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Abstract
As a generalization of the hesitant fuzzy sets (HFSs) and dual HFSs (DHFSs), probabilistic dual hesitant fuzzy sets

(PDHFSs) are a strong and valuable tool to represent the imprecise information by embedding both the features of HFSs

and probabilistic information instantaneously. Meanwhile, a correlation coefficient is a prominent measure to measure the

relationship between two sets. Motivated by these primary characteristics, it is interesting to present some information

measures to the PDHFSs and hence decision-making approach based on the correlation coefficient. In this paper, we

develop a method to solve the multi-criteria decision-making (MCDM) problem under PDHFS environment. For it, firstly,

we define the informational energy and the covariance between the two PDHFSs and study their properties. Secondly, we

develop correlation coefficients and the weighted correlation coefficients for PDHFSs. In the formulation, DHFSs are able

to represent the information in terms of their respective degrees, while the assigned probabilities give more details about

the level of agreeness or disagreeness. Also, some properties of the proposed measures are also studied. Thirdly, a novel

algorithm is developed based on the proposed operators to solve MCDM problems. A practical example is provided to

verify the developed approach and to demonstrate its practicality and feasibility. Also, a comparative analysis with several

existing studies reveals the proposed method is better during solving the decision-making problems.

Keywords Probabilistic dual hesitant fuzzy sets � Correlation coefficient � Personnel selection � Multi-criteria decision-

making

1 Introduction

Multiple criteria decision-making (MCDM) problems are a

huge part of human society and applied widely to practical

fields like economics, management, and engineering. In the

MCDM process, the task is to find the finest alternatives

among the feasible ones. With the development of science

and technology, the uncertainty also plays a dominant

factor during the decision-making (DM) analysis. Further,

the role of the decision-makers during the process is so

challenging in order to collect precise data. Most of the

information collected from the various resources is either

uncertain or imprecise in nature and hence leads to inac-

curate results. Thus, the task of the DM process is to find

the finest objects among the available by utilizing this

imprecise or uncertain information. To this, time-to-time, a

variety of concepts have been applied to reach the correct

decisions by utilizing the features such as crisp, deter-

ministic, and precise in nature. However, to handle the

uncertainty in the data, a concept of fuzzy sets (FSs) [39]

and their extensions such as intuitionistic FSs (IFSs) [3],

interval-valued IFSs (IVIFSs) [2], and linguistic IVIFSs

[14] describe the components with membership degrees

(MDs) and non-membership degrees (NMDs) with the end

goal that their sum is not more than one. Later on, Torra

[27] presented the concept of the hesitant fuzzy sets (HFSs)

which capture the multiple discrete values of the MDs.

Also, Xia and Xu [34] established the concepts of HFSs

mathematically and defined their basic element, hesitant

fuzzy elements (HFEs), contained in [0, 1]. Zhu et al. [43]

presented the concept of dual HFSs (DHFSs) by assigning
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hesitant degrees of NMDs along with MDs into the analysis

and also defined its basic element, dual HFEs (DHFEs).

Under the above-stated theories, researchers are paying

more attention to solve decision-making problems (DMPs)

by using different kinds of aggregation operators or

information measures. Among these various ideas, one is to

locate the finest alternative utilizing correlation coefficients

(CCs) which assume an overwhelming job to quantify the

level of dependency between the two sets. In statistical

analysis, the CCs measure the linear relationship, whereas

in FS theory, they determine the degree of dependency

between the two variables. In that direction, Gerstenkorn

and Manko [16] developed CCs for IFSs, whereas Bustince

and Burillo [4] gave the CCs for IVIFSs. Park et al. [24]

corroborated the CC of IVIFSs and applied them to solve

the DMPs. Mitchell [23] derived simple, intuitively satis-

fying CC between two IFSs and elicited the relevance of

obtained values by evaluating through different test stages.

Enhancing the existing concepts to channelize the appro-

priate decision outcomes in the DM problems, Garg [8]

threw light on CCs between Pythagorean fuzzy sets (PFSs).

Wei et al. [33] highlighted the application of CC to IVIFSs

with incomplete weight information. The CCs for the

intuitionistic multiplicative sets are being presented by

Garg [9]. Also, Garg and Kumar [13] presented CCs of

IFSs based on the connection number of the set pair

analysis.

In these above speculations, it is accepted that the rat-

ings provided by the specialists are either a ‘‘single num-

ber’’ or ‘‘an interval.’’ However, if an expert wants to give

their values in terms of discrete sets, then the concept of the

HFSs [27] and DHFSs [43] was introduced by the

researchers. Under these environments, Chen et al. [5] and

Xu and Xia [35] presented the CCs for HFSs. Farhadinia

[7] and Ye [38] presented the CCs and applied them to

solve the multi-attribute DMPs. Tyagi [28] presented the

CCs for DHFSs. Chen et al. [6] presented an algorithm for

solving DMPs under the dual hesitant fuzzy information.

Meng and Chen [22] presented the Shapley weighted CCs

to solve the DM problem having HFS data with incomplete

weights. Arora and Garg [1] presented the CCs of dual

hesitant fuzzy soft sets. Wang et al. [31] presented the

correlation measures of DHFSs. Liao and Xu [20] defined

the entropy and CC measures for HFSs. Recently, Sun et al.

[26] presented a TOPSIS approach based on CC for HFSs.

Yang et al. [37] discussed the weighted CC and applied this

for solving DM problems of supplier selection and medical

diagnosis. Guan et al. [17] pointed out the errors of existing

CCs [5, 21, 35] and developed an improved CC measure

based on the mean, variance, and length of each HFS.

Although HFSs and DHFSs are successfully applied in

various DMPs, they do not address the issue regarding the

occurrence of the probabilities of the elements in the HFSs

or DHFSs. Here, we take the following examples as an

illustration: Consider a person who gives their preferences

toward the comfortless of an object in terms of HFE as

{0.3, 0.5, 0.6}. During its ratings, he suggested that the

comfort level corresponding to 0.5 is the most desirable as

compared to others, while the comfort level associated with

0.3 is more desirable than 0.6. Thus, under such circum-

stance, the HFE {0.3, 0.5, 0.6} is not suitable to describe

the information. Similarly, consider a rating of a person

toward the evaluation of the quality of a product in terms of

DHFE ({0.3, 0.4, 0.5}, {0.2, 0.3, 0.4}). During the ratings,

the decision-maker believes that their comfortable toward

the object rating 0.3, 0.4 is double than 0.5 in membership

degrees, while triple toward the 0.4 in the non-membership

degrees with respect to the others. Thus, again such DHFE

({0.3, 0.4, 0.5}, {0.2, 0.3, 0.4}) is not suitable to describe

the information. To resolve such problems, the concepts of

the probabilistic HFS (PHFS) and probabilistic DHFS

(PDHFS) were investigated by Xu and Zhou [36] and Hao

et al. [18], respectively, and defined their basic elements as

probabilistic HFEs (PHFEs) and probabilistic DHFEs

(PDHFEs). The PDHFE provides a more accurate

description than DHFE, HFE, and PHFE and can be easily

used to describe the information in the above-stated

examples. Under these environments, Zhou and Xu [41],

Zhu and Xu [42] defined the concept of the probabilistic

hesitant fuzzy preference relation and studied its expected

consistency. Wang and Li [32] presented the CCs for the

PHFEs and an algorithm based on them for solving the

DMPs. Kobina et al. [19] defined the concept of the

probabilistic linguistic power aggregation operators for

solving the DMPs. Zhou and Xu [40] defined the group

consistency under uncertain probabilistic hesitant fuzzy

preference environment. Ren et al. [25] presented the

TODIM (an acronym in Portuguese of interactive and

multi-criteria decision-making) method for PDHFSs. Garg

and Kaur [12] presented aggregation operators-based

algorithms with some information measures to solve the

DMPs under the PDHFS environment.

Consider the fact that PDHFSs are a more strong and

valuable tool to represent the information in a more prof-

itable way. As the PDHFEs, represented as ðhjq; gjqÞ;
consist of two parts, that is, the membership parts (h,

g) represent MD and NMD of the elements and the cor-

responding probabilities (p, q). Thus, this information can

be treated as a probability distribution function with h, g as

the random variables and p, q as the probabilities.
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Therefore, keeping these points in mind, in this paper, we

compute the expected mean related to the multiplication of

two PDHFEs by computing the probabilities using the

northwest corner rule. Apart from this, the present work

also stated an algorithm to compute the probabilities of the

aggregated numbers. For example, if two different experts

evaluate the given object x under the DHFSs environment,

one expert assigns ðf0:2; 0:3g; f0:2; 0:4gÞ as PDFHE,

while the other assign ðf0:2; 0:4g; f0:4; 0:5gÞ. In such a

case, due to the loss of information, the DHFE ({0.2, 0.3,

0.4}, {0.2, 0.4, 0.5}) is not suitable to describe the infor-

mation, as both the experts have different opinions

regarding the object x. To address this case, the data are

consolidated into PDHFS by breaking down the probabil-

ities of a choice given by both the experts.

Therefore, motivated by the structure of the PDHFS,

importance of CC, and the above-mentioned limitations,

this paper focuses on the CC between the pairs of PDHFEs.

As per our knowledge, the correlation measures cannot be

utilized to handle the PDHFEs. Thus, we need to propose

such measures to compute the relative strength between the

pairs of PDHFEs. For it, we define the informational

energies and the covariance between the pairs of PDHFEs.

The northwest corner method has been utilized to compute

the joint probabilities of the sets. The major advantage of

the present method is that there is no need to match the

length of the considered PDHFSs by repeating the values,

as in the case of DHFEs. Then, based on these, we define

four CCs, based on the inherent characteristics, and obtain

some properties. Further, a novel MCDM method based on

the proposed CCs is presented and illustrated it with some

practical problems. The performance of the proposed

measure is compared with several existing theories.

The rest of the text is organized as follows. In Sect. 2,

we briefly present the concepts of HFSs, DHFSs, and

PDHFS. In Sect. 3, we established the CCs to measure the

strength between the pairs of PDHFSs and investigated

their properties. Section 4 constructs an approach to deal

with the MCDM problems. Section 5 illustrates the

approach with some numerical examples and compared

their results with some existing approaches. Finally, con-

cluding remarks are given in Sect. 6.

2 Preliminaries

Some basic concepts related to HFSs, DHFSs, and PDHFSs

are reviewed here over the set X .

Definition 1 [27, 34] A HFS H : X ! ½0; 1� is defined as:

H ¼
n

x; hHðxÞð Þ j x 2 X
o

ð1Þ

where hH is a discrete set of different values in [0, 1],

denoting the possible MDs of x 2 X .

Definition 2 [43] A DHFS D on X is defined as

D ¼
n

x; hDðxÞ; gDðxÞð Þ j x 2 X
o
; ð2Þ

where hDðxÞ and gDðxÞ are two discrete sets of some values

in [0,1], denoting the possible MDs and NMDs of x 2 X to

the set D, respectively, with the condition that

0� cD; gD � 1 and 0� cþD þ gþD � 1 where cD 2 hD; gD 2
gD; cþD 2 hþD ¼

S
cD2hD maxfcDg; gþD 2 gþD ¼

S
gD2gD

maxfgDg. A pair D ¼ ðhD; gDÞ ¼
S
cD 2 hD;

gD 2
gD fcDg; fgDgð Þ is called as DHFE.

Definition 3 [36] A PHFS P on X can be expressed as

P ¼ x; hx
��px

� �
j x 2 X

� �
; ð3Þ

where hx 2 ½0; 1� be the possible membership values of the

set P and px 2 ½0; 1� be their associated probabilities. For

convenience, hxðpxÞ is called a PHFE and is indicated as

hðpÞ ¼ ci
��pi

� �
j i ¼ 1; 2; . . .;#hP

� �
; ð4Þ

with ci 2 hi and pi be the probability of ci such thatP#hP
i¼1 pi ¼ 1. Here, #hP is the cardinality of ci

��pi.
Definition 4 [18] A PDHFS P on X is defined as

P ¼
n

x; hx
��px; gx

��qx
� �

j x 2 X
o
: ð5Þ

Here, the components hx, gx 2 ½0; 1� are the hesitant MDs

and NMDs, while px; qx be their associated probabilities

with the conditions, 0� c; g� 1; 0� cþ; gþ � 1 such that

c 2 hx; g 2 gx; cþ 2 hþx ¼
S

c2hx maxfcg; gþ 2 gþx ¼S
g2gx maxfgg; pi 2 px and qj 2 qx with

P#hP
i¼1 pi ¼ 1;P#gP

j¼1 qj ¼ 1. The symbols #hP and #gP represent the

cardinality of the components hx
��px and gx

��qx; respectively.
A pair

A ¼ hA j pA; gA j qAð Þ ¼
[

cj 2 hA

gk 2 gA

cj
��pj

� �
; gk

��qk
� �� �

ð6Þ

with j ¼ 1; 2; . . .;#hA; k ¼ 1; 2; . . .;#gA is called as

PDHFE.
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Definition 5 [18] For two PDHFEs A ¼
hA
��pA; gA

��qA
� �

¼
S

cj2hA;gk2gA fcj j pjg; fgk j qkg
� �

and

B ¼ hB
��pB; gB

��qB
� �

¼
S

c0
j0 2hB ;g

0
k0 2gB

fc0j0 j p0j0 g; fg0k0 j q0k0 g
� �

,

where j ¼ 1; 2; . . .;#hA; k ¼ 1; 2; . . .;#gA;
j0 ¼ 1; 2; . . .;#hB; k

0 ¼ 1; 2; . . .;#gB, the basic operations

on A and B are defined as

(i) A ¼ B if and only if
[
cj2hA

fcjg ¼
[

c0
j0 2hB

c0j0
n o

;
[

gk2gA
fgkg ¼

[
g0
k0 2gB

fg0k0 g;

[
pj2pA

fpjg ¼
[

p0
j0 2pB

fp0j0 g;
[

qk2qA
fqkg ¼

[
q0
k0 2qB

fq0k0 g:

(ii) A � B, if[
cj2hA

fcjg�
[

c0
j0 2hB

fc0j0 g;
[

gk2gA
fgkg�

[
g0
k0 2gB

fg0k0 g

[
pj2pA

fpjg ¼
[

p0
j0 2pB

fp0j0 g;
[

qk2qA
fqkg ¼

[
q0
k0 2qB

fq0k0 g

(iii) The complement of PDHFE A is

Ac ¼

S
cj2hA;gk2gA

fgk
��qkg;fcj

��pjg
� �

; if hA 6¼/ and gA 6¼/

S
cj2hA

f1� cj
��pjg;f/g

� �
; if hA 6¼/ and gA ¼/

S
gk2gA

f/g;f1�gk
��qkg

� �
; if hA ¼/ and gA 6¼/

8>>>>>><
>>>>>>:

3 Correlation coefficient on PDHFSs

For a universal set X ¼ fxi j i ¼ 1; ; 2. . .; ng, we define the
concept of the informational energy, covariance, and CC

for PDHFSs. For it, we use the following notations

throughout the paper.

Notations Meaning Notations Meaning

n Number of

elements in X
N 0 Number of elements in

gB

hA Hesitant

membership

values of set A

p Probability for hesitant

membership of set A

Notations Meaning Notations Meaning

gA Hesitant non-

membership

values of set A

q Probability for hesitant

non-membership of

set A
hB Hesitant

membership

values of set B

p0 Probability for hesitant

membership of set B

gB Hesitant non-

membership

values of set B

q0 Probability for hesitant

non-membership of

set B
M Number of

elements in hA

x Weight vector

N Number of

elements in gA

m Number of alternatives

M0 Number of

elements in hB

t Number of criteria

Definition 6 Let two PDHFEs A ¼ ðhAjpA; gAjqAÞ ¼S
ci;j2hA;gi;k2gA fci;j

��pi;jg; fgi;k
��qi;kg

� �
and B ¼ ðhBjpB;

gBjqBÞ ¼
S

c0
i;j0 2hB ;g

0
i;k0 2gB

fc0i;j0
��p0i;j0 g; fg0i;k0

��q0i;k0 g
� �

where j ¼
1; 2; . . .;Mi; k ¼ 1; 2; . . .;Ni;j

0 ¼ 1; 2; . . .;M0
i ; k ¼ 1; 2;

. . .;N 0
i , the informational energies of them are defined as

IðAÞ ¼
Xn
i¼1

XMi

j¼1

�
ci;j
�2
pi;j þ

XNi

k¼1

�
gi;k
�2
qi;k

 !
ð7Þ

and

IðBÞ ¼
Xn
i¼1

XM0
i

j0¼1

�
c0i;j0
�2
p0i;j0 þ

XN 0
i

k0¼1

�
g0i;k0
�2
q0i;k0

 !
: ð8Þ

Further, the covariance between A and B is given as:

CðA;BÞ

¼
Xn
i¼1

XMi

j¼1

XM0
i

j0¼1

ci;jc
0
i;j0pi;jj0 þ

XNi

k¼1

XN 0
i

k0¼1

gi;kgi;k0qi;kk0

 !

ð9Þ

where pi;jj0 and qi;kk0 are the joint probabilities of A and B
calculated as below:
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From Eq. (9), it is seen that CðA;BÞ ¼ CðB;AÞ and

CðA;AÞ ¼ IðAÞ. However, it is also being noted that

when A ¼ B; the joint probability distribution of CðA;BÞ
is equal to IðAÞ; i.e., pi;jj0 ¼ pi;j which is computed by

using the northwest corner rule as demonstrated below:

Joint probabilities computed using northwest corner rule

Membership values Non-membership values

ci;1 ci;2 . . . ci;Mi
gi;1 gi;2 . . . gi;Ni

ci;1 pi;1 0 . . . 0 pi;1 gi;1 qi;1 0 . . . 0 qi;1

ci;2 0 pi;2 . . . 0 pi;2 gi;2 0 qi;2 . . . 0 qi;2

..

. ..
. ..

. . .
. ..

. ..
. ..

. ..
. ..

. . .
. ..

. ..
.

ci;Mi
0 0 . . . pi;Mi

pi;Mi
gi;Ni

0 0 . . . qi;Ni
qi;Ni

pi;1 pi;2 . . . pi;Mi
1 qi;1 qi;2 . . . qi;Ni

1

By utilizing the above concept, we define the CC for

PDHFEs A and B as follows:

Definition 7 For two PDHFSs A ¼ ðhAjpA; gAjqAÞ ¼S
ci;j2hA;gi;k2gA fci;j

��pi;jg; fgi;k
��qi;kg

� �
and B ¼ ðhBjpB;

gBjqBÞ ¼
S

c0
i;j0 2hB ;g

0
i;k0 2gB

fc0i;j0
��p0i;j0 g; fg0i;k0

��q0i;k0 g
� �

defined on

X , the correlation coefficient denoted by K1ðA;BÞ is

defined as

Theorem 1 The correlation coefficient K1 satisfies the

following properties for PDHFEs A and B:

(P1) 0�K1ðA;BÞ� 1.

(P2) K1ðA;BÞ ¼ K1ðB;AÞ.
(P3) If A ¼ B; then K1ðA;BÞ ¼ 1.

Proof For two PDHFSs A ¼ ðhAjpA; gAjqAÞ ¼S
ci;j2hA;gi;k2gA fci;j

��pi;jg; fgi;k
��qi;kg

� �
and B ¼

ðhBjpB; gBjqBÞ ¼
S

c0
i;j0 2hB ;g

0
i;k0 2gB

fc0i;j0
��p0i;j0 g; fg0i;k0

��q0i;k0 g
� �

defined on X ¼ fx1; x2; . . .; xng

(P1) The inequality K1ðA;BÞ� 0 holds straightforward,

and therefore, K1ðA;BÞ� 0. Now, from Eq. (9), we

have

K1ðA;BÞ ¼ CðA;BÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðAÞ � IðBÞ

p

¼
Pn

i¼1

PMi

j¼1

PM0
i

j0¼1 ci;jc
0
i;j0pi;jj0 þ

PNi

k¼1

PN 0
i

k0¼1 gi;kgi;k0qi;kk0
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

PMi

j¼1

�
ci;j
�2
pi;j þ

PNi

k¼1

�
gi;k
�2
qi;k

� �r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

PM0
i

j0¼1

�
c0i;j0
�2
p0i;j0 þ

PN 0
i

k0¼1

�
g0i;k0
�2
q0i;k0

� �r ð10Þ

Joint probability distribution between A and B

Membership values Non-membership values

c0i;10 c0i;20 . . . c0i;M0
i

g0i;10 g0i;20 . . . g0i;N 0
i

ci;1 pi;110 pi;120 . . . pi;1M0
i

pi;1 gi;1 qi;110 qi;120 . . . qi;1N 0
i

qi;1

ci;2 pi;210 pi;220 . . . pi;2M0
i

pi;2 gi;2 qi;210 qi;220 . . . qi;2N 0
i

qi;2

..

. ..
. ..

. . .
. ..

. ..
. ..

. ..
. ..

. . .
. ..

. ..
.

ci;Mi
pi;Mi10 pi;Mi20 . . . pi;MiM

0
i

pi;Mi
gi;Ni

qi;Ni10 qi;Ni20 . . . qi;NiN
0
i

qi;Ni

p0i;1 p0i;2 . . . p0i;M0
i

1 q0i;1 q0i;2 . . . q0i;N 0
i

1
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CðA;BÞ ¼
Xn
i¼1

XMi

j¼1

XM0
i

j0¼1

ci;jc
0
i;j0pi;jj0 þ

XNi

k¼1

XN0
i

k0¼1

gi;kg
0
i;k0qi;kk0

 !

¼
Xn
i¼1

XMi

j¼1

�
ðci;jÞðc0i;1Þpi;j1

�
þ
XMi

j¼1

�
ðci;jÞðc0i;2Þpi;j2

�
þ � � � þ

XMi

j¼1

�
ðci;jÞðc0i;M0

i
Þpi;jM0

i

�( )

þ
XNi

k¼1

�
ðgi;kÞðg0i;1Þqi;k1

�
þ
XNi

k¼1

�
ðgi;kÞðg0i;2Þqi;k2

�
þ � � � þ

XNi

k¼1

�
ðgi;kÞðg0i;N 0

i
Þqi;kN 0

i

�( )

0
BBBBB@

1
CCCCCA

¼
Xn
i¼1

�
ðci;1Þðc0i;1Þpi;11

�
þ
�
ðci;2Þðc0i;1Þpi;21

�
þ � � � þ

�
ðci;Mi

Þðc0i;1Þpi;Mi1

�
þ � � �

þ
�
ðci;1Þðc0i;M0

i
Þpi;1M0

i

�
þ
�
ðci;2Þðc0i;M0

i
Þpi;2M0

i

�
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Using Cauchy–Schwarz inequality, ðx1y1 þ x2y2 þ
� � � þ xnynÞ2 � ðx21 þ x22 þ � � � þ x2nÞ � ðy21 þ y22 þ
� � � þ y2nÞ; where ðx1 þ x2 þ � � � þ xnÞ and

ðy1 þ y2 þ � � � þ ynÞ 2 Rn, we get
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ðci;jÞ2ðpi;jjÞ þ
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k¼1

ðgi;kÞ2ðqi;kkÞ
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�
Xn
i¼1

XM0
i

j0¼1

ðc0i;j0 Þ
2ðpi;j0j0 Þ þ

XN 0
i

k0¼1

ðgi;k0 Þ2ðqi;k0k0 Þ
 !

0
BBBBBB@

1
CCCCCCA

¼ IðAÞ � IðBÞ

:

Therefore,
�
CðA;BÞ

�2 �IðAÞ � IðBÞ. Thus, from
Eq. (10), it follows that K1ðA;BÞ� 1. Hence,

0�K1ðA;BÞ� 1.

(P2) Proof is obvious, so we omit it here.

(P3) Since A ¼ B; i.e., for all j ¼ 1; 2; . . .;Mi; k ¼
1; 2; . . .;Ni; j

0 ¼ 1; 2; . . .; M0
i ; k

0 ¼ 1; 2; . . .;N 0
i ; we

have ci;j ¼ c0i;j0 ; pi;j ¼ p0i;j0 ; gi;k ¼ g0i;k0 ; qi;k ¼ q0i;k0 ;

therefore,
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IðAÞ ¼
Xn
i¼1

XMi

j¼1

�
ci;j
�2
pi;j þ

XNi

k¼1

�
gi;k
�2
qi;k

 !
¼ IðBÞ :

Since CðA;AÞ ¼ IðAÞ, we obtain K1ðA;BÞ ¼ 1.

h:

In order to incorporate the pessimistic feature of the

decision -maker toward the process, we define a new cor-

relation coefficient by taking the maximum among the

energies of the set. This is defined as below.

Definition 8 For two PDHFSs A and B, the correlation

coefficient K2 is defined as:

Theorem 2 The correlation coefficient K2 has the fol-

lowing properties:

(P1) 0�K2ðA;BÞ� 1.

(P2) K2ðA;BÞ ¼ K2ðB;AÞ.
(P3) K2ðA;BÞ ¼ 1 , if A ¼ B.

Proof By Cauchy–Schwarz inequality:

Xn
j¼1

xjyj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
j¼1

x2j

 !
�
Xn
j¼1

y2j

 !vuut

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max

Xn
j¼1

x2j ;
Xn
j¼1

y2j

( ) !2
vuut ¼ max

Xn
j¼1

x2j ;
Xn
j¼1

y2j

( )

with equality if and only if the two vectors x ¼ ðx1; x2;
. . .; xnÞ and y ¼ ðy1; y2; . . .; ynÞ are linearly dependent.

Thus, by Eq. (11), we get 0�K2ðA;BÞ� 1.

Also,

h:

To illustrate the working of it, we give a numerical

example as follows.

Example 1 Let A ¼
n�

x1; ðf0:6
��0:2; 0:2��0:8g;

f0:3
��0:6; 0:4��0:4gÞ�, �x2; ðf0:2

��0:3; 0:4j0:7g, f0:5
��1gÞ�

o

and B ¼
n�

x1; ðf0:3
��0:5; 0:4��0:5g, f0:4

��1gÞ�; �x2;
ðf0:4

��1g, f0:3�� 0:6; 0:5��0:4gÞ�
o

be two PDHFSs defined

over X ¼ fx1; x2g. Then, by Eq. (7), we get

IðAÞ ¼
X2
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XMi
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�
ci;j
�2
pi;j þ

XM0
i

k¼1

�
gi;k
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 !

¼ð0:6Þ2 � 0:2þ ð0:2Þ2 � 0:8

þ ð0:3Þ2 � 0:6þ ð0:4Þ2 � 0:4

þ ð0:2Þ2 � 0:3þ ð0:4Þ2 � 0:7þ ð0:5Þ2 � 1

¼ 0:5960

:

Similarly, we get

IðBÞ ¼ ð0:3Þ2 � 0:5þ ð0:4Þ2 � 0:5þ ð0:4Þ2 � 1þ ð0:4Þ2 � 1

þ ð0:3Þ2 � 0:6þ ð0:5Þ2 � 0:4

¼ 0:5990

:

Furthermore, by using northwest corner rule, we compute

joint probabilities corresponding to x1 and x2 as

K2ðA;BÞ ¼ CðA;BÞ
maxfIðAÞ; IðBÞg

¼
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PMi
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PM0
i

j0¼1 ci;jc
0
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i
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� �
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: ð11Þ
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¼K2ðB;AÞ
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Joint probability calculation for membership values

x1 0.3 0.4 p1;Mi

ði ¼ 1; 2Þ
x2 0.4 p2;Mi

ði ¼ 1; 2Þ

0.6 0.2 0 0.2 0.3 0.6 0.6

0.2 0.3 0.5 0.8 0.4 0.4 0.4

p01;M0
i

ði ¼ 1; 2Þ
0.5 0.5 p02;M0

i
ði ¼ 1Þ 1

Based on it,

Xn
i¼1

XMi

j¼1

XM0
i

j0¼1

ci;jc
0
i;j0pi;jj0 ¼ ð0:6� 0:3� 0:2Þ þ ð0:2� 0:3� 0:3Þ

þ ð0:2� 0:4� 0:5Þ þ ð0:3� 0:4� 0:6Þ
þ ð0:4� 0:4� 0:4Þ

¼ 0:23

Similarly, for non-membership values of A and B, we have

Joint probability calculation for non-membership values

x1 0.4 q1;Ni

ði ¼ 1; 2Þ
x2 0.3 0.5 q2;Ni

ði ¼ 1Þ
0.3 0.6 0.6 0.5 0.6 0.4 1

0.4 0.4 0.4

Joint probability calculation for non-membership values

q01;N 0
i

ði ¼ 1Þ
1 q02;N 0

i
ði ¼ 1; 2Þ 0.6 0.4

Thus,

Xn
i¼1

XNi

k¼1
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i

k0¼1

gi;kgi;k0qi;kk0 ¼ ð0:3� 0:4� 0:6Þ þ ð0:4� 0:4� 0:4Þ

þ ð0:5� 0:3� 0:6Þ þ ð0:5� 0:5� 0:4Þ
¼ 0:3260

Hence, by Eq. (9), we obtain CðA;BÞ ¼ 0:2300þ
0:3260 ¼ 0:5560. Therefore, Eq. (10) and Eq. (11) become

K1ðA;BÞ ¼ 0:5560ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5990

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5960

p ¼ 0:9305 and K2ðA;BÞ ¼

0:5560

maxf0:5990; 0:5960g ¼ 0:9282.

In all the above-stated correlation formulae, equal priority

is given to all the elements of universal set. This may not be

relevant to the real-life scenario, as we often come across

such entities which are given more weightage as compared

to the other ones. To tackle such cases, we assign the weight

xi [ 0 with
Pn

i¼1 xi ¼ 1 to each of the element of X and

define weighted CCs between two PDHFSs as follows:

and
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p

¼
Pn

i¼1 xi

PMi

j¼1

PM0
i

j0¼1

�
ci;jc

0
i;j0pi;jj0

�
þ
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K4ðA;BÞ ¼ CxðA;BÞ
maxfIxðAÞ; IxðBÞg

¼
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Also, if x ¼
�
1
n
; 1
n
; . . .; 1

n

�T
, then Eqs. (12) and (13)

reduce to Eqs. (10) and (11), respectively.

Theorem 3 The coefficient defined in Eq. (12) has the

following properties:

(P1) 0�K3ðA;BÞ� 1.

(P2) K3ðA;BÞ ¼ K3ðB;AÞ.
(P3) K3ðA;BÞ ¼ 1, if A ¼ B.

Proof The properties (P2) and (P3) are straightforward, so

we omit their proofs. Also, the inequality K3ðA;BÞ� 0 is

evident since CwðA;BÞ� 0, we shall show that

K3ðA;BÞ� 1. For it, by definition of CwðA;BÞ and by

Cauchy–Schwarz inequality, we can easily deduce that

CwðA;BÞ ¼
Xn
i¼1

xi

XMi

j¼1

XM0
i

j0¼1

�
ci;jc

0
i;j0pi;jj0

� 

þ
XNi

k¼1

XN 0
i

k0¼1

�
gi;kg

0
i;k0qi;kk0

�!

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
i¼1

xi

XMi

j¼1

��
ci;j
�2
pi;j

�
þ
XNi

k¼1

��
gi;k
�2
qi;k

� !vuut

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
i¼1

xi

XM0
i

j0¼1

��
c0i;j0
�2
p0i;j0
�
þ
XN 0

i

k0¼1

��
g0i;k0
�2
q0i;k0
� !vuut

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IwðAÞ � IwðBÞ

p

Therefore, K3ðA;BÞ� 1. Hence, (P1) holds. h

Theorem 4 The correlation coefficient K4 also satisfies

the same properties as of Theorem 3.

Proof Similar to above. h

From Definitions 7 and 8, it is observed that the CCs

formulated in Eq. (10) use the geometric mean of the

informational energies of PDHFSs, whereas Eq. (11) con-

siders the maximum energy possessing PDHFS. Thus, for

the decision-maker who is adopting an optimistic behavior,

the CCs are given in Eq. (10) which works well for without

weighted criterion information and Eq. (12) works appro-

priately under the weighted criteria information. However,

if the expert possesses pessimistic behavior, then Eqs. (11)

and (13) work efficiently for the non-weighted and

weighted criterion information, respectively.

Furthermore, in the DM process, an expert may provide

their information either in terms of DHFSs or in terms of

PDHFSs. So in order to integrate their values into the

PDHFSs, we assign the probabilities to each element and

then aggregate their values according to the procedure

described in Algorithm 1.
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To illustrate the working of this algorithm, we provide

an example as below.

Example 2 Let Að1Þ ¼
�
f0:1

��0:1; 0:2��0:5; 0:3��0:4g;
f0:5

��1g�; Að2Þ ¼
�
f0:2

��0:4, 0:3��0:6g; f0:5��0:2, 0:6��0:8g�;
and Að3Þ ¼

�
f0:1

��0:4; 0:2��0:4; 0:6 ��0:2g; f0:1��1g� be three

PDHFEs to be fused together. Thus, for the membership

part of PDHFEs, we have

hð1Þ; pð1Þ
� �

¼ f0:1
��0:1; 0:2��0:5; 0:3��0:4g� �

;

hð2Þ; pð2Þ
� �

¼ f0:2
��0:4; 0:3��0:6g� �

;

hð3Þ; pð3Þ
� �

¼ f0:1
��0:4; 0:2��0:4; 0:6��0:2g� �

:

Now, constructM ¼ f0:1
��0:1; 0:2��0:5; 0:3��0:4; 0:2��0:4; 0:3��

0:6; 0:1
��0:4; 0:2��0:4; 0:6��0:2g according to Algorithm 1 and

hence #L ¼ 8 and D ¼ 3. Thus, by implementing the steps

of Algorithm 1 for it, we get the output values corre-

sponding to membership degrees which are

f0:1
��0:1667; 0:2��0:4333; 0:3�� 0:3333; 0:6

��0:066g. Simi-

larly, by applying Algorithm 1 for non-membership

degrees, we get f0:5
��0:4; 0:6��0:2666; 0:1��0:3333g. Hence,

the aggregated PDHFE becomes

AðoutÞ ¼
0:1
��0:1667; 0:2��0:4333;

0:3
��0:3333; 0:6��0:066

( )
;

0:5
��0:4; 0:6��0:2666;
0:1
��0:3333

( ) !
:

4 Decision-making approach based on PDHF
information

This section presents an approach for solving the DMPs

under the PDHFS environment.

For this, let V1;V2; . . .;Vm be the m alternatives which

are evaluated under the different criteria G1;G2; . . .;Gt by a

set of ‘‘d’’ decision-makers. Each decision-maker evaluates

Vr under Gt and provides their preferences in terms of

PDHFEs aðdÞrv ¼ h
ðdÞ
rv

��pðdÞrv ; g
ðdÞ
rv

��qðdÞrv

� �
where r ¼ 1; 2; . . .;m;

v ¼ 1; 2; . . .; t. Then, the rating of each alternative Vr under

Gv is expressed as

Vr ¼



G1; ar1ð Þ; G2; ar2ð Þ; . . .; Gt; artð Þ
�
: ð14Þ

Let xv [ 0 be the normalized weight vector of criteria Gv.

Then, the following steps are executed to compute the best

alternative based on the proposed measure.

Step 1: Arrange the information of each decision-

maker toward Vr in terms of decision matrices

RðdÞ as:

Step 2: If d ¼ 1, then h
ðdÞ
rv

��pðdÞrv ; g
ðdÞ
rv

��qðdÞrv

� �
¼ hrv

��prv;
�

grv
��qrvÞ. On the other hand, if there are more

than one decision-maker, i.e., when d� 2;

then applying Algorithm 1 to obtain the

aggregated decision matrix R ¼ ðarvÞ from

RðdÞ as

where arv ¼ hrv
��prv; grv

��qrv
� �

¼
S

crv;j2hrv;grv;k2grv
�
crv;j
���

prv;j
�
;
�
grv;k

��qrv;k
�
Þ, where r ¼ 1; 2; . . .;m; v ¼ 1; 2; . . .; t;

j ¼ 1; 2; . . .;Mrv and k ¼ 1; 2; . . .;Nrv.
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Fig. 1 Flowchart of the proposed approach
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Step 3: Construct the ideal alternative V	 under the

criteria Gv as:

V	 ¼
[

crv;j2hrv;grv;k2grv

�
max

�
crv;j � prv;j

�� �
;min

�
grv;k � qrv;k

�� �

ð15Þ

where j ¼ 1; 2; . . .;#hrv and k ¼ 1; 2; . . .;

#grv.

Step 4: Compute the measurement values between Vr

and V	 by utilizing either K1 or K2 or K3 or

K4 as given in Eqs. (10), (11), (12), and (13),

respectively.

Step 5: Ordering the alternatives with the maximum

value of ‘‘argmaxK.’’

A pictorial representation of the proposed approach is

given as a flowchart and illustrated in Fig. 1.

5 Case study

For justifying the practical applicability of the approach

proposed above, a case study based on personnel selection

is considered in which a decision-making panel has to

select a prospective candidate who suits best for the job.

Personnel selection is a very prominent area of DM prob-

lems. In the practical DM processes, there arise many cases

in which the best candidate has to be selected among a pool

of contenders. Due to the complexity in rating criteria,

there arise a lot of uncertain data which are needed to be

addressed carefully to reach the desired accurate results.

Recruiting a prospective candidate for the survey pro-

jects is a prominent task carried out by multi-national

companies. Such kind of projects is basically survey ori-

ented which can be broadly classified into two types:

external survey projects and internal survey projects. In the

external survey projects, the company analyzes the position

of the external environment in accordance with which the

company has to adapt itself to survive in the business

market, whereas the internal survey projects, thoroughly,

focus on the internal environment of the company. In this,

internal analysis of the company is conducted in figuring

out several issues faced by the company, such as employee

turnover, job satisfaction level, company’s revenue returns.

Preferably, for the unbiased internal survey, often a com-

pany hires an individual from outside the company so that

an honest evaluation of the company’s internal working

can be made.

Suppose a software company desired to hire a project

manager to pay his services in fulfillment of an internal

survey project. In order to select the prospective candidate

for the job, three experts were decided to give their

assessment values. From a pool of applicants, four

prospective candidates were shortlisted for the personal

interviews. The panel has decided to evaluate the candi-

dates V i; ði ¼ 1; 2; 3; 4Þ based on four criteria, namely G1 :

‘‘Educational qualification’’; G2 : ‘‘Technical knowledge’’;

G3 : ‘‘Communication skills’’; G4 : ‘‘Work experience.’’ All

these criteria are accessed under the weighted criteria

x ¼ ð0:30; 0:40; 0:20; 0:10ÞT . The aim of the company is to

recruit the best candidate for the post of project manager so

that the project can be assigned to him and an internal

survey can be conducted smoothly in the company. For it,

the assessment ratings of applicants were provided by a

panel of three experts in the form of PDHFEs which are

given in Tables 1, 2, and 3.

Since the number of decision-makers is more than one,

by using Algorithm 1, the group PDHFEs are obtained and

summarized in Table 4.

The set of information given in V	 is considered as

reference standards. For it, by utilizing Eq. (15), we com-

pute the rating values of this set and are summarized in

Table 5, which is used to compute the correlation indices

for the alternatives.

By taking these preferences, the indices values corre-

sponding to K1 and K2 are computed from set V	 to Vr,

ðr ¼ 1; 2; 3; 4Þ and get:

K1ðV1;V	Þ ¼ 0:8920; K1ðV2;V	Þ ¼ 0:9245;

K1ðV3;V	Þ ¼ 0:9196; K1ðV4;V	Þ ¼ 0:9057

and

K2ðV1;V	Þ ¼ 0:9119; K2ðV2;V	Þ ¼ 0:9170;

K2ðV3;V	Þ ¼ 0:9329; K2ðV4;V	Þ ¼ 0:8939

Thus, the ordering is V2 
 V3 
 V4 
 V1 when K1 corre-

lation coefficient index has been used, while V3 
 V2 

V1 
 V4 when K2 correlation coefficient index has been

utilized, where ‘‘
’’ refer ‘‘preferred to.’’ As the ranking

order is different by both the coefficients, so based on the

inherent properties of these proposed coefficients, the

decision-maker may choose their goals according to their

desire.

On the other hand, if x ¼ ð0:30; 0:40; 0:20; 0:10ÞT is

taken, then by the expressions of K3 and K4, we get

K3ðV1;V	Þ ¼ 0:7485; K3ðV2;V	Þ ¼ 0:8572;

K3ðV3;V	Þ ¼ 0:7533; K3ðV4;V	Þ ¼ 0:7734

and

K4ðV1;V	Þ ¼ 0:7700; K4ðV2;V	Þ ¼ 0:8530;

K4ðV3;V	Þ ¼ 0:8061; K4ðV4;V	Þ ¼ 0:7843
:

Therefore, from the computed results we obtain the ranking

V2 
 V4 
 V3 
 V1 by utilizing correlation coefficient K3

and V2 
 V3 
 V4 
 V1 by using the correlation
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coefficient K4. Hence, by the maximum recognition prin-

ciple, we conclude that best alternative is V2; while the

relation between the alternatives V3 and V4 is selected

according the risk aversive and the risk preferable states

will give variable results in accordance with the decision-

maker’s attitude.

5.1 Comparative studies

To justify the superiority of our approach, this section

consists of the comparative analysis with the existing

approaches. It is noticeable that the probabilistic dual

hesitant fuzzy sets can be compared to the existing studies

[18, 30, 32, 38] under the different environments. To

analyze our approach by analyzing it parallel to these

approaches, a comparative analysis is listed below:

(i) The PDHFEs can be reduced to DHFEs by making

probabilities of the membership and the non-

membership portions equal within themselves.

That is, for a PDHFE A ¼
S

fcijpig; fgkjqkgð Þ
where i ¼ 1; 2; . . .;Mi and k ¼ 1; 2; . . .;Ni, if p1 ¼
p2 ¼ . . . ¼ pMi

¼ p and q1 ¼ q2 ¼ . . . ¼ qNi
¼ q,

then it reduces to a DHFE. Based on this

reduction, in accordance with the approach pro-

posed by Wang et al. [30], the correlation

coefficient ‘‘K3’’ for the four alternatives is

obtained as:

K3ðV1;V	Þ ¼ 0:9352; K3ðV2;V	Þ ¼ 0:9033;

K3ðV3;V	Þ ¼ 0:9442; K3ðV4;V	Þ ¼ 0:8892
:

Thus, alternatives are ranked as V3 
 V1 
 V2 

V4: It is noticeable that alternatives’ ranking varies

with a huge difference from that of our proposed

approach’s outcome. This is due to the fact that in

the existing theory probabilities corresponding to

agreeness and disagreeness are not considered.

The proposed approach is advantageous over the

existing one [30] because, in the numerical eval-

uation of the existing theory, the length of two

DHFEs is matched by repeating a particular entry

in both membership and non-membership parts.

This is done by first ordering the DHFEs into

either descending order or ascending order and

then according to the expert’s optimistic or pes-

simistic viewpoint, the smaller value or the larger

value is repeated until the length of two DHFEs

under consideration becomes equal. This leads to

redundancy of same data entries and increases the

computational effort as well as different results

from the proposed one. But, this repetition of the

smaller or larger value to make the length equal is

not required in our approach. It reduces the cal-

culation overheads as each element is having its

associated probability which cannot be repeated

over and over again, and hence, it makes our

approach inclined more toward the real-life

scenarios.

(ii) Secondly, by converting the PDHFEs to DHFEs

and by comparing the outcomes to that of

approach given by Ye [38], it is noticed that the

correlation coefficient ‘K3’ is obtained as:

K3ðV1;V	Þ ¼ 0:8831; K3ðV2;V	Þ ¼ 0:8720;

K3ðV3;V	Þ ¼ 0:9121; K3ðV4;V	Þ ¼ 0:8757

Table 1 Probabilistic dual hesitant decision matrix provided by the first decision-maker

G1 G2 G3 G4

V1 0:7
��0:7;

0:5
��0:3

( )
;

0:3
��0:5;

0:2
��0:5

( ) !
0:3
��1
3
;

0:2
��1
3
;

0:1
��1
3

8>>><
>>>:

9>>>=
>>>;
;

0:45
��0:5;

0:40
��0:5

( )
0
BBB@

1
CCCA

0:4
��1
3
;

0:3
��1
3
;

0:1
��1
3

8>>><
>>>:

9>>>=
>>>;
; 0:2

��1� �
0
BBB@

1
CCCA

0:1
��1� �

;
0:4
��0:5;

0:3
��0:5

( ) !

V2 0:4
��0:5;

0:35
��0:5

( )
;

0:2
��0:5;

0:1
��0:5

( ) !
0:5
��0:5;

0:4
��0:5

( )
;

0:3
��0:5;

0:2
��0:5

( ) !
0:4
��0:5;

0:2
��0:5

( )
; 0:1

��1� �
 !

0:55
��1
3
;

0:5
��1
3
;

0:40
��1
3

8>>><
>>>:

9>>>=
>>>;
;

0:2
��0:5;

0:1
��0:5

( )
0
BBB@

1
CCCA

V3 0:5
��0:5;

0:4
��0:5

( )
;

0:2
��0:5;

0:1
��0:5

( ) !
0:4
��0:5;

0:1
��0:5

( )
;

0:40
��0:5;

0:25
��0:5

( ) !
0:40

��0:5;
0:30

��0:5

( )
; 0:10

��1� �
 !

0:2
��0:5;

0:1
��0:5

( )
;

0:4
��0:5;

0:3
��0:5

( ) !

V4 0:6
��1
3
;

0:5
��1
3
;

0:4
��1
3

8>>><
>>>:

9>>>=
>>>;
;

0:3
��0:5;

0:1
��0:5

( )
0
BBB@

1
CCCA

0:30
��0:25;

0:1
��0:75

( )
;

0:50
��0:5;

0:40
��0:5

( ) !
0:50

��0:5;
0:40

��0:5

( )
;

0:25
��0:5;

0:20
��0:5

( ) !
0:25

��0:5;
0:15

��0:5

( )
; 0:30

��1� �
 !
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Thus, the alternatives are ranked as

V3 
 V1 
 V4 
 V2. It can be seen that the best

alternative does not remain the same as that of our

proposed approach. This difference arises due to

the difference in the ideal determination tech-

nique. In the existing approach [38], the ideal

alternative is taken as f1g; f0gð Þ, but in our

approach, the ideal is determined in accordance

with the informational energy. The alternatives

attribute showing the largest informational energy

are taken as the membership ideal value, whereas

the smallest information energy possessing alter-

native attribute is taken as non-membership ideal

value as given in Eq. (15). By choosing an ideal

alternative in such a way, there is no need to repeat

the values to match the length as well as the ideal

alternative is chosen in such a way that it syn-

chronizes with the associated real-life DMPs.

(iii) The PDHFEs can be reduced to PHFEs by not

considering the non-membership part. So, by

converting the PDHFEs into PHFEs and by

evaluating the alternatives in accordance with the

Table 3 Probabilistic dual hesitant decision matrix provided by the third decision-maker

G1 G2 G3 G4

V1

0:40
��1� �

;
0:2
��0:5;

0:1
��0:5

( ) !
0:20

��0:5;
0:10

��0:5

( )
; 0:30

��1� �
 !

0:25
��0:5;

0:20
��0:5

( )
; 0:10

��1� �
 !

0:5
��1
3
;

0:4
��1
3
;

0:3
��1
3

8>>><
>>>:

9>>>=
>>>;
;

0:2
��0:5;

0:1
��0:5

( )
0
BBB@

1
CCCA

V2 0:30
��0:10;

0:20
��0:90

( )
; 0:10

��1� �
 !

0:5
��0:5;

0:4
��0:5

( )
; 0:3

��1� �
 !

0:3
��1� �

;
0:5
��0:5;

0:4
��0:5

( ) !
0:4
��1
3
;

0:3
��1
3
;

0:1
��1
3

8>>><
>>>:

9>>>=
>>>;
; 0:15

��1� �
0
BBB@

1
CCCA

V3

0:4
��1� �

;
0:20

��0:5;
0:10

��0:5

( ) !
0:3
��1
3
;

0:2
��1
3
;

0:1
��1
3

8>>><
>>>:

9>>>=
>>>;
; 0:40

��1� �
0
BBB@

1
CCCA

0:20
��0:5;

0:10
��0:5

( )
; 0:40

��1� � !
0:3
��0:5;

0:2
��0:5

( )
; 0:15

��1� � !

V4 0:45
��0:5;

0:30
��0:5

( )
;

0:25
��0:5;

0:20
��0:5

( )
Þ

0:30
��0:5;

0:20
��0:5

( )
; 0:10

��1� �
 !

0:70
��1
3
;

0:60
��1
3
;

0:50
��1
3

8>>><
>>>:

9>>>=
>>>;
; 0:30

��1� �
0
BBB@

1
CCCA

0:35
��0:5;

0:20
��0:5

( )
; 0:10

��1� �
 !

Table 2 Probabilistic dual hesitant decision matrix provided by the second decision-maker

G1 G2 G3 G4

V1 0:40
��1� �

; 0:15
��1� �� �

0:40
��0:5;

0:20
��0:5

( )
; 0:10

��1� � !
0:20

��0:5;
0:10

��0:5

( )
; 0:30

��1� � !
0:30

��0:5;
0:10

��0:5

( )
; 0:50

��1� � !

V2 0:30
��0:5;

0:10
��0:5

( )
; 0:60

��1� � !
0:60

��0:5;
0:20

��0:5

( )
;

0:15
��0:5;

0:10
��0:5

( ) !
0:25

��0:5;
0:15

��0:5

( )
; 0:10

��1� � !
0:75

��1
3
;

0:65
��1
3
;

0:60
��1
3

8>>><
>>>:

9>>>=
>>>;
;

0:25
��0:5;

0:10
��0:5

( )
0
BBB@

1
CCCA

V3 0:40
��0:5;

0:30
��0:5

( )
; 0:10

��1� �
 !

0:5
��1� �

;
0:3
��0:5;

0:2
��0:5

( ) !
0:20

��0:5;
0:15

��0:5

( )
;

0:40
��0:5;

0:30
��0:5

( ) !
0:35

��0:50;
0:30

��0:50

( )
; 0:20

��1� �
 !

V4 0:30
��0:5;

0:10
��0:5

( )
; 0:40

��1� � !
0:30

��0:5;
0:10

��0:5

( )
; 0:40

��1� � !
0:20

��1
3
;

0:15
��1
3
;

0:10
��1
3

8>>><
>>>:

9>>>=
>>>;
; 0:05

��1� �
0
BBB@

1
CCCA

0:30
��1� �

;
0:20

��0:5;
0:10

��0:5

( ) !
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Ta
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G
ro
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ro
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ab
il
is
ti
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d
u
al

h
es
it
an
t
d
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is
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at
ri
x

G 1
G 2

V 1
0
:7
0
� � 0:

2
3
3
;0
:5
0
� � 0:

1
;

0
:4
0
� � 0:

6
6
6
7

(
) ;

0
:3
0
� � 0:

1
6
6
7
;0
:2
0
� � 0:

3
3
3
3
;

0
:1
5
� � 0:

3
3
3
3
;0
:1
0
� � 0:

1
6
6
7

(
)

 
!

0
:4
0
� � 0:

1
6
6
7
;0
:3
0
� � 0:

1
1
1
1
;

0
:2
0
� � 0:

4
4
4
4
;0
:1
0
� � 0:

2
7
7
8

(
) ;

0
:4
5
� � 0:

1
6
6
7
;0
:4
0
� � 0:

1
6
6
7
;

0
:3
0
� � 0:

3
3
3
3
;0
:1
0
� � 0:

3
3
3
3

(
)

 
!

V 2
0
:4
0
� � 0:

1
6
6
7
;0
:3
5
� � 0:

1
6
6
7
;

0
:3
0
� � 0:
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approach proposed by Wang and Li [32], it is

observed that in the existing approach, the corre-

lation coefficients are calculated corresponding to

each criterion separately. As per their outlined

approach, the obtained values for weighted corre-

lation coefficients (Kx) are summarized in

Table 6. As per the ranking index ðrjÞ where j ¼
ð1; 2; 3; 4Þ proposed by Wang and Li [32] in which

all the correlation coefficient values corresponding

to each alternative are added separately, the rj’s

are obtained as:

r1 ¼ 3:5771; r2 ¼ 3:7192; r3 ¼ 3:3879;

r4 ¼ 3:4945
:

Hence, the alternatives are ranked as V2 
 V1 

V4 
 V3: The best alternative coincides with our

proposed approach. This is certainly because of

considering the probabilistic membership values

in PHFE. But the successive ranking order differs

and this variation clearly signifies that by ignoring

the degrees of disagreeness, results can show great

deviations as compared to the case when the dis-

agreeness is paid equal attention. Clearly, by

considering the non-membership probabilistic

hesitant values, the information can be knitted

more closely to the practical situations giving the

best alternative same as that of the existing theory.

Thus, it is better to give equal priority to the non-

membership values during the DM processes.

(iv) The approach followed by Hao et al. [18] is based

on aggregating information available in the form

of PDHFEs. According to it, the alternatives are

ranked as V2 
 V3 
 V1 
 V4. So, the proposed

approach’s best alternative coincides with the

existing theory. However, it is seen that the rest of

the ranking obtained by this existing approach

differs from that of the evaluation using the

correlation coefficient ‘‘K3.’’ This significant dif-

ference is because of the variation in processing

the available PDHFEs in both the theories. In the

existing one, an aggregation operator is used to

compute the score values which leads to the

ranking of the alternatives, but the proposed

approach works on the correlation coefficient.

5.2 Further discussion

Below, we study the characteristic measures of the pro-

posed approach with the existing approaches

[18, 30, 32, 38] and the results are tabulated in Table 7.

In this, the symbol ‘‘U’’ represents that the associated

properties satisfy, while the symbol � represents theTa
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associated property fails. For example, it is clearly seen

from Table 7 that the MCDM method mentioned in Wang

and Li [32] considers more than one experts, takes into

account probabilistic values, has no data redundancy, and

also takes the non-trivial ideal alternative. But this

approach does not consider the falsity values which are

overcome in the proposed approach. On the other hand, the

approaches by Wang et al. [30] and Ye [38] have consid-

ered the non-membership, but they fail to capture all other

characteristic features possessed by our approach such as

one of them is not a multi-expert decision-making

approach and does not capture probabilistic information

with repeated data values in which their ordering, as well

as the non-membership values, plays a significant role,

whereas the approach outlined by Hao et al. [18] models

multi-expert information and also contains non-member-

ship. But, our approach is superior in the aspects of data

redundancy and ordering of data values before the evalu-

ation. This discussion leads to the conclusion that the

proposed method will efficiently handle and solve the

problems with respect to the existing methods

[18, 30, 32, 38].

5.3 Advantages of the proposed approach

From the computed results, we highlights the following

advantages of the method under the PDHFS environment.

(i) Since PDHFEs can model the probabilities of each

membership and non-membership values sepa-

rately, so an expert can give a more flexible rating

in which he is free to provide probabilistic

preferences to the hesitant values of agreeness as

well as disagreeness.

(ii) In the numerical calculation of the correlation

coefficients using the proposed approach, there is

no need of repeating the hesitant values of one set

to match with the number of hesitant values of the

second set in consideration. So, the computational

overheads get reduced and the hesitant inputs

become more inclined toward the real-life scenar-

ios, i.e., the calculations are done with the

elements and their respective probabilities by

keeping the same as they have been acquired by

the expert, but not by repeating the values again

and again to get the desired results.

(iii) In the proposed approach, the ideal alternative is

chosen logically by considering the alternative

having maximum informational energy for the

membership hesitant values and the alternative

with minimum informational energy values for the

non-membership ones, classified under different

criteria. So, the ideal alternative is viable in

accordance with the practical situational gravity

rather than fixing it to the extreme ideal alternative

values such as f1ð1Þg; f0ð1Þgð Þ in the case of

PDHFEs and f1g; f0gð Þ in the case of DHFEs.

(iv) Since a PDHFE can be reduced to PHFE by not

considering the non-membership values along

with their associated probabilities and it can also

be reduced to DHFE by considering the member-

ship and non-membership hesitant values to be

equi-probabilistic, the proposed approach is a

generalized version of the existing approaches

based on these environments [30, 32, 38].

Table 6 Correlation coefficients in accordance with [32]

G1 G2 G3 G4

KxðV1;V	Þ 1 0.8348 0.9322 0.8100

KxðV2;V	Þ 0.7553 1 0.9639 1

KxðV3;V	Þ 0.6935 0.8684 0.9072 0.9189

KxðV4;V	Þ 0.7461 0.8052 1 0.9433

Table 7 Characteristic comparison of the proposed approach with different methods

Methods Whether consider more than

one decision-maker

Whether considers

the probabilities

No data

redundancy

No ordering of

data values

Non-trivial

ideal alternative

Considers non-

membership degrees

Wang et al.

[30]

� � � � � U

Ye [38] � � � � � U

Wang and Li

[32]

U U U U U �

Hao et al.

[18]

U U � � � U

Our proposed

approach

U U U U U U
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(v) Often in the multi-expert decision-making

approaches, there is a need of two weighted

criteria: One is the subjective weighted criteria and

the other one is the objective weighted criteria.

The subjective weighted criteria are used to

aggregate the variable decisions taken by different

experts to reach one final conclusion. But in the

proposed approach, although there are more than

one decision-makers, still there is no need for any

additional weighted criteria to figure out the

collective decision taken by all the experts. Thus,

it makes our approach more flexible, time-saving

as well as having less computational overheads.

6 Conclusion

PDHFS is a special dual hesitant fuzzy set where the

membership and non-membership degrees of the element

of the set are associated with the probabilities and can more

easily describe the vagueness and uncertainty in the real

world. Also, the several existing sets such as DHFS, HFSs,

and PHFS are considered as a special case of the PDHFSs.

Thus, the PDHFS is a more generalized and successful

concept for handling the uncertainties with both stochastic

and fuzzy features. By taking the advantages of these, the

present paper presents the concept of the correlation

coefficients for measuring the relationships between two or

more values. The advantages of the proposed measures are

that it not only measures the strength between two or more

PDHFEs but simultaneously it avoids the inconsistency of

the decision-makers results due to the loss of the infor-

mation. Further, in the study, a method of northwest corner

rule is utilized to compute the joint probabilities of the set.

Some salient properties of the proposed CCs are also

addressed. Afterward, a decision-making approach is

developed for MCDM problem with probabilistic dual

hesitant fuzzy information. Finally, to justify the practical

resilience, the proposed method has been exemplified by a

case study based on personnel selection. The comparative

analysis with some of the existing studies [18, 30, 32, 38]

has been conducted to show the availability and advantages

of the proposed method. From the study, it is concluded

that PDHFS not only capture the decision-maker prefer-

ences but also the corresponding probabilities under

uncertain environment. Thus, due to these probabilities,

this model can keep more detailed information and valu-

able results to the decision-makers as compared to the other

existing theories.

In the future, the research will focus on extending the

theory under other uncertain and linguistic information

[10, 11, 15, 29] and some information measures and rela-

tions can be studied for PDHFSs.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Arora R, Garg H (2018) A robust correlation coefficient measure

of dual hesistant fuzzy soft sets and their application in decision

making. Eng Appl Artif Intell 72:80–92

2. Atanassov K, Gargov G (1989) Interval-valued intuitionistic

fuzzy sets. Fuzzy Sets Syst 31:343–349

3. Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst

20:87–96

4. Bustince H, Burillo P (1995) Correlation of interval-valued

intuitionistic fuzzy sets. Fuzzy Sets Syst 74:237–244

5. Chen N, Xu Z, Xia M (2013) Correlation coefficients of hesitant

fuzzy sets and their applications to clustering analysis. Appl Math

Model 37(4):2197–2211

6. Chen Y, Peng X, Guan G, Jiang H (2014) Approaches to multiple

attribute decision making based on the correlation coefficient

with dual hesitant fuzzy information. J Intell Fuzzy Syst

26(5):2547–2556

7. Farhadinia B (2014) Correlation for dual hesistant fuzzy sets and

dual interval-valued hesitant fuzzy set. Int J Intell Syst

29:184–205

8. Garg H (2016) A novel correlation coefficients between Pytha-

gorean fuzzy sets and its applications to decision-making pro-

cesses. Int J Intell Syst 31(12):1234–1252

9. Garg H (2018) Novel correlation coefficients under the intu-

itionistic multiplicative environment and their applications to

decision-making process. J Ind Manag Optim 14(4):1501–1519

10. Garg H, Arora R (2018) Dual hesitant fuzzy soft aggregation

operators and their application in decision making. Cognit

Comput 10(5):769–789

11. Garg H, Arora R (2019) Maclaurin symmetric mean aggregation

operators based on t-norm operationsfor the dual hesitant fuzzy

soft set. J Ambient Intell Humaniz Comput. https://doi.org/10.

1007/s12652-019-01238-w

12. Garg H, Kaur G (2018) Algorithm for probabilistic dual hesitant

fuzzy multi-criteria decision making based on aggregation oper-

ators with new distance measures. Mathematics 6(12):280.

https://doi.org/10.3390/math6120280

13. Garg H, Kumar K (2018) A novel correlation coefficient of

intuitionistic fuzzy sets based on the connection number of set

pair analysis and its application. Sci Iran E 25(4):2373–2388

14. Garg H, Kumar K (2019) Linguistic interval-valued atanassov

intuitionistic fuzzy sets and their applications to group decision-

making problems. IEEE Trans Fuzzy Syst. https://doi.org/10.

1109/TFUZZ.2019.2897961

15. Garg H, Rani D (2019) A robust correlation coefficient measure

of complex intuitionistic fuzzy sets and their applications in

decision-making. Appl Intell 49(2):496–512

16. Gerstenkorn T, Manko J (1991) Correlation of intuitionistic fuzzy

sets. Fuzzy Sets Syst 44:39–43

17. Guan X, Sun G, Yi X, Zhou Z (2018) Synthetic correlation

coefficient between hesitant fuzzy sets with applications. Int J

Fuzzy Syst 20(6):1968–1985

Neural Computing and Applications (2020) 32:8847–8866 8865

123

https://doi.org/10.1007/s12652-019-01238-w
https://doi.org/10.1007/s12652-019-01238-w
https://doi.org/10.3390/math6120280
https://doi.org/10.1109/TFUZZ.2019.2897961
https://doi.org/10.1109/TFUZZ.2019.2897961


18. Hao Z, Xu Z, Zhao H, Su Z (2017) Probabilistic dual hesitant

fuzzy set and its application in risk evaluation. Knowl Based Syst

127:16–28

19. Kobina A, Liang D, He X (2017) Probabilistic linguistic power

aggregation operators for multi-criteria group decision making.

Symmetry 9(12):320. https://doi.org/10.3390/sym9120320

20. Liao H, Xu Z (2017) Novel correlation and entropy measures of

hesitant fuzzy sets. In: Hesitant fuzzy decision making method-

ologies and applications. Springer, pp 37–72

21. Liao H, Xu Z, Zeng XJ (2015) Novel correlation coefficients

between hesitant fuzzy sets and their application in decision

making. Knowl Based Syst 82:115–127

22. Meng F, Chen X (2015) Correlation coefficients of hesitant fuzzy

sets and their application based on fuzzy measures. Cognit

Comput 7(4):445–463

23. Mitchell HB (2004) A correlation coefficient for intuitionistic

fuzzy sets. Int J Intell Syst 19:483–490

24. Park DG, Kwun YC, Park JH, Park IY (2009) Correlation coef-

ficient of interval-valued intuitionistic fuzzy sets and its appli-

cation to multi attribute group decision making problems. Math

Comput Model 50:1279–1293

25. Ren Z, Xu Z, Wang H (2017) An extended TODIM method under

probabilistic dual hesitant fuzzy information and its application

on enterprise strategic assessment. In: 2017 IEEE international

conference on industrial engineering and engineering manage-

ment (IEEM). IEEE, pp 1464–1468

26. Sun G, Guan X, Yi X, Zhou Z (2018) An innovative TOPSIS

approach based on hesitant fuzzy correlation coefficient and its

applications. Appl Soft Comput 68:249–267

27. Torra V (2010) Hesitant fuzzy sets. Int J Intell Syst

25(6):529–539

28. Tyagi SK (2015) Correlation coefficient of dual hesitant fuzzy

sets and its applications. Appl Math Model 39(22):7082–7092

29. Ullah K, Garg H, Mahmood T, Jan N, Ali Z (2019) Correlation

coefficients for T-spherical fuzzy sets and their applications in

clustering and multi-attribute decision making. Soft Comput.

https://doi.org/10.1007/s00500-019-03993-6

30. Wang L, Ni M, Zhu L (2013) Correlation measures of dual

hesitant fuzzy sets. J Appl Math. https://doi.org/10.1155/2013/

593739

31. Wang LL, Li DF, Zhang SS (2013) Mathematical programming

methodology for multiattribute decision making using interval-

valued intuitionistic fuzzy sets. J Intell Fuzzy Syst 24(4):755–763

32. Wang Z, Li J (2017) Correlation coefficients of probabilistic

hesitant fuzzy elements and their applications to evaluation of the

alternatives. Symmetry 9(11):259. https://doi.org/10.3390/

sym9110259

33. Wei GW, Wang HJ, Lin R (2011) Application of correlation

coefficient to interval-valued intuitionistic fuzzy multiple attri-

bute decision-making with incomplete weight information.

Knowl Inf Syst 26(2):337–349

34. Xia M, Xu ZS (2011) Hesitant fuzzy information aggregation in

decision-making. Int J Approx Reason 52:395–407

35. Xu Z, Xia M (2011) On distance and correlation measures of

hesitant fuzzy information. Int J Intell Syst 26(5):410–425

36. Xu Z, Zhou W (2017) Consensus building with a group of

decision makers under the hesitant probabilistic fuzzy environ-

ment. Fuzzy Optim Decis Mak 16(4):481–503

37. Yang J, Tang X, Yang S (2018) Novel correlation coefficients for

hesitant fuzzy sets and their applications to supplier selection and

medical diagnosis. J Intell Fuzzy Syst 35(6):6427–6441

38. Ye J (2014) Correlation coefficient of dual hesitant fuzzy sets and

its application to multiple attribute decision making. Appl Math

Model 38:659–666

39. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

40. Zhou W, Xu Z (2017) Group consistency and group decision

making under uncertain probabilistic hesitant fuzzy preference

environment. Inf Sci 414:276–288

41. Zhou W, Xu Z (2018) Probability calculation and element opti-

mization of probabilistic hesitant fuzzy preference relations based

on expected consistency. IEEE Trans Fuzzy Syst

26(3):1367–1378

42. Zhu B, Xu ZS (2018) Probability-hesitant fuzzy sets and the

representation of preference relations. Technol Econ Dev Econ

24(3):1029–1040

43. Zhu B, Xu Z, Xia M (2012) Dual hesitant fuzzy sets. J Appl

Math. https://doi.org/10.1155/2012/879629

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

8866 Neural Computing and Applications (2020) 32:8847–8866

123

https://doi.org/10.3390/sym9120320
https://doi.org/10.1007/s00500-019-03993-6
https://doi.org/10.1155/2013/593739
https://doi.org/10.1155/2013/593739
https://doi.org/10.3390/sym9110259
https://doi.org/10.3390/sym9110259
https://doi.org/10.1155/2012/879629

	A robust correlation coefficient for probabilistic dual hesitant fuzzy sets and its applications
	Abstract
	Introduction
	Preliminaries
	Correlation coefficient on PDHFSs
	Decision-making approach based on PDHF information
	Case study
	Comparative studies
	Further discussion
	Advantages of the proposed approach

	Conclusion
	References




