user is likely

to identify a new potentially influencing variable, which he

might want to add as a predictor, but without necessarily

having a precise idea of how it affects the modelled

quantity. Thus, the model is expected to build the inter-

actions between this predictor and the modelled quantity

automatically. That is the reason why it was chosen in this

study to keep the inputs as basic as possible: Z, t, cosðSÞ
and sinðSÞ, in order to identify the algorithm that has the

highest flexibility and adaptability.

3.2 Used DM techniques

In the context of the monitoring of concrete arch dams, it is

necessary to dispose of models that are able to describe as

precisely as possible the phenomenon of cracking at the

concrete-rock interface, leading to the development of

uplift pressures, which are likely to threaten the stability of

the structure.

Considering the low performance of the linear models

that are classically used, this work intends to explore the

capabilities of advanced statistical analysis, also known as

data mining (DM) techniques. For that, six different DM

algorithms were applied to analyse piezometric data

monitored on a French large arch dam: artificial neural

networks (ANN), support vector machines (SVM), deci-

sion tree (DT), k-nearest neighbour (kNN), random forest

(RF) and multiple regression (MR). These advanced tools

have been applied in different fields [4, 25], namely in civil

engineering field [19, 39, 42], and take advantage of a

consolidated experience.

ANNs is a computational model inspired by the struc-

ture and functions of biological neural networks [20]. It can

be used for different purposes among which classification,

pattern recognition, or, as in the case of that study,

regression. Due to its high flexibility, it is capable of

automatically detecting and modelling complex nonlinear

relationships between its inputs and outputs.

A neural network is composed of different processing

units called neurons. In the case of a multilayer perceptron,

as used in this study, the neurons are organized in suc-

cessive layers. In the first layer, known as the input layer,

each neuron corresponds to one predictor. It receives the

information and transfers it to each neuron in the following

layer, called the hidden layer. In turn, those neurons pro-

cess the data by computing the weighted summation of its

inputs, and applying a function known as the transfer or

activation function to this sum. The result is transferred to

each neuron in the following layer. The last layer is the

output layer, which produces the prediction. This propa-

gation of the information through the network is the

feedforward propagation. The parameters that need to be

optimized on the learning set are the weights of the neu-

rons. A retropropagation algorithm is used to carry out this

optimization iteratively [30]. The more neurons a network

contains, the more it will be able to fit the data. However,

overfitting must be avoided in order to keep a satisfying

generalization capacity. Consequently, a trade-off between

fitting accuracy and generalization capability has to be

found.

For that study, the R nnet package [38] was used. The

network was designed with one hidden layer containing H

neurons. In order to determine the adequate value for H

(trade-off between fitting accuracy and generalization

capability), a grid search of five values 0; 2; 4; 6; 8f g was

used during the learning phase. This grid search only

considers training dataset (as defined by the threefold

cross-validation methodology), dividing it randomly into

fitting (70%) and validation data (30%), where the vali-

dation error was used to select the best H. After selecting

the best H value, the ANN is retrained with the whole

training dataset. The activation function of the hidden

nodes was set to the popular logistic function 1=ð1þ e�xÞ:
ANN optimization was done via the BFGS (Broyden–

Fletcher–Goldfarb–Shanno) algorithm [40]. The BFGS

method is a quasi-Newton method (also known as a vari-

able metric algorithm) that was published simultaneously

in 1970 by Broyden, Fletcher, Goldfarb, and Shanno. This

uses function values and gradients to build up a picture of

the surface to be optimized [14]. As described in Cortez

[14], the training (BFGS algorithm) is stopped when the

error slope approaches zero or after a maximum of 100

epochs.
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SVMs were initially proposed for classification tasks

[12]. Then it became possible to apply SVM to regression

tasks after the introduction of the e-insensitive loss func-

tion [37]. SVM has theoretical advantages over ANN, such

as the absence of local minima in the learning phase. The

main purpose of the SVM is to transform the input data into

a higher dimensional space referred to as the feature space,

using nonlinear mapping (see Fig. 4). The SVM then finds

the best linear separating hyperplane

(yi ¼ x0 þ
Pm

i¼1 xi;iðxÞ), related to a set of support vector

points, in the feature space. The support vector points are

the transformed observations that are the nearest to the

hyperplane. The transformation ; depends on a kernel

function. In this work, the popular Gaussian kernel

(k x; x0ð Þ ¼ exp �c � x� x0k k2ð Þ; c[ 0) was adopted, where

x; x0 2 RN . In this context, its performance is affected by

three parameters: c, the parameter of the kernel; C, a

penalty parameter; and e (only for regression), the width of

a e-insensitive zone [31], which defines a tolerance on the

error. The heuristics proposed by Cherkassky and Ma [11]

were used to define the last two parameter values, C = 3

(for a standardized output) and e ¼ r̂=
ffiffiffiffi
N

p
, where

r̂ ¼ 1:5=N �
PN

i¼1 yi � ŷið Þ2, yi is the measured value, ŷi is

the value predicted by a 3-nearest neighbour algorithm

(this algorithm is explained further in the text) and N is the

number of examples. In order to overcome the SVM per-

formance dependence on gamma value [9], a grid search of

2 �15;�11;�7;�3;1f g was adopted to optimize the kernel

parameter c, following the same procedure as adopted for

ANN, avoiding this way the possible oversmooth problems

and conversely, overfitting.

A decision tree (DT) can be used either for classification

or for regression [3, 8]. What differs is the type of the target

variable, which can be quantitative (regression), respec-

tively, qualitative (classification), in which case the pre-

diction corresponds to a numerical value, respectively, to a

class. It is a direct and acyclic flow chart that is graphically

represented by a binary tree. The top node, or root, rep-

resents the whole data that is to be predicted (T). The other

nodes are called the internal nodes. Each internal node is

associated with a single predictor and represents a split of

the data into subsets. The split is determined by a test or

rule on that predictor. Each of the end nodes of the tree, or

leaves, contains the prediction that is a numerical value or a

class.

The building of the tree is an iterative process: from the

root, a rule is defined using a predictor, which splits the

dataset into two subsets, expressing a simple and condi-

tional logic. The first node is thus created. On each of the

two subsets, a prediction can be made, by averaging the

observations contained in the subset. This prediction can

thus be compared to each actual value, which permits to

build the sum of squared error (SSE). This SSE is the cost

function that the building of the node aims at minimizing.

This operation is repeated on each of the two subsets, each

predictor being possibly used several times. This consti-

tutes the growing of the tree, which stops when a stopping

criterion is reached. Most commonly, the stopping criteria

are defined based on the number of observations contained

in the node. If splitting the subset leads to a number of

observations in the subsequent sets lower than a certain

value, then the split is not accepted and the node is kept as

a leaf node. It can also be based on a threshold value that

the SSE on the subset has to respect. In this work, the

number of observations contained in the node was adopted

as a stopping criteria, which was set as 20 as coded in the R

rpart package [38].

This is known as the CART algorithm, the acronym for

classification and regression trees that was used in the

present work to carry on the growing. It is one of the most

popular algorithms used for inducing decision trees. It

grows only binary trees (i.e., trees where only two branches

can attach to a single root or node) so, despite its high

flexibility, it can sometimes be unreliable and computa-

tionally slow. Once the growing is finished thanks to this

fully automated process, the resulting tree may be over-

structured (i.e., it contains too many nodes) and thus

inefficient, because too sensitive to noise, outliers, and it

has lost its generalization capacity. To avoid this overfit of

the data, the pruning is carried on. Tree pruning attempts to

simplify the tree by identifying and removing branches

with the goal of improving the accuracy of the prediction.

In this work, the pruning of the tree was controlled by

defining a complexity parameter (cp), which was set to

0.01. This means that any split that does not decrease the

overall lack of fit by a factor of cp is not attempted. In other

words, the cp stops the tree from growing, though one can

think of that as a sort of pre-emptive pruning.

The greatest benefits of decision trees approach are that

they are easy to understand and interpret. They are

Real Space Feature  Space

Transformation Ø

Support 
Vectors

Fig. 4 SVM transformation. Adapted from Cortez [14]

4016 Neural Computing and Applications (2020) 32:4009–4024

123



considered a ‘‘white box’’ model, i.e., the induced rules are

clear and easy to explain as they use a simple conditional

logic. The main drawback is that they get harder to manage

as the complexity of data increases leading to a higher

number of branches in the tree.

In order to estimate the output ŶðxÞ corresponding to the

input x, the nearest neighbour methods consist in taking

into account the observations in the training set whose

corresponding inputs xi are the closest to x [17]. Specifi-

cally, the k-nearest neighbour (kNN) prediction for x is

defined as follows: ŶðxÞ ¼ 1
k

P
xi2Nk xð Þ yi; where NkðxÞ is the

neighbourhood of x defined by the k closest points xi in the

training sample. The response is thus an average of the k

selected observations. Closeness implies a metric, which in

this work was set to the Minkowski distance [1]. The kNN

method requires selection of k, the number of neighbours,

which has a strong effect on the kNN classifier obtained. In

this work a grid search of 1; 3; 5; 7; 9f g (only considering

training data as previously explained for ANN) was

adopted during the learning phase to find the best k value.

Random forest (RF) [7, 15] is a popular ensemble

technique, which uses decision trees (DT, as described

previously) as building blocks to construct more powerful

prediction models. More precisely, this method aims at

overcoming the main weakness of a single DT, which is its

high variance (its result highly depends on the choice of the

learning set), by averaging several decorrelated trees. The

idea is to generate T decision trees by training them on T

different so-called bootstrapped training samples. By

bootstrapped, it is meant that each of the samples contains

as many observations as the whole learning set, but those

observations are randomly selected among the whole set,

the sampling being performed with replacement. It means

that the same observation can occur more than once in the

bootstrap data set. The T datasets thus necessarily overlap.

The specificity of RF is that when building these DT, each

time a split is considered (and a rule is determined), only a

sample of predictors is chosen as split candidates among

the complete set of predictors. Typically, if p is the total

number of predictors,
ffiffiffi
p

p
predictors are considered. Doing

so reduces the influence one strong predictor could have on

the building of the T trees, and thus reduces the correlation

between them. Once the trees are built, the global predic-

tion is obtained by averaging the predictions of the T trees.

In that way, a strong model is generated, that is less likely

to overfit and which balances the bias-variance trade-off.

Also for RF, a grid search of 1; 2; 3; 4; 5f g was adopted

(following the same procedure adopted for ANN) to define

Mtry (number of variables randomly sampled as candidates

at each split) parameter.

In MR, several independent variables are linearly com-

bined to predict the dependent (output) variable [17]. Due

to its additive nature, this model is easy to interpret and is

widely used in regression tasks. However, one of its main

limitations is its inefficiency at modelling problems of a

nonlinear nature. MR was essentially used in this study as a

baseline comparison.

As model inputs, a set of four variables were considered

to predict the piezometric level (PL): time (t, days), relative

trough (Z), cosðSÞ and sinðSÞ. A dataset comprising 623

records monitored on the studied dam was used for models

training/validation.

All experiments were conducted using the R statistical

environment [38] and supported through the rminer pack-

age [14], which facilitates the implementation of several

DM algorithms, as well as different validation approaches

such as cross-validation.

3.3 Models evaluation

For models evaluation and comparison, three metrics

commonly used in regression problems were used: mean

absolute error (MAE), root-mean-square error (RMSE) and

the squared correlation coefficient (R2). These metrics are

computed based on the difference between the observed

and predicted values (the errors). Typically, the lower the

error, the better the predictive model, with zero corre-

sponding to the highest model performance. However,

while low values of MAE and RMSE should be interpreted

as indicating high model predictive capacity, R2 should be

as close as possible to one. The main difference between

the MAE and RMSE is that the latter is more sensitive to

extreme values because it uses the square of the distance

between the real and predicted values. When compared to

MAE, RMSE penalizes more heavily a model that pro-

duces high errors in a few cases.

Additionally, in order to ease the comparison of differ-

ent regression models, the regression error characteristic

(REC) curve proposed by Bi and Bennett [5] was built,

which plots the error tolerance on the x-axis versus the

percentage of points predicted within the tolerance on the

x-axis. The error tolerance is the difference between

observed and predicted values (residuals).

The models generalization performance was accessed by

five runs under a cross-validation (k-fold = 3) approach,

where the data (P) are randomly sampled into k mutually

exclusive subsets P1;P2; . . .;Pkð Þ, with the same length

[17]. Training and testing is performed k times and the

overall error of the model is taken as the average of the

errors obtained in each iteration. Under this scheme, all of

the data are used for training and testing. Yet, this method

requires approximately k (the number of subsets) times

more computation, because k models must be fitted. In

particularly, each modelling setup was trained 3� 5 ¼ 15

times. Also, the three prediction metrics are always
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computed on test unseen data (as provided by the threefold

validation procedure).

In addition to the model accuracy, its interpretability is

also of high importance, especially from an engineer

viewpoint. However, and in particularly SVM and ANN

algorithms, which rely on complex statistical analysis, are

frequently referred to as ‘‘black boxes’’ due to their high

complexity. To overcome this drawback of data-driven

models, Cortez and Embrechts [13] proposed a novel

visualization approach based on sensitivity analysis (SA),

which was used in this work. SA is a simple method that is

applied after the training phase and measures the model

responses when a given input is changed, allowing the

quantification of the relative importance of each attribute as

well as its average effect on the target variable.

In particular, the global sensitivity analysis (GSA)

method [13] was applied, which is able to detect interac-

tions among input variables. This is achieved by per-

forming a simultaneous variation of F inputs. Each input is

varied through its range with L levels and the remaining

inputs fixed to a given baseline value. In this work was

performed adopted the average input variable value as a

baseline and set L = 12, which allows an interesting detail

level under a reasonable amount of computational effort.

With the sensitivity response of the GSA, two important

visualization techniques were computed. First the input

importance barplot was built, which shows the relative

influence (Ra) of each input variable in the model. To

measure this effect, the gradient metric (ga) for all inputs

was calculated. After that, the relative influence was

computed.

Ra ¼ ga
.
PI

i¼1 gi
� 100 ð%Þ

where; ga ¼
XL

j¼2

ŷa;j � ŷa;j�1

�� ��= L� 1ð Þ
ð1Þ

where a denotes the input variable under analysis, I is the

number of input variables and ŷa;j is the sensitivity

response for xa;j.

Second, in order to analyse the average impact of a

given input in the fitted model, the variable effect charac-

teristic (VEC) curve was used. For a given input variable,

the VEC curve plots the attribute L level values (x-axis)

versus the SA responses (y-axis). Between two consecutive

xa;j values, the VEC plot performs a linear interpolation. To

enhance the visualization analysis, several VEC curves can

be plotted in the same graph. In such case, the x-axis is

scaled (e.g., within ½0; 1�) for all xa values.

In order to show the gains of performance when using

the DM approach when compared with the current practice,

the HST model was also applied to the dataset, because it is

the most popular in dam engineering. The above-

mentioned evaluation criteria were thus also applied to this

multilinear model so as to compare it with the DM

algorithms.

4 Results analysis and discussion

The average hyperparameters and fitting time values (and

respective 95% confidence intervals according to Student’s

t distribution) of all DM models are shown in Table 2.

Concerning the running time, MR and DT are extremely

fast to fit. The slowest one is the RF, which takes an

average of 16 s over the five runs. ANN and SVM, that

achieved the best performance, took, on average, around

3.7 and 1.2 s over the five runs, respectively. These com-

putational times are related to the time that each algorithm

took to fit the training data. In the future, when the pro-

posed models (namely the ANN model) are applied to

predict new cases, the time required is very close to zero

(the computation is almost instantaneous).

Table 3 compares the performance of the six DM

algorithms in PL prediction based on MAE, RMSE and R2

metrics (mean value and respective 95% level confidence

intervals according to a t-student distribution). Apart from

MR and DT, all algorithms present a very good response in

PL prediction, with a R2 very close to one. The highest

performance in PL prediction was achieved by the ANN

model, with an R2 ¼ 0:9912, very closely followed by the

SVM (R2 ¼ 0:9859).

Figure 5 compares REC curves of all models confirming

the poor performances of MR, DT and HST. Figure 5 also

highlights the high accuracy of the ANN and the SVM,

showing that both models are able to predict around 96% of

all records with an absolute deviation lower than 5 m. Even

for a tighter tolerance, such as an absolute deviation around

2.5 m, ANN presents an accuracy higher than 85%. For

very thigh tolerances (lower than 2.5 m), the RF and kNN

perform slightly better when compared to SVM.

Table 2 Hyperparameters and computation time of each DM model

Model Hyperparameters Time (s)

ANN H = 8 ± 1 3.688 ± 0.085

SVM c = 0.5 ± 0.01, e = 0.1 ± 0.0 1.182 ± 0.144

DT – 0.072 ± 0.014

KNN k = 3±1 0.322 ± 0.016

RF Mtry = 5 ± 2 16.074 ± 0.725

MR – 0.056 ± 0.007

The uncertainty derives from the five repetitions (five runs) applied

for models generalization assessment
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Figure 6 depicts the relation between observed and

predicted PL values (scatterplot) according to ANN

(Fig. 6a) and SVM (Fig. 6b) models, showing once again a

very interesting fit (all points are very close to the diagonal

line).

On Fig. 7 is plotted the relative importance of each input

according to the six DM models. Note that since those

inputs were determined in order to represent the three

particular external loads (hydrostatic, thermal, and tem-

poral) that affect the behaviour of the dam, which is why

cosS and sinS have to be interpreted jointly. From its

analysis, there is no doubt that Z is the most relevant

variable in PL prediction, which is confirmed by the six

algorithms. Taking ANN model as reference, Z has a

relative influence around 50%, followed by sinS and

cosS with around 36%. Time is the least influencing vari-

able. The same classification can be drawn from the rela-

tive importance analysis conducted with HST model

(Fig. 8): the four most relevant variables, representing

more than 96%, are Z2, Z3, Z and Z4. The sensitivity of the

PL to the thermal load represents less than 4% of the total,

and time comes last.

This plot (Fig. 7) permits to classify the inputs relatively

compared to each other; however, it has to be considered

with caution because it does not in any case assess to what

absolute extent they explain the PL. The purpose is not to

Table 3 Models performance comparison based on MAE, RMSE and

R2 metrics

Model MAE RMSE R2

ANN 1.35 – 0.09 1.97 – 0.13 0.9912 – 0.0012

SVM 1.80 – 0.09 2.56 – 0.18 0.9859 – 0.0019

DT 4.89 ± 0.32 7.35 ± 0.56 0.8782 ± 0.0181

KNN 1.77 ± 0.12 3.62 ± 0.33 0.9708 ± 0.0054

RF 1.81 ± 0.07 3.13 ± 0.11 0.9781 ± 0.0016

MR 9.20 ± 0.09 11.20 ± 0.31 0.7174 ± 0.0143

HST 5.98 7.51 0.8726

The uncertainty derives from the five repetitions (five runs) applied

for models generalization assessment

Best values are indicated in bold
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select or leave inputs out of the analysis. The main interest

of this analysis is that it shows that the studied PL are very

sensitive to the water level variations. Since those piezo-

metric levels are an image of the aperture of the rock–

concrete interface, it means that the size of the aperture is

very much correlated with the annual variations of the

water level. This is in accordance with engineering

knowledge and gives even more credit to the model. From

an engineer point of view, this also shows that a way to

control the aperture and limit its expansion is to adapt the

water level.

In terms of physical behaviour, this relative importance

analysis shows that the hydrostatic load plays a dominating

role in determining the state of stress of the dam. The

thermal load comes next, and although time is the least

significant influence quantity, it does not mean that it

should be removed from a diagnostic analysis. Indeed, the

evolution induced by time might be slow, so it might not
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show in a spectacular way compared to the evolutions

induced by the other influence quantities. However, it

might represent some slow irreversible evolutions of the

dam, which on the long term might alter the global integ-

rity of the structure. The propagation of the aperture of the

rock–concrete interface corresponds to such a slow but

significant phenomenon.

Although the effects of the thermal and the hydrostatic

loads are quantitatively the most significant effects, they

correspond to elastic evolutions, which imply that it does

not induce permanent deformation of the structure. For

instance, if a high water level implies a significant move-

ment downstream, simply lowering the water level will

permit to have the dam come back to a safe position.

Consequently, the effects of the hydrostatic and the sea-

sonal loads in usual ranges are not an issue of too great

concern. This is not the case for the irreversible evolutions

that appear as time passes. In the context of dam safety,

those temporal evolutions have to be identified and

explained as early as possible, in order to conduct main-

tenance operations if needed.

Since ANN model achieved one of the highest perfor-

mances, the analysis was pushed further for that algorithm.

In order to get a better understanding of the PL and of the

global behaviour of the structure, the effect of each load on

the PL prediction was measured based on a SA [13]. In

order to draw some physical conclusions on each model,

the SA was performed reasoning in terms of load and not in

terms of input. This means that to study the effect of the

hydrostatic load, respectively the temporal load, two

respective 1-D SAs were performed, having only Z,

respectively t, vary through its range. In order to study the

impact of the thermal load, a 2-D SA was used, having both

cosS and sinS vary simultaneously.

A similar SA was also performed for the HST predic-

tions so as to compare the performances of the ANN model

to the reference model. Likewise, for this model, the sen-

sitivity of the PL to the hydrostatic load was assessed

having Z, Z2, Z3 and Z4 vary simultaneously, the sensitivity

to the thermal load was assessed having cosS, sinS,

cos2S and sin2S vary simultaneously and for the temporal

load, a mere 1-D SA was performed.

Accordingly, Fig. 9 overlaps the VEC curves of the

temporal load (t-variable), the hydrostatic load (Z-variable)

and S and the thermal load (S-variables). xx axis is scaled to

accommodate all loads. Similarly, Fig. 10 shows the VEC

curves corresponding to each load, based on the HST

predictions.

Focusing first on the influence of the Z-variable, what is

noticeable on the ANN predictions is that its effect is

nearly non-existent when it varies between 0.5 and 1.

However, when decreasing Z below 0.5, PL start to rise,

and Z stands out as the most influencing quantity. Going

back to the definition of the relative trough Z, one notices

that Z is maximal when the water level h is minimal and

vice versa. Thus, Fig. 9 shows that when the water level in

the reservoir increases, the PL at the interface increase as

well, which is perfectly consistent with the state of the art.

What is particularly interesting here is that the rise of the

PL occurs only after a threshold is reached (0. 5), which

can be linked to the state of aperture of the rock–concrete
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interface. The interpretation of this nonlinearity is that this

threshold water level corresponds to the moment at which

the interface starts to open, leading to the hydrostatic load

being transmitted to the foundations, and subsequently the

rise of the PL. Once the aperture is open, the higher the

water level the higher the PL.

This nonlinear feature that characterizes the evolution of

the aperture of the rock–concrete interface is what made

indispensable the use of models that are more advanced

than additive models, such as HST. Indeed, looking at the

Z VEC curve obtained using HST, a similar minimum is

reached at around 0.5 but as significant difference is that

the PL tend to rise when Z rises from 0.5 to 1, meaning that

HST predicts that the PL rise when the water level

decreases. Such a trend is due to the use of a polynomial

law to model the effect of the hydrostatic load, which

makes it impossible to model threshold effects. Conse-

quently, the linearity of the reference HST model is not

suitable to describe such a phenomenon as the aperture of

the rock–concrete interface, while nonlinear models such

as ANN are much more adequate.

Second, the curve corresponding to the influence of the

thermal load traduces the sensitivity of the PL to the

variations of the temperature of the body of the dam over

the year, which follows a seasonal variation. For the ANN

model, the corresponding curve has a quasi-sinusoidal

shape, with the maximum being reached approximately at

the first quarter of the year, which is April, and the mini-

mum being reached in summer. The minimum is not per-

fectly clear though, because one point seems to distort the

curve and draw a second maximum, though a smooth

sinusoidal shape is expected. Observing the maximum

predicted PL during the cold season is consistent with the

engineering knowledge of how the thermal load influences

the structure. Indeed, the thermal sensitivity of concrete

induces a contraction of concrete which leads to a global

downstream movement of the dam. This movement is

conducive to the expansion of the rock–concrete aperture,

which eventually results in the rise of the PL. However,

because of the thermal inertia of concrete, there is a delay

between the air temperature minimum, reached in average

between January and February in the region where the dam

is situated, and the maximum temperature of the body of

the dam (including the foundations). Conversely, the

minimum predicted PLs are observed during the hot sea-

son, which coincides with the moment of the year when the

thermal state lets concrete expand and causes the upstream

movement of the arch, minimizing the strain on the rock–

concrete interface. Consequently, the aperture of the con-

tact tends to close and eventually the PL decrease. Thus

this sensitivity analysis confirms the validity of the ANN

which describes accurately the response of the dam to the

thermal load. Looking at the corresponding curve obtained

with HST model, the global shape is also sinusoidal, but

two maxima are observed. This distortion is even more

pronounced than that corresponding to the ANN. The

reason for that may be that, in the case of the aperture of

the contact, all three loads act simultaneously but not in an

additive way; however, HST models the effect of each load

by summing the irreversible function, the hydrostatic

function and the seasonal function. Thus, it artificially

separates the effect of each load on the PL. Consequently,

when separating those effects, the model shares out the

influences, and some effects eventually compensate others,

which might result in the hydrostatic effect rising between

0.5 and 1, and the seasonal effect decreasing between

approximately 0.9 and 1. Conversely, because of its flexi-

bility, the ANN is able to produce some crossed effect

between the different loads; however, the limit of the SA

that is performed here lies in the fact that the non-varying

inputs are set to their average value, which is not repre-

sentative of all real load cases.

Finally, the curve corresponding to the time variable is

also of great interest, because it shows that the PL decrease

as t increases. In terms of structural behaviour, it means

that PL decreases when time passes, and since the analysed

PL are directly linked to the aperture of the interface, this

curve shows that the aperture is gradually closing on the

period of analysis. From an engineer point of view, the

closing of the interface is synonymous with an improve-

ment of the behaviour of the whole structure, and thus an

enhancement of its safety. The temporal VEC curve

obtained with HST shows a similar decreasing trend, but

since the temporal function is a one order linear law, the

slope is necessarily constant, which does not allow to

distinguish the variations of kinetic that are visible with the

ANN predictions.

5 Conclusion

This work proposed to challenge six data mining (DM)

techniques in order to determine which of them was the

most suitable to serve dam monitoring purposes. More

particularly, the comparison was based on the analysis of

piezometric measurements that were recorded at the rock–

concrete interface of an arch dam, in order to get a better

understanding of the phenomenon of the aperture of the

interface. The study of this nonlinear phenomenon included

an HST analysis, which is the historical multilinear

regression model that is classically used by civil engineers

in dam monitoring. The six DM algorithms were fed with

the same four basic inputs: time, the sine and cosine of the

season, and the scale water level. In contrast, HST has nine

inputs, all derived from the four previous ones. This

comparison has highlighted the need for such advanced
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techniques as DM techniques to deal with the nonlinear

features that are at stake.

Excluding the multiregression (MR) model, all the

remaining algorithms outperformed HST, and ANN stood

out as the most performing algorithm in terms of predic-

tion, closely followed by SVM. Consequently, the analysis

was pushed further for the ANN model, taking advantage

of its interpretability.

In order to draw conclusions on the behaviour of the

structure, a sensitivity analysis (SA) was performed both

for ANN and HST models, based on relative importance

plots and Variable Effect Characteristic (VEC) curves. This

SA was carried out in order to show the influence of the

three external physical loads that affect the behaviour of a

dam, namely the hydrostatic load, the thermal load and the

influence of time. This means that instead of studying the

influence of the model’s inputs individually, some group-

ings of those variables were considered, so as to be rep-

resentative of a physical reality. While HST was unable to

detect the coupled influence of the loads on the piezometric

levels, it appeared that ANN could adapt better, and the

observed effects were in accordance with the engineering

knowledge. This work thus shows that ANN can describe

more adequately the effect of the influencing loads. This

leads to a better understanding of how the aperture of the

rock–concrete interface evolves, which is a significant

issue for dam safety.

This work also detailed the performances of a multire-

gression (MR) model for which the four basic inputs were

provided, with HST, for which those four inputs were

supplemented by derived forms of those four inputs. Those

additional inputs permit to define a polynomial law to

describe the hydrostatic effect, and supplement the sine and

cosine of the season with their second-order harmonic, in

order to be more exhaustive in the description of the annual

thermal waves that impact the dam. Those more complete

hydrostatic and thermal laws were determined empirically.

What is interesting to see when comparing HST and this

MR is that adding pertinent input variables greatly

improves the predictions as shown on Fig. 5 and Table 3.

Noticeably, DM techniques are flexible enough to build

thresholds and combine the inputs so as to compute correct

effects. Thus, suppose that one variable is approached for

having an influence on a given phenomenon, DM algo-

rithms can be used to add ‘‘blindly’’ this new input. The

work of the engineer will then be to interpret the outputs of

those algorithms to define how this input impacts the

studied phenomenon. Subsequently, this understanding of

the impact of this new variable can help the engineer

determine new pertinent inputs to be used as inputs of

simpler models, which can bring major improvement to the

analysis, and ease of use. The advantage of this type of

approach is highlighted by this comparison between HST

and the MR model.

DM techniques can indubitably provide great improve-

ment to the dam monitoring profession, but interpreting

them falls within the competence of experienced engineers.

What is more, because of their complexity, advanced

algorithms are often more difficult to tune than simpler

models, and their flexibility requires that they should be

specifically adapted to the studied phenomenon. Conse-

quently, those promising techniques should be associated

with the engineer experience and will permit a better

understanding of the structure behaviour, especially when

safety is at stake.
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