
ORIGINAL ARTICLE

Online learning based on adaptive learning rate for a class of recurrent
fuzzy neural network

A. Aziz Khater1 • Ahmad M. El-Nagar1 • Mohammad El-Bardini1 • Nabila M. El-Rabaie1

Received: 17 January 2019 / Accepted: 19 July 2019 / Published online: 29 July 2019
� Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
This paper proposes a novel structure of a recurrent interval type-2 TSK fuzzy neural network (RIT2-TSK-FNN) controller

based on a reinforcement learning scheme for improving the performance of nonlinear systems using a less number of

rules. The parameters of the proposed RIT2-TSK-FNN controller are leaned online using the reinforcement actor–critic

method. The controller performance is improved over the time as a result of the online learning algorithm. The controller

learns from its own mistakes and faults through the reward and punishment signal from the external environment and seeks

to reinforce the RIT2-TSK-FNN controller parameters to converge. In order to obtain less number of rules, the structure

learning is performed and thus the RIT2-TSK-FNN rules are obtained online based on the type-2 fuzzy clustering. The

online adaptation of the proposed RIT2-TSK-FNN controller parameters is developed using the Levenberg–Marquardt

method with adaptive learning rates. The stability analysis is discussed using the Lyapunov theorem. The obtained results

show that the proposed RIT2-TSK-FNN controller using the reinforcement actor–critic technique is more preferable than

the RIT2-TSK-FNN controller without the actor–critic method under the same conditions. The proposed controller is

applied to a nonlinear mathematical system and an industrial process such as a heat exchanger to clarify the robustness of

the proposed structure.

Keywords Reinforcement learning � Recurrent interval type-2 fuzzy neural networks � LM method � Lyapunov function �
Adaptive learning rate

1 Introduction

The control of the industrial systems that have inherent

uncertainties in terms of precision of the sensors, a noise

produced by the sensors, nonlinear characteristic of the

actuator and the system structure has been a serious chal-

lenge [1, 2]. The conventional control methodologies are

found to be inadequate for meeting these requirements,

especially when it is needed for controlling the nonlinear

dynamical systems in real time [3]. Moreover, it is hard to

apply the conventional control approaches when the system

model is anonymous or slightly known. Accordingly, the

development of more advanced techniques becomes more

important, in particular such complex nonlinear dynamical

systems [4]. Recently, the stable controllers for the non-

linear dynamical systems are presented based on the

learning approaches such as genetic, sliding mode, back-

stepping and particle swarm optimization [5–8].

On the other hand, there is an active area of model-free

approaches within the framework of machine learning and

computational intelligence such as reinforcement learning

(RL) [9–11]. The RL paradigm, which is called a goal-

oriented system, is mainly depending on the concept of

learning from the experience with the principle of the

reward and the punishment. The RL algorithm obtains its

experience and evolves strategies to take an optimal control

& Ahmad M. El-Nagar

ahmed.elnagar@el-eng.menofia.edu.eg

A. Aziz Khater

Abdelazizali2020@yahoo.com

Mohammad El-Bardini

dralbardini@el-eng.menofia.edu.eg

Nabila M. El-Rabaie

Nabila2100@gmail.com

1 Department of Industrial Electronics and Control

Engineering, Faculty of Electronic Engineering, Menoufia

University, Menouf 32852, Egypt

123

Neural Computing and Applications (2020) 32:8691–8710
https://doi.org/10.1007/s00521-019-04372-w(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-8092-3387
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-019-04372-w&domain=pdf
https://doi.org/10.1007/s00521-019-04372-w

policy for achieving a good control quality from unknown

nonlinear dynamical system [12]. Q-learning, actor–critic

learning, Sarsa learning and adaptive dynamic program-

ming (ADP) are different algorithms normally used in the

RL [13]. The Q-learning and Sarsa learning algorithms

need a range of actions and the number of states to give the

best response [14, 15]. Dynamic programming (DP) is a

widely used method for generating the optimal control for

nonlinear systems. This method employs Bellman’s prin-

ciple of optimality, but it has a well-recognized problem,

namely curse of dimensionality [16]. Because of the

backward direction of research and the particular number

of analytic conditions, the Hamilton–Jacobi–Bellman

(HJB) equation makes the DP method prohibit the wide use

in real-time control. The approximated solution for the

Bellman equation was obtained by developing an element

that is known as a critic [17]. The DP and the multilayer

perceptron (MLP) neural network are incorporated together

to obtain the ADP [18]. The adaptive critic designs

(ACDs), which are considered the universal functional

approaching structures, are formed from the artificial

neural networks (ANNs) to adapt the controller parameters

when the controlled plant is affected by disturbances,

uncertainties and load changes [19, 20]. The asymptotic

stability analysis issue for the ANNs is investigated in

[21–26]. The reinforcement actor–critic learning methods

have a separate memory structure to explicitly represent the

policy independent of the value function, where the actor

carries out the approximation of the control policy function

by applying an action to the system and then the critic

recognizes the approximation of the value function, i.e.,

assessing the current control policy.

In [27], the authors implemented the actor and the critic

elements using the ANN, but their algorithm has not been

tested under parameter variation uncertainty and distur-

bance effects. In [28–30], the critic and the actor elements

were implemented using the feed-forward ANN (FFANN)

where their structures utilize the states and the output of the

actor as the inputs to the critic. In [31], the authors pre-

sented one network that represents the incorporation of the

critic and the actor elements, the so-called consolidated

actor–critic model (CACM), in which the prior values of

the hidden layer nodes beside the states and the action are

considered the inputs of the network. The researchers

added a third network, which is used as a reference [32].

Accordingly, the ADP structure combines an actor, a critic

and a reference network (ADPACRN). This structure

facilities the learning by building an internal reinforcement

signal. The third network may be considered a goal net-

work as described in [33]. This structure is known as a goal

representation heuristic dynamic programming (GRHDP).

The inserted third network contributes to improving the

performance of the controller; however, it increases the

computational time as a result of incrementing the number

of weights [34]. Moreover, the actor was represented by the

Takagi–Sugeno (T–S) fuzzy system in which the Lyapunov

theory was used for deriving the parameter adaptation law,

namely adaptive T–S fuzzy using reinforcement learning

based on Lyapunov stability (ATSFRL-LS) [35]. The

structure of the ATSFRL-LS depends on the parallel dis-

tributed control (PDC), which is used for stabilizing the

system. The PDC uses a fuzzy system for the system model

and another fuzzy system.

The FNN merges the capability of the fuzzy inference

technique and the capability of the ANNs for online

learning from the plant [36]. There are two types of the

FNN: the feed-forward FNN (FFNN) and the recurrent

FNN (RFNN). The topologies of the RFNN involve feed-

back loops that can memorize the past data. In contrast to

the FFNN architectures, which exhibit static input–output

behavior, the RFNN is capable of storing the data from the

past (e.g., previous plant states) and overcoming the net-

work size problem. Therefore, it is more convenient for the

nonlinear dynamic systems analysis [37, 38]. The FFNN

and the RFNN cannot minimize the influence of system

uncertainties in the real plant due to their dependence on

the type-1 fuzzy sets (T1-FSs) [39]. On the other hand, the

type-2 fuzzy logic systems (T2-FLSs), which use the type-

2 fuzzy sets (T2-FSs), are capable of minimizing the effect

of the system uncertainties compared with the type-1 fuzzy

logic systems (T1-FLSs) counterpart. The T2-FLSs have

been successfully applied in various applications [40–45].

In recent years, the interval type-2 FNNs (IT2-FNNs) have

been used for handling the uncertainties and the interval

type-2 TSK-FNNs (IT2-TSK-FNNs) are used for nonlinear

systems identification and control. The learning accuracy

and the network performance for the TSK-type IT2-FNNs

are better than for the Mamdani-type IT2-FNNs [46–48].

All the previous works that were described in [27–35]

have a less performance with the influence of the system

uncertainties, external disturbances and measurement

noise. For solving this problem, a novel structure of a

recurrent interval type-2 TSK fuzzy neural network (RIT2-

TSK-FNN) is proposed. The proposed RIT2-TSK-FNN is

learned online using the RL scheme. The proposed RL

scheme consists of two parts: The first part is the critic that

is represented based on the ANN and the other is the actor

that is implemented based on the proposed RIT2-TSK-

FNN. The number of the IF-THEN rules for the proposed

RIT2-TSK-FNN is obtained online based on the type-2

fuzzy clustering. The online learning method for the critic

and the actor is developed based on the LM method, which

gives a perfect exchange between the stability of the gra-

dient steepest descent method and the speed of the Newton

algorithm. To speed up the learning algorithm, the adaptive

learning parameter is developed by utilizing a fuzzy logic

8692 Neural Computing and Applications (2020) 32:8691–8710

123

system. The learning rates conditions are derived to guar-

antee the controlled system stability by using the Lyapunov

stability theory. To show the robustness of the proposed

structure to respond the system uncertainties, the proposed

controller is applied to an uncertain mathematical nonlinear

system and the heat exchanger process. The main advan-

tages of the proposed controller over existing controllers

are summarized as: (1) The proposed controller has a

robustness performance with the influence of the system

uncertainties and external disturbances compared to other

learning techniques due to using the IT2-TSK-FNN. (2)

The proposed controller has structure learning and has a

good performance with small number of rules due to the

recurrent in the input and rule layers. (3) The learning rates

are changed online according to fuzzy logic system during

the implementation of the algorithm to assure the stability

and speed up the convergence.

The main contributions of this paper are summarized as:

(1) Proposing a new structure of the RIT2-TSK-FNN. (2)

Proposing a new online learning for the developed RIT2-

TSK-FNN based on a reinforcement actor–critic scheme.

(3) Developing the parameters of the actor–critic based on

the LM algorithm. (4) Obtaining the optimal values for the

learning rates using the fuzzy logic system and the Lya-

punov function.

The rest of the paper is organized as follows: The

structure of the RIT2-TSK-FNN is described in Sect. 2.

Section 3 describes the proposed RL scheme. Section 4

presents the online learning of the proposed RL scheme.

Section 5 describes the simulation results for nonlinear

mathematical system and the steam-water heat exchanger

process. This would be followed by the conclusion and the

relevant references.

2 Proposed RIT2-TSK-FNN structure

This section presents the structure of the RIT2-TSK-FNN.

Figure 1 shows the structure of the proposed network,

which is composed of six layers. The antecedent parts of

the RIT2-TSK-FNN are represented using the IT2-FSs. The

consequent part for each fuzzy rule is characterized by the

TSK type. Each type-2 fuzzy rule for the RIT2-TSK-FNN

is defined as:

Rule i : IF x1 nð Þ is ~Bi
1AND. . .xk nð Þ is ~Bi

k THEN hi nð Þ is ~bi0

þ
Xk

j¼1

~bijxj nð Þ; i ¼ 1; 2; . . .;M;

ð1Þ

where x1 nð Þ; . . .; xk nð Þ are the recurrent incoming inputs, ~Bi
j

are the IT2-FSs, ~bi0;
~bij are interval sets where ~bi0 ¼

½ci0 � si0; ci0 þ si0� and ~bij ¼ ½cij � sij; c
i
j þ sij�, and k and M

are the network inputs and the number of the rules,

respectively. For each layer, O
pð Þ
j is symbolizing the output

of layer p.

Layer 1: This layer is called an input layer, which is

indicated in Fig. 1, in which the internal feedback con-

nection can temporarily store the dynamic data and cope

with temporal input noise efficiently. The mathematical

expression for this layer is expressed as:

O
ð1Þ
j nð Þ ¼ xj nð Þ þ aj nð ÞOð1Þ

j n� 1ð Þ; j ¼ 1; . . .; k; ð2Þ

where xj nð Þ represents the input variable and aj nð Þ is the

input recurrent weight.

Layer 2: This layer is called a membership layer, which is

described in Fig. 1, in which each node is represented by a

membership function (MF) where the fuzzification opera-

tion is performed. The output from the first layer O
ð1Þ
j nð Þ is

fuzzified using the Gaussian IT2-FS with a certain mean

mi
j1;m

i
j2

h i
and a fixed width r as shown in Fig. 2, where i

represents the fuzzy set. Each layer node can be symbol-

ized as an upper MF, �O
2ð Þ
ij nð Þ, and a lower MF, O

2ð Þ
ij nð Þ,

which are defined as:

�O
2ð Þ
ij nð Þ ¼

exp � 1

2

O
ð1Þ
j nð Þ � mi

j1 nð Þ
rij nð Þ

 !2
0

@

1

A; O
ð1Þ
j nð Þ\mi

j1 nð Þ

1; mi
j1 nð Þ�O

ð1Þ
j nð Þ�mi

j2 nð Þ

exp � 1

2

O
ð1Þ
j nð Þ � mi

j2 nð Þ
rij nð Þ

 !2
0
@

1
A; O

ð1Þ
j nð Þ[mi

j2 nð Þ

8
>>>>>>>>>><

>>>>>>>>>>:

;

ð3Þ

O
2ð Þ
ij nð Þ ¼

exp � 1

2

O
ð1Þ
j nð Þ � mi

j2 nð Þ
rij nð Þ

 !2
0
@

1
A; O

ð1Þ
j nð Þ�

mi
j1 nð Þ þ mi

j2 nð Þ
2

exp � 1

2

O
ð1Þ
j nð Þ � mi

j1 nð Þ
rij nð Þ

 !2
0
@

1
A; O

ð1Þ
j nð Þ[

mi
j1 nð Þ þ mi

j2 nð Þ
2

:

8
>>>>>>><

>>>>>>>:

ð4Þ

Layer 3: This layer is called a recurrent layer, which is

indicated in Fig. 1, where the number of the nodes equals

the number of the recurrent rules, which corresponds to the

number of the fuzzy sets in each input. Each recurrent rule

node contains an internal feedback loop, which handles the

uncertainties. The output of each node performs a temporal

firing strength whose value does rely not only on the cur-

rent spatial firing strength Fi nð Þ but also on the previous

temporal firing strength Fi n� 1ð Þ. The output of each

recurrent node is computed by a fuzzy AND operator. The

firing strength can be described by a crisp interval as

follows:

Neural Computing and Applications (2020) 32:8691–8710 8693

123

Fi nð Þ ¼ �X
i
nð Þ;Xi nð Þ

h i
; i ¼ 1; . . .;M; ð5Þ

Xi nð Þ ¼
Yk

j¼1

O
2ð Þ
ij nð Þ; �Xi

nð Þ ¼
Yk

j¼1

�O
2ð Þ
ij nð Þ: ð6Þ

The crisp interval of the temporal firing strength

�O
3ð Þ
i nð Þ;O 3ð Þ

i nð Þ
h i

is a linear aggregation of the previous

temporal firing strength O
3ð Þ
i n� 1ð Þ and the spatial firing

strength Fi nð Þ, which can be given as:

Fig. 1 Structure of the proposed

RIT2-TSK-FNN

Fig. 2 Uncertain mean

Gaussian IT2-FS

8694 Neural Computing and Applications (2020) 32:8691–8710

123

O
3ð Þ
i nð Þ ¼ liFi nð Þ þ 1 � li

� �
O

3ð Þ
i n� 1ð Þ; ð7Þ

where li is an internal feedback weight, 0� li � 1ð Þ. The

value of li defines the achievement ratio between the

immediate and previous inputs that effects on the network

output. Thus, (7) can be written as:

�O
3ð Þ
i nð Þ;O 3ð Þ

i nð Þ
h i

¼ li �X
i
nð Þ;Xi nð Þ

h i

þ 1 � li
� �

�O
3ð Þ
i n� 1ð Þ;O 3ð Þ

i n� 1ð Þ
h i

;

ð8Þ

where

�O
ð3Þ
i nð Þ ¼ li �X

i
nð Þ þ 1 � li

� �
�O
ð3Þ
i n� 1ð Þ ð9Þ

and

O
ð3Þ
i nð Þ ¼ liXi nð Þ þ 1 � li

� �
O

ð3Þ
i n� 1ð Þ: ð10Þ

Layer 4: This layer is called a consequent layer, which is

described in Fig. 1, in which each node output is imple-

mented depending on the TSK type. The consequent

parameters for each rule are T1-FS. The number of the

layer nodes is corresponding to the number of the obtained

rules. The output of this layer O
4ð Þ
i nð Þ; �O

4ð Þ
i nð Þ

h i
is

expressed as:

O
4ð Þ
i nð Þ; �O 4ð Þ

i nð Þ
h i

¼ ci0 � si0;c
i
0 þ si0

� �

þ
Xk

j¼1

cijO
1ð Þ
j ðnÞ �

Xk

j¼1

sij O
1ð Þ
j ðnÞ

���
���

 !
;

"

�
Xk

j¼1

cijO
1ð Þ
j ðnÞ þ

Xk

j¼1

sij O
1ð Þ
j ðnÞ

���
���

 !#
;

ð11Þ

where

O
4ð Þ
i nð Þ ¼

Xk

j¼0

cijO
1ð Þ
j ðnÞ �

Xk

j¼0

sij O
1ð Þ
j ðnÞ

���
��� ð12Þ

and

�O
4ð Þ
i nð Þ ¼

Xk

j¼0

cijO
1ð Þ
j ðnÞ þ

Xk

j¼0

sij O
1ð Þ
j ðnÞ

���
���; ð13Þ

where O
1ð Þ

0 ðnÞ ¼ 1.

Layer 5: This layer is called a type reduction layer, which

is indicated in Fig. 1, in which the H factors are used to

reduce the computation operations of the IT2-FLS [49].

The design factors Hl;Hr½ � weight the sharing of lower and

upper firing levels of each fired rule. The output of type

reduction is represented by two nodes, which can be cal-

culated as:

O 5ð Þ nð Þ

¼ 1�Hlð Þ
PM

i¼1
�O

3ð Þ
i nð ÞO 4ð Þ

i nð ÞþHl

PM
i¼1O

3ð Þ
i nð ÞO 4ð Þ

i nð Þ
PM

i¼1O
3ð Þ
i nð Þþ �O

3ð Þ
i nð Þ

;

ð14Þ
�O 5ð Þ nð Þ

¼ 1�Hrð Þ
PM

i¼1O
3ð Þ
i nð Þ �O 4ð Þ

i nð ÞþHr

PM
i¼1

�O
3ð Þ
i nð Þ �O 4ð Þ

i nð Þ
PM

i¼1O
3ð Þ
i nð Þþ �O

3ð Þ
i nð Þ

:

ð15Þ

Layer 6: This is the final layer, which represents the output

layer. The defuzzified output is computed as:

O 6ð Þ nð Þ ¼ O 5ð Þ nð Þ þ �O 5ð Þ nð Þ: ð16Þ

3 Proposed RL scheme

The block diagram of the proposed RL structure is shown

in Fig. 3, where it consists of two parts: the critic and the

actor. The proposed RL structure has one input variable,

e nð Þ, which is the error signal between the reference tra-

jectory and the system output, and one output variable,

u nð Þ, which is the control signal that is applied to the

system. The actor part has two inputs: e nð Þ and change in

error signal De nð Þ. The critic part has three inputs: e nð Þ,
e n� 1ð Þ and u nð Þ. The reward signal r nð Þ is defined as:

r nð Þ ¼ Hc1
nð Þ þHc2

nð Þ; ð17Þ

where

Hc1
nð Þ ¼

0 e nð Þj j � d

�1 otherwise

�

Hc2
nð Þ ¼

0 e nð Þj j � e n� 1ð Þj j
�1 otherwise

;

� ð18Þ

where the symbol d symbolizes a small constant value, i.e.,

d ¼ 0:001. Simply the reinforcement reward signal gives

the effect of applying the control signal from the actor to

the system that can be represented by either a ‘‘zero’’ or

‘‘negative value’’ corresponding to ‘‘adequate’’ or ‘‘insuf-

ficiency,’’ respectively. The parameter ec nð Þ represents the

error of the critic network, ea nð Þ represents the error of the

actor network, V nð Þ represents the output of the critic and

UaðnÞ represents the required conclusive goal.

3.1 The critic network

The critic part shown in Fig. 3 is implemented using ANN,

and the structure of this ANN is shown in Fig. 4. The

inputs of the critic network are z1 nð Þ ¼ e n� 1ð Þ; z2 nð Þ ¼

Neural Computing and Applications (2020) 32:8691–8710 8695

123

e nð Þ; z3 nð Þ ¼ u nð Þ, and the critic output is V nð Þ. The critic

output, VðnÞ, is calculated as follows:

netm nð Þ ¼
X3

b¼1

wð1Þ
cmb

nð Þzb nð Þ; m ¼ 1; . . .;Nh; ð19Þ

qm nð Þ ¼ 1 � e�netm nð Þ

1 þ e�netm nð Þ ; m ¼ 1; . . .;Nh; ð20Þ

V nð Þ ¼
XNh

m¼1

w 2ð Þ
cm

nð Þqm nð Þ; ð21Þ

where netm is the mth hidden node input of the critic net-

work, qm is the hidden node output, w
ð1Þ
cmb nð Þ is the weight

between bth input node and mth hidden node, w 2ð Þ
cm

nð Þ is the

weight between mth hidden node and output node and Nh is

the total number of hidden nodes.

The critic network parameters, hc nð Þ, are updated

dependent on the prediction error of the critic network,

which can be described as:

ec nð Þ ¼ V n� 1ð Þ � r nð Þ � cV nð Þ: ð22Þ

3.2 The actor network

The actor part shown in Fig. 3 is implemented using the

RIT2-TSK-FNN, which is explained in detail in Sect. 2.

The inputs of the actor RIT2-TSK-FNN are x1 nð Þ ¼ e nð Þ;
x2 nð Þ ¼ De nð Þ and the output is O 6ð Þ nð Þ ¼ u nð Þ. The actor

network parameters, ha nð Þ, are updated based on the error

between the required conclusive goal, which is denoted by

UaðnÞ and the approximate V nð Þ function from the critic

Fig. 3 Block diagram of the

proposed RL structure

Fig. 4 Critic neural network

8696 Neural Computing and Applications (2020) 32:8691–8710

123

network given in (23). In the design model, Ua is limited to

‘‘0,’’ which means the success of the reinforcement signal.

ea nð Þ ¼ V nð Þ � Ua nð Þ: ð23Þ

4 Online learning for the proposed RL
scheme

In this section, the online learning for the proposed RL

scheme is composed of two parts which are described. The

first part is the structure learning that aims to obtain the

number of rules for the actor (RIT2-TSK-FNN). The other

part is the parameter learning that updates the proposed RL

scheme parameters based on the LM algorithm with an

adaptive learning rate.

4.1 Structure learning

At each instant, the online structure learning creates the

fuzzy rules based on the input data. Here, the type-2 fuzzy

clustering is used to perform the structure learning with

respect to the rule firing strength [50, 51]. The incoming

data, xj nð Þ, are utilized for creating the first type-2 fuzzy

rule. The first Gaussian IT2-FS parameters related to the

first rule are designed as:

m1
j1;m

1
j2

h i
¼ O

ð1Þ
j nð Þ � DO;Oð1Þ

j nð Þ þ DO
h i

; r ¼ rconst;

j ¼ 1; . . .; k;

ð24Þ

where the parameter DO is a constant value that represents

the range of the initial IT2-FS. The parameter rconst is a

predefined value, which is set as rconst ¼ 0:3. At each

instant n, the firing strengths are calculated as given in (7).

The mean value of the firing strength Oi
f can be computed

for each instant as follows:

Oi
f ¼

O
ð3Þ
i nð Þ þ �O

ð3Þ
i nð Þ

2
: ð25Þ

For subsequent input data xj nð Þ, the calculation of the

number of the rules is obtained using the following

formula:

W ¼ arg max
1� i�M nð Þ

Oi
f ; ð26Þ

where M nð Þ denotes the number of the current rules at

instant n. A new rule is generated at M nþ 1ð Þ ¼ M nð Þ þ 1

if OW
f �Oth (Oth is a pre-specified threshold). The param-

eters of the Gaussian IT2-FSs for a new rule are defined as:

m
MðnÞþ1
j1 ;m

MðnÞþ1
j2

h i
¼ O

ð1Þ
j nð Þ � DO;Oð1Þ

j nð Þ þ DO
h i

;

j ¼ 1; . . .; k;

ð27Þ

and the spread is computed as:

rMðnþ1Þ ¼ # � Oj nð Þ �
mW

j1 þ mW
j2

2

 !�����

�����: ð28Þ

When the overlapping parameter, #, is defined as

¼ 0:5, this indicates that the new Gaussian IT2-FS

spread is chosen as the half of the Euclidean space from the

best matching center. The initial consequent parameters for

each new rule are as follows:

c1
0 ¼ c

Mðnþ1Þ
0 ¼ r1; c1

j ¼ c
Mðnþ1Þ
j ¼ r2;

s1
0 ¼ s

M nþ1ð Þ
0 ¼ r3; s1

j ¼ s
M nþ1ð Þ
j ¼ r4 j ¼ 1; . . .; k;

ð29Þ

where r1; r2; r3 and r4 are small random values. These

parameters are learned online according to the proposed

method.

4.2 Parameter learning

The Gauss–Newton (GN) strategy has good convergence

characteristics. These characteristics, however, are based

on the initial parameters’ values. If these values are not

chosen properly, this method may easily diverge. On the

other hand, the Gradient descent (GD) algorithm demon-

strates an excellent behavior in the vicinity of a minimum

point, but this algorithm is restricted by a slow speed of the

convergence. The performance of the GD method is not

adversely affected by the initial values selection [52].

Accordingly, the parameters of the critic and the actor are

updated using the LM algorithm, which contributes a nice

compromise between guaranteed convergence of the GD

algorithm and the speed of the GN strategy. Therefore, the

LM algorithm behaves as the GD algorithm when the

immediate solution is quite from the correct one and

behaves GN strategy when the immediate solution is close

to the correct solution [53, 54].

The update rule for the critic weights and the actor

parameters according to the GN strategy has the following

formula:

Dhg ¼ � r2Eg hg
� �� ��1rEg hg

� �
; ð30Þ

which depends on the performance function, which is

defined as:

Neural Computing and Applications (2020) 32:8691–8710 8697

123

Eg hg
� �

¼ 1

2
eT
g hg
� �

eg hg
� �

; ð31Þ

where hg is the weights/parameters vector, the suffix g

denotes a general for the actor and the critic and r2Eg hg
� �

represents the Hessian matrix. The Hessian term can be

expressed as:

r2Eg hg
� �

¼ BT hg
� �

B hg
� �

þ S hg
� �

; ð32Þ

where the Jacobin matrix B hg
� �

contains the first deriva-

tives of the critic and actor errors with respect to their

weights and parameters. The term S hg
� �

contains the sec-

ond derivatives of the critic and the actor errors with

respect to their weights and parameters, and it is assumed

that S hg
� �

has a small value comparing with the product of

the Jacobin. Therefore, (32) can be approximated as:

r2Eg hg
� �

� BT hg
� �

B hg
� �

: ð33Þ

Thus, the GN algorithm can be rewritten as

Dhg ¼ � BT hg
� �

B hg
� �� ��1

BT hg
� �

eg hg
� �

: ð34Þ

One limitation of this algorithm is that the simplified

Hessian matrix might be invertible. To overcome this

problem, a modified Hessian matrix can be used as:

r2Eg hg
� �

� BT hg
� �

B hg
� �

þ kgI; ð35Þ

where I denotes the identity matrix. The parameter kg
should be chosen such that r2Eg hg

� �
is positive definite

and thus can be invertible. This modification in the Hessian

matrix is corresponding to the LM algorithm. The LM

modification to the GN strategy can be expressed as:

Dhg ¼ � BT hg
� �

B hg
� �

þ kgI
� ��1

BT hg
� �

eg hg
� �

: ð36Þ

Here, the parameter kg guides the algorithm. If it is

chosen as a large value, then (36) approximates the GD

method, and if it is chosen as a small value, then (36)

approximates the GN strategy. If the parameter kg is

adaptively chosen, the LM algorithm can manage between

its two extremes: the GD and GN algorithms. Conse-

quently, the LM algorithm can merge the features of the

GD and the GN algorithms, while bypassing their

limitations.

The parameter kg is now written as kg nð Þ, which is

updated online during the implementation of the algorithm

to guarantee the stability (confirming that the Hessian

matrix is inverted) and makes the LM algorithm have a fast

convergence.

The updating equation for the critic weights according to

the LM method is given as:

Dhc ¼ � BT hcð ÞB hcð Þ þ kc nð ÞI
� ��1

BT hcð Þec hcð Þ ð37Þ

where kc nð Þ represents a generalized weights vector, i.e.,

(w 1ð Þ
cmb

nð Þ, w 2ð Þ
cm

nð Þ), and the derivatives in the Jacobin matrix

B hcð Þ are derived as:

oec nð Þ
ow

2ð Þ
cm nð Þ

¼ oec nð Þ
oV nð Þ

oV nð Þ
ow

2ð Þ
cm nð Þ

¼ �cqm nð Þ; ð38Þ

oec nð Þ
ow

1ð Þ
cmb nð Þ

¼ oec nð Þ
oV nð Þ

oV nð Þ
oqm nð Þ

oqm nð Þ
onetm nð Þ

onetm nð Þ
ow

1ð Þ
cmb nð Þ

;

¼ �cw 2ð Þ
cm

nð Þ 1

2
1 � q2

m nð Þ
� �� 	

zb nð Þ:
ð39Þ

The updating equation for the actor parameters accord-

ing to the LM method is given as:

Dha ¼ � BT hað ÞB hað Þ þ ka nð ÞI
� ��1

BT hað Þea hað Þ; ð40Þ

where ha represents a generalized actor parameters vector,

i.e., (cij, s
i
j, m

i
j1, mi

j2, rij, l
i, aj, Hl and Hr), and the derivatives

in the Jacobin matrix J hað Þ are derived as:

oea nð Þ
oha nð Þ ¼

oea nð Þ
oO 6ð Þ nð Þ

oO 6ð Þ nð Þ
oha nð Þ : ð41Þ

The term
oea nð Þ
oO 6ð Þ nð Þ is calculated from the critic neural

network as:

oea nð Þ
oO 6ð Þ nð Þ ¼

oea nð Þ
oV nð Þ

oV nð Þ
oO 6ð Þ nð Þ

¼
XNh

m¼1

w 2ð Þ
cm

nð Þ 1

2
1 � q2

m nð Þ
� �� 	

wð1Þ
cm3

nð Þ: ð42Þ

The term
oOð6Þ nð Þ
ohaðnÞ is obtained as described in ‘‘Appendix

A.’’

4.3 Learning rate adaptation

The learning parameter kg in the LM method usually takes

a constant value. This learning coefficient determines the

dynamics of the analyzed RIT2-TSK-FNN controller and

determines the system stability. Therefore, the learning rate

kg (i.e., kc for the critic and ka for the actor) makes

adaptively during the execution of the algorithm. The

adaptation of the learning rate should be depending on the

system output. When the error is a small value, the learning

rate should take a relatively big value. When the error is a

big value, the learning rate should take a smaller value.

The change in the learning rate kg is associated with the

system operation conditions. Hence, the learning rate can

be recognized using the fuzzy logic system in which the

error value and the change in the error with the scaling

factors, Je and JDe, respectively, are the input signals to the

fuzzy logic system, while the kc nð Þ and ka nð Þ are the output

8698 Neural Computing and Applications (2020) 32:8691–8710

123

with their scaling factors, Jc and Ja, respectively, as shown

in Fig. 5. The symmetrical triangular input MFs can be

used, and for the simplicity of the defuzzification, the

singleton method is performed as shown in Fig. 6. Fuzzy

rules are described in Table 1, which is characterized the

behavior of the learning rates.

For the online learning procedure of the RL scheme, the

learning rate kg nð Þ should be chosen to assure the stability

of the online updating of the weights/parameters for the

critic and the actor, respectively. So, the technique for

choosing properly kg nð Þ is developed.

Theorem The learning rates kc nð Þ for the critic neural

network and ka nð Þ for the actor RIT2-TSK-FNN, which are

shown in (37) and (40), respectively, have the following

constraints to guarantee the stability:

kc nð Þ� 1

2

oec nð Þ
ohc nð Þ

2

; ka nð Þ� 1

2

oea nð Þ
oha nð Þ

2

: ð43Þ

Proof The theorem proof is given in ‘‘Appendix B.’’ h

Remark 1 The derivatives in (43) are calculated previ-

ously, where the derivatives of the critic error with respect

to its parameters are discussed in (38) and (39) and the

derivatives of the actor error with respect to its parameters

are discussed in (41) and (42).

Remark 2 The proposed RIT2-TSK-FNN controller using

RL (RIT2-TSK-FNN-RL) is designed for controlling two

nonlinear systems to handle the effect of system uncer-

tainties due to the external disturbance and environmental

noise.

Fig. 5 Block diagram for

updating the learning rates using

fuzzy logic

D
eg

re
e

of
 M

em
be

rs
hi

p
fo

r
In

pu
ts

-1 0 0.5-0.5 1

S C L
1

0.5

0.006 0.2 0.7 0.8 1

D
eg

re
e

of
 M

em
be

rs
hi

p
fo

r
ou

tp
ut

s 1

0.5

VLLCSV S

(a)

(b)

Fig. 6 a Input MFs, b output

MFs

Table 1 Rule base

Change in error signal Error signal

S C L

S VL L C

C L C S

L C S VS

Neural Computing and Applications (2020) 32:8691–8710 8699

123

5 Simulation results

In order to show the improvements in the proposed RIT2-

TSK-FNN-RL controller, the simulation results for the

RIT2-TSK-FNN controller in which the parameters are

derived based on the fuzzy clustering and the LM learning

without the RL are implemented for comparison purposes.

Two performance indices are used to measure the perfor-

mance of the proposed RIT2-TSK-FNN-RL controller,

which are the integral absolute error (IAE) and the mean

absolute error (MAE). These indices are defined as:

IAE ¼ T
XKN

k¼1

e nð Þj j; ð44Þ

MAE ¼ 1

kN

XkN

k¼1

e nð Þj j; ð45Þ

where kN is the number of iterations and T is the sampling

period.

Once the proposed RIT2-TSK-FNN-RL controller is

initialized using one rule for the actor element, the ini-

tialized parameters of the rule consequence are described

as (29) and the Gaussian membership function initialized

as (24), it will be plugged into the system and works in the

following procedure:

Step 1: The actor element receives the measured system

states; x1 nð Þ ¼ e nð Þ; x2 nð Þ ¼ De nð Þ and uses it to gen-

erate a new rule if the condition OW
f �Oth is satisfied and

initiate the parameters of the new rule as (27)–(29). The

actor output is the control signal that is implemented

according to (16).

Step 2: The critic element receives the measured system

states: z1 nð Þ ¼ e n� 1ð Þ; z2 nð Þ ¼ e nð Þ; z3 nð Þ ¼ u nð Þ,
and uses it to calculate the output of the critic as V nð Þ
as (21).

Step 3: The critic element will update its parameters

according to (37)–(39) and the learning parameter kc nð Þ
according to fuzzy logic given in Table 1.

Step 4: The actor element will update its parameters

according to (40)–(42) and the learning parameter ka nð Þ
according to fuzzy logic given in Table 1.

Step 5: Steps (1) to (4) are repeated in each sampling

time step until the end of the simulation.

5.1 Case study 1

Consider a nonaffine nonlinear system defined as [56]:

x1 nþ 1ð Þ ¼ m1 nð Þ x2 nð Þ þ m2 nð Þ sin x1 nð Þð Þ; ð46Þ

x2 nþ 1ð Þ ¼ m3 nð Þ cos x2 nð Þð Þ sin x1 nð Þð Þ þ m4 nð Þ u nð Þ
þ m5 nð Þ tanh u nð Þð Þ þ dmðnÞ;

ð47Þ
y nþ 1ð Þ ¼ x1 nþ 1ð Þ; ð48Þ

where the parameters are set as m1 nð Þ ¼ 0:5; m2 nð Þ ¼
�0:3; m3 nð Þ ¼ �1; m4 nð Þ ¼ 2; m5 nð Þ ¼ �2 and

dm nð Þ ¼ 0.

5.1.1 Task 1—effect due to variation of desired output

Figure 7 shows the system response when the desired

output changes, which is indicated by black line. The

proposed RIT2-TSK-FNN-RL controller has a smaller time

for tracking the reference trajectory than the RIT2-TSK-

FNN controller due to the critic network and the adaptation

based on the LM algorithm with adaptive learning rate that

can enforce the actor parameters to converge quickly. The

number of the generated rules for both controllers is

M ¼ 1. This number of the rules is small due to the

recurrent in the input and the rule layers.

5.1.2 Task 2—variation of the system parameters

This task is carried out after the system output tracks the

reference trajectory. The actual values of the system

parameters are changed to m1 nð Þ ¼ 0:7; m2 nð Þ ¼ �0:5;

m3 nð Þ ¼ 1; m4 nð Þ ¼ 3 and m5 nð Þ ¼ �2:5 at n ¼ 500th

instant. Then, it changed again to m1 nð Þ ¼ 0:2; m2 nð Þ ¼
�0:7; m3 nð Þ ¼ �1:5; m4 nð Þ ¼ 2:2 and m5 nð Þ ¼ �3 at n ¼
1000th instant. These changes in system parameters are

used to show the robustness of the controllers. Figure 8

shows that the response of the proposed RIT2-TSK-FNN-

RL controller has a smaller settling time than that of the

RIT2-TSK-FNN controller at the two changes. The number

of the generated rules for both controllers is M ¼ 1.

5.1.3 Task 3—disturbance uncertainty

The performance evaluation of the proposed RIT2-TSK-

FNN-RL controller is tested by adding the disturbance

value dm nð Þ to (47) at n ¼ 750th instant, which is given as:

dm nð Þ ¼ � 0:3x3
1 nð Þ þ 0:05x4

2 nð Þ
� �

cos 10nTð Þ; ð49Þ

where T is the sampling period that equals 0.001.

Figure 9 shows that the proposed RIT2-TSK-FNN-RL

controller tracks the trajectory after adding the disturbance

but the RIT2-TSK-FNN has a large oscillation about the set

point. The number of the generated rules for both con-

trollers is M ¼ 1.

8700 Neural Computing and Applications (2020) 32:8691–8710

123

5.1.4 Task 4—actuator noise

In this task, the performance of the proposed RIT2-TSK-

FNN-RL controller is evaluated by adding the noise to the

control signal at n ¼ 750th instant. Figure 10 shows that

the proposed RIT2-TSK-FNN-RL controller tracks the

trajectory after adding the noise, but the RIT2-TSK-FNN

has a large oscillation about the set point. The number of

the obtained rules for both controllers is M ¼ 1.

Tables 2 and 3 show the MAE and the IAE, respec-

tively, for the proposed RIT2-TSK-FNN-RL controller, the

RIT2-TSK-FNN controller and other controllers, which are

published previously such as the FFANN [28–30], the

ADPACRN [32], the GRHDP [33] and the ATSFRL-LS

[35]. The results of the above simulation tasks are repeated

using the average of 15 experiments. It is clear that the

values of the MAE and IAE for the proposed RIT2-TSK-

FNN-RL controller are smaller than those obtained for the

RIT2-TSK-FNN, which are not used in the critic network.

On the other hand, the values of the performance indices

for the proposed controller, which depend on the RFNN

and actor–critic learning scheme, are lower than those

obtained for other controllers such as FFANN [28–30],

ADPACRN [32] and GRHDP [33] which depend on the

ANN and gradient descent method for the adaptation of the

parameters. Also, the proposed controller is better than the

Fig. 7 Response of the tracking

reference signal

Fig. 8 Response of the system

for uncertainty in the system

parameters

Neural Computing and Applications (2020) 32:8691–8710 8701

123

Fig. 9 Response of the system

due to disturbance

Fig. 10 Response of the system

due to noise

Table 2 Average MAE values of 15 experiments

Task 1 Task 2 Task 3 Task 4

RIT2-TSK-FNN-RL 0.0321 0.0460 0.0288 0.0388

RIT2-TSK-FNN 0.1578 0.1687 0.0806 0.0936

FFANN [28–30] 0.1605 0.1815 0.0647 0.0866

ADPACRN [32] 0.1568 0.1754 0.0659 0.0890

GRHDP [33] 0.1498 0.1729 0.0620 0.0870

ATSFRL-LS [35] 0.0973 0.1527 0.1126 0.1116

Table 3 Average IAE values of 15 experiments

Task 1 Task 2 Task 3 Task 4

RIT2-TSK-FNN-RL 0.0481 0.0689 0.0431 0.0581

RIT2-TSK-FNN 0.2365 0.2529 0.1209 0.1404

FFANN [28–30] 0.2460 0.2721 0.0971 0.1299

ADPACRN [32] 0.2351 0.2630 0.0987 0.1335

GRHDP [33] 0.2245 0.2592 0.0929 0.1305

ATSFRL-LS [35] 0.1459 0.2289 0.1688 0.1673

8702 Neural Computing and Applications (2020) 32:8691–8710

123

ATSFRL-LS [35], which was implemented by fuzzy logic

system and Lyapunov criteria for deriving the law of

parameter adaptation.

5.2 Case study 2

One of the universal elements in the process and chemical

industry is the steam-water heat exchanger in which the

temperature control is very important task, especially when

the process is opened over a broad scale [57, 58]. The

steam-water heat exchanger is described in Fig. 11. The

two inputs are the input process water flow and the steam

flow rate that can be controlled by two pneumatic control

values. The steam condenses in the two-pass shell and tube

heat exchanger, hence raising the process water tempera-

ture. The exchanger has a nonlinear behavior when using a

fix steam flow rate [59]. Accordingly, the process input is

the input flow rate while the output is the temperature of

the process output fluid, which is measured by thermo-

couple sensor and the steam flow is considered constant.

The complex behavior of the steam-water heat exchanger

can be represented by

y nð Þ ¼ a1 nð Þy n� 1ð Þ þ a2 nð Þy n� 2ð Þ þ a3 nð Þn n� 1ð Þ
þ a4 nð Þn n� 2ð Þ þ 0:005r and ð1Þ;

ð50Þ

n nð Þ ¼ u nð Þ þ a5 nð Þu2 nð Þ þ a6 nð Þu3 nð Þ þ a7 nð Þu4 nð Þ;
ð51Þ

where the parameters are set as a1 nð Þ ¼ 1:608; a2 nð Þ ¼
�0:6385; a3 nð Þ ¼ �6:5306 ; a4 nð Þ ¼ 5:5652; a5 nð Þ ¼
�1:3228; a6 nð Þ ¼ 0:7671 and a7 nð Þ ¼ �2:1755 :

The models shown in (50) and (51) are derived using

real data from the practical system as described in [57–59].

So, these equations are used in this paper, which simulate

this system. Furthermore, the control simulation is based

on measurement noise.

5.2.1 Task 1—effect due to variation of desired output

Figure 12 shows the heat exchanger process response when

the desired trajectory signal is described as a black line.

The proposed RIT2-TSK-FNN-RL controller has accept-

able set-point tracking, which is realized with a rise time

less than that obtained for the RIT2-TSK-FNN controller.

The number of the obtained rules for both controllers is

M ¼ 2. The recurrent in the rule layers has a major impact

for decreasing the number of rules that contribute to the

nonlinearities besides the recurrent in the input, which

deals with the measurement noise.

5.2.2 Task 2—process parameters uncertainty

Here, the robustness of the performance using the proposed

RIT2-TSK-FNN-RL controller is evaluated under process

parameters variations. The system response is shown in

Fig. 13, in which the process parameters are changed at

instant n ¼ 500th to a1 nð Þ ¼ 1:64; a2 nð Þ ¼ �0:8;a3 kð Þ ¼
�7:4 ; a4 nð Þ ¼ 6:4; a5 nð Þ ¼ �1:8; a6 nð Þ ¼ 0:47 and

a7 nð Þ ¼ �1:8. It is clear that the proposed controller has a

smaller settling time than RIT2-TSK-FNN controller. The

RIT2-TSK-FNN controller has a large oscillation after

applying this uncertainty. The number of the obtained rules

for the proposed controller and the RIT2-TSK-FNN con-

troller is M ¼ 2 and M ¼ 5, respectively.

Heat
Exchanger

T

TT

Steam

Steam
Valve

Process
Water Valve

Process
Water

Steam Trap

Drain

Fig. 11 Heat exchanger

Neural Computing and Applications (2020) 32:8691–8710 8703

123

5.2.3 Task 3—sensor measurement uncertainty

In this task, the performance evaluation of the proposed

RIT2-TSK-FNN-RL controller is tested by adding the

sensor measurement uncertainty value ds nð Þ to (50) at n ¼
500th instant, which is given as:

dsðnÞ ¼ �0:1 sin y nð Þ � 0:1y n� 1ð Þð Þ: ð52Þ

Figure 14 shows that the proposed RIT2-TSK-FNN-RL

controller tracks the trajectory after adding the sensor

measurement uncertainty and it has a stronger anti-inter-

ference ability than the RIT2-TSK-FNN controller. The

number of the generated rules for both controllers is

M ¼ 2.

5.2.4 Task 4—actuator failure due to noise

The performance of the proposed RIT2-TSK-FNN-RL

controller is evaluated by adding the noise to the control

signal at n ¼ 500th instant. Figure 15 shows that the pro-

posed RIT2-TSK-FNN-RL controller has an actuator noise

rejection, which tracks the trajectory after adding the noise.

However, the RIT2-TSK-FNN has a large error about the

set point after adding the actuator noise. The number of the

obtained rules for both controllers is M ¼ 2.

Fig. 12 Response of the

tracking reference signal for

heat exchanger process

Fig. 13 Response of the process

under parameters uncertainty

8704 Neural Computing and Applications (2020) 32:8691–8710

123

Fig. 14 Response of the process

under sensor measurement

uncertainty

Fig. 15 Response of the process

under actuator noise uncertainty

Table 4 Average MAE values of 15 experiments

Task 1 Task 2 Task 3 Task 4

RIT2-TSK-FNN-RL 0.0469 0.4846 0.1025 0.0677

RIT2-TSK-FNN 0.1259 1.3129 0.1582 0.0835

FFANN [28–30] 0.1491 0.9058 0.16080 0.0843

ADPACRN [32] 0.1199 0.8770 1503 0.0768

GRHDP [33] 0.1234 0.8718 0.1466 0.0766

ATSFRL-LS [35] 0.1142 0.7825 0.1472 0.1165

Table 5 Average IAE values of 15 experiments

Task 1 Task 2 Task 3 Task 4

RIT2-TSK-FNN-RL 0.1406 0.7264 0.1536 0.1015

RIT2-TSK-FNN 0.3774 1.9681 0.2372 0.1253

FFANN [28–30] 0.4471 1.3588 0.2411 0.1265

ADPACRN [32] 0.3597 1.3158 0.2253 0.1152

GRHDP [33] 0.3701 1.3082 0.2198 0.1149

ATSFRL-LS [35] 0.3427 1.2431 0.2208 0.1747

Neural Computing and Applications (2020) 32:8691–8710 8705

123

Tables 4 and 5 show the MAE and the IAE for the

proposed RIT2-TSK-FNN-RL controller, the RIT2-TSK-

FNN and other controllers that are published previously

such as the FFANN [28–30], the ADPACRN [32], the

GRHDP [33] and the ATSFRL-LS [35], respectively. The

results of the above simulation tasks are repeated using the

average of 15 experiments. It is clear that the values of the

MAE and the IAE for the proposed RIT2-TSK-FNN-RL

controller are smaller than those obtained for the RIT2-

TSK-FNN, which are not used in the critic network. On the

other hand, the values of the performance indices for the

proposed controller are lower than those obtained for other

controllers such as FFANN [28–30], ADPACRN [32],

GRHDP [33] and ATSFRL-LS [35].

The proposed controller and other controllers are per-

formed on a PC, which has a processor Intel(R), Core(TM)

i5-250 M with CPU @ 2.5GHZ, RAM 4.0 GB, 64-bit

operating system and Windows 10. The computation time

for all controllers is indicated in Table 6.

Remark 3 Although the proposed AC-IT2-TSK-FNN has

a larger computation time than the other controllers, it has a

better performance when the controlled system has uncer-

tainties such as environmental noise, external disturbance

and parameter uncertainties.

6 Conclusion

In this paper, the online learning for a novel structure of the

RIT2-TSK-FNN based on RL scheme is proposed for

controlling nonlinear systems. The LM algorithm with

adaptive learning rate is developed for updating the

parameters of the proposed controller. The stability con-

ditions for the learning rates are achieved using the Lya-

punov function. The output of the proposed RL controller

forced the system to follow the reference input with one

rule, which means that the proposed scheme has small

parameters. The rule reduction was due to using the

recurrent in the input layer and the firing layer. To evaluate

the performance of the proposed controller, it is compared

with the results of the RIT2-TSK-FNN controller and other

published controllers. The proposed controller is tested

using the mathematical nonlinear simulation system and

the heat exchanger process with noisy measurement data.

The results showed the superiority of the proposed con-

troller to respond to the system uncertainties rather than the

other controllers. The main advantages of proposed con-

troller can be summarized as follows: (1) It has fast

learning due to using reinforcement actor–critic method.

(2) It has ability to handle the system uncertainties and

noisy measurement data. (3) The number of the generated

rules is small due to the recurrent in the input and the rule

layers. (4) The learning rates are changed online according

to fuzzy logic during the implementation of the algorithm

to assure the stability (assuring that the Hessian matrix can

be inverted) and the speed of the convergence. (5) The

stability conditions are discussed using Lyapunov criteria.

In future work, the authors will use a hierarchical deep RL

framework.

Compliance with ethical standards

Conflict of interest There is no conflict of interest between the

authors to publish this manuscript.

Appendix A

The term
oOð6Þ nð Þ
ohaðnÞ for the actor network is described by the

following equations:

oO 6ð Þ nð Þ
ocij nð Þ ¼ oO 6ð Þ nð Þ

oO 5ð Þ nð Þ
oO 5ð Þ nð Þ
oO

4ð Þ
i nð Þ

oO
4ð Þ
i nð Þ

ocij nð Þ þ oO 6ð Þ nð Þ
o �O 5ð Þ nð Þ

o �O 5ð Þ nð Þ
o �O 4ð Þ nð Þ

o �O 4ð Þ nð Þ
ocij nð Þ ;

¼ 1 � Hl þ Hrð Þ � �O
3ð Þ
i nð Þ þ 1 � Hr þ Hlð ÞO 3ð Þ

i nð Þ
PM

i¼1 O
3ð Þ
i nð Þ þ �O

3ð Þ
i nð Þ

� O 1ð Þ
j ðnÞ;

ð53Þ

oO 6ð Þ nð Þ
osij nð Þ ¼ oO 6ð Þ nð Þ

oO 5ð Þ nð Þ
oO 5ð Þ nð Þ
oO

4ð Þ
i nð Þ

oO
4ð Þ
i nð Þ

osij nð Þ þ oO 6ð Þ nð Þ
o �O 5ð Þ nð Þ

o �O 5ð Þ nð Þ
o �O 4ð Þ nð Þ

o �O 4ð Þ nð Þ
osij nð Þ ;

¼ 1 � Hr � Hlð Þ � O 3ð Þ
i nð Þ � 1 � Hl � Hrð Þ � �O

3ð Þ
i nð Þ

PM
i¼1 O

3ð Þ
i nð Þ þ �O

3ð Þ
i nð Þ

� O
1ð Þ
j ðnÞ

���
���;

ð54Þ

oO 6ð Þ nð Þ
omi

j1 nð Þ ¼ oO 6ð Þ nð Þ
oO 5ð Þ nð Þ

oO 5ð Þ nð Þ
oO

3ð Þ
i nð Þ

 !
oO

3ð Þ
i nð Þ

omi
j1 nð Þ

þ oO 6ð Þ nð Þ
o �O 5ð Þ nð Þ

o �O 5ð Þ nð Þ
o �O 3ð Þ nð Þ

 !
o �O 3ð Þ nð Þ
omi

j1 nð Þ ; ð55Þ

Table 6 Computation time of all algorithms

Computation time (ms)

RIT2-TSK-FNN-RL 0.5248

RIT2-TSK-FNN 0.3481

FFANN [28–30] 0.1178

ADPACRN [32] 0.1897

GRHDP [33] 0.1938

ATSFRL-LS [35] 0.3276

8706 Neural Computing and Applications (2020) 32:8691–8710

123

oO 6ð Þ nð Þ
omi

j2 nð Þ ¼ oO 6ð Þ nð Þ
oO 5ð Þ nð Þ

oO 5ð Þ nð Þ
oO

3ð Þ
i nð Þ

 !
oO

3ð Þ
i nð Þ

omi
j2 nð Þ

þ oO 6ð Þ nð Þ
o �O 5ð Þ nð Þ

o �O 5ð Þ nð Þ
o �O 3ð Þ nð Þ

 !
o �O 3ð Þ nð Þ
omi

j2 nð Þ ; ð56Þ

oO 6ð Þ nð Þ
orij nð Þ ¼ oO 6ð Þ nð Þ

oO 5ð Þ nð Þ
oO 5ð Þ nð Þ
oO

3ð Þ
i nð Þ

 !
o �O

3ð Þ
i nð Þ

orij nð Þ

þ oO 6ð Þ nð Þ
o �O 5ð Þ nð Þ

o �O 5ð Þ nð Þ
oO

3ð Þ
nð Þ

 !
o �O 3ð Þ nð Þ
orij nð Þ ð57Þ

oO 6ð Þ nð Þ
oli nð Þ ¼ oO 6ð Þ nð Þ

oO 5ð Þ nð Þ
oO 5ð Þ nð Þ
oO

3ð Þ
i nð Þ

þ oO 6ð Þ nð Þ
o �O 5ð Þ nð Þ

o �O 5ð Þ nð Þ
oO

3ð Þ
i nð Þ

 !
oO

3ð Þ
i nð Þ

oli nð Þ

þ oO 6ð Þ nð Þ
o �O 5ð Þ nð Þ

o �O 5ð Þ nð Þ
o �O 3ð Þ nð Þ

þ oO 6ð Þ nð Þ
oO 5ð Þ nð Þ

oO 5ð Þ nð Þ
o �O 3ð Þ nð Þ

 !
o �O 3ð Þ nð Þ
oli nð Þ ;

ð58Þ

oO 6ð Þ nð Þ
oaj nð Þ ¼ oO 6ð Þ nð Þ

oO 5ð Þ nð Þ
oO 5ð Þ nð Þ
oO

3ð Þ
i nð Þ

þ oO 6ð Þ nð Þ
o �O 5ð Þ nð Þ

o �O 5ð Þ nð Þ
oO

3ð Þ
i nð Þ

 !
oO

3ð Þ
i nð Þ

oaj nð Þ

þ oO 6ð Þ nð Þ
o �O 5ð Þ nð Þ

o �O 5ð Þ nð Þ
o �O 3ð Þ nð Þ

þ oO 6ð Þ nð Þ
oO 5ð Þ nð Þ

oO 5ð Þ nð Þ
o �O 3ð Þ nð Þ

 !
o �O 3ð Þ nð Þ
oaj nð Þ ;

ð59Þ

oO 6ð Þ nð Þ
oHl nð Þ ¼ oO 6ð Þ nð Þ

oO 5ð Þ nð Þ
oO 5ð Þ nð Þ
oHl nð Þ

¼
PM

i¼1 O
4ð Þ
i nð Þ O

3ð Þ
i nð Þ � �O

3ð Þ
i nð Þ

� �

PM
i¼1 O

3ð Þ
i nð Þ þ �O

3ð Þ
i nð Þ

; ð60Þ

oO 6ð Þ nð Þ
oHr nð Þ ¼ oO 6ð Þ nð Þ

o �O 5ð Þ nð Þ
o �O 5ð Þ nð Þ
oHr nð Þ

¼
PM

i¼1
�O

4ð Þ
i nð Þ O

3ð Þ
i nð Þ þ �O

3ð Þ
i nð Þ

� �

PM
i¼1 O

3ð Þ
i nð Þ þ �O

3ð Þ
i nð Þ

: ð61Þ

The derivatives in (55)–(61) are defined as:

oO 5ð Þ nð Þ
oO

3ð Þ
i nð Þ

¼ HlO
4ð Þ
i nð Þ � O 5ð Þ nð Þ

PM
i¼1 O

3ð Þ
i nð Þ þ �O

3ð Þ
i nð Þ

; ð62Þ

oO 5ð Þ nð Þ
o �O

3ð Þ
i nð Þ

¼ 1 � Hlð ÞO 4ð Þ
i nð Þ � O 5ð Þ nð Þ

PM
i¼1 O

3ð Þ
i nð Þ þ �O

3ð Þ
i nð Þ

; ð63Þ

o �O 5ð Þ nð Þ
oO

3ð Þ
i nð Þ

¼ 1 � Hrð Þ �O 4ð Þ
i nð Þ � �O 5ð Þ nð Þ

PM
i¼1 O

3ð Þ
i nð Þ þ �O

3ð Þ
i nð Þ

; ð64Þ

o �O 5ð Þ nð Þ
o �O

3ð Þ
i nð Þ

¼ Hr
�O

4ð Þ
i nð Þ � �O 5ð Þ nð Þ

PM
i¼1 O

3ð Þ
i nð Þ þ �O

3ð Þ
i nð Þ

; ð65Þ

o �O 3ð Þ nð Þ
omi

j1 nð Þ ¼ o �O 3ð Þ nð Þ
o �X

i
nð Þ

o �X
i
nð Þ

o �O
2ð Þ
ij nð Þ

o �O
2ð Þ
ij nð Þ

omi
j1 nð Þ

¼
li �X

i
nð Þ

O1
j nð Þ � mi

j1 nð Þ

rij nð Þ
� �2

; O1
j nð Þ\mi

j1 nð Þ

0; otherwise

8
><

>:
;

ð66Þ

oO 3ð Þ nð Þ
omi

j1 nð Þ ¼ o �O 3ð Þ nð Þ
oXi nð Þ

oXi nð Þ
oO

2ð Þ
ij nð Þ

oO
2ð Þ
ij nð Þ

omi
j1 nð Þ

¼
liXi nð Þ

O1
j nð Þ � mi

j1 nð Þ

rij nð Þ
� �2

; O1
j nð Þ[

mi
j1 nð Þ þ mi

j2 nð Þ
2

0; otherwise

8
>><

>>:
;

ð67Þ

o �O 3ð Þ nð Þ
omi

j2 nð Þ ¼ o �O 3ð Þ nð Þ
o �X

i
nð Þ

o �X
i
nð Þ

o �O
2ð Þ
ij nð Þ

o �O
2ð Þ
ij nð Þ

omi
j2 nð Þ

¼
li �X

i
nð Þ

O1
j nð Þ � mi

j2 nð Þ

rij nð Þ
� �2

; O1
j nð Þ[mi

j2 nð Þ

0; otherwise

8
><

>:
;

ð68Þ

oO 3ð Þ nð Þ
omi

j2 nð Þ ¼ oO 3ð Þ nð Þ
oXi nð Þ

oXi nð Þ
oO

2ð Þ
ij nð Þ

oO
2ð Þ
ij nð Þ

omi
j2 nð Þ

¼
liXi nð Þ

O1
j nð Þ � mi

j2 nð Þ

rij nð Þ
� �2

; O1
j nð Þ�

mi
j1 nð Þ þ mi

j2 nð Þ
2

0; otherwise

8
>><

>>:
;

ð69Þ

o �O 3ð Þ nð Þ
orij nð Þ ¼ o �O 3ð Þ nð Þ

o �X
i
nð Þ

o �X
i
nð Þ

o �O
2ð Þ
ij nð Þ

o �O
2ð Þ
ij nð Þ

orij nð Þ

¼

li �X
i
nð Þ

O1
j nð Þ �mi

j1 nð Þ
� �2

rij nð Þ
� �3

; O1
j nð Þ\mi

j1 nð Þ

li �X
i
nð Þ

O1
j nð Þ �mi

j2 nð Þ
� �2

rij nð Þ
� �3

; O1
j nð Þ\mi

j2 nð Þ

0; otherwise

8
>>>>>>>>>><

>>>>>>>>>>:

;

ð70Þ

Neural Computing and Applications (2020) 32:8691–8710 8707

123

oO 3ð Þ nð Þ
orij nð Þ ¼ oO 3ð Þ nð Þ

oXi nð Þ
oXi nð Þ
oO

2ð Þ
ij nð Þ

oO
2ð Þ
ij nð Þ

orij nð Þ

¼

liXi nð Þ
O1

j nð Þ � mi
j2 nð Þ

� �2

rij nð Þ
� �3

; O1
j nð Þ�

mi
j1 nð Þ þ mi

j2 nð Þ
2

liXi nð Þ
O1

j nð Þ � mi
j1 nð Þ

� �2

rij nð Þ
� �3

; O1
j nð Þ[

mi
j1 nð Þ þ mi

j2 nð Þ
2

;

8
>>>>>>>>><

>>>>>>>>>:

ð71Þ

oO
3ð Þ
i nð Þ

oli nð Þ ¼ Xi nð Þ � O
ð3Þ
i n� 1ð Þ; o

�O
3ð Þ
i nð Þ

oli nð Þ
¼ �X

i
nð Þ � �O

ð3Þ
i n� 1ð Þ; ð72Þ

o �O 3ð Þ nð Þ
oaj nð Þ ¼ o �O 3ð Þ nð Þ

o �X
i
nð Þ

o �X
i
nð Þ

o �O
2ð Þ
ij nð Þ

o �O
2ð Þ
ij nð Þ

oO1
j nð Þ

oO1
j nð Þ

oaj nð Þ

¼

�li �X
i
nð ÞO1

j n� 1ð Þ
O1

j nð Þ � mi
j1 nð Þ

� �2

rij nð Þ
� �3

; O1
j nð Þ\mi

j1 nð Þ

�li �X
i
nð ÞO1

j n� 1ð Þ
O1

j nð Þ � mi
j2 nð Þ

� �2

rij nð Þ
� �3

; O1
j nð Þ\mi

j2 nð Þ

0; otherwise

8
>>>>>>>>>>><

>>>>>>>>>>>:

;

ð73Þ

oO 3ð Þ nð Þ
oaj nð Þ ¼ oO 3ð Þ nð Þ

oXi nð Þ
oXi nð Þ
oO

2ð Þ
ij nð Þ

oO
2ð Þ
ij nð Þ

oO1
j nð Þ

oO1
j nð Þ

oaj nð Þ

¼

�liXi nð ÞO1
j n� 1ð Þ

O1
j nð Þ � mi

j2 nð Þ
� �2

rij nð Þ
� �3

; O1
j nð Þ�

mi
j1 nð Þ þ mi

j2 nð Þ
2

�liXi nð ÞO1
j n� 1ð Þ

O1
j nð Þ � mi

j1 nð Þ
� �2

rij nð Þ
� �3

; O1
j nð Þ[

mi
j1 nð Þ þ mi

j2 nð Þ
2

:

8
>>>>>>>>><

>>>>>>>>>:

ð74Þ

Appendix B

Proof Consider the following Lyapunov candidate:

Vg nð Þ ¼ 1

2
e2
g nð Þ: ð75Þ

h

For stable training algorithm, DVg nð Þ should be less than

zero. Hence, the DVg nð Þ is calculated as the following

equation:

DVg nð Þ ¼ 1

2
e2
g nþ 1ð Þ � e2

g nð Þ
� �

¼ 1

2
eg nð Þ þ Deg nð Þ
� �2�e2

g nð Þ
� �

¼ Deg nð Þ eg nð Þ þ 1

2
Deg nð Þ

 �
:

ð76Þ

The DVg nð Þ can be rewritten as:

DVg nð Þ ¼ oeg nð Þ
ohg nð Þ

 �
Dhg nð Þ eg nð Þ þ 1

2

oeg nð Þ
ohg nð Þ

 �
Dhg nð Þ

 �
:

ð77Þ

Thus,

oeg nð Þ
ohg nð Þ

 �
Dhg nð Þ ¼ oeg nð Þ

ohg nð Þ

 �
U

oeg nð Þ
ohg nð Þ

 �T

eg nð Þ; ð78Þ

where

U ¼ oeg nð Þ
ohg nð Þ

 �T
oeg nð Þ
ohg nð Þ þ kg nð ÞI

 !�1

: ð79Þ

By using a matrix inversion lemma, we get [55]:

E þ FGHð Þ�1¼ E�1 � E�1F G�1 þ HE�1F
� ��1

HE�1:

ð80Þ

According to (80), (79) can be rewritten as:

U¼ k�1
g nð ÞI�k�2

g nð Þ oeg nð Þ
ohg nð Þ

 �T

Iþ oeg nð Þ
ohg nð Þk

�1
g nð Þ oeg nð Þ

ohg nð Þ

 �T
 !�1

oeg nð Þ
ohg nð Þ

¼ k�1
g nð ÞI�k�1

g nð Þ oeg nð Þ
ohg nð Þ

 �T

kg nð Þ Iþ oeg nð Þ
ohg nð Þ

oeg nð Þ
ohg nð Þ

 �T
 !�1

oeg nð Þ
ohg nð Þ :

ð81Þ

Using (81) and (78), we obtain

oeg nð Þ
ohg nð Þ

 �
Dhg nð Þ ¼ k�1

g nð Þ oeg nð Þ
ohg nð Þ

2

eg nð Þ

� k�1
g nð Þ oeg nð Þ

ohg nð Þ

4

kg þ
oeg nð Þ
ohg nð Þ

2

 !�1

eg nð Þ:

ð82Þ

The time difference of the Lyapunov function DVg nð Þ
can be given as:

DVg nð Þ

¼�1

2
e2
g nð Þ k�1

g nð Þ oeg nð Þ
ohg nð Þ

2

�k�1
g nð Þ oeg nð Þ

ohg nð Þ

4

kg nð Þþ oeg nð Þ

ohg nð Þ

2

" #�1
1

A

� 2�k�1
g nð Þ oeg nð Þ

ohg nð Þ

2

þk�1

g nð Þ oeg nð Þ
ohg nð Þ

4

kg nð Þþ oeg nð Þ
ohg nð Þ

2

" #�1
1

A:

ð83Þ

Since

8708 Neural Computing and Applications (2020) 32:8691–8710

123

0� oeg nð Þ
ohg nð Þ

2

; ð84Þ

thus

k�1
g nð Þ oeg nð Þ

ohg nð Þ

4

� oeg nð Þ
ohg nð Þ

2

þk�1
g nð Þ oeg nð Þ

ohg nð Þ

4

: ð85Þ

By multiplying both sides of (85) by

kg nð Þ þ oeg nð Þ
ohg nð Þ

2

 ��1

, we get

k�1
g nð Þ oeg nð Þ

ohg nð Þ

4

kg nð Þ þ oeg nð Þ
ohg nð Þ

2

 !�1

� kg nð Þ oeg nð Þ
ohg nð Þ

2

;

ð86Þ

so that

0� kg nð Þ oeg nð Þ
ohg nð Þ

� k�1
g nð Þ oeg nð Þ

ohg nð Þ

4

kg nð Þ þ oeg nð Þ
ohg nð Þ

2

 !�1

: ð87Þ

Hence, in order that DVg nð Þ� 0,

0� 2 � k�1
g nð Þ oeg nð Þ

ohg nð Þ

2

þk�1
g nð Þ oeg nð Þ

ohg nð Þ

4

kg nð Þ þ oeg nð Þ
ohg nð Þ

2

 !�1
0

@

1

A:

ð88Þ

Thus, the following constraint for the stability is

0� 2 � k�1
g nð Þ oeg nð Þ

ohg nð Þ

2

; ð89Þ

which means

kg nð Þ� 1

2

oeg nð Þ
ohg nð Þ

2

: ð90Þ

References

1. El-Nagar AM, El-Bardini M (2014) Practical realization for the

interval type-2 fuzzy PD ? I controller using a low-cost micro-

controller. Arab J Sci Eng 39(8):6463–6476

2. Shaheen O, El-Nagar AM, El-Bardini M, El-Rabaie NM (2018)

Probabilistic fuzzy logic controller for uncertain nonlinear sys-

tems. J Frankl Inst 355(3):1088–1106

3. El-Nagar AM, El-Bardini M (2016) Hardware-in-the-loop simu-

lation of interval type-2 fuzzy PD controller for uncertain non-

linear system using low cost microcontroller. Appl Math Model

40(3):2346–2355

4. Sozhamadevi N, Sathiyamoorthy S (2015) A probabilistic fuzzy

inference system for modeling and control of nonlinear process.

Arab J Sci Eng 40(6):1777–1791

5. Chemachema M (2012) Output feedback direct adaptive neural

network control for uncertain SISO nonlinear systems using a

fuzzy estimator of the control error. Neural Netw 36:25–34

6. Rossomando FG, Soria CM (2017) Discrete-time sliding mode

neuro-adaptive controller for SCARA robot arm. Neural Comput

Appl 28(12):3837–3850

7. Wen G, Ge SS, Tu F (2018) Optimized backstepping for tracking

control of strict-feedback systems. IEEE Trans Neural Netw

Learn Syst 29(8):3850–3862

8. Aghababa MP (2016) Optimal design of fractional-order PID

controller for five bar linkage robot using a new particle swarm

optimization algorithm. Soft Comput 20(10):4055–4067

9. Kiumarsi B, Vamvoudakis KG, Modares H, Lewis FL (2018)

Optimal and autonomous control using reinforcement learning: a

survey. IEEE Trans Neural Netw Learn Syst 29(6):2042–2062

10. Liu YJ, Li S, Tong S, Chen CP (2018) Adaptive reinforcement

learning control based on neural approximation for nonlinear

discrete-time systems with unknown nonaffine dead-zone input.

IEEE Trans Neural Netw Learn Syst 99:1–11

11. Khan SG, Herrmann G, Lewis FL, Pipe T, Melhuish C (2012)

Reinforcement learning and optimal adaptive control: an over-

view and implementation examples. Annu Rev Control

36(1):42–59

12. Murray JJ, Cox CJ, Lendaris GG, Saeks R (2002) Adaptive

dynamic programming. IEEE Trans Syst Man Cybern Part C

(Appl Rev) 32(2):140–153

13. Khater AA, El-Bardini M, El-Rabaie NM (2015) Embedded

adaptive fuzzy controller based on reinforcement learning for dc

motor with flexible shaft. Arab J Sci Eng 40(8):2389–2406

14. Radac MB, Precup RE, Roman RC (2017) Model-free control

performance improvement using virtual reference feedback tun-

ing and reinforcement Q-learning. J Syst Sci 48(5):1071–1083

15. Boubertakh H, Tadjine M, Glorennec PY, Labiod S (2010)

Tuning fuzzy PD and PI controllers using reinforcement learning.

ISA Trans 49(4):543–551

16. Lewis FL, Liu D (2013) Reinforcement learning and approximate

dynamic programming for feedback control. Wiley, Hoboken

17. Hendzel Z, Szuster M (2011) Discrete neural dynamic pro-

gramming in wheeled mobile robot control. Commun Nonlinear

Sci Numer Simul 16(5):2355–2362

18. Zhang J, Zhang H, Luo Y, Feng T (2014) Model-free optimal

control design for a class of linear discrete-time systems with

multiple delays using adaptive dynamic programming. Neuro-

computing 135:163–170

19. Wang D, Liu D, Wei Q, Zhao D (2012) Optimal control of

unknown nonaffine nonlinear discrete-time systems based on

adaptive dynamic programming. Automatica 48(8):1825–1832

20. Zhong X, He H, Zhang H, Wang Z (2015) A neural network

based online learning and control approach for Markov jump

systems. Neurocomputing 149:116–123

21. Maharajan C, Raja R, Cao J, Rajchakit G (2018) Novel global

robust exponential stability criterion for uncertain inertial-type

BAM neural networks with discrete and distributed time-varying

delays via Lagrange sense. J Frankl Inst 355(11):4727–4754

22. Sowmiya C, Raja R, Cao J, Rajchakit G (2018) Enhanced result

on stability analysis of randomly occurring uncertain parameters,

leakage, and impulsive BAM neural networks with time-varying

delays: discrete-time case. Int J Adapt Control Signal Process

32(7):1010–1039

23. Sowmiya C, Raj R, Cao J, Li X, Rajchakit G (2018) Discrete-

time stochastic impulsive BAM neural networks with leakage and

mixed time delays: an exponential stability problem. J Frankl Inst

355(10):4404–4435

24. Sowmiya C, Raja R, Cao J, Rajchakit G, Alsaedi A (2018)

Exponential stability of discrete-time cellular uncertain BAM

Neural Computing and Applications (2020) 32:8691–8710 8709

123

neural networks with variable delays using halanay-type

inequality. Appl Math Inf Sci 12(3):545–558

25. Sundara V, Raja R, Agarwal R, Rajchakit G (2018) A novel

controllability analysis of impulsive fractional linear time

invariant systems with state delay and distributed delays in

control. Discontin Nonlinearity Complex 7(3):275–290

26. Saravanakumar R, Rajchakit G, Ahn CK, Karimi HR (2017)

Exponential stability, passivity, and dissipativity analysis of

generalized neural networks with mixed time-varying delays.

IEEE Trans Syst Man Cybern Syst 49(2):395–405

27. Song R, Xiao W, Zhang H, Sun C (2014) Adaptive dynamic

programming for a class of complex-valued nonlinear systems.

IEEE Trans Neural Netw Learn Syst 25(9):1733–1739

28. Si J, Wang YT (2001) Online learning control by association and

reinforcement. IEEE Trans Neural Netw 12(2):264–276

29. Huang X, Naghdy F, Du H, Naghdy G, Todd C (2015) Rein-

forcement learning neural network (RLNN) based adaptive con-

trol of fine hand motion rehabilitation robot. In: IEEE conference

on control applications (CCA), pp 941–946

30. Shen H, Guo C (2016) Path-following control of underactuated

ships using actor-critic reinforcement learning with MLP neural

networks. In: IEEE conference information science and technol-

ogy (ICIST), pp 317–321

31. Niedzwiedz C, Elhanany I, Liu Z, Livingston S (2008) A con-

solidated actor-critic model with function approximation for

high-dimensional POMDPs. In: AAAI conference, pp 37–42

32. He H, Ni Z, Fu J (2012) A three-network architecture for on-line

learning and optimization based on adaptive dynamic program-

ming. Neurocomputing 78(1):3–13

33. Ni Z, Tang Y, Sui X, He H, Wen J (2016) An adaptive neuro-

control approach for multimachine power systems. Int J Electr

Power Energy Syst 75:108–116

34. Lv Y, Na J, Ren X (2017) Online H! control for completely

unknown nonlinear systems via an identifier–critic-based ADP

structure. Int J Control 92:1–12

35. Khater AA, El-Nagar AM, El-Bardini M, El-Rabaie NM (2018)

Adaptive TS fuzzy controller using reinforcement learning based

on Lyapunov stability. J Frankl Inst 355(14):6390–6415

36. Fung RF, Lin FJ, Wai RJ, Lu PY (2000) Fuzzy neural network

control of a motor-quick-return servomechanism. Mechatronics

10:145–167

37. Juang CF, Huang RB, Lin YY (2009) A recurrent self-evolving

interval type-2 fuzzy neural network for dynamic system pro-

cessing. IEEE Trans Fuzzy Syst 17(5):1092–1105

38. Lin CJ, Chin CC (2004) Prediction and identification using

wavelet-based recurrent fuzzy neural networks. IEEE Trans Syst

Man Cybern Part B (Cybern) 34(5):2144–2154

39. El-Nagar AM, El-Bardini M (2014) Simplified interval type-2

fuzzy logic system based on new type-reduction. J Intell Fuzzy

Syst 27(4):1999–2010

40. El-Nagar AM (2016) Embedded intelligent adaptive PI controller

for an electromechanical system. ISA Trans 64:314–327

41. Deng Z, Choi KS, Cao L, Wang S (2014) T2FELA: type-2 fuzzy

extreme learning algorithm for fast training of interval type-2

TSK fuzzy logic system’’. IEEE Trans Neural Netw Learn Syst

25(4):664–676

42. Zhang Z (2018) Trapezoidal interval type-2 fuzzy aggregation

operators and their application to multiple attribute group deci-

sion making. Neural Comput Appl 29(4):1039–1054

43. Lin CM, La VH, Le TL (2018) DC–DC converters design using a

type-2 wavelet fuzzy cerebellar model articulation controller.

Neural Comput Appl. https://doi.org/10.1007/s00521-018-3755-z

44. El-Bardini M, El-Nagar AM (2014) Interval type-2 fuzzy PID

controller: analytical structures and stability analysis. Arab J Sci

Eng 39(10):7443–7458

45. El-Bardini M, El-Nagar AM (2014) Interval type-2 fuzzy PID

controller for uncertain nonlinear inverted pendulum system. ISA

Trans 53(3):732–743

46. Juang CF, Tsao YW (2008) A self-evolving interval type-2 fuzzy

neural network with online structure and parameter learning.

IEEE Trans Fuzzy Syst 16(6):1411–1424

47. Lin YY, Chang JY, Lin CT (2014) A TSK-type-based self-

evolving compensatory interval type-2 fuzzy neural network

(TSCIT2FNN) and its applications. IEEE Trans Ind Electron

61(1):447–459

48. El-Nagar AM (2018) Nonlinear dynamic systems identification

using recurrent interval type-2 TSK fuzzy neural network—A

novel structure. ISA Trans 72:205–217

49. Lin YY, Liao SH, Chang JY, Lin CT (2014) Simplified interval

type-2 fuzzy neural networks. IEEE Trans Neural Netw Learn

Syst 25(5):959–969

50. Wiering M, Van Otterlo M (2012) Reinforcement learning. Adapt

Learn Optim 12:3

51. Juang CF, Lin CT (1998) An online self-constructing neural

fuzzy inference network and its applications. IEEE Trans Fuzzy

Syst 6(1):12–32

52. Kermani BG, Schiffman SS, Nagle HT (2005) Performance of the

Levenberg–Marquardt neural network training method in elec-

tronic nose applications. Sensors Actuators B Chem

110(1):13–22

53. Fu X, Li S, Fairbank M, Wunsch DC, Alonso E (2015) Training

recurrent neural networks with the Levenberg–Marquardt algo-

rithm for optimal control of a grid-connected converter. IEEE

Trans Neural Netw Learn Syst 26(9):1900–1912

54. Liu H (2010) On the Levenberg–Marquardt training method for

feed-forward neural networks. In: IEEE international conference

on natural computation (ICNC), vol 1. pp 456–460

55. Astrom KJ, Wittenmark B (2013) Adaptive control. Courier

Corporation

56. Zhang X, Zhang H, Sun Q, Luo Y (2012) Adaptive dynamic

programming-based optimal control of unknown nonaffine non-

linear discrete-time systems with proof of convergence. Neuro-

computing 91:48–55

57. Xu D, Jiang B, Shi P (2014) Adaptive observer based data-driven

control for nonlinear discrete-time processes. IEEE Trans Autom

Sci Eng 11(4):1037–1045

58. Eskinat E, Johnson SH, Luyben WL (1991) Use of Hammerstein

models in identification of nonlinear systems. AIChE J

37(2):255–268

59. Berger MA, da Fonseca Neto JV (2013) Neurodynamic pro-

gramming approach for the PID controller adaptation. IFAC Proc

46(11):534–539

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

8710 Neural Computing and Applications (2020) 32:8691–8710

123

https://doi.org/10.1007/s00521-018-3755-z

	Online learning based on adaptive learning rate for a class of recurrent fuzzy neural network
	Abstract
	Introduction
	Proposed RIT2-TSK-FNN structure
	Proposed RL scheme
	The critic network
	The actor network

	Online learning for the proposed RL scheme
	Structure learning
	Parameter learning
	Learning rate adaptation

	Simulation results
	Case study 1
	Task 1---effect due to variation of desired output
	Task 2---variation of the system parameters
	Task 3---disturbance uncertainty
	Task 4---actuator noise

	Case study 2
	Task 1---effect due to variation of desired output
	Task 2---process parameters uncertainty
	Task 3---sensor measurement uncertainty
	Task 4---actuator failure due to noise

	Conclusion
	Appendix A
	Appendix B
	References

