
ORIGINAL ARTICLE

Improving learning and generalization capabilities of the C-Mantec
constructive neural network algorithm

Iván Gómez1 • Héctor Mesa1 • Francisco Ortega-Zamorano1 • José M. Jerez-Aragonés1 •

Leonardo Franco1

Received: 10 May 2018 / Accepted: 24 July 2019 / Published online: 1 August 2019
� Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
C-Mantec neural network constructive algorithm Ortega (C-Mantec neural network algorithm implementation on

MATLAB. https://github.com/IvanGGomez/CmantecPaco, 2015) creates very compact architectures with generalization

capabilities similar to feed-forward networks trained by the well-known back-propagation algorithm. Nevertheless, con-

structive algorithms suffer much from the problem of overfitting, and thus, in this work the learning procedure is first

analyzed for networks created by this algorithm with the aim of trying to understand the training dynamics that will permit

optimization possibilities. Secondly, several optimization strategies are analyzed for the position of class separating

hyperplanes, and the results analyzed on a set of public domain benchmark data sets. The results indicate that with these

modifications a small increase in prediction accuracy of C-Mantec can be obtained but in general this was not better when

compared to a standard support vector machine, except in some cases when a mixed strategy is used.

Keywords Constructive neural network � Feed-forward network � Support vector machine � C-Mantec � Learning and

generalization properties � Loading problem

1 Introduction

Artificial neural networks are biological inspired compu-

tational models based in the brain structure and operation,

composed of several interconnected nodes or neurons.

Some of these units exchange information with the envi-

ronment (input and output units), and others are internal

units communicating only with hidden or internal units

within the network. The learning and generalization prop-

erties of these models give them a wide applicability in

pattern recognition, financial analysis, biology, medicine,

image analysis, etc.

Supervised trained artificial neural networks have

evolved from the shallow architectures proposed in the

1980s [21] to the well-known deep learning (DL) neural

models used nowadays in several applications and that

have revolutionized the field of machine learning [12].

Despite the great advances and superior prediction

capabilities shown by DL architectures, there are certain

aspects that still leave room for other types of neural

architectures: (a) DL architectures are very large and need

heavy computational resources both in terms of memory

and computation, (b) DL has not shown clear improvement

over alternative techniques when small data sets are used.

Both previous aspects are relevant, in particular, to

embedded systems, used in sensors, actuators and in sev-

eral electronic devices, as small neural architectures with

good learning and generalization capabilities are needed

for their implementation in embedded devices.

Algorithms that can automatically determine an optimal

network architecture according to the complexity of the

underlying function embedded in the data set are highly

desirable [4, 7]. Efforts toward the network size determi-

nation have been made in the literature for many years, and

several techniques have been developed, among which we

can highlight as more important the decomposition of

singular values [26], techniques based on the study of the

geometry of classes [1, 7, 14, 28] or the analysis of the

entropy of information [27].
& Iván Gómez

ivan@lcc.uma.es

1 E.T.S.I. Informática, Universidad de Málaga, Málaga, Spain

123

Neural Computing and Applications (2020) 32:8955–8963
https://doi.org/10.1007/s00521-019-04388-2(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-7400-7860
https://github.com/IvanGGomez/CmantecPaco
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-019-04388-2&domain=pdf
https://doi.org/10.1007/s00521-019-04388-2

Alternative approaches have been proposed by other

authors, among which we can distinguish pruning tech-

niques and constructive methods [2, 5]. The latter option

offers the possibility of generating networks that grow as

the input data are analyzed. Moreover, the training pro-

cedure in the constructive algorithms, considered a com-

putationally expensive problem in the standard feed-

forward neural networks, can be done online and rela-

tively fast even in very small electronic devices [17].

Pruning techniques work in the opposite way, as large

architectures are used as starting point and neurons and

connections are pruned following an optimization crite-

rion. Further, constructive algorithms search for small

architecture solutions, offering the possibility of finding

networks with minimum size that could match the com-

plexity of the data.

C-Mantec (Competitive MAjority Network Trained by

Error Correction) is a constructive neural network

algorithm [23, 24] that has shown exactly these previ-

ously mentioned capabilities, through a competitive

scheme that leads to very small one hidden layer neural

architectures, and that has been successfully implemented

for its use in limited resource hardware such as micro-

controllers and embedded systems [17, 18], noting that

the use of a small architecture also reduces energy

consumption [25].

The C-Mantec algorithm builds neural networks with a

single hidden layer of neurons and a single output neuron,

adding new nodes to the hidden layer until all training

patterns are correctly classified. It combines competition

between neurons with a thermal perceptron learning rule

[6], adding stability to the acquired knowledge while the

architecture of the net grows. At the single-level neuron,

the C-Mantec algorithm uses the thermal perceptron rule,

while at a global level it performs a competitive strategy

between neurons, so obtaining more compact architectures.

The main difference with existing constructive algorithms

is that at all times, the existing neurons keep learning the

information provided by the input patterns without freezing

its synaptic weights as it is the standard procedure in most

constructive schemes.

This paper presents first in Sect. 2 a study of the training

procedure (‘‘loading problem’’), carried out in networks

trained by C-Mantec and back-propagation algorithms in

order to analyze the observed differences, to later analyze

in Sect. 3 the improvements implemented in the C-Mantec

algorithm with the aim of increasing its generalization

performance, by optimizing the hyperplanes of the neu-

rons. Section 3 includes the results obtained on a set of

benchmark functions. Finally, the conclusions of the

studies carried out are presented in Sect. 4.

2 Methods

2.1 C-Mantec neural network constructive
algorithm

We give below some introduction to the way the C-Mantec

algorithm functions as it is relevant to understand the rest

of results. C-Mantec generates one hidden layer network

architectures with a single output neuron. The activation

state (S) of each neuron in the hidden layer depends on the

N input signals Wi, and on the actual value of the N

synaptic weights wi and a bias b as follows:

S ¼
1ðONÞ if U� 0

0ðOFFÞ otherwise

�

where U corresponds to the synaptic potential of the neuron

and it is defined by:

U ¼
X

wiWi � b

The thermal perceptron rule modifies the synaptic weights

rwi after the presentation of a single input pattern

according to the following equation:

rwi ¼ ðt � SÞWiTfac

where t is the target value of the presented input and Wi

represents the value of input unit i connected to the output

by the weight wi. The Tfac factor can be defined as:

Tfac ¼
T

T0
e�

jUj
T

Similar to a simulated annealing process, the value of T

decreases with the learning process according to:

T ¼ T0 1� I

Imax

� �
;

where Imax defines the maximum number of iterations

allowed and I is a cycle counter. The thermal perceptron

can be seen as a modification of the standard perceptron

rule incorporating a modulation factor forcing the neurons

to learn only target examples close to the already learned

ones. For a deeper analysis of the performance of the

thermal rule, see the original paper [6].

Competition between neurons is implemented selecting

the neuron with a smallest value of / which will learn the

presented input if certain conditions are met (only if the

Tfac value is larger than the gfac parameter of the algorithm,

to prevent the unlearning of the previous stored informa-

tion), otherwise a new neuron will be added in the network

to learn it. The individual temperature T of each neuron is

lowered every time its weight is updated. The addition of a

new neuron to the network causes a reset of the individual

temperature of all neurons to the initial value T0. The

8956 Neural Computing and Applications (2020) 32:8955–8963

123

learning process continues until the whole set of input

patterns can be classified correctly by the network.

The C-Mantec output neuron computes the majority

function (also called the median operator [11]) of the

activation of hidden nodes, as previous experiments shown

very good capabilities among the set of linearly separable

functions ([22]). It outputs a classifier defined by a set of

hyperplanes which categorizes new examples. The growing

factor parameter determines when to stop the learning

cycle, including a new node in the hidden layer.

2.2 Set of benchmark data sets

In order to analyze the performance of the C-Mantec

algorithm and the different strategies to improve the

accuracy of the classification results, we have selected 15

real input and Boolean output data from the UCI Machine

Learning Repository [13] and the DELVE project. The data

set selected (name and number of inputs) is indicated in the

two first columns of Table 3.

2.3 Analysis of the training procedure (‘‘loading
problem’’) for C-Mantec and back-
propagation algorithms

Probably the most interesting aspect of neural networks is

its generalization ability. Even if there are some theories

explaining these effects, real results for specific architec-

tures and data are complex to be explained by general

theories, and thus, there is almost no other alternative than

relying in numerical simulations.

Feed-forward networks operate like combinatorial cir-

cuits during testing new examples, being this a fast and

fully defined phase, but before predictions can be retrieved

from a network, they require a training process to load the

information into their components. This process of

adjusting the synaptic weights so that the mapping system

output performs in a proper way has been known as loading

problem, being identified in general case as a NP-complete

problem in [9, 10]. One way to analyze this training pro-

cedure is to train a neural network and then study how each

of the neurons present in the hidden layers contributes to

the correct performance of the network during the training

phase. It has been argued that balanced loading (such as in

the back-propagation algorithm case) leads to better gen-

eralization ability than unbalanced cases that can occur in

constructive algorithms.

In this section, we study how the C-Mantec algorithm

generates the load distribution, comparing these results

using the back-propagation algorithm, trying to get an

insight into how this distribution can influence the gener-

alization capability of the networks.

We computed numerical simulations using the 15

benchmark data sets described in Sect. 2.2, using a size

architecture network determined by running the C-Mantec

algorithm. As one of the aims of the present study is the

possible application of the algorithms in limited resources

devices (microcontrollers, embedded systems, etc.) for a

useful comparison, the results obtained for the back-prop-

agation algorithm were executed with the same architecture

(i.e., one hidden layer architecture containing the same

number of neurons obtained for C-Mantec). The back-

propagation algorithm was run using the MATLAB neural

network toolbox with the default parameter settings using

the Levenberg–Marquardt training algorithm. We used a

classical data set splitting scheme to present examples to

the neural network, in which 75% of the whole set of

examples were used for training purposes and the

remaining 25% for testing the prediction performance.

In Table 1, the results of experiments for studying the

loading distribution are shown, where the first column is a

function identifier, the second column represents the

method implemented, the 3–8 columns represent the load-

ing information corresponding to every node in the network

using the C-Mantec and back-propagation algorithms, and

the two last columns indicate the generalization accuracy

with the testing set of examples and the standard deviation

of the loading information distributed over the nodes. The

loading values obtained for each of the neurons present in

the single hidden layer of the used architectures are com-

puted as follows: Once the training process of the networks

was finished, the fraction of times that the hidden neuron’s

output coincides with the desired target was analyzed.

Furthermore, we show in Fig. 1 the standard deviation

for the loading of the neurons as a function of the gener-

alization ability for back-propagation (right graph) and

C-Mantec (left graph), where it can be seen that the aver-

age of both quantities is larger for C-Mantec. The results

confirm the balanced loading distribution previously

observed for the back-propagation algorithm while larger

values are obtained for the C-Mantec algorithm. Never-

theless, in terms of the generalization ability observed

values are larger for C-Mantec but it is worth noting that

for back-propagation the number of neurons in the hidden

layer was not optimized but chosen equal to the one

selected by the C-Mantec algorithm.

A further analysis was still carried out in order to check

and analyze the functioning of the C-Mantec algorithm. In

Table 2, the incremental training accuracy is shown for the

different analyzed data sets as the architecture grows as

needed. The results confirm that the learning process fin-

ishes always with the complete training of the patterns,

noting that in order to accomplish this, the C-Mantec

algorithm removes some patterns considered as noise. In

relationship to this issue, in order to avoid overfitting

Neural Computing and Applications (2020) 32:8955–8963 8957

123

effects C-Mantec includes built-in process that remove

patterns considered as conflictive when they need a certain

number of learning modifications (the standard setting

consists in eliminating patterns needing more than the

average of the rest of the patterns plus two standard devi-

ations). Further details of the procedure can be found in the

original C-Mantec papers, where the algorithm was intro-

duced [23, 24].

3 Optimizing C-Mantec hyperplane
classification

The general observation about the performance of

C-Mantec is that it often generates architectures with good

prediction capabilities. The addition of new neurons into

the hidden layer of the architecture occurs when a new

training example cannot be classified correctly by the

network in the pre-defined number of iterations. The

addition of new nodes to the architecture might allow for

new and better hyperplane solutions, and even if the

training implemented in C-Mantec permits all neurons to

learn, it does not guarantee the optimal option. In order to

test how optimal the hyperplane selection was done with

the standard C-Mantec settings, we consider in this section

different options to optimize the hyperplane position.

A reasonable strategy is to select hyperplanes which

have the largest separation to the nearest data point of each

class. This situation is well known in the neural networks

area, and it is a standard machine learning principle, known

as the maximum margin classification [8]. Support vector

machines [3] use this principle to classify data, applying a

technique called kernel trick to convert a non-separable

problem to separable.

Table 1 Load distribution

information from every separate

hyperplane using C-Mantec and

back-propagation algorithms

Data Method 1 2 3 4 5 6 Gen. STD

Cancer1 CM 0.4733 0.9733 0.9328 0.3535

BP 0.9194 0.9194 0.9000 0

Card CM 0.8826 0.8195 0.8304 0.0445

BP 0.8521 0.8434 0.8434 0.0061

Diabetes CM 0.6992 0.779 0.7285 0.6562 0.6523 0.7968 0.0530

BP 0.8007 0.8125 0.7148 0.7617 0.7539 0.7539 0.0391

Ionosphere CM 0.9529 0.6410 0.8965 0.2205

BP 0.8448 0.9051 0.9051 0.0426

KsvsKp CM 0.9713 0.4931 0.9680 0.3381

BP 0.9765 0.9793 0.9793 0.0019

Sonar CM 1 0.7391 0

BP 0.6811 0.6811 0

Bands CM 0.6721 0.7500 0.4016 0.7172 0.6106 0.7190 0.1381

BP 0.6942 0.6446 0.6363 0.6694 0.6528 0.6528 0.0229

Fertility CM 0.8805 0.2985 0.8484 0.4115

BP 0.7878 0.7575 0.7575 0.0214

Haberman CM 0.7512 0.7720 0.7461 0.6424 0.2746 0.7291 0.2088

BP 0.6145 0.7187 0.7083 0.6979 0.6875 0.6875 0.0412

HeartStatlog CM 0.8777 0.6944 0.8222 0.1296

BP 0.8444 0.8444 0.8444 0

Heartc CM 0.8944 0.4888 0.5555 0.8333 0.2174

BP 0.8555 0.8111 0.8000 0.8000 0.0293

Mammographic CM 0.7473 0.7952 0.8085 0.6515 0.3909 0.7433 0.1722

BP 0.7326 0.7326 0.7272 0.7112 0.7058 0.7058 0.0125

Phoneme CM 0.7240 0.7263 0.7708 0.7358 0.7288 0.7083 0.7840 0.0209

BP 0.7924 0.7969 0.7891 0.8065 0.8104 0.8222 0.8222 0.0124

Pima CM 0.7089 0.7500 0.7519 0.7832 0.6503 0.7578 0.0512

BP 0.7656 0.7812 0.7500 0.7070 0.6796 0.6796 0.0422

Wisconsin CM 0.4733 0.9666 0.9530 0.3488

BP 0.9463 0.9463 0.9160 0

The two last columns shown the generalization results and the standard deviation of the load distribution

from C-Mantec method

8958 Neural Computing and Applications (2020) 32:8955–8963

123

According to the above strategy, we present three offline

approaches to create the new optimized hyperplane, named

maximum margin (MM), parallel to nearest neighbor

(PNN) and mixed, that offer the possibility of improving

the accuracy of the classifier generated by the C-Mantec

algorithm. The three mentioned approaches consider the

architecture determined by the application of the C-Mantec

method as the starting point, allowing the generation of a

new network configuration by modifying slightly every

hyperplane of the C-Mantec original solution through

certain operations involving the support vectors of every

class.

3.1 Maximum margin strategy (MM)

The MM strategy focuses on modifying each C-Mantec

classifier individually by an alteration of it, using the n

nearest training examples of every outcome half-space.

First, the algorithm works with the patterns classified in

one class, removing those misclassified and generating a

0 0.085 0.17 0.25 0.35
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

G
E

N
E

R
A

LI
ZA

TI
O

N

C−MANTEC

0 0.006 0.012 0.018 0.025
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

G
E

N
E

R
A

LI
ZA

TI
O

N

BACK−PROPAGATION

STANDARD DEVIATION STANDARD DEVIATION

(a) Standard deviation vs. generalization for C-Mantec and back-propagation
algorithms. The central mark is the median, and the edges of every box are
the 25th and 75th percentiles

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

STANDARD DEVIATION

G
E

N
E

R
A

LI
ZA

TI
O

N

C−MANTEC

BACK PROPAGATION

(b) Standard deviation vs generalization for both C-Mantec and back-propagation
algorithms drown on the same scale

Fig. 1 Generalization results vs standard deviation from the loading distribution with C-Mantec and the back-propagation algorithms

Neural Computing and Applications (2020) 32:8955–8963 8959

123

group (Gþ) of patterns sorting out by their distance to the

original C-Mantec classifier surface. Only these nearest n

elements are saved in this group. The same process is done

with the opposite class, generating the group G�.
The algorithm continues selecting the first pattern of Gþ

group and matching it with the nearest pattern of the

opposite group G�. Once this correspondence is hold out,

the midpoint is computed and the two patterns are dropped

from their respective group. Carrying out the same opera-

tion with all patterns in Gþ, we obtain the n midpoints to

compute/build the new MM hyperplane HMM .

We considered not to apply the MM strategy if the

number of examples included in any of the classes is lower

than n. Figure 2 shows a scheme of the MM strategy

implementation.

3.2 Parallel to nearest neighbor strategy (PNN)

The PNN strategy considers the two groups of patterns

computed from the MM strategy, and it has two parts: Once

the Gþ group is generated, the algorithm computes the

hyperplane Hþ defined by the n nearest points of Gþ to the

C-Mantec hyperplane HCM. This hyperplane Hþ is con-

sidered to find the nearest point xj belonging to the opposite

group, and computing the hyperplane through this point

and being parallel to Hþ, H
0
þ. Finally, the bisector hyper-

plane determined by Hþ and H0
þ is considered as candidate,

labeled as Hþ�. Following the same technique, the algo-

rithm considers the opposite group of patterns, G�, to

determine H��. Figure 3 shows a scheme of the PNN

strategy implementation.

3.3 Mixed strategy

The Mixed strategy starts with a performance of the

C-Mantec algorithm with a standard set of parameters.

Thus, considering each hyperplane generated from the

C-Mantec method individually, the MM and PNN

Table 2 Incremental load distribution obtained from the C-Mantec

application in training phase

Data Nodes

1 2 3 4 5 6

Cancer1 0.4733 1

Card 0.8826 1

Diabetes 0.6992 0.8016 0.8016 0.8016 1

Ionosphere 0.9529 1

KsvsKp 0.9713 1

Sonar 1

Bands 0.6721 0.8074 0.8074 0.8607 1

Fertility 0.8805 1

Haberman 0.7512 0.7688 0.7688 0.2850 1

HeartStatlog 0.8777 1

Heartc 0.8944 0.8000 1

Mammographic 0.7473 0.9661 0.9831 0.9831 1

Phoneme 0.7240 0.8551 0.8551 0.8551 0.8591 1

Pima 0.7089 0.8721 0.8721 0.8721 1

Wisconsin 0.4733 1

Fig. 2 Maximum margin strategy (MM). HCM is the actual C-Mantec

hyperplane. The Gþ class is filled with closest examples to the C-

Mantec hyperplane, xi and xj. G� is generated following the same

procedure. HMM is computed with the midpoints between pairs of

n closest point at different sides of the hyperplane

Fig. 3 PNN strategy scheme. Hþ� and H�� are the hyperplane

candidates

8960 Neural Computing and Applications (2020) 32:8955–8963

123

strategies are computed, and the results are compared to

each other. The option with the best accuracy values using

the training set will be selected to replace the C-Mantec

hyperplane. We note that the application of the Mixed

method could provide with architectures without changes

in the C-Mantec architecture when the computation of the

new strategies in each hyperplane does not improve gen-

eralization values.

3.4 Simulations and results

We have performed exhaustive simulations to find the best

set of hyperplanes applying the MM and PNN strategies or

a combinations of them, named as Mixed strategy, to

modify each hyperplane resulting from the application of

C-Mantec algorithm. In order to carry out the experiments,

we have considered a data partition scheme with ten ran-

dom boxes, taking nine of them as training and the

remaining one as test. Experiments and analysis have been

carried out in MATLAB, 2012b version. For further

comparison, simulations were carried out also for a stan-

dard support vector machine (SVM) with polynomial ker-

nels run with standard settings under MATLAB.

The data and simulation results are summarized in

Table 3. The first two columns indicate the name and the

number of input variables of each problem. The third and

fourth columns refer to the generalization ability obtained

from the application of the standard C-Mantec algorithm

together with the final training accuracy, which is always 1

for standard C-Mantec as it learns up to perfect training

using an elimination procedure of patterns considered as

noise. The six following columns correspond to the results

in accuracy with test examples and train patterns using the

MM and PNN strategy and also an SVM model used for

comparison. The last five columns show the results for the

Mixed strategy, where in the last three columns the values

correspond to the percentage of hyperplanes used for the

Mixed strategy.

A difference between the generalization ability for the

test patterns is appreciate in Table 3, where we can see an

improvement in these values obtained for the majority of

the problems considered when the MM strategy is applied,

showing/reflecting the worst results with the performance

of the PNN strategy in isolation. As might be expected, the

prediction ability concerning with a Mixed strategy pro-

duces an interesting improvement in a high proportion of

the considered data set.

A more detailed analysis of Table 3 reveals an effective

performance of the C-Mantec algorithm for the data with a

low and medium complexity (highest generalization values

with test patterns). As the complexity of the data grows, we

can emphasize that the times when the PNN technique is

involved overcome the use of the MP technique. Regarding

the comparison with the values obtained from a SVM, we

Table 3 Generalization ability obtained in a set of benchmark data sets for C-Mantec (CM) and three alternative hyperplane optimization

solutions (MM, PNN, Mixed)

Data Inputs CM MM PNN SVM Mixed

Gen Train Gen Train Gen Train Gen Train Gen Train %CM %MM %PNN

KsvsKp 36 0.9748 1 0.9748 1 0.9748 1 0.9587 0.9587 0.9748 1 100 0 0

Cancer1 9 0.9559 1 0.9568 0.9999 0.8283 0.8560 0.9530 0.9533 0.9604 0.9972 90 5 5

Wisconsin 10 0.9532 1 0.9572 0.9969 0.8132 0.8478 0.9700 0.9329 0.9572 0.9969 90 4 6

Ionosphere 34 0.8811 1 0.8811 1 0.8811 1 0.8793 0.9274 0.8811 1 100 0 0

Fertility 10 0.8700 1 0.8780 0.9861 0.8640 0.9787 0.8788 0.8806 0.8780 0.9782 75 8 17

Card 24 0.8478 1 0.8478 1 0.8478 1 0.8609 0.8652 0.8478 1 100 0 0

Heartc 13 0.8365 1 0.8365 1 0.8365 1 0.8788 0.8500 0.8365 1 100 0 0

HearthSt 13 0.8193 1 0.8222 0.9963 0.7956 0.8880 0.7556 0.8722 0.8407 0.9737 81 4 15

Mammographic 6 0.7884 1 0.7894 0.9957 0.6208 0.6922 0.7914 0.7553 0.7855 0.9819 83 3 14

Pima 8 0.7730 1 0.7779 0.9890 0.7683 0.9494 0.7852 0.7715 0.7846 0.9714 70 8 22

Phoneme 5 0.7729 1 0.7723 0.9966 0.7566 0.9485 0.7751 0.7754 0.7690 0.9827 55 7 38

Diabetes 20 0.7703 1 0.7787 0.9866 0.7622 0.9347 0.7813 0.7832 0.7792 0.9770 61 7 32

Sonar 60 0.7528 1 0.7537 0.9954 0.5303 0.5374 0.7826 0.8921 0.7576 0.9906 98 0 2

Haberman 3 0.7440 1 0.7481 0.9890 0.7501 0.9697 0.7292 0.7254 0.7585 0.9856 70 2 28

Bands 39 0.6729 1 0.6735 0.9977 0.6735 0.9968 0.6612 0.7295 0.6735 0.9983 98 2 0

Average 0.8245 1 0.8265 0.9929 0.7770 0.9074 0.8294 0.8848 0.8285 0.9883

Also, the results of generalization and training with a support vector machine are included. For the mixed strategy, the percentage o hyperplanes

corresponding to each of the original strategies is shown

Bold values indicate the best results obtained with any of the tested methods

Neural Computing and Applications (2020) 32:8955–8963 8961

123

see that the SVM leads to slightly larger prediction values

that are almost similar to those that can be obtained using

the Mixed strategy.

One interesting aspect of the current comparison done

between C-Mantec, back-propagation and SVMs is its

possible hardware implementation in microcontrollers and

embedded systems like FPGAs. In the previous works

[17, 19], we implemented both C-Mantec and the back-

propagation algorithm in FPGAs and microcontrollers, and

the comparison shows that C-Mantec needs lower hardware

resources than back-propagation (considering the same

architecture) due to the different transfer functions they use

[20]. Regarding the comparison between C-Mantec and

SVM, based on published bibliography [15] and our

experience the situation looks similar, and even more

favorable to C-Mantec given that SVMs usually utilize a

much larger number of kernel units than C-Mantec.

4 Conclusions and future work

We have analyzed in this work the functioning of the

C-Mantec constructive neural network algorithm, carrying

out a deep study of how the training of the patterns is

performed, a problem known as the loading problem,

considered of interest as it is related to the generalization

ability that can be obtained. The analysis done in Sect. 2

shows that C-Mantec has a loading distribution among the

neurons in the hidden layer that is more unbalanced than

that obtained for the well-known back-propagation algo-

rithm, with a value of the standard deviation of 0.17. A

more detailed analysis of every individual case shows that

in most cases, the deviation values were lower (below 0.05)

but in some cases in which only very few neurons were

needed the deviation values were higher, with several cases

with values approximately around 0.35, but noting that

even in these cases the generalization ability observed was

still high. The conclusion of this part of the study might

suggest that for complex problems where many neurons are

needed the loading distribution is quite balanced as

expected because C-Mantec permits all neurons to learn

simultaneously. In the second part of this work, we ana-

lyzed different alternative optimization strategies for the

separating hyperplanes of the hidden neurons for the

C-Mantec algorithm, having found that on average only a

relatively small increase in performance can be obtained,

but that for the case of complex problems (for which we

used as indication the generalization obtained) some more

benefit can be observed mainly by using the PNN (parallel

to nearest neighbor) strategy.

As an overall conclusion, we can say that the standard

version of the C-Mantec algorithm performs quite well and

that in order to obtain larger accuracies like the ones

observed in recent year through the use of DL models, it

might be necessary to include further layers rather than

thinking on optimizations of the current model, as no big

improvements have been found with the analyzed alterna-

tives. Nevertheless, one important point observed before

and confirmed in this work is that the overall performance

of C-Mantec is very competitive in comparison with

alternative machine learning models, such as standard

back-propagation and SVM, noting that a big advantage of

C-Mantec models is the lower number of units present in

the generated models that make them ideal for the imple-

mentation in limited resource hardware, as is the case of

micro-controllers, embedded systems, etc.

Acknowledgements The authors acknowledge support through

Grants TIN2014-58516-C2-1-R and TIN2017-88728-C2 from

MINECO-SPAIN and from Universidad de Málaga (Plan propio)

which include FEDER funds.

References

1. Arai M (1993) Bounds on the number of hidden units in binary-

valued three-layer neural networks. Neural Netw 6(6):855–860

2. Augasta MG, Kathirvalavakumar T (2013) Pruning algorithms of

neural networks—a comparative study. Cent Eur J Comput Sci

3(3):105–115

3. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn

20(3):273–297

4. Franco L (2006) Generalization ability of boolean functions

implemented in feedforward neural networks. Neurocomputing

70(1–3):351–361

5. Franco L, Elizondo DA, Jerez J (2009) Constructive neural net-

works, 1st edn. Springer, Berlin

6. Frean MR (1992) A ‘‘thermal’’ perceptron learning rule. Neural

Comput 4(6):946–957

7. Gómez I, Franco L, Jerez JM (2009) Neural network architecture

selection: can function complexity help? Neural Process Lett

30(2):71–87

8. Gong Y, Xu W (2007) Machine learning for multimedia content

analysis (multimedia systems and applications). Springer, New

York

9. Judd S (1987) Learning in networks is hard. In: Proceedings of

the first IEEE neural network conference (San Diego), pp. II–

685–692

10. Judd S (1988) On the complexity of loading shallow neural

networks. J Complex 4(3):177–192

11. Knuth D (2008) Introduction to combinatorial algorithms and

boolean functions. Art of computer programming: newly avail-

able sections of the classic work/Donald E. Knuth. Addison-

Wesley, Boston

12. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature

521(7553):436–444

13. Lichman M (2013) UCI Machine Learning Repository. Univer-

sity of California, School of Information and Computer Science,

Irvine, CA. http://archive.ics.uci.edu/ml

14. Mirchandani G, Cao W (1989) On hidden nodes for neural nets.

IEEE Trans Circuits Syst 36(5):661–664

15. Orozco-Duque A, Rúa Pérez S, Zuluaga S, Redondo A, Restrepo

J, Bustamante J (2013) Support vector machine and artificial

neural network implementation in embedded systems for real

time arrhythmias detection. In: BIOSIGNALS 2013—

8962 Neural Computing and Applications (2020) 32:8955–8963

123

http://archive.ics.uci.edu/ml

proceedings of the international conference on bio-inspired sys-

tems and signal processing. pp 310–313

16. Ortega F (2015) C-mantec neural network algorithm implemen-

tation on matlab. https://github.com/IvanGGomez/CmantecPaco.

Accessed 10 July 2019

17. Ortega F, Jerez J, Franco L (2014) Fpga implementation of the

c-mantec neural network constructive algorithm. IEEE Trans Ind

Informatics 10(2):1154–1161

18. Ortega-Zamorano F, Jerez J, Subirats J, Molina I, Franco L

(2014) Smart sensor/actuator node reprogramming in changing

environments using a neural network model. Eng Appl Artif

Intell 30:179–188

19. Ortega-Zamorano F, Jerez JM, Urda D, Luque Baena RM, Franco

L (2016) Efficient implementation of the backpropagation algo-

rithm in fpgas and microcontrollers. IEEE Trans Neural Netw

Learn Syst 27:1840–1850

20. Ortega-Zamorano F, Jerez JM, Juárez GE, Franco L (2017) Fpga

implementation of neurocomputational models: comparison

between standard back-propagation and c-mantec constructive

algorithm. Neural Process Lett 46:899–914

21. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning repre-

sentations by back-propagating errors. Nature 323:533–536

22. Subirats JL, Franco L, Gomez I, Jerez JM (2008) Computational

capabilities of feedforward neural networks: the role of the output

function. Proc XII CAEPIA 7:231–238

23. Subirats JL, Jerez JM, Gómez I, Franco L (2010) Multiclass

pattern recognition extension for the new c-mantec constructive

neural network algorithm. Cogn Comput 2(4):285–290

24. Subirats JL, Franco L, Jerez JM (2012) C-mantec: a novel con-

structive neural network algorithm incorporating competition

between neurons. Neural Netw 26:130–140

25. Urda D, Cañete E, Subirats JL, Franco L, Llopis L, Jerez J (2012)

Energy-efficient reprogramming in wsn using constructive neural

networks. Int J Innov Comput Inf Control 8:7561–7578

26. Wang J, Yi Z, Zurada JM, Lu B-L, Yin H, Eds. (2006) Advances

in neural networks—ISNN 2006, third international symposium

on neural networks, Chengdu, China, May 28-June 1, 2006,

proceedings, part I, vol. 3971 of lecture notes in computer sci-

ence. Springer

27. Yuan HC, Xiong FL, Huai XY (2003) A method for estimating

the number of hidden neurons in feed-forward neural networks

based on information entropy. Comput Electron Agric 40:57–64

28. Zhang Z, Ma X, Yang Y (2003) Bounds on the number of hidden

neurons in three-layer binary neural networks. Neural Netw

16(7):995–1002

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2020) 32:8955–8963 8963

123

https://github.com/IvanGGomez/CmantecPaco

	Improving learning and generalization capabilities of the C-Mantec constructive neural network algorithm
	Abstract
	Introduction
	Methods
	C-Mantec neural network constructive algorithm
	Set of benchmark data sets
	Analysis of the training procedure (‘‘loading problem’’) for C-Mantec and back-propagation algorithms

	Optimizing C-Mantec hyperplane classification
	Maximum margin strategy (MM)
	Parallel to nearest neighbor strategy (PNN)
	Mixed strategy
	Simulations and results

	Conclusions and future work
	Acknowledgements
	References

